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Abstract

We propose a synthetic data-based training framework
for real-time deep learning models that predict an omni-
directional high-dynamic-range (HDR) environment light
map from a single limited field-of-view, low-dynamic-range
portrait image. Training lighting estimation models re-
quires paired data of portrait images and the corresponding
environment maps. Previous research generates the data by
utilizing relightable real-face datasets collected in special-
ized light stages, and then relighting faces using HDR envi-
ronment maps. This process is costly and time-consuming,
and consequently, the datasets often cover a limited num-
ber of subjects and are prone to demographic bias. On
the other hand, recent developments in graphic-based syn-
thetic portrait images based on combining a parametric 3D
face model with a comprehensive collection of hand-crafted
assets, such as skin, hair, and clothing, have shown great
advancement in photorealism. Leveraging the ease of col-
lecting diverse synthetic data, we explore their potential
in the domain of portrait lighting estimation. Our train-
ing framework involves pre-training on synthetic labeled
data and fine-tuning on unlabeled real portrait videos. Our
model achieves state-of-the-art performance based on the
zero-shot evaluation result on the real portrait image bench-
mark dataset. Furthermore, we conduct a fairness analysis,
showing that our model is more robust to demographic dif-
ferences than the existing state-of-the-art models.

1. Introduction

Understanding environment illumination is crucial in vari-
ous applications, such as portrait relighting [12, 27], scene
simulation [15, 22] and 3D construction [14]. Consider-
ing the diverse user base of these applications, it is impor-
tant to ensure inclusivity and avoid bias towards specific
groups. While previous studies have addressed inclusiv-
ity in biometric systems [4], face recognition [20], and skin
tone recognition [6], the exploration of inclusivity in light-
ing estimation remains unexplored. To mitigate biometric
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Figure 1. Model Architecture. Our approach involves a two-step
training process. We pre-train our model using synthetic data with
reconstruction loss and color loss. During fine-tuning, we adapt
it to the real image domain by introducing a temporal consistency
loss based on unlabeled real video frames.

bias, collecting data from diverse demographic groups is a
natural solution. However, collecting data for lighting es-
timation models is a costly and time-consuming task, as it
involves obtaining paired data of portrait images and corre-
sponding light maps.

To create a diverse dataset, the Laval Face+Lighting
HDR dataset [2] is created through conducting photo ses-
sions involving 9 subjects in 25 distinct lighting environ-
ments. To further enhance the variety of lighting and sub-
jects, subsequent researches [5, 12, 13, 19] propose to de-
couple the collection process of portrait images from that
of environment maps. LeGender et al. [12, 13] gener-
ates a similar dataset by separately collecting HDR envi-
ronment maps and recording the reflectance field and alpha
matte of 70 diverse subjects using a light stage [3]. They
then combine these elements to create paired data using
image-based relighting. Similarly, using HDR maps, Sz-
trajman et al. [19] relights scanned faces from the ICT 3D
Relightable Facial Expression Database [19] and Fei et al.
[5] relights scanned faces from FaceScape dataset [25] to
create the paired data. Due to the requirements of light
stages to record facial texture or reflectance information,



these datasets only cover a limited number of subjects, po-
tentially leading to models over-fitting faces from certain
demographic groups.

Inspired by recent advancements in the photorealism of
synthetic face images based on graphics and 3D face models
[23], as well as the successful utilization of these synthetic
data for training 3D localization tasks [24], we investigate
the viability of training our model using these data. Our
objective is to achieve performance levels on par with real
labeled data and enhance the model’s ability to handle sub-
jects from diverse demographics. The main contributions of
our study are as follows.
• We propose a training pipeline that first pre-trains the

model on graphic-based labeled synthetic data and fine-
tunes it on unlabeled videos.

• In contrast to state-of-the-art methods, we show that our
model well achieves fairness across gender and ethnicity
groups.

• We demonstrate our network’s superior performance on
both synthetic and real data compared to state-of-the-art
methods.

2. Related work
2.1. Lighting Estimation

To achieve a realistic rendering of objects in augmented re-
ality (AR), accurate lighting estimation is crucial. Gard-
ner et al. [7] first introduce an end-to-end deep neural
network that directly regresses key lighting locations and
intensities from a limited field-of-view photo, without re-
lying on strong assumptions on scene geometry, material
properties, or lighting. Subsequent research in this field
can be broadly categorized into two approaches: regres-
sion models and generative models. The regression mod-
els infer low-dimensional geometric and photometric pa-
rameters such as sky parameters [11], needlets coefficients
[26], and low-dimensional spherical harmonic representa-
tions [9, 17, 28]. On the other hand, the generative mod-
els directly generate environmental maps [18, 21] or light
probes [5]. The regression models have less flexibility and
less detailed lighting information, and require additional
post-processing steps to convert the lighting parameters to
HDR environment maps for image-based relighting. As a
result, the generative model approach is a more popular op-
tion for mobile or web AR applications [12, 18]. Therefore
our model also directly infers the environment maps.

2.2. Graphic-Based Synthetic Face Data

Recently, there has been a growing interest in utilizing
graphic-based synthetic face data for training models in fa-
cial landmarks and face parsing tasks [23]. These synthetic
face data are generated by integrating a parametric 3D face
model [1] with a wide range of hand-crafted assets, includ-

ing skin texture, hair, and clothing, and then relit with HDR
maps and rendered using a photo-realistic ray-tracing ren-
derer [23]. Using these graphic-based data offers a high
level of photorealism, and studies have shown that models
trained on such data have achieved state-of-the-art results in
monocular 3D face reconstruction [24]. The graphic-based
synthetic data reduces the complexity and cost of collecting
lighting data for portrait images and enables the creation of
large datasets with diverse subjects and environment maps.
Leveraging graphic-based face data, we acquire a compre-
hensive dataset from the Datagen Platform1 that consists of
over 5,000 actors and 260 environment maps.

2.3. Synthetic and Real Domain Adaption

The existence of a domain-adaptation gap between real and
synthetic data is a well-known challenge. Previous studies
have addressed this issue by employing generative adversar-
ial networks (GAN) to enhance the realism of the synthetic
portrait images [28] or the predicted maps [5]. These meth-
ods improve the realism of the predicted maps by encour-
aging the maps to have high-frequency details. However,
since environment maps have a long-tail color intensity dis-
tribution [21] and most public datasets23 only have a few
hundreds of indoor and outdoor maps, these methods often
result in unstable predictions. In the context of real-time AR
lighting estimation models, temporal consistency is an im-
portant concern, and flickering in lighting can significantly
impact the overall AR experience. Therefore, instead of
the GAN approach, we impose a temporal consistent loss
based on video data to encourage smooth transitions among
the predicted maps of consecutive video frames, thereby en-
hancing the overall quality and stability of the model.

3. Methods
As illustrated in Fig. 1, we first pre-train our model on syn-
thetic data and then fine-tune the model with synthetic data
and unlabelled real video frames.

3.1. Synthetic Training Data

We acquired a diverse synthetic dataset using the Datagen
platform. The dataset consists of over 60,000 paired data,
comprising 5,000 synthetic actors and over 260 maps. The
actors are sampled with an equal distribution of ethnicities
(African, Hispanic, Mediterranean, North European, South
Asian, Southeast Asian), ages (young, adult, elderly), and
genders. We randomize actors’ head orientations and add a
variety of attributes to them, such as beard, hairstyle, and
clothing. For the environment maps, we employ a wide
range of HDR lighting maps, representing various times of

1https://datagen.tech
2https://polyhaven.com
3https://hdri-haven.com
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Figure 2. Illustration of synthetic data. For each actor, we ran-
domly sample 4 environment maps (right column) and generate 12
images by incorporating different hairstyles, head poses, and other
attributes.

day (morning, day, evening, or night) and settings (indoor or
outdoor). For each actor, we utilize 4 different HDR maps
and 3 orientations per map as illustrated in Fig. 2.

To prioritize the learning of light maps, we crop and
center-align heads in the portrait images, and rotate and
shift the environment maps to align their centers with the
locations of the actors’ faces in the portrait images. To in-
troduce more variety in the maps, we incorporate random
horizontal flip, exposure, and white balance augmentations.

3.2. Real Portrait Video Data

Our video dataset comprises 4000 portrait videos featuring
over 1000 subjects from diverse demographics and light-
ing environments. Each video maintains a fixed camera
position in a stable environment, with the subject posi-
tioned at the center, exhibiting different head poses and
expressions. By assuming that the environments remain
unchanged within short time intervals, the predicted maps
of consecutive frames should be invariant to subjects’ head
poses and expressions.

3.3. Loss Functions

As shown in Fig. 1, we pre-train the generator (G) and
the color regressor (D) simultaneously using synthetic data.
The total pre-taining loss is the sum of the generator recon-
struction, generator color and regressor losses.

LPretraining = LReconstruction + LColor + LD (1)

During fine-tuning, we freeze the light color regressor and
train the generator using synthetic data and real videos. The
total fine-tuning loss is the sum of the reconstruction, color
and consistency losses.

LFinetuning = LReconstruction + LColor + LCons (2)

Generator Reconstruction Loss (LReconstruction)
Given an input image x, the reconstruction loss is calcu-
lated as a pixel-wise L2 difference between the predicted
map G(x) and ground truth map y.

Generator Color Loss (LColor) Pixels with higher in-
tensity in light maps have more impact on rendering as they
reveal information regarding key light sources. To account
for this, a color loss is added to minimize the average color
difference between stronger light sources in the predicted
and ground truth maps. Prior research works [8, 21] have
demonstrated the effectiveness by utilizing a pixel-wise loss
on the top 5-10% highest intensity pixels in the maps. Based
on our experiment, the model learns better when this loss is
computed using a color regression model (D).

We use LAB color when determining the top k% highest
intensity pixels in map y, Mk(y) is defined as the set of pix-
els P with values greater than 1− k% percentile in channel
L when converting the map to be in LAB color space. We
define M10 and M50 of map y as the following:

M50 (y) = {P RGB |P LAB ∈ {Top 10%−50%L value}}
M10 (y) = {P RGB |P LAB ∈ {Top 10% L value}} (3)

The color regressor is trained in parallel with the generator.
It predicts the mean RGB values of the top 10% highest
intensity pixels (M10(y)) and mean RGB of the top 10%-
50% highest intensity pixels (M50(y)) from the input maps.

LD =
∑

k∈{10,50}

Ey

[
∥Dk(y)−Mk(y)∥1

]
(4)

The light source color loss for the generator is com-
puted as the L1 distance loss between the RGB outputs from
the regression model and the average top 10% and 10-50%
RGB of the ground truth map.

LColor =
∑

k∈{10,50}

Ex

[
∥Dk(G(x))−Mk(y)∥1

]
(5)

Video Frame Consistency Loss (Lcons) During fine-
tuning, a self-supervised consistency loss is introduced to
ensure temporal coherence. Three consecutive video frames
(vt, vt+1 and vt+2) are fed into the generator and a pixel-
wise L1 distance loss is applied between the predicted map
of vt+1 and the mix-up of predictions of vt and vt+2.

LCons = Ev

[∥∥∥∥(G(vt+1)−
G(vt) +G(vt+2)

2

∥∥∥∥
1

]
(6)

3.4. Model Architecture

The generator employs an encoder-decoder architecture. It
utilizes the first 17 layers of MobileNetv2 [16] to extract
features, 5 up-sampling blocks and a convolution output



Env. Map ↓ Specular ↓ Diffuse ↓
Model Indoor Outdoor Indoor Outdoor Indoor Outdoor

Zhu et al. [29] - - 0.06 0.55 0.119 0.139
Sztrajman et al. [19] - 0.318 - 0.034 - 0.145
Legendre et al. [13] 0.307 0.258 0.043 0.042 0.121 0.135

Fei et al. [5] 0.268 0.180 0.029 0.018 0.073 0.069
Our Pre-trained w/o col loss 0.235 0.171 0.017 0.015 0.072 0.071

Our Pre-trained 0.231 0.171 0.017 0.015 0.067 0.072
Our Fine-tuned 0.231 0.170 0.016 0.015 0.065 0.071

Table 1. Comparison of siRMSE on LIGHTTEST dataset [5]

layer to generate the maps. Each up-sampling block com-
prises a convolution layer, a ReLu activation layer, and a
bilinear up-sampling layer. Considering the long-tailed in-
tensity distribution of HDR environment maps, the genera-
tor predicts maps on a logarithmic scale.

The color regression model consists of six convolution
layers and each convolution layer is followed by a Leaky
ReLu activate layer. Two fully connected output heads are
used to predict the average RGB of the top 10% and top
10-50% highest intensity pixels. See more implementation
details in the supplement material.

4. Results and Fairness Study
We benchmark our model against the state-of-the-art mod-
els [5, 13, 19, 29] on the LIGHTTEST dataset [5]. The
SOTA models are either trained with real portrait images or
relit real faces. The LIGHTTEST dataset comprises paired
data of real portrait images and environment maps and in-
cludes the data from the Laval Face+Light dataset [2]. The
subjects in the dataset exhibit a variety of skin tones, and
the maps capture both indoor and outdoor backgrounds.

We report the scale-invariant root mean squared error
(siRMSE) on all methods in Tab. 1, which is a commonly
used evaluation metric for lighting estimation models. The
metric is computed directly on the environment maps, and
after rendering the maps on a specular sphere and a diffuse
sphere. A more detailed ablation study can be found in the
supplementary material.

To examine the inclusivity of our model, we conduct a
fairness analysis using indoor synthetic data. Synthetic data
is used since the real samples in the existing public datasets
are predominantly composed of Caucasian male, or South-
east Asian individuals, with limited samples from African,
Hispanic, South Asian, or female subjects. As shown in
Fig. 3 and Fig. 4, the results show that our model which
is trained with a diverse dataset, exhibits minimal perfor-
mance variation quantitatively and qualitatively across dif-
ferent genders and ethnicities in comparison with SPLiT. A
more comprehensive fairness analysis result can be found
in supplementary material.

5. Conclusion
Motivated by recent advancements in the photorealism
of graphics-based synthetic portrait images, which com-

Figure 3. To examine if models are invariant to demographic vari-
ation, we utilize synthetic images featuring subjects from diverse
ethnicities and genders placed in the same background. We ren-
der the predictions on the mirror, specular, and diffused spheres.
Predictions of images from the same background should be con-
sistent, that is, the spheres in the same column look identical.

Figure 4. Fairness analysis on ethnicity (#1-6) and gender in com-
parison with the SPLiT model.

bine a parametric 3D face model with hand-crafted as-
sets, and the fact that synthetic data simplifies the pro-
cess of acquiring data from diverse subjects, we propose
a training pipeline for portrait lighting estimation mod-
els that pre-trains on synthetic data and fine-tunes on un-
labeled real videos. Our model achieves state-of-the-art
performance in the real portrait image benchmark dataset.
Our fairness analysis on gender and ethnicity demonstrates
that our model exhibits greater robustness across differ-
ent demographic groups than the existing state-of-the-art
model.
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