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Abstract
Deep learning solvers for partial differential equa-
tions typically have limited accuracy. We pro-
pose to overcome this problem by using them
as preconditioners. More specifically, we ap-
ply discretization-invariant neural operators to
learn preconditioners for the flexible conjugate
gradient method (FCG). Architecture paired with
novel loss function and training scheme allows
for learning efficient preconditioners that can be
used across different resolutions. On the theo-
retical side, FCG theory allows us to safely use
nonlinear preconditioners that can be applied in
O(N) operations without constraining the form
of the preconditioners matrix. To justify learning
scheme components (the loss function and the
way training data is collected) we perform several
ablation studies. Numerical results indicate that
our approach favorably compares with classical
preconditioners and allows to reuse of precondi-
tioners learned for lower resolution to the higher
resolution data.

1. Introduction
The recent surge of interest in learning solution operators
and surrogates for partial differential equations (PDEs)
leads to several new approaches and architectures (Azz-
izadenesheli et al., 2023), (Karniadakis et al., 2021), (Ko-
vachki et al., 2021). Most notable, combination of func-
tional methods with deep learning (spectral convolutions
(Rippel et al., 2015), FNO (Li et al., 2020)); operator-valued
kernels (Kadri et al., 2016), (Batlle et al., 2024); random
feature model in Banach space; (Nelsen & Stuart, 2021) ar-
chitectures based on universal approximation for operators
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(DeepONet (Lu et al., 2019) and its variants).

According to the large-scale benchmarks, typical accuracy
of such methods is about 0.1% − 1% relative L2 norm
(Takamoto et al., 2022), (Lu et al., 2022), (de Hoop et al.,
2022). On the other hand, classical numerical methods for
PDEs are usually consistent, so they can reach arbitrary
accuracy on a sufficiently fine grid.

Is it possible to combine the consistency with the efficiency
of deep learning methods? One way around this is to build
a hybrid system, that is, to replace some parts of the clas-
sical method with deep learning components (e.g., (Bar-
Sinai et al., 2019), (Kochkov et al., 2021), (Greenfeld et al.,
2019)). In the present contribution we focus on elliptic
boundary value problems and show how to utilize neural op-
erator (Li et al., 2020) (NO) with flexible conjugate gradient
method (Notay, 2000) (FCG). As one can see on Figure 1,
our approach indeed allows one to retain consistency which
leads to much better error on grids with higher resolutions.

We are not the first ones, who propose to learn precondition-
ers. The previous contributions include at least (Hsieh et al.,
2019), (Zhang et al., 2022), (Cui et al., 2022), (Häusner
et al., 2023), (Li et al., 2023). However, our approach is the
first one with three unique properties: (i) – we learn non-
linear operator with asymptotic complexity O(N), which
allows us not to prescribe a structure of the preconditioners
matrix to have an efficient matrix-vector product, (ii) – our
nonlinear operator is discretization-invariant so it can be
applied at different resolutions, (iii) – we have convergence
guarantees based on FCG theory built in (Notay, 2000). We
provide more details on comparison with other approaches
in Section 4.

To summarize, our contributions are:

1. We propose to train a neural operator as a nonlinear pre-
conditioner for the flexible conjugate gradient method.
We demonstrate that neural operators can be trained
on lower resolutions and serve as an efficient precondi-
tioner for higher resolutions.

2. We provide a novel learning scheme that involves draw-
ing random vectors from the Krylov subspace. Abla-
tion study shows that abandoning Krylov subspace
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and using random right-hand sides1 seriously impair
training.

3. We put forward a novel loss based on energy norm that
comes with convergence guarantees and significantly
outperforms L2 loss usually used for training.
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Figure 1. Comparison of accuracy for three approaches: U-Net
– classical deep learning architecture, NO – neural operator,
NO+FCG – hybrid approach advocated in the present article. All
approaches are applied to the dataset for the Poisson equation (see
Section 3.2). Architectures (number of layers, parameters, etc)
are the same for all resolutions. Due to the prominent difference
between accuracies, two distinct scales are used in the y axis. One
can observe that owing to the finite receptive field the performance
of U-Net deteriorates with the increase of resolution. The neural
operator provides the same accuracy with resolution increase – this
is a highly-praised “discretization invariance.” For NO+FCG, the
error decreases with the increase of resolution in the same way as
for classical numerical methods.

Code and datasets are available on https://github.
com/arudikov/FCG.

2. Neural Operator as a Preconditioner
Here, we introduce the PDE that we solve and provide
a brief overview of discretization, iterative schemes, and
linear and nonlinear preconditioning. After that, we outline
the construction of the loss function, neural operator, and
training strategy.

1In our case, we sample random right-
hand sides as random trigonometric polynomials
P(N1, N2, α) =

{
f(x) = R

(
g(x)

)
: R(c) ≃ N (0, I)

}
,

where g(x) =
∑N1

m=0

∑N2
n=0

cmn exp (2πi(mx1 + nx2))

(1 +m+ n)α
.

2.1. Elliptic Equations

A family of PDEs we consider in this article has a form

−
2∑

ij=1

∂

∂xi

(
a(x)

∂u(x)

∂xj

)
= f(x)

x ∈ Γ ≡ (0, 1)2, u(x)
∣∣
x∈∂Γ

= 0,

(1)

where ∂Γ is a boundary of the unit hypercube Γ, and
a(x) ≥ ϵ > 0. Applying the finite element method or
finite difference method (FDM) to (1) we can obtain a large
sparse linear algebraic system with a symmetric positive
definite matrix:

Au = f ; u, f ∈ Rn, A ∈ Rn×n, A ≻ 0. (2)

The system can be solved in O
(
n3

)
operations by Gauss

elimination, but for large n3 one often resorts to iterative
techniques that can better leverage the special sparsity stric-
ture of matrix A.

2.2. Preconditioning of Linear System

One of the commonly used iterative methods for solving (2)
is conjugate gradient (CG). However, in practice, the CG
often converges slowly, and the convergence also depends
on the distribution of the eigenvalues and the initial residual.
One way to enhance convergence is to precondition the
system to improve its spectral properties. The modified
linear system becomes

B−1Au = B−1f, (3)

where B ∈ Rn×n is called the preconditioner.2 To be suc-
cessful, preconditioner B should have several properties: (i)
it should improve spectral properties of A, e.g., the condi-
tion number of B−1A is much smaller than the condition
number of A; (ii) B easily invertible, i.e., Bg = r is cheap
to solve; (iii) for preconditioner conjugate gradient (PCG)
(Axelsson, 1996) one need to ensure B is symmetric posi-
tive definite. All these requirements greatly complicate the
construction of preconditioners. Fortunately, with a slight
decrease in numerical efficiency, one can switch to a less
restrictive set of nonlinear preconditioners.

2.3. Nonlinear Preconditioners

A projection iterative method suitable for more general pre-
conditioners appeared in (Notay, 2000). The algorithm is
called Flexible Conjugate Gradient (FCG) and is given in

2Note that formally for A ≻ 0 one should use B− 1
2AB− 1

2

to preserve properties of the system. But since B− 1
2AB− 1

2 and
B−1A are spectrally equivalent one can rewrite conjugate gradient
algorithm to work directly with B−1A using B inner product. See
Section 9.2 from (Saad, 2003) for more details.
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Algorithm 1 Flexible Conjugate Gradients
Input: A, B, f , mmax > 0, iter.
Ensure: uiter, riter.
Initialize u0 ← N (0, 1) ∈ Rn, r0 ← f −Au0 ∈ Rn.
for i = 0 to iter− 1 do

wi ← B(ri)
mi ← min(i, max(1, mod (i, mmax + 1)))

pi ← wi −
∑i−1

k=i−mi

(wi, sk)

(pk, sk)
pk

si ← Api

ui+1 ← ui +
(pi, ri)

(pi, si)
pi

ri+1 ← ri −
(pi, ri)

(pi, si)
si

end for

Algorithm 1. It uses many vectors instead of one so it is
less effective than CG from a computational perspective.
But in return, one can consider B in Equation (3) to be the
nonlinear operator B. The only technical requirement is
given in the following result from (Notay, 2000):
Theorem 2.1. Let A, B ∈ Rn×n be symmetric posi-
tive definite matrices and B : Rn → Rn be a nonlin-
ear operator. Let f, u0 be the vectors of Rn, and let{
ri
}
i=0,1,...

,
{
pi
}
i=0,1,...

,
{
ui

}
i=1,2,...

be the sequences
of vectors generated by applying Algorithm 1 to A, B, f ,
and u0 with some given sequences of non-negative integer
parameters

{
mi

}
i=0,1,...

.

If, for any i, ∥∥B(ri)−B−1ri
∥∥
B∥∥B−1ri

∥∥
B

⩽ εi < 1, (4)

then ∥∥u− ui+1

∥∥
A∥∥u− ui

∥∥
A

⩽
κ
(
B−1A

)
· γi − 1

κ
(
B−1A

)
· γi + 1

,

where γi =
1 + εi
1− εi

·
(
1 + ε2i

)2
(1− ε2i )

, and
∥∥u∥∥

A
=

√
(u,Au).

In plain English, Theorem 2.1 states that as long as nonlinear
preconditioner B is close enough to the linear preconditioner
B (in a sense of equation (4)), FCG converges with roughly
the same speed as CG with B taken as a preconditioner.
This powerful result allows us to use a nonlinear neural
network as a preconditioner and simultaneously provide a
loss, suitable for training this neural network. Both these
points are explained in more detail in the next section.

2.4. Learning Scheme

2.4.1. LOSS FUNCTIONS

The principal idea of the article is to select a family of neural
networks with weights θ as nonlinear preconditioner B(r; θ)

for FCG described in Algorithm 1. Theorem 2.1 can be
interpreted in terms of optimization target. To increase the
rate of convergence that depends on κ(B−1A) we need to
use B−1 = A−1. Therefore, we can find parameters from
the loss

Lopt(θ) = max
r

∥∥B(r; θ)−A−1r
∥∥
A∥∥A−1r

∥∥
A

, s.t. ∥r∥2 = 1. (5)

If we were able to minimize Equation (5) with respect to θ
we would find a neural network that provides a nonlinear
preconditioner as close to A−1 as possible. Unfortunately
(5) is a hard minimax problem so we relax it to

Lmean(θ) = Er

∥∥B(r; θ)−A−1r
∥∥
A∥∥A−1r

∥∥
A

. (6)

To tie this loss function to the usual operator learning frame-
work described in (Li et al., 2020) we suppose that parame-
ters of PDE (1) are drawn from some distributions in Banach
space a ∼ pa and f ∼ pf after that the final loss, which we
call Notay loss after the author of (Notay, 2000), becomes

LNotay(θ) = Er,a,f

∥∥B(r; θ)−A−1r
∥∥
A∥∥A−1r

∥∥
A

, (7)

where A depends on a via discretization, r depends on f
and the distribution of initial guess u0 ∼ N (0, I). Even
though r is not independent from other variables we still
have freedom in the choice of distribution for r.

The simplest case is to compute the residual from u0 and f .
However, one expects that distribution for r will drift from
r = f − Au0, f ∼ pf , u0 ∼ N (0, I) since both CG and
FCG seek a solution in the Krylov subspace

Km(A, r0) = Span
{
r0, Ar0, . . . , A

m−1r0

}
. (8)

So it is natural to consider a more general distribution for r
drawing vectors from Krylov subspaces using distributions
for u0 and f

r ∼ pKm
(r)⇔ r ∈ Km(A, r0), f ∼ pf , u0 ∼ N (0, I).

(9)
In other words, to draw residuals from pKm(r) we draw u0

and f and run CG for m iterations.

Of course a valid alternative to Equation (7) is an ordinary
L2 loss function

L2(θ) = Er,a,f

∥∥B(r; θ)−A−1r
∥∥
2∥∥A−1r

∥∥
2

. (10)

Since L2 loss (10) is commonly used to learn the solution
operator for the elliptic equation, we will also try to use it
to learn the preconditioner.
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2.4.2. NEURAL OPERATOR

In principle, losses (7) and (10) are suitable for arbitrary
neural networks. However, it is desirable to learn a precon-
ditioner for one low-resolution discretization and apply it
to discretizations with higher resolutions. Models uniquely
suited for that task are neural operators (NOs) that are known
to be consistent under the change of resolution. Following
(Li et al., 2020), (Fanaskov & Oseledets, 2022) we consider
spectral neural operators (SNO) as the primary model. Ad-
ditionally, we check how the proposed method works using
Fourier neural operator (FNO) (Li et al., 2020) and clas-
sical machine learning architectures, including DilResNet
(Stachenfeld et al., 2021) and U-Net (Ronneberger et al.,
2015) as preconditioners in the FCG algorithm. A brief de-
scription of the architectures of all four models is presented
in the Appendix A.

3. Experiments
Here, we provide evidence of the effectiveness of the pro-
posed approach. For that purpose, we design several ex-
periments in D = 2. We start with the description of the
training details.

3.1. Training Details

According to (9), the residuals should be derived from m
iterations of CG. Thus, we propose the following training
scheme Figure 2. Following this scheme, we start with the
generation of train Dtrain and test Dtest datasets that consist
of sparse matrices A and the right-hand sides f of (2). For
train dataset Dtrain, we generate Ntrain samples of uexact and
A. Therefore, we calculate right-hand sides as f = Auexact.
Then, we use m iterations of the CG (not necessarily until
complete convergence) on the training dataset. The CG
output: uiter, riter which is in the Krylov subspace, is used
for the training of the neural operator (NO). The trained NO
is used as the preconditioner for the FCG algorithm applied
on the test dataset Dtest.

To accelerate the training of NO, we eliminate the need to
invert the matrix A in the loss function (7). To accomplish
this, we use already generated uexact for the train dataset and
the fact that

A−1ri = A−1(Auexact −Aui) = uexact − ui = ei,

where ei is an error at iteration i. After that, we can rewrite
Notay loss (7) in the form

LNotay(θ) = Er,a,f

∥∥B(r; θ)− e
∥∥
A∥∥e∥∥

A

, (11)

and L2-loss in the form

L(θ) = Er,a,f

∥∥B(r; θ)− e
∥∥
2∥∥e∥∥

2

. (12)

3.2. Datasets

To verify the proposed approach, we use two versions of the
elliptic equation (1) in the domain Γ ≡ (0, 1)D.

First, we define random trigonometric polynomials

P
(
N1, N2, α

)
=

{
f(x) = R (g(x)) : R(c) ≃ N (0, I)

}
,

where

g(x) =

N1∑
m=0

N2∑
n=0

cmn exp (2πi(mx1 + nx2))

(1 +m+ n)α
.

For the first dataset, called Poisson, we use random trigono-
metric polynomials for f :

a(x) = I; f(x) ≃ P(5, 5, 2). (13)

For the second one, called Diffusion, we use trigonometric
polynomials for both a and f :

a(x) ≃ P(5, 5, 2) + 10; f(x) ≃ P(5, 5, 2). (14)

Both above mentioned datasets are smooth, and one may be
interested whether proposed approach is applicable to non-
smooth datasets. Therefore we provide additional results
for the experiments with non-smooth diffusion coefficients
in Appendix C.

3.3. Ablation Study

In this article, we have proposed three new components:

1. The nonlinear preconditioner B in the form of a NO in
the Algorithm 1;

2. The loss function derived from the Theorem 2.1 for
training this NO;

3. The novel sampling strategy of a train dataset from the
Krylov subspace.

Next, we present the results of the ablation study for all
these components using SNO as the preconditioner.

3.3.1. FCG VS. CLASSICAL TECHNIQUES

We perform several experiments to compare learned pre-
conditioners with classical approaches. More specifically,
we use Jacobi, symmetric Gauss-Seidel (Saad, 2003) and
incomplete LU (ILU) preconditioner implemented in Su-
perLU library (Demmel, 1999).

Recall, that Jacobi iteration reads

xn+1 = xn +D(A)−1(f −Axn), (15)
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Input train dataset, Dtrain

Sparse matrix,
A

f

FCG(A, f, B = I, . . .)

NO

(a)

A, riter, A
−1f − uiter(b)

FCG(A, f, B = NO, . . .)

(c)Input test dataset, Dtest

Sparse matrix,
A

f

(d)(c)

utest

Figure 2. The full scheme of the proposed approach: starts from the input train dataset, Dtrain =
(
A, f

)
, where f = Auexact. (a) Submit

Dtrain to the CG (FCG with B = I) with 100 iterations to generate residuals riter from the Krylov subspaces. (b) Train the NO on the FCG
output riter with the use of A, uiter for the calculation of LNotay. (c) Apply the FCG with B = NO with the test dataset, Dtest. (d) Output
utest.

Dataset grid NO+FCG CG Jacobi(4) GS(1) GS(4) ILU(1) ILU(8)

Poisson
32 9 74 30 27 13 69 27
64 14 130 58 47 23 110 77
128 20 216 112 78 37 185 128

Diffusion
32 9 75 32 27 13 69 27
64 14 132 61 46 22 110 74
128 19 215 115 78 36 177 128

Table 1. Comparison of FCG with classical preconditioning techniques. The table contains the first iteration number i such that
∥ri∥2

/
∥r0∥2 ≤ 10−6 for different resolutions.

where D(A) is a diagonal part of matrix A. Symmetric
Gauss-Seidel iteration reads

xn+1/2 = xn + L(A)−1(f −Axn),

xn+1 = xn+1/2 + U(A)−1(f −Axn+1/2),
(16)

where L(A) and U(A) are lower and upper triangular parts
of A.

When classical iteration are used to approximate A−1z they
are used for k steps (e.g., Jacobi(4) means 4 iteration of the
form (15)) with x0 = 0 and b = z.

ILU is a LU decomposition of sparse matrix A with con-
trol of fill-in. For the details on the particular version used,
we refer to (Demmel, 1999). In Table 1 ILU(k) number k
corresponds to parameter filling factor in documentation. It

prescribes the number of nonzero elements in the precondi-
tioner. For example, for 5-point stencil discretization of the
Poisson equation, the preconditioner formed with ILU(1)
and ILU(8) have ≃ 1.5× and ≃ 6.7× more nonzero ele-
ments that original matrix.

The results appear in Table 1. As one can see, the learned
preconditioner allows for faster convergence than standard
approaches on all resolutions tested. GS(4) provides the
second best result. Note, however, that unlike GS(4) (and
ILU preconditioner), our approach does not require one to
solve linear problems with large sparse triangular matrices,
so it is much faster when parallel architectures are available.

In addition, we explore how the Notay loss (7) differs by
iteration for two methods: CG and NO+FCG, see Figure 3.
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Figure 3. The behavior of LNotay and the decline of residuals by
iteration for Poisson equation with grid = 32 in cases of CG and
NO+FCG.

We can calculate the LNotay for CG as it is FCG with B =
I . We can see that, for the proposed method, we have a
fast convergence and LNotay < 1. It is consistent with the
Theorem 2.1. For the CG case, there are LNotay > 1 and a
slow convergence.

One may point out that applying FCG with NO as a pre-
conditioner can be slower in terms of wall-clock time not
iterations. Therefore, we measure the difference between
times for convergence of classical CG and FCG with SNO
as a preconditioner using formula:(

1− tFCG
/
tCG

)
· 100%.

The results for SNO are presented in the Table 2. NO+FCG
demonstrates enhanced convergence efficiency, resulting
in substantial reductions in both the number of iterations
and the processing time. Moreover, this time advantage
becomes greater as the grid size increases. The results for
other models can be found in Appendix A.6.

3.3.2. LNOTAY LOSS VS. L2 LOSS

For this experiment, we have generated training datasets
Dtrain for Poisson (13) and Diffusion (14) equations with
Ntrain = grid. We chose this value because the higher the
resolution, the more samples are needed to train NO. To
make a comparison of losses, we generated residuals from
the Krylov subspace by utilizing 100 iterations of CG. In
total, NO was trained on 100 · Ntrain residuals and errors.
The errors were calculated as eji = A−1

j fj − uj
i , where

∥ri∥2/∥r0∥2
Dataset grid 10−3 10−6 10−12

Poisson
32 43% 34% 9%

64 58% 31% 14%

128 74% 40% 33%

Diffusion
32 22% 21% 5%

64 32% 32% 11%

128 66% 44% 42%

Table 2. The difference between wall-clock times needed to drop
initial residual by three different factors for FCG and CG is as-
sessed by the formula:

(
1− tFCG

/
tCG

)
· 100%. In table, there are

results for FCG with SNO as the preconditioner. In all cases, NO
was trained on residuals from Krylov subspace, r ∼ pKm(r) with
Notay loss.

i = 1, . . . , 100, j = 1, . . . , Ntrain and uj
i is the solution on

i-th iteration of CG for j-th sample. A detailed description
of NO and training details are available in Appendix A.1.
For NO training, we used Notay and L2 losses in the forms
(11) and (12) respectively.

The test datasets Dtest consists of Ntest = 20 samples. Then
we run Niter of FCG with trained NO as the preconditioner.
We chose Niter = 2 · grid because higher resolution requires
more iterations to converge. The parameter mmax in Algo-
rithm 1 was selected to be 20. The numbers of iterations
needed to drop the initial residual by factors 103, 106, 1012

are illustrated in Table 3.

As can be seen from the Table 3, the number of iterations
required to reduce residuals by any factor increased when we
use L2 loss instead of LNotay loss. For factors 103, 106, 1012,
this increase was more than 25%, 50%, 60%, respectively.
For LNotay loss, the number of iterations for factor 1012

increases less than 1.55 times, with a double increase in
resolution. For L2 loss, this number of iterations grows
more than 1.55 times with double increase in resolution.
Additionally, the missing results for grid = 128 means that
there was no convergence for this case (see Figure 9 in
Appendix D).

Furthermore, we explore how the values of (7) differ by
iteration for NO trained with different losses (LNotay and
L2), see Figure 4. LNotay correlates with rate of convergence
according to Theorem 2.1. We can see that, for both cases,
we have LNotay < 1. However, training a NO with the
proposed loss (11) gives lower values of function (7) in all
iterations of the FCG than training with a standard L2-loss.
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LNotay L2

∥ri∥2/∥r0∥2 ∥ri∥2/∥r0∥2
Dataset grid 10−3 10−6 10−12 10−3 10−6 10−12

Poisson
32 4 9 20 5 15 34

64 5 14 31 7 22 53

128 6 20 48 21 86 210

Diffusion
32 4 9 31 8 22 50

64 5 14 36 11 36 80

128 5 19 47 — — —

Table 3. The number of iterations for FCG with B = NO needed to drop initial residual by three different factors. In table, there are two
cases: (a) NO trained with Notay loss in form (11); (b) NO trained with and with L2-loss in form (12). In both cases, NO was trained on
residuals from Krylov subspace, r ∼ pKm(r).

r ∼ pKm(r) r ∼ pK0(r)

∥ri∥2/∥r0∥2 ∥ri∥2/∥r0∥2
Dataset grid 10−3 10−6 10−12 10−3 10−6 10−12

Poisson
32 4 9 20 4 10 21

64 5 14 31 5 18 67

128 6 20 48 7 49 153

Diffusion
32 4 9 31 5 23 56

64 5 14 36 6 — —

128 5 19 47 10 — —

Table 4. The number of iterations for FCG with B = NO needed to drop initial residual by three different factors. In table, there are two
cases: (a) NO trained on residuals from Krylov subspace; (b) NO trained on residuals obtained from random right-hand sides. In both
cases, NO was trained with Notay loss in the form (11).

3.3.3. FCG WITH NO TRAINED ON DIFFERENTLY
GENERATED RESIDUALS

Train datasets Dtrain for both equations had Ntrain = grid.
For residuals r ∼ pKm

(r), the training procedure is the
same as in Section 3.3.2. For random residuals, we gen-
erated 100 · Ntrain samples of uj

i ∼ N (0, I) and f j
i ∼

pf , where i = 1, . . . , 100, j = 1, . . . , Ntrain. There-
fore, the residuals and errors were calculated as follows:
rji = f j

i − Aju
j
i , eji = A−1

j f j
i − uj

i . We trained NO
with Notay loss using the architecture and training setup
described in Appendix A.

The test datasetsDtest contain Ntest = 20 samples. The FCG
algorithm has the same number of iterations and the same
parameter mmax as in Section 3.3.2. The results are shown
in Table 4.

It can be seen from the data in Table 4 that for the simplest
case (Poisson equation, grid = 32), we got almost the same

results for both types of residuals. However, with increasing
resolution, there was a significant deterioration in conver-
gence for residuals not from the Krylov subspace. For the
Poisson equation, the number of iterations for factor 1012

increased more than 2 times when the resolution doubled.
For the Diffusion equation, the algorithm stopped converg-
ing when the grid is larger than 32 (see Figure 10, Figure 11
in Appendix D).

3.4. Different Grid Approach

Training a neural operator on data with a finer grid takes
longer. This motivated our decision to utilize a coarse grid-
trained preconditioner in the FCG algorithm for fine grid
applications. SNO is suitable for this task as it can be easily
applied to fine resolution after training on coarse one. The
testing process becomes more complex when conducted
on a higher resolution than the one used during training.
Therefore, we trained NO on more samples than in previ-
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∥ri∥2/∥r0∥2
Dataset Train grid Test grid 10−3 10−6 10−12

Poisson

32 64 9 18 39

64 128 12 29 68

32 128 24 61 141

64 256 26 67 150

128 256 16 45 103

Diffusion

32 64 8 18 42

64 128 9 24 59

32 128 17 57 148

64 256 24 87 233

128 256 16 46 112

Table 5. Number of iterations for FCG with B = NO needed to drop initial residual by three different factors. The table consists of results
for different grids on training and testing.

0 10 20 30 40 50 60 70 80
# its.

3 × 10 1

4 × 10 1

6 × 10 1

LNotay
L2

Figure 4. The behavior of LNotay by iteration for Diffusion equation
with grid = 32 in cases of NO trained with two different losses
(LNotay and L2).

ous experiments. There were Ntrain = 100 samples in the
training datasets Dtrain. For generation residuals and errors,
we used 100 iterations in CG. The details of the architecture
and the training process are presented in Appendix A.

We tested FCG with NO on Ntest = 20 samples. The resolu-
tions of the test datasetsDtest were twice or four times higher
than the resolutions of the train datasets Dtrain. Thus, FCG
needed more iterations to converge. We selected Niter = 300
for all cases. The results are demonstrated in Table 5.

The results from Table 5 demonstrate that the operator can
serve as an effective preconditioner even if it is trained at a
lower resolution.

3.5. Results for Other Models

We evaluated the number of iterations needed to reach a
specific reduction in residuals (e.g., ∥r∥2

/
∥r0∥2 ≃ 10−3)

for FCG when using different models as preconditioners.
The results for FNO, DilResNet and U-Net are presented
in the Table 6. All models gave faster convergence of the
algorithm as a preconditioner than SNO. However, SNO
has the least number of parameters, therefore its application
inside the algorithm takes less time.

4. Related Research
Literature on constructing preconditioners is vast, so we do
not attempt a systematic review. In place of that, we will
mention several contributions that allow us to frame our
research properly.

As a first class of work, we would like to mention methods
that construct preconditioners by solving auxiliary optimiza-
tion problems (e.g., loss (7) that we used). Typically, such
works restrict somehow the form of matrix M used as a
preconditioner and optimize

∥∥I −M−1A
∥∥ or ∥M −A∥.

For example, in (Tyrtyshnikov, 1992) author showed how
to efficiently construct general circulant preconditioners,
and in (Grote & Huckle, 1997) authors exploited sparsity
constraints.

A similar strategy is widely used with models based on neu-
ral networks. For example, in (Cui et al., 2022) authors train
a neural network to output eigenvalues of preconditioner in
Fourier basis in effect reproducing the circulant precondi-
tioner. Similarly, authors of (Häusner et al., 2023) utilize a
graph neural network with sparsity constraints on Cholesky
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FNO DilResNet U-Net

∥ri∥2/∥r0∥2 ∥ri∥2/∥r0∥2 ∥ri∥2/∥r0∥2
Dataset grid 10−3 10−6 10−12 10−3 10−6 10−12 10−3 10−6 10−12

Poisson
32 2 7 15 2 3 6 2 5 11

64 4 10 26 2 3 7 2 7 19

128 6 17 40 2 6 13 3 8 30

Diffusion
32 2 8 19 2 5 11 2 6 12

64 3 9 29 2 5 11 2 7 16

128 5 14 36 2 6 20 3 11 38

Table 6. The number of iterations for FCG with B = NO needed to drop initial residual by three different factors. In table, there are the
results for three different models trained with Notay loss in form (11). In all cases, NOs was trained on residuals from Krylov subspace,
r ∼ pKm(r).

factors to train linear preconditioner for CG.

The second class of works is learning generalized precondi-
tioners, i.e., matrix M used to transform the linear equation
MAx = Mb to improve the convergence of base iterations
(Richardson, Jacobi, multigrid). As an example of such
approaches, we can mention (Hsieh et al., 2019) and (Zhang
et al., 2022). In the first contribution authors train the linear
U-Net model as a preconditioner for Richardson iterations,
in the second contribution authors pursue a similar idea with
DeepONet architecture but with Jacobi and multigrid.

Finally, one recent contribution that is closest in spirit to the
present research is (Kopaničáková & Karniadakis, 2024). In
this paper, authors used flexible GMRES with DeepONet
preconditioner. Unfortunately, DeepONet is less suitable
for processing grids with different resolutions, so authors
were forced to invent several intricated algebraic techniques
to make the network work for the general grid.

Compared with the mentioned works, our approach is more
direct since FCG, which we use as a base iterative method,
is not restricted to working with linear preconditioners. Be-
sides, we directly learn nonlinear operators, and with that,
we avoid the need to consider structured matrices that guar-
antee cheap matrix-vector products. Finally, the proposed
loss function is markedly different from what is used in
other contributions.

5. Conclusion
In the present research, we have suggested using a trained
neural operator as a nonlinear preconditioner for the flex-
ible conjugate gradient method. The results of our study
demonstrated the superiority of the proposed approach over
utilizing different classical preconditioners. In addition, we
introduced a novel loss function derived from the energy

norm that guarantees convergence and achieves superior
results compared to the L2 loss function used in training.
Moreover, we have implemented a novel learning scheme
incorporating random vectors derived from the Krylov sub-
space. Based on the results of the ablation study, the uti-
lization of classical random right-hand sides instead of the
Krylov subspace severely diminished the effectiveness of
training. Our findings also demonstrated that neural opera-
tors can be trained at lower resolutions and effectively act
as a cost-effective preconditioner for higher resolutions.

The limitation of the proposed method is that the matrix A
should be symmetric positive definite as we use CG. Our
potential for utilizing our approach on higher resolutions is
limited by GPU memory.

Future research directions include a comprehensive compar-
ison of our proposed method with alternative approaches
for constructing trainable preconditioners. Preliminary test
results of comparison with approach proposed in (Li et al.,
2023) are described in Appendix B. It is also planned to
explore the proposed approach with non-uniform mesh. By
utilizing different polynomials in SNO, we can extend our
approach to non-uniform grids. Moreover, we plan to ex-
plore other groups of PDEs for which the large sparse linear
algebraic system has a symmetric positive definite matrix.
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A. Models’ Details
In addition to the primary model (SNO), this research employs three alternative models as preconditioners. As a rule,
neural PDE solvers are either Neural Operators or classical architectures used for image processing. Since our approach is
architecture-agnostic, we include results for both types of neural networks. Next, we describe architectures of all models
and a part of the results of using them as a preconditioner in the FCG algorithm.

A.1. SNO

We consider spectral neural operators (SNO) (Fanaskov & Oseledets, 2022) with linear integral kernels

u←
∫

dxAijpj(x) (pi, u) ,

where pj(x) are orthogonal or trigonometric polynomials.

Layers with linear integral kernels can be described in terms of analysis and synthesis matrices. To describe these matrices
consider a finite set of orthogonal polynomials (with weight function w) pn(x), n = 0, . . . , N − 1. The synthesis operator
is

f(x) =

N−1∑
i=0

pi(x)ci ⇐⇒ f = Sc,

where c is a vector with expansion coefficients ci, i = 0, . . . , N − 1 defined by

ci =
1

hi

∫
pi(x)f(x)wdx, hi =

∫
p2i (x)wdx.

When the Gauss quadrature (Golub & Welsch, 1969; Gautschi, 2004; Trefethen, 2008) is used for the integral evaluation, it
is easy to show that the analysis operator has a form

c = Af = D−1S⊤
(
f(x)⊙ w

)
,

where
D = diag

(
p⊤0

(
p0 ⊙ w

)
, . . . , p⊤N−1

(
pN−1 ⊙ w

))
.

So, the whole integral kernel has a form u ← SLAu where L is a linear operator on RN . For example, Fourier neural
operator (Li et al., 2020) employees FFT as analysis and inverse FFT as synthesis; neural operators from (Fanaskov &
Oseledets, 2022) utilizes DCT-II to work with Chebyshev polynomials; wavelet neural operator (Tripura & Chakraborty,
2022) applies FWT and inverse FWT.

We use SNO in Fourier basis (see (Fanaskov & Oseledets, 2022)) with encoder-processor-decoder architecture. We change
number of features according to grid, see Table 7. Number of SNO layers is 4 and number of orthogonal polynomials is 20.
We utilize GeLU as an activation function.

Dataset grid SNO FNO DilResNet U-Net

Poisson
32 32 32 24 10

64 32 32 24 10

128 80 32 32 16

Diffusion
32 48 48 24 10

64 64 64 24 10

128 80 80 32 16

Table 7. Number of features for all models and datasets.
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A.2. FNO

The Fourier Neural Operator (FNO), first introduced in (Li et al., 2020), is characterized by an architecture that includes an
encoder, multiple Fourier layers, and a decoder. The (i+ 1)-th Fourier layer can be expressed as

zi+1 = σ
(
F−1 (Ri · F (zi)) + conv(zi)Wi

+ bi
)
,

where σ is an activation function, F and F−1 are Fast Fourier and inverse Fourier transforms, Ri and Wi are weight
matrices, bi is a bias vector and conv stands for convolution with kernel size 1.

In order to use the FNO as a preconditioner, we used the following parameters: 4 Fourier layers, 16 modes and GELU as an
activation function. The number of features in each layer depends on dataset and grid (see Table 7).

A.3. DilResNet

The usual form of dilated residual network was proposed in (Stachenfeld et al., 2021). In this work, DilResNet employs a
configuration consisting of 4 blocks. The number of features in each layer is determined by the dataset and grid, as detailed
in Table 7. Each block comprises a series of convolutions with strides of [1, 2, 4, 8, 4, 2, 1] and a kernel size of 3. In addition,
skip connections are applied after each block and the activation function ReLU is utilized.

A.4. U-Net

We used the usual form of U-Net proposed in (Ronneberger et al., 2015). The U-Net architecture is characterized by a
series of levels, where each level has roughly half of resolution as the previous one, and the feature count doubles. We
applied a sequence of 3 convolutions on each level, followed by max pooling, and then used transposed convolution for
upsampling. After upsampling, 3 additional convolutions were applied on each level. The U-Net used here consists of 4
layers and utilizes ReLU activation function. The number of features in each layer varies based on the dataset and the grid,
as outlined in Table 7.

A.5. Training details

Dataset grid ν ν decay / epoch weight decay Nepoch Nbatch

Poisson 32, 64 5 · 10−4 0.5
/
50 10−2 150 32

128 5 · 10−4 0.5
/
50 10−2 150 8

Diffusion 32, 64 5 · 10−4 0.5
/
50 10−2 200 16

128 5 · 10−4 0.5
/
50 10−2 200 4

Table 8. Training details: ν — learning rate, ν decay / epoch — weight decay per epoch, Nepoch — number of epoch used for training,
Nbatch — batch size.

All models are trained using the same training procedure. The details of this procedure is described in Table 8.

A.6. Results

In addition to the results described in the main part of the article, we measure wall-clock time needed to reach particular
accuracy with and without a preconditioner. This allows for a fair comparison that takes into account additional computations
needed to apply preconditioner. The difference between times needed for the convergence of FCG and CG is assessed by
the formula:

(
1− tFCG

/
tCG

)
· 100%. The results are presented in the Table 9. It can be seen from the results that despite

the fact that FNO gives faster convergence than SNO, in terms of iterations, SNO is faster in terms of time. Moreover, the
results show that the maximum advantages of using neural networks as preconditioners is achieved with the highest data
resolution (128× 128).
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(
1− tFCG

/
tCG

)
· 100%

SNO FNO DilResNet U-Net

Dataset grid 10−3 10−6 10−12 10−3 10−6 10−12 10−3 10−6 10−12 10−3 10−6 10−12

Poisson
32 43% 34% 9% 53% 16% — 44% 57% 46% 47% 32% 7%

64 58% 31% 14% 46% 21% — 70% 74% 66% 73% 45% 16%

128 74% 40% 33% 64% 29% 21% 85% 69% 68% 80% 62% 34%

Diffusion
32 22% 21% 5% 24% 3% — 35% 24% 6% 23% 26% 17%

64 32% 32% 11% 35% 30% — 51% 57% 52% 61% 51% 44%

128 66% 44% 42% 51% 41% 37% 77% 70% 59% 72% 56% 38%

Table 9. The difference between wall-clock times needed to drop initial residual by three different factors for FCG and CG is assessed by
the formula:

(
1− tFCG

/
tCG

)
· 100%. In table, there are results for four models: SNO, FNO, DilResNet, U-Net. In all cases, NO was

trained on residuals from Krylov subspace, r ∼ pKm(r).

B. Another Preconditioning Method
For a symmetric positive definite linear system, one can form the preconditioner in the form of a Cholesky decomposition
(Trefethen & Bau, 2022) P = LL⊤, to obtain a preconditioned linear system P−1Ax = P−1f . Conjugate gradient with
preconditioner in such form called preconditioned conjugate gradient (PCG). In the research (Li et al., 2023), the approach
of finding lower triangular matrix L using graph neural networks (GNNs) is proposed:

L(θ) = GNNθ(A, f).

The GNN was trained using the following loss function:

L =
1

N

N∑
i=1

∥∥L(θ)L(θ)⊤xi − fi
∥∥2
2

Thus, we compare the convergence rate of our approach with the approach proposed in (Li et al., 2023) (see Table 10).
In this preliminary test, we apply both approaches only to the Poisson dataset. It can be seen that FCG with a non-linear
preconditioner manages to converge faster than PCG with a trainable, yet linear, preconditioner (see Table 10 and Figure 5).

FCG PCG

∥ri∥2/∥r0∥2 ∥ri∥2/∥r0∥2
Dataset grid 10−3 10−6 10−12 10−3 10−6 10−12

Poisson
32 4 9 20 8 19 39

64 5 14 31 11 23 47

128 6 20 48 20 39 75

Table 10. The number of iterations for FCG with B = SNO and for PCG needed to drop initial residual by three different factors.

C. More Complex Dataset
The results shown in the main text of the article were obtained on datasets with smooth diffusion coefficient and right-hand
sides. To show the ability of the algorithm FCG with NO as a preconditioner to find a solution for a dataset with non-smooth
coefficients, we decided to generate two datasets with non-smooth coefficients a1(x) and a2(x):
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Figure 5. The decline of residuals by iteration for Poisson equation with grid = 32 for FCG with SNO, classical CG and PCG proposed in
(Li et al., 2023).

a1(x) =

{
1, x ≥ 0.5;

ε, x < 0.5,
(17)

a2(x) =

{
0.1 · P(5, 5, 2) + 1, x ≥ 0.5;

ε, x < 0.5,
(18)

where P(5, 5, 2) is random trigonometric polynomials, and ε is a constant chosen randomly from uniform distribution
(ε ∼ 0.1 · U(0, 1)). The examples of such diffusion coefficients are presented in Figure 6.
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Figure 6. Two types of non-smooth diffusion coefficients: a1(x) (17) and a2(x) (18).

We tested our approach on 32× 32 and 64× 64 grids and compared it with the CG algorithm. The convergence process of
both algorithms applied to non-smooth datasets with a grid of 32 is shown in Figure 7, with a grid of 64 in Figure 8. The
results indicate that even for non-smooth datasets, using NO as a preconditioner significantly increases the convergence rate.
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Figure 7. The decline of residuals by iteration for Diffusion equation with grid = 32 in cases of non-smooth coefficients.
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Figure 8. The decline of residuals by iteration for Diffusion equation with grid = 64 in cases of non-smooth coefficients.

D. FCG Convergence for Experiments with Missing Values in Results
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Figure 9. The decline of residuals by iteration for Diffusion equation with grid = 128 in L2, r ∼ pKm(r) case.
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Figure 10. The decline of residuals by iteration for Diffusion equation with grid = 64 in LNotay, r ∼ pK0(r) case.
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Figure 11. The decline of residuals by iteration for Diffusion equation with grid = 128 in LNotay, r ∼ pK0(r) case.
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