
Proceedings of Machine Learning Research 1–11, 2020 Full Paper – MIDL 2020

An Auto-Encoder Strategy for Adaptive Image Segmentation

Evan M. Yu1 emy24@cornell.edu

Juan Eugenio Iglesias 2,3,4 e.iglesias@ucl.ac.uk

Adrian V. Dalca 2,3 adalca@mit.edu

Mert R. Sabuncu 1,5 msabuncu@cornell.edu
1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University
2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
3 Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT
4 Centre for Medical Image Computing, University College London
5 School of Electrical and Computer Engineering, Cornell University

Abstract

Deep neural networks are powerful tools for biomedical image segmentation. These mod-
els are often trained with heavy supervision, relying on pairs of images and correspond-
ing voxel-level labels. However, obtaining segmentations of anatomical regions on a large
number of cases can be prohibitively expensive. Thus there is a strong need for deep
learning-based segmentation tools that do not require heavy supervision and can continu-
ously adapt. In this paper, we propose a novel perspective of segmentation as a discrete
representation learning problem, and present a variational autoencoder segmentation strat-
egy that is flexible and adaptive. Our method, called Segmentation Auto-Encoder (SAE),
leverages all available unlabeled scans and merely requires a segmentation prior, which can
be a single unpaired segmentation image. In experiments, we apply SAE to brain MRI
scans. Our results show that SAE can produce good quality segmentations, particularly
when the prior is good. We demonstrate that a Markov Random Field prior can yield
significantly better results than a spatially independent prior. Our code is freely available
at https://github.com/evanmy/sae.
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1. Introduction

Quantitative biomedical image analysis often builds on a segmentation of the anatomy into
regions of interest (ROIs). Recently, deep learning techniques have been increasingly used
in a range of segmentation applications (Akkus et al., 2017; Litjens et al., 2017; Ronneberger
et al., 2015; Kamnitsas et al., 2017). These methods often rely on a large number of paired
scans and segmentations (voxel-level labels) to train a neural network. Training labels are
either generated by human experts, which can be costly and/or hard to scale, or automatic
software (Dolz et al., 2018), which can constrain performance. Furthermore, supervised
techniques typically yield tools that are sensitive to changes in image characteristics, for
instance, due to a modification of the imaging protocol (Jog and Fischl, 2018). This is a
significant obstacle for the widespread clinical adoption of these technologies.
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One approach to improve robustness and performance is to relax the dependency on
paired training data and simply use unpaired examples of segmentations, sometimes called
“atlases.” Building on unpaired atlases, a segmentation model can then be trained con-
tinuously on new sets of unlabeled images (Dalca et al., 2018b, 2019; Joyce et al., 2018).
For example, recently Dalca et al. (Dalca et al., 2018b) proposed an approach where an
autoencoder is pre-trained on thousands of unpaired atlases. For a new set of unlabeled
images, the encoder is then re-trained via an unsupervised strategy. Another widely-used
approach to improve generalizability is data augmentation on labeled training data (Zhao
et al., 2019; Chaitanya et al., 2019). For example, Zhao et al. 2019 demonstrated an adap-
tive approach that learns an augmentation model on a dataset of unlabeled images. This
model was then applied to augment a single paired atlas to perform one-shot segmentation
within a supervised learning framework. Another popular approach is to use registration
to propagate atlas labels to a test image (Sabuncu et al., 2010; Lee et al., 2019).

In this paper, we present a novel perspective for minimally supervised image segmen-
tation. Instead of viewing segmentation from the lens of supervised learning or inverse
inference, we regard it as a discrete representation learning problem, which we solve with
a variational autoencoder (VAE) like strategy (Kingma and Welling, 2013). We call our
framework Segmentation Auto-encoder, or SAE. As we demonstrate below, SAE is flexible
and can leverage all available data, including unpaired atlases and unlabeled images. We
show that we can train a good segmentation model using SAE with as little as a single
unpaired atlas. In conventional representation learning, e.g., VAE (Kingma and Welling,
2013), an encoder maps an input to a continuous latent representation, which often lacks
interpretability. In contrast, in SAE, the encoder computes a discrete representation that
is a segmentation image, which is guided by an atlas prior. Finally, we employ the Gumbel-
softmax relaxation (Jang et al., 2016) to train the SAE network. The Gumbel-softmax
approximates the non-differentiable argmax (tresholding) operation with a softmax in or-
der to make the function differentiable. It provides us with a simple and efficient way to
perform the reparameterization trick for a categorical distribution, allowing the network to
be trained via back-propagation. In our experiments, we demonstrate that SAE produces
high quality segmentation maps, even with a single unpaired atlas. We also quantify the
boost in performance as we exploit richer prior models. For example, a Markov Random
Field model yields significantly better results than a spatially independent prior.

2. Method

We consider a dataset of N observed images (e.g. MRI scans) {x(i)}Ni=1, which we model as
independent samples from the same distribution. Let s denote the (latent) segmentation,
where each voxel is assigned a unique discrete anatomical label. Using Bayes’ rule:

log p(x(i)) = log
∑
s

p(x(i)|s)p(s), (1)

where p(s) denotes a prior distribution on the segmentation, p(x(i)|s) is the posterior prob-
ability of the observed image conditioned on the latent segmentation, often called the image
likelihood, and the sum is over all possible values of s. We assume the prior p(s) is provided
and “learning” involves finding the parameters that describe the image likelihood p(x(i)|s).
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Since Eq. (1) is computationally intractable for most practical scenarios, we follow the
classical variational strategy and maximize the evidence lower bound objective (ELBO):

log p(x(i)) ≥ −KL(q(s|x(i))||p(s)) + E
s∼q(s|x(i))

log p(x(i)|s), (2)

where KL(·||·) denotes the KL-divergence and q(s|x(i)) is an efficient-to-manipulate distri-
bution that approximates the true posterior p(s|x(i)).

Following the VAE (Kingma and Welling, 2013) framework, we use two neural networks
to compute the approximate posterior q(·|·) and the image likelihood p(·|·). A so-called
encoder network computes the approximate posterior qφ(s|x), where φ denotes the param-
eters of the encoder. The image likelihood pθ(x|s) is computed by the a decoder network,
parameterized by θ. In our formulation, the encoder can be viewed as a segmentation net-
work. The decoder corresponds to a generative or “reconstruction” model that describes
the process of creating an observed image from an underlying segmentation.

A natural choice for the approximate posterior is a voxel-wise independent model:

qφ(s|x(i)) =

V∏
j=1

Cat(sj |x(i), φ), (3)

where Cat(sj |x(i), φ) is a categorical distribution computed as the soft-max output of the
encoder network at the jth voxel evaluated for label sj . Assuming an additive Gaussian
noise likelihood model:

pθ(x|s) =
V∏
j=1

N (x; x̂j(s; θ), σ2), (4)

where x̂(s; θ) is a “reconstruction” image computed by the decoder network, sub-script j
is the voxel index, and N (·;µ, σ2) denotes a Gaussian with mean µ and variance σ2.

Putting together Eq. (2) and (4) and relying on Monte Carlo sampling to approximate
the expectation, we obtain the following loss function to be minimized over θ and φ:

L =
N∑
i=1

KL(qφ(s|x(i))||p(s)) +
V

2
log σ2 +

1

2σ2K

K∑
k=1

||x(i) − x̂(sik; θ)||22, (5)

where sik is an independent sample segmentation image drawn from qφ(s|x(i)). Following
the convention in the field, in practice we set K = 1, which yields an unbiased yet noisy
estimate of the loss and its gradient. Eq. 5 does not explicitly require paired images and
segmentations {x(i), s(i)}. Instead, it merely needs a prior p(s). There are many ways
to define a prior, but in our experiments we use a classical construction: a probabilistic
atlas that describes the probability of labels at each location, which can be coupled with a
Markov random field component that encourages certain topological arrangements.

2.1. Spatial Prior

The first prior we consider is a probabilistic atlas that assigns an independent label proba-
bility vector at each voxel, pj . We call this a spatial prior:

pspatial(s) =

V∏
j=1

pj(sj). (6)
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Figure 1: Proposed architecture. The encoder (blue) is a U-Net and decoder (green) is a
simple CNN. (Conv) 3x3x3 convolution (Relu) rectified linear unit (Maxpool) 2x
downsample (Up) 2x upsample (ST Gumbel) straight through Gumbel softmax
(Sigm) sigmoid. The number of channels are displayed below each layer.

There are many ways to construct this type of prior. For example, we can aggregate
segmentations of different subjects and compute the frequency of anatomical labels at each
voxel. If instead we only have a single segmentation image, we can apply a spatial blur to
this segmentation in order to account for inter-subject variation. With the spatial prior,
the first term in Eq. (5) reduces to:

KL(qφ(s|x(i))||pspatial(s)) =

V∑
j=1

H(Cat(sj |x(i)), pj(sj))−H(Cat(sj |x(i))) (7)

where the first term denotes cross-entropy and second term is marginal entropy.

2.2. Markov Random Field Prior

The spatial prior can be modified using a Markov Random Field (MRF) to capture neigh-
borhood relationships in a segmentation image. Following (Zhang et al., 2001; Fischl et al.,
2002), we define the MRF prior as:

pMRF (s) =
1

Z
exp

 V∑
j=0

Vj(sj) +
V∑
j=0

∑
k∈Nj

V (sk, sj)

 (8)

where Nj is the 3 × 3 × 3-neighborhood around voxel j, Vj(·) is the unitary potential at
voxel j, V (·, ·) is the pairwise clique potential, and Z is a normalization constant. Similar
to (Fischl et al., 2002), we define these potential functions based on a provided probabilistic
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atlas. Specifically, Vj is the voxelwise log frequency of each label: log pj ; and V (·, ·) is the log
normalized counts of label co-occurrences in neighboring voxels. E.g., V (l1, l2) is computed
as the logarithm of the count of neighboring voxel pairs with labels l1 and l2 divided by the
count of voxels with label l2. If the pairwise potential is set to zero, the MRF prior reduces
to the spatial prior. With the MRF prior, the first term in Eq. (5) becomes:

KL(qφ(s|x(i))||pMRF (s)) = KL(qφ(s|x(i))||pspatial(s)) + LMRF + const., (9)

where the first term is from Eq. (7), and the second term can be expressed as:

LMRF = −
V∑
j=0

L−1∑
lj=0

qj(lj |x(i))

L−1∑
lk=0

∑
k∈Nj

qy(lk|x(i))V (sk = lk, sj = lj)

 . (10)

The MRF loss term quantifies the dissimilarity between the label topology of the prior and
the approximate posterior q(·|·).

2.3. Implementation Details

Our SAE architecture is shown in Fig. 1. The encoder is a 3D U-Net (Ronneberger et al.,
2015) and the decoder is a simple fully convolutional network. Training involves optimizing
Eq. (5) with back-propagation. To implement the sampling layer, we employed the straight-
through Gumbel-softmax relaxation scheme (Jang et al., 2016; Maddison et al., 2016), with
the recommended setting for the temperature τ to 2/3. We estimated σ2 by using the the
global mean square error (MSE) between the reconstructed scan x̂ and the input scan x(i).
To initialize σ2, we set the weight on the the reconstruction loss to be zero for the first
16 subjects (effectively setting σ2 to infinity) so that the segmentation (encoder) network
was trained only based on the prior. In subsequent batches, σ2 was updated as the average
MSE over the latest 16 subjects and rounded to the nearest power of 10 in order to reduce
fluctuation. Our complete model is trained end-to-end with the ADAM optimizer (Kingma
and Ba, 2014), with a learning rate of 10−4 and default parameter for its first and second
moments. At test time, segmentation involves a computationally efficient single forward
pass through the encoder and we output the argmax label at each voxel. Our code in
PyThorch is available at https://github.com/evanmy/sae.

3. Experiments

3.1. Dataset

We evaluated SAE on T1-weighted 3D brain MRI scans, which we preprocessed with
FreeSurfer, including skull stripping, bias-field correction, intensity normalization, affine
registration to Talairach space, and resampling to 1 mm3 isotropic resolution (Fischl, 2012).
We focused on 12 brain regions (listed below) that were manually segmented and visually
inspected for quality assurance. These manual segmentations were only used to quantify
performance. The total number of subjects was 38: 30 subjects were used for training and
8 subjects for testing. Although we call our sets training and testing, we emphasize that
SAE did not have access to the segmentation images during training, as we are proposing an
unsupervised paradigm. We repeated the experiment 5 times with different random subject
assignments to the train/test partitioning.
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3.2. Variants of SAE

We employed two atlases. The first one (Atlas1) was based on a single unpaired segmenta-
tion image that we obtained from (Marcus et al., 2007), which was automatically segmented
using FreeSurfer (Fischl, 2012). We applied spatial blurring (Gaussian with 3 mm isotropic
standard deviation) to the one-hot encoded segmentation image to obtain a probabilistic
prior. As a second prior (Atlas2), we used a publicly available probabilistic atlas (Puonti
et al., 2016), which was computed based on 20 manually labeled subjects. Both priors and
all input MRI scans were affine registered to Talairach space. For both of these priors, we
implemented two versions: including and excluding the MRF loss of Eq. (10). Specifically,
SAE1 (w/o MRF) uses the spatial prior derived by smoothing the single OASIS segmen-
tation. SAE1 (w/ MRF) adds the MRF term of Eq. (10), where the pairwise potential
function is computed based on the neighborhood statistics in the OASIS segmentation im-
age. Finally, SAE2 uses the probabilistic atlas prior (Puonti et al., 2016), instantiated with
and without the MRF loss.

3.3. Benchmark Methods

As naive baselines, we used the most probable label at each voxel in the two priors. Base-
line1 corresponds to Atlas1 and Baseline2 corresponds to Atlas2. As a strong base-
line, we used an implementation of a widely-used atlas-based brain MRI segmentation
tool (Van Leemput et al., 1999), which uses Expectation-Maximization (EM) (Dempster
et al., 1977) to invert a probabilistic generative model. This EM baseline was run with
the two atlases, which we refer to as EM1 and EM2 . For each image, the EM baseline
numerically solves an optimization problem and is thus relatively slow. Finally, all the data
in the EM baseline has been pre-processed the exact way as we did for our model.

As an effective upper bound on performance, we also implemented a supervised model,
where a 3D U-Net (Ronneberger et al., 2015) with the same settings as our encoder was
trained with the paired manual segmentations in the training data. Negative generalized
(soft) Dice (Sudre et al., 2017) was used as the loss function and 6 of the 30 training
subjects were reserved for validation. Training was terminated when validation loss stopped
improving. As with our previous setup, we repeated this experiment 5 times with different
train (N=24), validation (N=6), and test (N=8) splits1.

3.4. Metrics

All presented results are computed on the test images of each round. For quantitative
evaluation, we rely on two metrics: the Dice score that measures the volumetric overlap
between the automatic segmentation and the ground truth manual segmentation; and the
95%-Hausdorff distance (HD) that quantifies the distance between the boundaries of the
automatic and manual segmentations. When the two segmentation maps are exactly the
same, Dice score will achieve its maximum value of 1 and HD will be equal to zero.

1. Test subjects are always the same for all methods
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Performance Measure
Model Haussdorff (mm) Dice Overlap (%)
Baseline1 4.11±0.07 62.82±0.53
EM1 Baseline 4.25±0.09 71.24±0.71 Model Test Time (s)
Baseline2 3.50±0.06 71.45±0.65 EM 61.07
SAE1 (w/o MRF) 3.88±0.05 74.64±0.30 SAE (CPU) 6.58
SAE1 (w MRF) 3.81±0.05 75.36±0.32 SAE (GPU) 1.58
EM2 Baseline 2.65±0.05 79.70±0.54
SAE2 (w/o MRF) 2.73±0.04 79.94±0.34
SAE2 (w MRF) 2.68±0.05 80.54±0.36
Supervised 2.23±0.07 84.60±0.26

Table 1: Mean performance of all methods with their standard errors and computational
time per volume at testing.

3.5. Experimental Results

Table 1 lists the global average Dice and HD values for the baselines and SAE variants.
Regional and subject-level results are also presented in Fig.2. We observe that in every single
case and region, SAE produces segmentations that are better than the naive baselines. SAE
Dice scores, overall, were 8-12 points higher than the naive atlas based baselines and slightly
better than the strong EM baselines. On a modern CPU, the EM baseline had a run-time
of around 60 seconds, whereas SAE took less than 7 seconds per single volume at test time
(less than 2 sec on a GPU). This represents more than a 10x speed-up over a popular brain
MRI segmentation tool, with no discernible reduction in the quality of results.

For SAE, we observe that the adopted prior has a significant impact on the results.
With a superior prior, SAE2 (derived from multiple subjects) yields substantially better
results than SAE1. In addition, adding spatial consistency via the MRF loss improves the
accuracy in all model variants (paired t-test p < 1e − 6, for both atlases). This result
highlights the importance of having a sophisticated prior. The best unsupervised model,
SAE2 (w/ MRF), yielded a Dice score that was about 4 points below the fully supervised
model, which is a strong upper bound in our experiment.

A qualitative visualization of SAE2 (w MRF) results is provided in Fig.3. We can
see that despite having a fixed prior p(s), our model is able to capture inter-subject neu-
roanatomical variation. This is mainly due to the decoder, which enforces the latent repre-
sentation to be useful for reconstruction.

4. Discussion

We introduced SAE, a flexible deep learning framework that can be used to train image
segmentation models with minimal supervision. We applied SAE to segment brain MRI
scans, relying on an unpaired atlas prior. Importantly, SAE does not need manual segmen-
tations paired with the images, which opens up to possibility to deploy it on new imaging
techniques, e.g., with high resolution or different contrast. Empirically, we presented the
change in segmentation accuracy as we use different types of priors.
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Figure 2: Boxplot of dice and Hausdorff distance. Legend: (PAL) pallidum (AMY) amyg-
dala (CAU) caudate (CT) cerebral cortex (HIP) hippocampus (THA) thalamus
(PUT) putamen (WM) white matter (CCT) cerebellar cortex (LV) left ventricle
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Figure 3: Representative segmentation results obtained with SAE2 (w/ MRF) on two sub-
jects. Recon is the output of the decoder. GT scan and segmentation are the
input MRI and manual segmentation, respectively. Pred is the segmentation
obtained through argmax of the one-hot encoding qφ(s|x(i)).

Current implementation of SAE assumes that the input MRI is affine normalized with
the prior by working in Talairach space. However, SAE can be implemented with very
different types of priors, which we would like to explore in the future. For example, in
the present paper, we did not experiment with a spatial deformation model that would
warp the atlas to better align with the input image. We envision that we can integrate
a “spatial transformer” type neural networks, such as VoxelMorph (Dalca et al., 2018a),
to relax our assumption. By adding a deformation model to the prior, we believe that
we can handle complications like moving organs. Alternatively, we can implement more
sophisticated priors, such as those that exploit an adversarial strategy, as in adversarial
autoencoders (Makhzani et al., 2015).
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