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ABSTRACT

Beyond specific settings, many multi-agent learning algorithms fail to converge
to an equilibrium solution, instead displaying complex, non-stationary behaviours
such as recurrent or chaotic orbits. In fact, recent literature suggests that such
complex behaviours are likely to occur when the number of agents increases. In
this paper, we study Q-learning dynamics in network polymatrix games where
the network structure is drawn from classical random graph models. In particular,
we focus on the Erdős-Rényi model, which is used to analyze connectivity in
distributed systems, and the Stochastic Block model, which generalizes the above
by accounting for community structures that naturally arise in multi-agent systems.
In each setting, we establish sufficient conditions under which the agents’ joint
strategies converge to a unique equilibrium. We investigate how this condition
depends on the exploration rates, payoff matrices and, crucially, the probabilities of
interaction between network agents. We validate our theoretical findings through
numerical simulations and demonstrate that convergence can be reliably achieved
in many-agent systems, provided interactions in the network are controlled.

1 INTRODUCTION

The development of algorithms for multi-agent learning has produced a number of successes in recent
years, solving challenging problems in load-balancing (Krichene et al., 2014; Southwell et al., 2012),
energy management (Maddouri et al., 2018) and game playing (Moravčík et al., 2017; Brown &
Sandholm, 2019; Samvelyan et al., 2019; Perolat et al., 2022). Also thanks to these successes, the
game-theoretic foundations of learning in the face of many agents remain a thriving area of research.
As the number of agents grows in these systems, it is critical to understand if their learning algorithms
are guaranteed to converge to an equilibrium solution, such as a Nash Equilibrium.

Unfortunately, previous work suggests that non-convergent behaviour becomes the norm as the
number of players increases. A strong example is Milionis et al. (2023), which introduced a game
in which no independent learning dynamics converges to a Nash Equilibrium. Further studies have
shown that chaotic dynamics may occur even in two-player finite-action games (Sato et al., 2002;
Galla & Farmer, 2013). Crucially, Sanders et al. (2018) found that, as the number of players grows,
non-convergent behaviour becomes the norm.

Whilst at first glance these results suggest an insurmountable barrier towards strong convergence
guarantees, a key missing factor is an in-depth analysis of the interactions between agents. In
particular, both Sanders et al. (2018) and Hussain et al. (2023) assume that the payoff to any given
agent is dependent on all other agents in the environment. This assumption rarely holds in practice.
Rather, agents often interact through an underlying network that may represent communication
constraints or spatial proximity. A practitioner or system designer has a certain degree of control over
the network structure, e.g., in a robotic swarm, a practitioner can influence the network by adjusting
the communication range of the robots, while in a sensor network, this can be done by controlling the
density of the deployed sensors. This leads us to study the following research question:

How does network structure affect the convergence of learning as the number of agents increases?
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Answering this question represents a key step towards guaranteeing the feasibility of learning with
many agents, so long as the network structure can be controlled. Indeed, a number of works have
examined learning in network games, uncovering the relationship between the network structure and
properties of the equilibrium as well as designing algorithms that converge to an equilibrium (Melo,
2018; Parise & Ozdaglar, 2019; Melo, 2021; Shokri & Kebriaei, 2020). However, many of these
algorithms have unrealistic requirements, such as full knowledge of the agents’ payoff functions or
their gradients. Our goal instead is to consider a widely applied reinforcement learning algorithm –
Q-Learning – which requires only evaluations of the payoff functions, and study how the parameters
of the algorithm and the structure of the underlying network can be leveraged to yield convergence
guarantees, as well as how such guarantees scale with the number of agents.

Model. We study agents who update their strategies via the Q-Learning dynamics (Sato & Crutch-
field, 2003), a continuous-time counterpart to the well-studied Q-Learning algorithm (Watkins &
Dayan, 1992; Sutton & Barto, 2018). We focus our study on network polymatrix games (Janovskaja,
1968) in which agents select from a finite set of actions and interact with their neighbours on an
underlying network. We study networks which are drawn from random graph models: the Erdős-
Rényi model (Erdös & Rényi, 2006) and the Stochastic Block model (Holland et al., 1983). The
Erdős-Rényi model is widely used to study communication in distributed systems Lei et al. (2020);
Prakash et al. (2020). The Stochastic Block model is a natural extension of Erdős-Rényi to model
community structures which naturally arise in some distributed systems (Yun & Proutière, 2019).

Contributions. Our main contribution is to characterise the convergence properties of Q-Learning,
depending on the exploration rates of the agents, the game payoffs, and the expected degree of
the network. Specifically, our results provide sufficient conditions for the Q-learning dynamics to
converge to an equilibrium with high probability as the number of agents N increases, given that the
network is drawn from one of the two above-mentioned models. We demonstrate that in low-degree
networks, Q-learning converges even with low exploration rates and with a large number of agents.
In fact, our experiments show convergence even with 200 agents in low-degree networks, whereas
Sanders et al. (2018) reported failure to converge with low exploration rates for as few as five agents.

Our work establishes an explicit relationship between the convergence of Q-Learning Dynamics and
the expected node degree in the network, thus ensuring the feasibility of learning in many-agent
games, so long as the expected node degree is controlled. Our results further ensure the uniqueness
of the equilibrium, meaning that Q-learning converges to a single solution regardless of the initial
conditions. To the best of our knowledge, this is the first work to study the asymptotic behaviour of
learning dynamics in the context of network polymatrix games with random graph models, and to
derive the relation between convergence and the expected node degree in the network.

1.1 RELATED WORK

Our work focuses on independent online learning in network polymatrix games. Network games are
well-studied in the setting of zero-sum networks (Cai et al., 2016), which model strictly competitive
systems. In such cases, it is known that the continuous-time counterparts of popular algorithms such
as Fictitious Play (Ewerhart & Valkanova, 2020) and Q-Learning (Leonardos et al., 2024) converge to
an equilibrium. By contrast, it was shown in Bailey & Piliouras (2019) that the Replicator Dynamics
(Maynard Smith, 1974), a continuous-time model of the Multiplicative Weights Update algorithm
(Arora et al., 2012) does not converge to the Nash Equilibrium.

Network games have also been studied to understand the properties, in particular the uniqueness, of
the equilibrium (Bramoullé et al., 2014; Parise & Ozdaglar, 2019; Melo, 2021). In many cases, the
literature appeals to the study of monotone games (Paccagnan et al., 2018) which subsumes zero-sum
network games (Akin & Losert, 1984). The formalism of monotone games has been applied to
design algorithms that provably converge to Nash Equilibria. However, many of these algorithms
require that agents have full access to their payoff function (Parise & Ozdaglar, 2019) or its gradient
(Mertikopoulos & Zhou, 2019). Monotone games also share strong links with the idea of payoff
perturbations (Facchinei & Pang, 2004) in which a strongly convex penalty is imposed to agents’
payoff functions to stabilise learning (Abe et al., 2024; Sokota et al., 2023; Liu et al., 2023).

Our work departs from the above by considering Q-Learning Dynamics, a foundational exploration-
exploitation model central to reinforcement learning (Albrecht et al., 2024a; Tuyls, 2023). Q-Learning
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Dynamics is also related to the replicator dynamics (Bloembergen et al., 2015) and to Follow-the-
Regularised-Leader (Abe et al., 2022). Outside of specialised classes of games, Q-Learning Dynamics
has been shown to exhibit chaotic orbits (Sato et al., 2002), a phenomenon which becomes more
prevalent as the number of players increases (Sanders et al., 2018). Similar to our work, Hussain
et al. (2024) study the convergence of Q-Learning in network polymatrix games. However, their
work considered deterministic graphs with specific structures. We instead consider Q-Learning in
a stochastic setting, where stochasticity arises from the random network. In doing so, we derive a
direct relationship between the expected node degree and the convergence of Q-Learning Dynamics.

To achieve our result, we appeal to the framework of random networks, which are often used to model
decentralised systems. Many works in multi-agent learning and online optimisation have considered
this setting, for example to determine the existence of pure Nash Equilibria (Daskalakis et al., 2011), to
study the performance of distributed online algorithms (Lei et al., 2020), or to examine the emergence
of cooperative behaviors (Dall’Asta et al., 2012). A parallel step in the study of network games was
the introduction of graphon games in Parise & Ozdaglar (2023); Carmona et al. (2022). The authors
consider network games in the limit of uncountably infinite agents and generalise the Erdős-Rényi
and Stochastic Block models. This also extends mean-field games (Laurière et al., 2022; Hu et al.,
2019) by introducing heterogeneity amongst players through their edge connections. Subsequent
works on graphon games largely focus on the analysis of equilibria (Caines & Huang, 2021; Aurell
et al., 2022) or design learning algorithms that converge in time-average to an equilibrium (Cui
& Koeppl, 2022; Zhang et al., 2023; 2024). By contrast, our goal is to understand the asymptotic
behaviour of Q-Learning Dynamics and establish probabilistic bounds to guarantee convergence in
games with finite players. In particular, we study how these convergence guarantees are influenced by
the number of players and, crucially, how the probability of edge connections in the network curtails
non-convergent dynamics as the number of players increases. Thus, the restriction to uncountably
infinite players is not suitable for our purposes, although the analysis of non-convergent learning
algorithms in graphon games is an interesting direction for future work.

2 BACKGROUND

Game Model. In this work, we consider network polymatrix games (Janovskaja, 1968; Cai et al.,
2016), which are defined as tuples G = (N , E , (Ak)k∈N , (Akl, Alk)(k,l)∈E), and where N =
{1, 2, . . . , N} denotes a set of N agents, indexed by k. The interactions between agents is modelled
by a set E ⊂ N ×N of edges that defines an undirected network. An alternative formulation of the
underlying network is through an adjacency matrix G ∈ RN×N in which [G]kl = 1 if (k, l) ∈ E ,
and [G]kl = 0 otherwise. The degree of an agent k ∈ N is the number of edges in E that include k.

At each round, each agent k selects an action i ∈ Ak, where Ak is a finite set of nk actions. We
denote the strategy of an agent as the probability distribution over their actions. Next, we define the
joint strategy across all agents as the concatenation of all individual strategies x = (x1, . . . ,xN ) and
apply the shorthand x−k to denote the strategies of all agents other than k.

The goal of each agent is to maximise a utility function uk. In a network polymatrix game G, each
edge is associated with the payoff matrices (Akl, Alk), i.e., the payoff for each agent k takes the form

uk(xk,x−k) =
∑

l:(k,l)∈E

x⊤
k A

klxl.

Solution Concepts. In this work, we focus on two widely-studied solution concepts: the Nash
Equilibrium (Nash, 1950) and Quantal Response Equilibrium (McKelvey & Palfrey, 1995). To
define these concepts we first define the reward to agent k ∈ N for playing action i ∈ Ak as
rki(x−k) =

∑
l:(k,l)∈E

∑
j∈Al

[Akl]ijxlj .

Definition 1 (Nash Equilibrium). A joint strategy x∗ ∈ ∆(A) is a Nash Equilibrium if
x∗
k ∈ argmax

xk∈∆(Ak)

uk(xk,x
∗
−k) for all k ∈ N .

Definition 2 (Quantal Response Equilibrium (QRE)). Let T1, . . . , TN ≥ 0. Then, a joint strategy
x∗ ∈ ∆(A) is a Quantal Response Equilibrium if

x∗
k =

exp
(
rki(x

∗
−k)/Tk

)∑
j∈Ak

exp
(
rkj(x∗

−k)/Tk

) for all k ∈ N .
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The QRE is a natural extension of the Nash Equilibrium that allows agents to play suboptimal actions
with non-zero probability. This is crucial in online learning, where agents must explore their strategy
space. The parameter Tk is therefore known as the exploration rate of agent k. Notice that, by taking
the limit Tk → 0 for all k, the QRE converges to the Nash Equilibrium (McKelvey & Palfrey, 1995).

Q-Learning Dynamics. We now describe the Q-Learning algorithm (Watkins & Dayan, 1992;
Sutton & Barto, 2018) which aims to learn an optimal action-value function Q : A → R that captures
the expected reward of taking a given action. We consider the multi-agent extension of Q-Learning
(Schwartz, 2014; Albrecht et al., 2024b) in which each agent k maintains an individual Q-value
estimate Qk : Ak → R. These are updated at each round t via the update

Qki(t+ 1) = (1− αk)Qki(t) + αkrki(x−k(t)), (1)

where αk ∈ (0, 1) is the learning rate of agent k.

In effect, Qki gives a discounted history of the rewards received when action i is played, with 1− αk

as the discount factor. Note that Q-values are updated by the rewards rki(x−k) that depend on the
strategies of all other agents at time t. So, the reward for a single action can vary between rounds.
This non-stationarity often leads to chaotic dynamics in multi-agent learning.

Given the Q-values, each agent plays their actions according to the Boltzmann distribution:

xki(t+ 1) =
exp (Qki(t+ 1)/Tk)∑

j∈Ak
exp (Qkj(t+ 1)/Tk)

, (2)

where Tk ∈ (0,∞) is the exploration rate of agent k. Let ⟨·, ·⟩ denotes the scalar product.

Tuyls et al. (2006) and Sato & Crutchfield (2003) showed that a continuous-time approximation of
the Q-Learning algorithm is given by a variation of the replicator dynamics (Maynard Smith, 1974;
Hofbauer & Sigmund, 2003) that is called the Q-Learning Dynamics

ẋki

xki
= rki (x−k)− ⟨xk, rk(x)⟩+ Tk

∑
j∈Ak

xkj ln
xkj

xki
. (QLD)

Leonardos et al. (2024) proved the fixed points of (QLD) coincide with the QRE of the game.

Additional Notation. Given a square matrix A ∈ RN×N , denote its spectral norm as ∥A∥2 =
supx∈RN : ∥x∥2=1∥Ax∥2. If A is symmetric, all its eigenvalues λ1, . . . , λN are real, and the spectral
norm agrees with the spectral radius, which is defined as ρ(G) = max{λ1, . . . , λN}.

3 CONVERGENCE OF Q-LEARNING IN GRAPHS

In this section, we show that the convergence of (QLD) is closely related to the structure of the
underlying graph. First, we present the problem setup: we specify the payoffs by the intensity of
identical interests framework (Hussain et al., 2024) and specialize to a certain class of network
polymatrix games, which satisfy Assumption 1. Second, we establish in Lemma 1 a sufficient
condition on the exploration rates Tk such that (QLD) converges to the unique QRE. We adapt this
result to the random network setup using the Erdős-Rényi and Stochastic Block models. In both
cases, we establish connections between (QLD) and the expected degree of a node in the network.

Definition 3 (Intensity of Identical Interests). Let G = (N , E , (Ak)k∈N , (Akl, Alk)(k,l)∈E) be a
network polymatrix game. Then the intensity of identical interests δI of G is given by

δI = max
(k,l)∈E

∥Akl + (Alk)⊤∥2. (3)

The intensity of identical interests δI > 0 measures the similarity between the payoffs of connected
agents across all edges. A canonical example is the pairwise zero-sum game in which Akl = −(Alk)⊤

for all (k, l) ∈ E . In this case, the intensity of identical interests is zero.

To prove our main result, we make the following assumption on the network polymatrix games.
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Assumption 1. Each edge is assigned the same bimatrix game, i.e., (Akl, Alk) = (A,B) ∀(k, l) ∈ E .

Note that Assumption 1 does not require Akl = Alk, rather it requires that each edge is associated
with the same pair of matrices (A,B). No assumption is made about which agent receives matrix
A and which receives matrix B. This is reflected in our experiments (Section 4) in which payoff
matrices are randomly assigned to agents on each edge. This aspect of the setting is discussed in
detail in Appendix D.

Assumption 1 is well motivated in the literature as it analyses the case where agents are engaged in
the same interaction with multiple opponents, a format that is commonly used to study the emergence
of cooperation (Zhang et al., 2014; Mukhopadhyay & Chakraborty, 2020) and congestion (Szabó
& Szolnoki, 2015) in multi-agent systems. Indeed, the assumption of shared payoffs has led to a
number of successes in studying large scale systems with many agents (Perrin et al., 2020; Wu et al.,
2024; Pérolat et al., 2022; Parise & Ozdaglar, 2023; Hu et al., 2019). We adopt this assumption, but
also empirically validate our claims outside of this framework through the Conflict Network game
(Ewerhart & Valkanova, 2020), in which payoff matrices vary across edges; see Section 4 for details.

Having specified our setting, we next determine a sufficient condition for the convergence of (QLD)
in terms of the properties of the adjacency matrix G. All proofs are deferred to Appendix B and C.

Lemma 1. Let G = (N , E , (A)k, (A,B)(k,l)∈E) be a network polymatrix game that satisfies As-
sumption 1. Also, let G be the adjacency matrix associated with the edge-set E . If

Tk > δIρ(G), for all k ∈ N (4)

the QRE x∗ of the game G is unique. Further, x∗ is globally asymptotically stable under (QLD).

This result has two components: (i) the QRE is unique, and (ii) it is asymptotically stable with respect
to (QLD). Together, these statements ensure that a unique equilibrium solution is learned.

Discussion From Lemma 1, and from previous works such as Sanders et al. (2018), it is clear that
higher exploration rates are necessary to guarantee the convergence of (QLD). Yet, as explained
in Section 2, lower exploration rates are preferred to remain close to a Nash Equilibrium. This
creates a fundamental trade-off. A common approach to address this is to fix the game to a specific
class. As an example, restricting to pairwise zero-sum games, where δI = 0, ensures that (QLD)
converges as long as Tk > 0 for all k ∈ N , regardless of ρ(G). Our approach, in contrast, focuses
on controlling the spectral radius, ρ(G), while treating δI to be fixed a-priori. To achieve this, we
explore how network sparsity—a tunable parameter in decentralised systems such as robotic swarms
or sensor networks—impacts the convergence of (QLD). Our analysis turns to random networks,
where network sparsity is directly parameterised through the probability of edge connections. By
deriving probabilistic upper bounds on the (random) spectral radius term ρ(G) in terms of these
parameters, we can directly link the network’s sparsity to the convergence or (QLD), providing robust
convergence guarantees that hold for broad classes of networks.

We specify the network structure by the parameters of the model from which it is generated. In
the Erdős-Rényi model, this is the probability p that a pair of nodes is connected by an edge. In
the Stochastic Block model, it is the set of within-community edge probabilities pc and between-
community edge probability q.

Erdős-Rényi. We begin with the Erdős-Rényi (ER) model (Erdös & Rényi, 2006), in which the
graph is generated by independently sampling each edge with probability p ∈ (0, 1). The adjacency
matrix G is then a random matrix with entries that are Bernoulli distributed with parameter p. Let the
degree of a node k be the number of edges (k, l) ∈ E that contain k. The expected node degree in a
network drawn from the ER model is therefore p(N − 1).

Stochastic Block Model. Networks are drawn from the Stochastic Block (SB) model (Holland
et al., 1983) by partitioning the nodes into C communities. The probability of an edge between nodes
k and l that are in the same community c is given by pc ∈ (0, 1), whereas the probability of an edge
between nodes in different communities is q ∈ (0, 1). The adjacency matrix G is then generated by
sampling each edge independently according to the Bernoulli distribution with probabilities pc and
q. The expected node degree in community c is pc(Nc − 1) + q(N −Nc), where Nc is the number
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of nodes in community c. Note that the higher pc and q, the higher the expected node degree, and
further that the ER model is a particular case of the SB model for a single community, i.e., Nc = N .

We first place probabilistic bounds on the spectral radius of the adjacency matrices in the ER and
SB models, which we then use in Theorems 1 and 2 to obtain the main convergence results. For
simplicity, in the SB model case, the following results assume all communities are of equal size,
specifically Nc = N/C for all c. However, the proof stays valid when the communities’ sizes vary.
Lemma 2. Consider the symmetric adjacency matrix G ∈ RN×N of a network drawn from the ER
model. Then G has a zero main-diagonal and the off-diagonal entries {[G]kl ∼ Bernoulli(p) :
1 ≤ k < l ≤ N} are independent, where p > 0. For any ϵ > 0, the following holds almost surely

ρ(G) ≤ (N − 1)p+ (2
√

p(1− p) + ϵ)
√
N as N → ∞. (5)

Lemma 3. Consider the symmetric adjacency matrix G ∈ RN×N of a network drawn from the SB
model 

[G]kl ∼ Bernoulli(pc), if k and l ∈ c,

[G]kl ∼ Bernoulli(q), if k ∈ c and l ∈ c′ ̸= c,

[G]kk = 0, for 1 ≤ k ≤ N,

where {[G]kl : 1 ≤ k < l ≤ N} are independent. For any ϵ > 0, it holds almost surely as N → ∞

ρ(G) ≤ Nq +
N

C
(pmax − q)− pmax + (2σmax + ϵ)

√
N, (6)

where pmax = max{p1, . . . , pC} and σmax = max{
√
p1(1− p1), . . . ,

√
pC(1− pC),

√
q(1− q)}.

Remark. Lemmas 2 and 3 can be further strengthened, and we refer the reader to Appendix C for
clarification. In essence, the ϵ

√
N term can be replaced by ϵN1/4+δ lnN for any δ > 0.

Together with Lemma 6, the two results above establish a link between the edge connection probabili-
ties in the graph—and thus the expected node degree—and the convergence of (QLD) as N → ∞.
Theorem 1. Let ϵ > 0 and let GN be a sequence of network polymatrix games satisfying Assumption
1. Suppose the corresponding networks are drawn from the ER model with the same parameter p. If

Tk(N) > δI [(N − 1)p+ (2
√
p(1− p) + ϵ)

√
N ] for all agents k ∈ N ,

then almost surely as N → ∞, the trajectories of (QLD) converge to x∗ ∈ ∆ for any initial condition.

Note that the bound is dominated by the term p(N − 1) as N → ∞, which is the expected node
degree in the ER model. Theorem 1 suggests that if p → 0 faster than 1/N , then (QLD) converges
almost surely as N → ∞.
Theorem 2. Let ϵ > 0 and let GN be a sequence of network polymatrix games satisfying Assumption
1. Suppose the corresponding networks are drawn from the SB model with the same parameters pc
and q. Finally, let pmax, σmax be defined as in Lemma 3. If

Tk(N) > δI

[
Nq +

N

C
(pmax − q)− pmax + (2σmax + ϵ)

√
N

]
for all agents k ∈ N ,

then almost surely as N → ∞, the trajectories of (QLD) converge to x∗ ∈ ∆ for any initial condition.

As in the ER case, if we focus on the dominant O(N) term Nq + N
C (pmax − q)− pmax in the bound

(6), we can rearrange it as pmax(
N
C − 1)+ q(N − N

C ), which is exactly the expected degree of a node
in the SB model with pc = pmax and Nc = N/C for all subcommunities c. All in all, Theorem 1
and 2 suggest that (QLD) converges with low exploration rates when the expected degree of nodes in
the network is small.

4 EXPERIMENTS

The aim of this section is to understand the implications of Theorems 1 and 2 in games with a finite
number of agents. We simulate the Q-Learning algorithm from Section 2 on network games, where
the network is drawn from the ER and SB models. Each experiment runs for 4000 iterations, and we
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assess convergence numerically, as explained in Appendix E.1. We show that, as the expected node
degree of the network increases, higher exploration rates are required for Q-Learning to convergence
by finding the boundary between stable and unstable dynamics. We analyse how the boundary evolves
with N and provide empirical evidence that our results extend beyond the assumptions used to derive
the bounds. In our experiments, we assume all agents have the same exploration rate T and thus omit
the dependency on k. As our results are lower bounds across all k, this is without loss of generality.

Game Models. We first simulate Q-Learning in the Network Shapley and Network Sato games,
which are extensions of classical bimatrix games, introduced in Shapley (2016) and Sato et al. (2002)
respectively, to the network polymatrix setting. In both cases, each edge defines the same bimatrix
game, (Akl, Alk) = (A,B) ∀(k, l) ∈ E where in the Network Shapley game:

A =

(
1 0 β
β 1 0
0 β 1

)
, B =

(−β 1 0
0 −β 1
1 0 −β

)
,

for β ∈ (0, 1); and in the Network Sato game:

A =

(
ϵX −1 1
1 ϵX −1
−1 1 ϵX

)
, B =

(
ϵY −1 1
1 ϵY −1
−1 1 ϵY

)
,

where ϵX , ϵY ∈ R. Fix ϵX = 0.5, ϵY = −0.3 and β = 0.2. We also study the Conflict Network game,
proposed in Ewerhart & Valkanova (2020). A network polymatrix game is a Conflict Network game
if each bimatrix game (Akl, Alk) satisfies (Akl)ij = vk(P kl)ij − ckli and (Alk)ji = vj(P lk)ji − clkj ,
where vk, vl > 0, ckl ∈ Rnk , clk ∈ Rnl and (P kl)ij + (P lk)ji = 1 for all i ∈ Sk and j ∈ Sl. To
generate Conflict Network games, we independently sample each vk from the uniform distribution
over [0, 1] and generate P kl by randomly sampling its elements from the uniform distribution over
[−5, 5]. We then construct (Akl, Alk) such that the Conflict Network condition is satisfied.

Erdős-Rényi Model. In Figure 1, we examine the convergence properties of Q-Learning on
networks generated from the Erdős-Rényi (ER) model. We vary the edge probability p, the exploration
rate T , and the number of agents N . Figure 2 extends this analysis by plotting the convergence
boundary as N increases for different values of p. The key observation is that the rate of boundary
growth increases with p, demonstrating that network density—parameterised by the edge probability
p—has a direct impact on learning dynamics. Our results reveal that dense networks (high expected
node degree) require higher exploration rates to guarantee convergence, consistent with previous
findings in Sanders et al. (2018). Recall from Section 2, however, that higher exploration rates yield
Quantal Response Equilibria (QRE) that deviate further from the Nash Equilibrium. Crucially, we
find that this effect is substantially reduced in sparse networks (small p).

The Network Sato game in Figure 2 illustrates this phenomenon clearly. For p = 0.05, (QLD)
converges for T < 2.0 even with over 150 agents. Conversely, for p = 0.75, convergence may fail
with as few as 25 agents. These results also hold in the Conflict Network game, which extends beyond
the setting of Assumption 1. Although there is some stochasticity in the boundary due to randomised
payoffs, the fundamental trend remains: convergence occurs at lower exploration rates when the
expected node degree is lower. These findings underscore the importance for practitioners of carefully
designing network structures to ensure multi-agent learning produces stable, near-optimal equilibria.

Stochastic Block Model. We next evaluate Q-Learning on networks generated from the Stochastic
Block (SB) model. Figure 3 shows the proportion of diverged experiments in the Network Sato game,
with results for the Network Shapley and Conflict games provided in Appendix E.2. Because the SB
model has many parameters, we fix the number of agents in each community to Nc = 5 and suppose
that pc = p for all communities c. We then assess the convergence of (QLD) for different values
of p and T , while varying q and N . We find that, although each parameter influences asymptotic
behaviour, convergence occurs less frequently in denser graphs, i.e., as p and q increase. Finally, we
examine the case in which pc varies across communities in Figure 4. We simulate 1024 independent
runs of QLD dynamics and compute the maximum difference between strategy components over the
final iterations. The results show that communities with lower pc tend to exhibit smaller maximum
differences. This suggests that allowing agents in different communities to use different exploration
rates may yield convergence with smaller rates than required by Theorem 2.
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Figure 1: Proportion of (QLD) simulations that diverge in network games with network drawn from
the Erdős-Rényi model using varying exploration rates T , edge probabilities p, and numbers of
agents N . Each heatmap uses (T, p) values on the grid [0.05, 4.25]× [0.05, 0.25]. Convergence at
low exploration rates is more likely in sparser networks, i.e., low p. Further, the boundary between
convergent and divergent behaviour shifts rapidly with the number of agents N when p is high,
highlighting the need to control p for large N . Additional heatmaps are available in Appendix E.2.
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Figure 2: Variation of the empirical convergence boundary in various network games as N increases,
for different values of p. The y-axis shows the smallest exploration rate for which all 50 simulations
converged. Dense networks (high p) require substantially higher exploration rates to ensure conver-
gence, while sparse networks (low p) maintain low convergence thresholds even for large N . Recall
that lower exploration rates are preferable so that the QRE is closer to the Nash equilibrium.

5 CONCLUSION

This paper examined Q-Learning dynamics in network polymatrix games through the lens of random
networks. In doing so, we showed an explicit relationship between the asymptotic convergence of Q-
Learning and the expected degree of nodes in the underlying network. We provided theoretical lower
bounds on the exploration rates required for convergence in network polymatrix games where the
network is drawn from the Erdős-Rényi or Stochastic Block models and showed that the convergence
may be guaranteed in games with many agents, so long as interactions in the network are controlled.
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Figure 3: Proportion of (QLD) simulations that diverge in Network Sato games with network drawn
from the Stochastic Block model, varying exploration rates T , intra-community edge probability p,
inter-community edge probability q and number of agents N . We use equidistant (T, p) values in
[0.05, 4.25]× [0.05, 0.25]. The convergence boundary is jointly controlled by p and q, offering greater
flexibility to achieve convergence in structured networks. Extra results are provided in Appendix E.2.
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Figure 4: Probability density function of final strategy variation in Network Sato games on hetero-
geneous stochastic block networks with N = 200 agents, showing the maximum strategy variation
across agents during the final 300 iterations, computed from 1024 independent simulations. Networks
contain five communities with varying intra-community connection probabilities p (shown in legend)
and fixed inter-community probability q = 0.1. Communities with lower connectivity (blue, green)
achieve convergence at lower exploration rates than densely connected communities (red, purple).

Future Work. In our experiments, we found that the implications of our theorems hold in settings
beyond the assumptions under which they were derived. This suggests several directions for future
work. One is to examine if our results generalise to broader classes of network games, e.g., games
with continuous action sets. In addition, whilst our work considers the repeated play of a matrix game,
extending these results to the Markov Game framework—which introduces a state variable—would
enable theoretical guarantees to be placed in real-world multi-agent systems. Of further interest is the
extension to other random network models, e.g., the Barabási-Albert model, used to model systems
such as the Internet that exhibit preferential attachment. Analysing these models could reveal deeper
connections between network structure and the convergence of learning algorithms.
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