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ABSTRACT

Knowledge Distillation (KD) has developed extensively and boosted various tasks.
The classical KD method adds the KD loss to the original cross-entropy (CE)
loss. We try to decompose the KD loss to explore its relation with the CE loss.
Surprisingly, we find it can be regarded as a combination of the CE loss and an
extra loss which has the identical form as the CE loss. However, we notice the
extra loss forces the student’s relative probability to learn the teacher’s absolute
probability. Moreover, the sum of the two probabilities is different, making it
hard to optimize. To address this issue, we revise the formulation and propose a
distributed loss. In addition, we utilize teachers’ target output as the soft target,
proposing the soft loss. Combining the soft loss and the distributed loss, we propose
a new KD loss (NKD). Furthermore, we smooth students’ target output to treat it as
the soft target for training without teachers and propose a teacher-free new KD loss
(tf-NKD). Our method achieves state-of-the-art performance on CIFAR-100 and
ImageNet. For example, with ResNet-34 as the teacher, we boost the ImageNet
Top-1 accuracy of ResNet18 from 69.90% to 71.96%. In training without teachers,
MobileNet, ResNet-18 and SwinTransformer-Tiny achieve 70.04%, 70.76%, and
81.48%, which are 0.83%, 0.86%, and 0.30% higher than the baseline, respectively.

1 INTRODUCTION

Over the last decade, deep convolutional neural networks (CNNs) have significantly advanced the
performance in many computer vision tasks (He et al., 2016; Ren et al., 2015; Ronneberger et al.,
2015; He et al., 2017). Generally, a larger model scores higher but needs more computing resources.
In contrast, a smaller model has less computation complexity and runs faster, but it performs less
competitively than the larger one. Knowledge distillation (KD) is proposed (Hinton et al., 2015) to
bridge the gap to boost the small model in the training stage, causing no extra cost in the test time. Its
core idea is when training the small student model; besides the supervision from the label, it also
inherits the knowledge from the large teacher model as additional guidance. The distillation methods
have been successfully applied to various domains, such as image classification (Yang et al., 2020;
Zhou et al., 2020; Chen et al., 2021; Zhao et al., 2022; Yang et al., 2022), object detection (Chen
et al., 2017; Li et al., 2017; Wang et al., 2019; Guo et al., 2021; Yang et al., 2021), and semantic
segmentation (Liu et al., 2019; He et al., 2019; Shu et al., 2021; Yang et al., 2022).

The classical distillation method (Hinton et al., 2015) utilizes the teacher’s prediction as the soft label
to guide the student. In addition to the predicted labels given by the teacher, there are also artificially
given soft labels. Label smooth can be regarded as a particular case of the soft label and (Müller
et al., 2019) show it helps the models to represent the samples from the same class to the group in
tight clusters. Tf-KD (Yuan et al., 2020) explore the knowledge distillation from label smoothing
regularization and propose a novel teacher-free knowledge distillation method. DKD (Zhao et al.,
2022) regards the image’s category as the target class, reformulating the knowledge distillation loss
into target and non-target class loss.

However, previous works lack the consideration of the relation between the original CE loss and
KD loss. From this perspective, we investigate the classical KD loss and find that the KD loss can
be reformulated as a combination of the original CE loss and an extra loss. The extra loss mainly
introduces the knowledge of all classes except the target class, which we call non-target distribution.
Besides, the extra loss has the same form as CE loss. However, the extra loss aims to force the
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Figure 1: Illustration of the proposed NKD and tf-NKD.

student’s relative probability to be the same as the teacher’s absolute probability. To this end, although
the decomposition provides a term that looks like CE loss, the student’s output should not be similar
to the teacher’s output when converging. To solve this problem, we modify the formula and proposed
distributed loss to transfer the knowledge of non-target distribution.

Besides the non-target distribution, we believe the target information should also be reasonably
introduced into the knowledge distillation. Inspired by the phenomenon that the soft label is easier
than the ground-truth (GT) label for a compact model to fit, we argue that the teacher’s target output
can also be viewed as the soft target. This soft target gives a much smoother label value than the
GT label value. Based on the method, we apply the soft targets to the samples and propose the soft
loss. Since the distributed loss provides non-target distribution knowledge and the soft loss provides
the soft target knowledge, we can use these two losses in combination. In this way, we present
our New Knowledge Distillation (NKD) loss. The students achieve significant improvements and
state-of-the-art performance with our new loss.

Furthermore, as the student’s prediction can also give the sample a much smoother label value, we
try to use soft loss without teachers. Since student’s predictions vary gradually during training, we
smooth student’s target output to make it more stable during training, propose our teacher free New
Knowledge Distillation (tf-NKD) loss. We conduct various experiments to validate the effectiveness
and robustness of our tf-NKD loss. Besides, the weights are all obtained by adjusting the student’s
target output. Therefore compared with the baseline, it does not take extra time to train a model.

As we analyzed above, we propose a new paradigm of knowledge distillation loss, including dis-
tributed loss and soft loss. Combining these two losses with the original CE loss, we achieve
state-of-the-art performance in various models. Besides, in the absence of teachers, we also get a
considerable boost in many models using the soft loss. The two methods we propose are shown in
Figure 1. In a nutshell, the contributions are as follows:

• We demonstrate that the classical KD loss can be regarded as the combination of the original
CE loss and an extra loss. The extra loss mainly introduces the knowledge of non-target
distribution and is hard to optimize. To address this issue, we propose distributed loss.

• Inspired by the soft label method, we propose soft loss, which uses the teacher’s target
output as the soft target for distillation. Combining distributed and soft loss, we propose
NKD loss, achieving state-of-the-art performance.

• We smooth the student’s target output as the soft target to train the students without teachers.
In this way, we propose tf-NKD loss, which can also bring considerable improvements for
the students without extra time costs.

2 RELATED WORK

Knowledge distillation (KD) is a method to improve the model while keeping the network structure
unchanged. It was first proposed by Hinton et al. (Hinton et al., 2015), where the student is supervised
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by the hard labels and the soft labels from the teacher’s output. Many following works focus on
making better use of soft labels to transfer more knowledge. WSLD (Zhou et al., 2020) analyzes
soft labels and distributes different weights for them from a perspective of bias-variance trade-off.
DKD (Zhao et al., 2022) divides the classical KD according to the teacher’s prediction and modifies
the formulation of KD, achieving state-of-the-art performances. SRRL (Yang et al., 2020) forces the
output logits of teacher’s and student’s features after the teacher’s linear layer to be the same.

Besides distillation on logits, some works aim at transferring knowledge from intermediate features.
FitNet (Romero et al., 2014) distills the semantic information from intermediate feature directly.
OFD (Heo et al., 2019) designs the margin ReLU and modifies the measurement for the distance
between students and teachers. RKD (Park et al., 2019) extracts the relation from the feature map.
CRD (Tian et al., 2019) applies contrastive learning to distillation successfully. KR (Chen et al., 2021)
transfers knowledge from multi-level features for distillation. SRRL (Yang et al., 2020) utilizes the
teacher’s classifier to train the student’s feature. MGD (Yang et al., 2022) proposes a new distillation
method that makes the student generate the teacher’s feature instead of mimicking.

3 METHOD

3.1 DISTILLATION WITH TEACHERS

Using t denotes the target class, C denotes the number of classes, Vi denotes the label value, and Si

denotes the student’s output probability. The original loss for image classification can be formulated:

Lori = −
C∑
i

Vilog(Si) = −Vtlog(St) = −log(St). (1)

Using λ denotes the temperature for knowledge distillation, Ti denotes the teacher’s output probability.
The classical KD loss can be formulated as:
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As Lkd shows, −log(Sλ
t ) has the same form as Lori and does not bring new knowledge for the student.
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and mainly introduces the non-target knowledge to the student. The CE loss aims at making q(x)
to be the same as p(x). Therefore the sum of the two distributions needs to be equal. However, Tλ
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and Lkd together for distillation, we need to view the two losses together. So we try to decompose
Lkd via Lori and find the optimization problem we describe above.

To transfer the non-target knowledge and overcome the problem, we propose distributed loss:
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In this case, we can see
∑C

i ̸=t T̂
λ
i =

∑C
i ̸=t Ŝ

λ
i = 1, making the student learn teacher’s non-target

knowledge easier.

However, Ldistributed lacks the teacher’s target knowledge. Some previous KD methods (Hinton
et al., 2015; Zhao et al., 2022) have proved that the teacher’s predictions can be utilized as soft labels
to accelerate the convergence and improve student performance. Inspired by this soft label method,
we regard the teacher’s target output probability Tt as the soft target directly. Based on the soft target
the teacher introduces, we propose the soft loss for distillation with teachers:

Lsoft = −Ttlog(St). (6)

Finally, combining the original loss Lori, distributed loss Ldistributed and soft loss Lsoft, we propose
our New Knowledge Distillation (NKD) loss as follows:

LNKD = −log(St)− Ttlog(St)− α ∗ λ2 ∗
C∑
i̸=t

T̂λ
i log(Ŝ

λ
i ), (7)

where α is a hyper-parameter to balance the loss.

3.2 TRAINING WITHOUT TEACHERS

The weight Tt and T̂λ
i in Equation 7 are both got from teacher’s output. Therefore LNKD is just

suitable for distillation with teachers. The T̂λ
i is about the non-target distribution knowledge, which

needs to be calculated from a trained model. However, the soft target Tt is the target output probability
for the input image. We wonder if the soft target can be provided by adjusting the student’s target
output St. The difference is that Tt is fixed and St varies gradually during training. From this
perspective, we adjust St, making it smoother to fit the training setting without teachers. This method
can be applied to different models directly and does not take any extra time compared with the
baseline. For the training without teachers, we propose our teacher free New Knowledge Distillation
(tf-NKD) loss:

Ltf−NKD = −log(St)− (St + Vt −mean(St))log(St), (8)

where Vt denotes the target label value for the sample and mean(·) is calculated across different
samples in a batch. Comparing with Lsoft in Equation 6, we replace the Tt with adjustable St. The
experiments of Ltf−NKD are shown in Subsection 4.3. We also discuss the effects of different ways
to smooth the St in Subsection 5.3.

In short, we propose LNKD for distillation with teachers and Ltf−NKD for training without teachers.

4 EXPERIMENTS

4.1 DATASETS AND DETAILS

We conduct the experiments on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009), which contains 100 and 1000 categories, respectively. For CIFAR-100, we use the 50k images
for training and 10k for validation. For ImageNet, we use 1.2 million images for training and 50k
images for validation. In this paper, we use accuracy to evaluate all the models.

For distillation with teachers, NKD has two hyper-parameters α and λ in Equation7. For all the
experiments, we adopt {α = 1.5, λ = 1} on ImageNet. The training setting for distillation is
the same as training the students without distillation. We use 8 Tesla-V100 GPUs to conduct the
experiments with MMClassition (Contributors, 2020) based on Pytorch (Paszke et al., 2019). While
for CIFAR-100, we follow the training setting from DKD (Zhao et al., 2022).

4.2 DISTILLATION WITH TEACHERS

For the distillation with teachers, we first conduct experiments with various teacher-student distillation
pairs on CIFAR-100, shown in Table 1. In this setting, we evaluate our method on various models
with different architectures including VGG (Simonyan & Zisserman, 2014), ResNet (He et al.,
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Table 1: Results of different distillation methods on the CIFAR-100 validation. The models in the
first row and the second row are the teacher and student, respectively.

Method Type VGG13
VGG8

ResNet32x4
ResNet8x4

VGG13
MobileNetV2

ResNet50
MobileNetV2

ResNet32x4
ShuffleNetV1

baseline - 70.36 72.50 64.60 64.60 70.50

RKD Feature 71.48 71.90 64.52 64.43 72.28
CRD Feature 73.94 75.51 69.73 69.11 75.11
OFD Feature 73.95 74.95 69.48 69.04 75.98
KR Feature 74.84 75.63 70.37 69.89 77.45
KD Logit 72.98 73.33 67.37 67.35 74.07

WSLD Logit 74.36 76.05 69.02 70.15 75.46
DKD Logit 74.68 76.32 69.71 70.35 76.45
Ours Logit 74.86 76.35 70.22 70.67 76.54

Table 2: Results of different distillation methods on ImageNet dataset. T and S indicate the teacher
and student, respectively.

Type Method Top-1 Top-5 Method Top-1 Top-5

ResNet-34 (T) 73.62 91.59 ResNet-50 (T) 76.55 93.06
ResNet-18 (S) 69.90 89.43 MobileNet (S) 69.21 89.02

Feature

AT 70.59 89.73 AT 70.72 90.03
OFD 71.08 90.07 OFD 71.25 90.34
RKD 71.34 90.37 RKD 71.32 90.62
CRD 71.17 90.13 CRD 71.40 90.42
KR 71.61 90.51 KR 72.56 91.00
MGD 71.69 90.49 MGD 72.49 90.94

Logit

KD 71.03 90.05 KD 70.68 90.30
WSLD 71.73 90.53 WSLD 72.02 90.70
DKD 71.70 90.41 DKD 72.05 91.05
Ours 71.96 90.48 Ours 72.58 90.96

Feature + Logit SRRL 71.73 90.60 SRRL 72.49 90.92
Ours+MGD 72.01 90.84 Ours+MGD 73.10 91.32

2016), MobileNetV2 (Sandler et al., 2018) and ShuffleNet (Zhang et al., 2018). We compare our
method with the classical KD (Hinton et al., 2015) and several other state-of-the-art distillation
methods for both heterogeneous and homogeneous distillation. As the results show, our method
brings the students remarkable accuracy gains over other methods. For both heterogeneous and
homogeneous distillation, our method achieves the best performance among logit-based distillation
and even surpasses feature-based distillation in some distillation settings.

To further demonstrate the effectiveness and robustness of our method, we also test it on a more
challenging dataset, ImageNet. We set two popular teacher-student pairs, which include homoge-
neous and heterogeneous distillation. The homogeneous distillation is ResNet34-ResNet18, and the
heterogeneous distillation is ResNet50-MobileNet.

The results of different methods on ImageNet are shown in Table 2. As the results show, our method
outperforms all the previous methods by just distilling on the logit. Our method brings consistent
and significant improvements to the students for both distillation settings. The student ResNet18 and
MobileNet achieve 71.96% and 72.58% Top-1 accuracy, getting 2.06% and 2.37% accuracy gains
with the knowledge transferred from the teacher’s logit, respectively. Furthermore, we try to combine
our method with the SOTA feature-based distillation method MGD (Yang et al., 2022) to explore the
upper bound for the distillation pairs. In this way, the student ResNet18 and MobileNet can achieve
72.01% and 73.10% Top-1 accuracy, getting another 0.05% and 0.52% accuracy gains, respectively.
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Table 3: Results of different smooth methods. Extra time cost means whether needs a teacher, which
needs the time for training a teacher first and inference the teacher during training.

Methods Extra time cost ResNet18 ResNet50

baseline - 69.90 76.55

Label smooth - 69.92 (+0.02) 76.64 (+0.09)
Tf-KD - 70.14 (+0.24) 76.59 (+0.04)

Our tf-NKD - 70.76 (+0.86) 76.93 (+0.38)

Table 4: Top-1 accuracy of different models with our tf-NKD on ImageNet dataset.

Model Params (M) Flops (G) Baseline + tf-NKD

MobileNet 4.2 0.575 69.21 70.04 (+0.83)
MobileNetV2 3.5 0.319 71.86 72.08 (+0.22)
ShuffleNetV2 2.3 0.149 69.55 69.93 (+0.38)

ResNet-18 11.69 1.82 69.90 70.76 (+0.86)
ResNet-50 25.56 4.12 76.55 76.93 (+0.38)
ResNet-101 44.55 7.85 77.97 78.30 (+0.33)

Swin-Tiny 28.29 4.36 81.18 81.48 (+0.30)
Swin-Small 49.61 8.52 83.02 83.08 (+0.06)
Swin-Base 87.77 15.14 83.36 83.36

4.3 TRAINING WITHOUT TEACHERS

Our tf-NKD is designed for training the students without teachers. The soft targets in tf-NKD are all
obtained by smoothing the student’s target output, so there is not any extra time cost compared with
training the student directly. To evaluate the effectiveness of tf-NKD, we first compare it with two
other methods that smooth the labels, including label smooth and Tf-KD (Yuan et al., 2020). As the
results shown in Table3, tf-NKD brings a much larger improvement than the two methods. The label
smooth and Tf-KD mainly introduce the knowledge about non-target distribution, while our tf-NKD
is inspired by the KD method and brings the soft target knowledge.

To further evaluate the effectiveness and generalization of tf-NKD, we apply tf-NKD to various
models with different architectures and sizes, including MobileNet (Howard et al., 2017), Mo-
bileNetV2 (Sandler et al., 2018), ShuffleNetV2 (Ma et al., 2018), ResNet (He et al., 2016) and
SwinTransformer (Liu et al., 2021). As the results are shown in Table 4, the tf-NKD is beneficial to
all different architectures, including lightweight models, CNN-based models and hybrid models. All
the architectures can achieve Top-1 accuracy gains. Even for SwinTransformer-Tiny, it also brings
0.3% accuracy gains. Besides, tf-NKD improves even more for lightweight models. For example, it
brings MobileNet and ResNet18 0.83% and 0.86% Top-1 accuracy gains, while the performance of
Swin-Base keeps the same. The results show our tf-NKD is general and effective.

5 ANALYSIS

5.1 EFFECTS OF SOFT LOSS AND DISTRIBUTED LOSS FOR NKD

In this paper, we propose soft loss and distributed loss, which transfer the knowledge of the teacher’s
soft target and non-target distribution, respectively. In this subsection, we conduct experiments on
soft loss and distributed loss to investigate their influences. As shown in Table 5, the soft loss and
distributed loss lead to 1.16% and 1.48% accuracy improvements respectively, which shows both
the knowledge of the soft target and non-target distribution is helpful to the student. Besides, the
knowledge that soft loss and distributed loss transfer are independent. Combining them together
allows us to make better use of the teacher’s knowledge. In this way, the student achieves 71.96%
Top-1 accuracy, which is significantly greater than using just using soft loss or distributed loss.
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Table 5: Ablation study of distributed loss and soft loss.

Method ResNet34 - ResNet18

soft loss - - ✓ - ✓
distributed loss - - - ✓ ✓
classical KD - ✓ - - -

Top-1 Acc 69.90 71.03 71.06 71.38 71.96
Top-5 Acc 89.43 90.05 89.51 90.47 90.48

Moreover, we modify classical KD and propose distributed loss for distillation. Here we also compare
the distributed loss with classical KD. As it shows, distributed loss brings 1.48% gains while classical
KD brings 1.03%. The comparison also validates the effectiveness of distributed loss.

5.2 SOFT LOSS WITH DIFFERENT SOFT TARGET

For the soft loss, we utilize the teacher’s target output Tt as the soft target in Equation 6. In this
subsection, we explore the effects of different soft targets Tt for the soft loss.

We conduct experiments by distilling ResNet50 on ImageNet, which is shown in Table 6. The
performance of the teachers varies from MobileNetV2’s 71.86% to ResNet50’s 76.64%. We also
design a perfect teacher, which has 100% accuracy and the Tt for each sample is 1. For the teacher
trained without label smooth, a better teacher’s label output probability is closer to gt-label. For
example, the same sample’s Tt of ResNet-50 is closer to 1 than that of ResNet-34. That is to say:
strong teachers have high target output values, making the ‘soft target’ harder. Such harder ‘soft
target’ bring the student fewer improvements. As the results show, the worst teacher MobileNetV2
brings 0.43% gains while ResNet50 just brings 0.33%. When we use the perfect teacher, which
means Tt = 1, the soft loss even harms the student and causes a 0.1% Top-1 accuracy drop.

However, when the teacher is trained with label smooth, the teacher with high performance can also
benefit the student a lot. Specifically, the accuracy of ResNet-50 with label smooth is 76.64%, which
is 0.09% higher than ResNet-50’s 76.55%. But it brings the student 0.54% Top-1 accuracy gains,
while ResNet-50 just brings 0.33% Top-1 accuracy gains. We try to decompose the cross-entropy
loss with label smooth to explore this phenomenon:

Lls = −
C∑
i

Vilog(Si) (9)

= −
C∑
i

Vilog(
Si

St
)−

C∑
i

Vilog(St). (10)

Because
∑C

i Vi = 1, Vi = α/C(i ̸= t) and Vtlog(St/St) = 0, Lls can be simplified as:

Lls = −α

C

C∑
i ̸=t

log(
Si

St
)− log(St), (11)

where C is the number of classes and α is a hyper-parameter. As the equation shows, the loss with
label smooth can be regarded as the combination of the original cross-entropy loss and extra loss on
the non-target output. The extra loss can prevent the model from over-fitting, which will decrease Tt

and get a smoother output. Such models can get softer ‘soft targets’ and thus benefit the student more
through the soft loss.

5.3 DIFFERENT WAYS TO SMOOTH STUDENT’S TARGET OUTPUT FOR TF-NKD

For tf-NKD, we replace the weights of NKD’s soft loss by smoothing the student’s target output St

according to Equation 8. In this subsection, we explore the effects of different ways to smooth the
student’s target output St.
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Table 6: Results of distilling ResNet-50 only by soft loss with different teachers on ImageNet dataset.
The perfect teacher means the model has 100% accuracy and the target prediction Tt for each image
is 1. ls means training the model with label smooth. T and S means the teacher and student.

Type Extra time cost Top-1 Acc (T) Top-1 Acc (S) Top-5 Acc (S)

baseline - - 76.55 93.06

St + Vt −mean(St) - - 76.93 (+0.38) 93.21

MobileNetV2 ✓ 71.86 76.98 (+0.43) 93.22
ResNet-34 ✓ 73.62 76.89 (+0.34) 93.22
ResNet-50 ✓ 76.55 76.88 (+0.33) 93.16
ResNet-50 (ls) ✓ 76.64 77.09 (+0.54) 93.26
Perfect T - 100.0 76.45 (-0.10) 93.06

Table 7: Results of training ResNet18 directly with tf-NKD on ImageNet dataset. The weights for
tf-NKD are obtained by smoothing the student’s target prediction St in different ways. Vt means the
gt-label value for the input sample. mean, sum, max and softmax are all calculated with different
samples in a training batch.

smooth ways Extra time cost Top-1 Acc Top-5 Acc

baseline - 69.90 89.43

St - 70.50 (+0.60) 89.38
St + Vt −mean(St) - 70.76 (+0.86) 89.30
softmax(St) ∗ sum(v) - 70.57 (+0.67) 89.34√
St −min(St) - 70.57 (+0.67) 89.13

St/max(St) - 70.53 (+0.63) 89.39
St/mean(St) - 70.50 (+0.60) 88.99

ResNet18 ✓ 70.75 (+0.85) 89.53

We need a fixed label for training, such as 1 for an image or (0.8,0.2) for a mixed-up image. However,
the student’s target output St gradually increases during training. Especially, as shown in Fig 2, for
easy samples, the St is less than 0.2 at the beginning but larger than 0.9 at the last epochs. When the
St is small, the student’s output can not describe the sample’s true category actually. In this case,
the purpose of optimizing the model is to learn a very small label. We propose two key points for
smoothing the student’s target output St: 1) reflect the sample’s true category in every epoch and
2) prevent the soft target of every sample varying greatly in different epochs.

Based on the two guidelines, we devise several different smooth methods. We conduct experiments
by training ResNet18 on ImageNet to explore these smooth methods, which are shown in Table 7.
As the results show, tf-NKD with all the methods can bring the student considerable improvements.
Especially, the model gets 0.86% gains when using St + Vt −mean(St) as the weights, which is
even higher than using the teacher ResNet18’s output as the soft target. We finally apply this way to
smooth the student’s target output for tf-NKD, which is shown in Equation 8. The results of applying
tf-NKD to more models can be seen in Table 4.

Furthermore, we select two representative samples and visualize the soft targets calculated in different
ways in different epochs. As Figure 2 shows, the student’s target output St is very small even for
the easy samples at the beginning and varies greatly from different epochs. This makes it hard to
represent different samples’ true categories accurately. However, as Figure 2 shows, the weights
obtained by smoothing St according to Equation 8 1) reflect the true category of different samples
in every epoch and 2) vary smoothly in different epochs. In this way, we can utilize the weights to
get a better model with the same training time as the baseline.
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(a) easy sample (b) hard sample

Figure 2: The curve of the weights of two representative samples during training. Different formula-
tions mean adjusting the St in different ways.

Table 8: Results on the CIFAR-100 validation with different temperature. We use ResNet-34 as the
teacher to distill the student ResNet-18.

baseline λ 0.5 1.0 2.0 3.0 4.0 5.0

78.58 Top-1 80.42 80.55 80.76 80.72 80.54 80.50
94.10 Top-5 94.89 95.14 95.14 95.11 95.05 95.11

5.4 THE EFFECT OF THE TEMPERATURE

The temperature λ in Equation 7 is a hyper-parameter used to adjust the distribution of the teacher’s
logit. KD always applies λ > 1 to make the logit become more smooth, which causes the logit
contains more non-target distribution knowledge. The target output probability of the same model
will get a higher value on an easy dataset, such as CIFAR-100. This causes T̂λ

i in Equation 7 contains
less knowledge, which may bring adverse effect to the distillation. In this subsection, we explore
the effects by using different temperatures to distill the student ResNet18 on CIFAR-100, which is
shown in Table 8. The results show that temperature is an important hyper-parameter.

6 CONCLUSION

In this paper, we first analyze the relation between classical KD loss and original CE loss. From
this point of view, we modify the formulation of KD and propose distributed loss to transfer the
knowledge of non-target distribution. Besides, we propose soft loss, which regards the teacher’s target
output as the soft target for the student to learn. We propose New Knowledge Loss (NKD) which
includes distributed and soft loss, helping students achieve state-of-the-art performance. Furthermore,
we smooth student’s target output as the soft target to train the model directly, which also brings the
students considerable improvements without teachers or extra time costs.

LIMITATIONS

We try several attempts to smooth the student’s target output for tf-NKD. However, the way to adjust
the student’s target output to the sample’s soft target is still naive and left as future work. Moreover,
we transfer the target knowledge from the student to the student successfully. We can consider
whether it is available to transfer the non-target knowledge from the student to the student too. We
believe it’s meaningful work and worth exploring.
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