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ABSTRACT

We investigate the performance of fully convolutional networks to predict the mo-
tion and interaction of surface waves in open and closed complex geometries. We
focus on a U-Net type architecture and assess its ability to capture and extrapolate
wave propagation in time as well as the reflection, interference and diffraction of
waves. We investigate how well the network generalises both to long-time predic-
tions and to geometric configurations not seen during training. We demonstrate
that this neural network is capable of accurately predicting the height distribu-
tion of waves on a liquid surface within curved and multi-faceted open and closed
geometries, when only simple box and right-angled corner geometries were seen
during training. We found that the RMSE of the predictions remained of order
1× 10−4 times the characteristic length of the domain for at least 20 time-steps.

1 INTRODUCTION

Figure 1: Rollouts of our U-Net. It
simulates wave motion on a fluid sur-
face with the possible existence of solid
walls [video].

Predicting the spatio-temporal dynamics of physical sys-
tems is a recurrent problem in many areas of science and
engineering. A well-established process consists of de-
scribing the physical phenomena by human-engineered
mathematical models, which capture our current under-
standing of the physical laws governing the systems, but
whose complexity may prevent finding analytical solu-
tions. Scientists therefore frequently turn to numerical
solvers to simulate such mathematical models and gener-
ate accurate approximations to their solution.

The huge progress in machine learning (ML) algorithms
and increased availability of computational power during
the last decade has motivated a significant growth in the
popularity of data-driven physics. In this field, the inter-
polation capabilities of neural networks (NNs) have been
mostly used in two ways: first, to solve partial differen-
tial equations (PDEs) in an unsupervised manner (Dis-
sanayake & Phan-Thien, 1994; Lagaris et al., 1998; 2000;
Raissi et al., 2019) and second, to predict the physical
dynamics from previous observations without knowledge
of the underlying equations (Guo et al., 2016; Farimani
et al., 2017; Thuerey et al., 2018; Lee & You, 2019). Un-
like the first approach, the latter does not lead to an ana-
lytical representation of the physical dynamics, however, it makes feasible to produce predictions
for a diversity of physical domains, boundary conditions and initial conditions without needing to
re-train the network, provided that the physical laws are unaltered. Recent studies applying con-
volutional neural networks (CNNs) to simulate fluid dynamics have reported a speed-up of up to
four orders of magnitude, in comparison to traditional numerical solvers, while keeping a similar
accuracy (Guo et al., 2016). The major shortcoming of NNs are their often poor generalization to
unseen configurations and poor long-time predictions in unsteady simulations.
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We investigate the application of fully convolutional neural networks to the problem of forecasting
surface wave dynamics, the motion of which is described by the shallow water equations, a system
of three non-linear PDEs (Ersoy et al., 2017). Computational modelling of surface waves is widely
used in seismology, computer animation and flood modelling (Ersoy et al., 2017; Garcı́a-Navarro
et al., 2019). Our network learnt to simulate a range of physical phenomena including wave propa-
gation, reflection, interference and diffraction at sharp corners. This kind of NN could supplement
or potentially replace numerical algorithms used to solve the shallow water PDEs, reducing the in-
ference time by several orders of magnitude and allowing for real-time solutions. This has particular
relevance in iterative design scenarios and potential applications such as tsunami prediction.

Contribution. We demonstrate that our U-Net architecture is able to accurately predict surface
wave dynamics in complex straight-sided and curved geometries, even when trained only on datasets
with simple straight-sided boundaries. The generalisation to different initial conditions and longer-
time predictions are also evaluated. Additionally, we show how including the MSE of the wave
gradient into the loss function significantly reduces spurious oscillations in predicted solutions and
may help improve the prediction of the position of the wavefronts. Our network is able to simulate
wave dynamics four orders of magnitude faster than a state-of-the-art spectral/hp element numerical
solver (Karniadakis & Sherwin, 2013), so it could be an effective replacement for numerical solvers
in applications where performance is critical.

2 RELATED WORK

Physics-informed NNs for solving PDEs. The use of NNs for the solution of PDEs has been investi-
gated since the early 1990s. Most of the relevant research at that time built on the idea of exploiting
the universal function approximator property of multi-layer perceptrons (MLPs) (Dissanayake &
Phan-Thien, 1994; Dissanayake & Phan-Thien, 1994; Lagaris et al., 1998). In such an approach, the
solutions to the PDEs are approximated as MLPs whose only inputs are the spatio-temporal coordi-
nates. These MLPs are trained in an unsupervised way to satisfy the governing PDEs as well as the
initial and boundary conditions. The main advantage of this paradigm is that the solution is obtained
in a differentiable, closed analytic form, easily usable in any subsequent calculations. Nevertheless,
these networks cannot extrapolate to different domains, boundary conditions or initial conditions;
making it necessary to re-train the network for every slight modification of the problem. These tech-
niques inspired the more modern physics-informed neural networks (PINNs) (Raissi et al., 2017;
Yazdani et al., 2018; Raissi et al., 2019; Lu et al., 2019), which include deeper MLPs and random
collocation points.

CNNs for simulating steady physics. During the last five years, most of the networks used to pre-
dict continuous physics have included convolution layers. For instance, CNNs have been used to
solve the Poisson’s equation (Tang et al., 2018; Özbay et al., 2019), and to solve the steady Navier-
Stokes equations (Guo et al., 2016; Miyanawala & Jaiman, 2018; Yilmaz & German, 2017; Farimani
et al., 2017; Thuerey et al., 2018; Zhang et al., 2018). The use of CNNs allows for visual inputs rep-
resenting physical information, such as the domain geometry or the initial condition, and for visual
outputs representing the solution fields. In contrast to PINNs, the network predictions are purely
based on observation, without knowledge of the underlying governing equations. This paradigm
has proven to extrapolate well to domain geometries, boundary conditions and initial conditions not
seen during training (Thuerey et al., 2018). The evaluation of these networks for prediction is con-
siderably faster than traditional PDE solvers, allowing relatively accurate solutions to be predicted
between one and four orders of magnitude faster (Guo et al., 2016; Farimani et al., 2017). These
reasons make CNNs perfect for developing surrogate models, complementing expensive numerical
solvers (Guo et al., 2016; Miyanawala & Jaiman, 2018), or for real-time animations (Kim et al.,
2019). Our work takes inspiration from Guo et al. (2016) in the use of a binary geometry field to
represent the physical domain. Although Guo et al. (2016); Farimani et al. (2017) and Thuerey et al.
(2018) proved the generalisation of their networks to domain geometries not seen during training,
these unseen domains contain elementary geometrical entities included within the training data. We
go one step further by training the network with exclusively straight boundaries and demonstrat-
ing the network is able to generalise to domains incorporating boundaries with varying radius of
curvature.
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CNNs for simulating unsteady physics. Unsteady physics have also been explored from the com-
puter vision perspective (Lee & You, 2019; Sorteberg et al., 2018; Wiewel et al., 2019; Kim et al.,
2019; Fotiadis et al., 2020), although to a lesser extent than steady physics. Here, the input to the net-
work is a sequence of past solution fields, while the output is a sequence of predicted solution fields
at future times. When predicting unsteady phenomena there is an additional challenge: keeping the
predictions accurate along time. To address this, Sorteberg et al. (2018); Wiewel et al. (2019) and
Kim et al. (2019) proposed to use encoder-propagator-decoder architectures, whereas Lee & You
(2019) and Fotiadis et al. (2020) continued to use encoder-decoder architectures similar to those
used for steady problems. Inspired by Fotiadis et al. (2020), which showed that feed-forward net-
works perform at least as well as recurrent networks in wave forecasting, we opt to use a U-Net
architecture (Ronneberger et al., 2015) to perform each time-step of the simulations.

3 METHOD

3.1 WAVE DYNAMICS DATASETS

The datasets used during training and testing were generated by solving the inviscid, two-
dimensional shallow water equations with Nektar++, a high-order spectral/hp element solver
(Cantwell et al., 2015). In conservative form, these equations are given by

∂

∂t

(
h
hu
hv

)
+∇ ·

 hu hv
hu2 + gh2/2 hvu

huv hv2 + gh2/2

 = 0, (x, y) ∈ D (1)

where g = 9.80665 m/s2 is the acceleration due to gravity and D ∈ R2 denotes the domain under
consideration. Unknown variables in this system are the water depth h(x, y, t) and the components
of the two-dimensional velocity vector u(x, y, t) and v(x, y, t).

We imposed two forms of boundary conditions: solid wall boundaries, which result in wave reflec-
tion and diffraction; and open boundaries, which allow waves to exit the domain. As initial condi-
tions we considered a droplet, represented mathematically by a localized two-dimensional Gaussian
superimposed on a unitary depth:

h10 = 1 + I exp

(
− C((x− xc)2 + (y − yc)2)

)
(2)

where I is set to 0.1 m, C is randomly sampled from a uniform distribution between 400 and 1000
m−2 and the droplet centre, (xc, yc), is randomly sampled from a uniform distribution in D.

(a) Square box (tr.) (b) Corner (tr.) (c) Double corner (d) Convex circle

(e) Concave circle (f) B-Splines (g) Ellipse arcs

Figure 2: Flow domains on our training (tr.) and testing sets. Dimensions in metres.

Each simulation in the datasets is associated with a binary geometry field, Ω(x, y), which satisfies

Ω(x, y) =

{
0, if (x, y) ∈ D,
1, otherwise.

(3)
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Therefore, Ω = 0 inside the fluid domain and Ω = 1 in the solid boundaries (Guo et al., 2016).
This geometry forms an additional input to the network, required to provide information about the
walls location. Figure 2 shows the geometry field for the seven categories of fluid domains included
in the datasets. The table below summarises the training and testing sets. The sequences in each
dataset contain 100 snapshots of the height field sampled at intervals of ∆t = 0.003 seconds. For
full details of the datasets, see Appendix A. 1

Table 1: Training and testing datasets

ID Dataset Purpose Geometry Initial Condition Sequences

A Box Single Drop Training Figure 2a Single Drop (eq. (2)) 500
B Corner Single Drop Training Figure 2b Single Drop (eq. (2)) 500
C Steps Single Drop Testing Figure 2c Single Drop (eq. (2)) 200
D Convex Single Drop Testing Figure 2d Single Drop (eq. (2)) 250
E Concave Single Drop Testing Figure 2e Single Drop (eq. (2)) 500
F Spline Single Drop Testing Figure 2f Single Drop (eq. (2)) 200
G Ellipse Single Drop Testing Figure 2g Single Drop (eq. (2)) 200

3.2 U-NET AS A SIMULATION ENGINE

Our neural network is based on a U-Net architecture (Ronneberger et al., 2015), which has been ex-
tensively used for image-to-image translation tasks (Farimani et al., 2017; Isola et al., 2017; Thuerey
et al., 2018; Fotiadis et al., 2020). This architecture consists of a fully convolutional feed-forward
encoder-decoder network with skip connections between the encoder and the decoder. In wave dy-
namics forecasting, the input sequence and the target share an important amount of information at
different length scales, this makes the U-Net a particularly appropriate architecture for our problem.
Our U-Net receives six fields as input: the geometry field, Ω, and a sequence of five consecutive
height fields, {hs, hs+1, hs+2, hs+3, hs+4}. It generates as output a prediction of the subsequent
height field, ĥs+5, at the next time point. Hence, each evaluation of the network corresponds to
performing a single time-step, and the network is re-fed with past predictions to make further pre-
dictions. See Appendix B for more details about our U-Net architecture.

3.3 GRADIENT LOSS

The loss function used in the present work is given by

(4)L = (1− λ)MSE(ĥi, hi) + λ

[
MSE

(
∂ĥi
∂x

,
∂hi
∂x

)
+ MSE

(
∂ĥi
∂y

,
∂hi
∂y

)]
where λ is a hyper-parameter and MSE is the mean-squared error. The derivatives in equation (4)
were computed using second-order finite differences. This loss function penalises oscillations in the
predicted fields and favours smooth solutions. This is especially important for temporal forecasting
by consecutively re-feeding the network, since the spurious oscillations are amplified in each new
prediction. In the case of wave dynamics, the gradients have a large magnitude on the leading
and trailing edges of the wavefront. Capturing such small-scale information enables the network to
accurately learn and reproduce the wave speed and width of wavefront.

3.4 TRAINING

Our U-Net2 was trained against the simple closed box and open corner geometries shown in Figures
2a and 2b, with a single droplet as initial condition. The time step was set to ∆t = 0.012 seconds
and the spatial resolution was set to 128 pix/m. A series of transformations were applied to perform
data augmentation and normalisation (see Appendix C). We trained for 500 epochs with the Adam

1All dataset are available on to be revealed.
2GitHub repository available on to be revealed.
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(a) (b)

Figure 3: (a) Predictions obtained for the fifth time-step (colour values in metres). (b) RMSE be-
tween target and prediction vs. time-step into the future.

optimiser and its standard parameters (Kingma & Ba, 2015) and the loss function given by equation
(4) with λ = 0.05. The learning rate was set to 10−4 and decreased by a factor of 10 every 100
epochs. The time origin for the input sequences is not at t = 0, instead it is randomly selected, and
five time-steps are performed before updating the network weights in an auto-regressive fashion.

4 RESULTS AND DISCUSSION

In this section we evaluate the ability of the trained model to extrapolate to different domain geome-
tries and initial conditions. We also assess the quality of long-time predictions. 3

4.1 GRADLOSS VS MSE

Figure 3a compares the ground truth and two predictions obtained five time steps ahead of the last
temporal height frame used as input. The height field in the central image was predicted by the U-Net
trained with the plain MSE, whereas the prediction on the right was obtained after training with the
loss function given by equation (4). Here, the suppression of the oscillations on the wavefront when
using the GradLoss instead of the MSE is clearly apparent. To quantify this difference, Figure 3b
shows the root-mean-squared error (RMSE), averaged over the 500 simulations in dataset A (see
Table 1), during 20 time-steps for both loss functions. We can conclude that, even for the first
predicted time-step, the network trained with the MSE is considerably less accurate. This difference
is amplified linearly with each new predicted frame.

4.2 GENERALISATION TO DIFFERENT DOMAIN GEOMETRIES

Our network proved to generalise to complex domain geometries not seen during training, some
including curved walls, when only the closed domain and open-corner domain were used for training
(Figures 2a and 2b). The three columns of Figure 4b depict the ground truth, prediction and the
absolute value of their difference every five time-steps (the input height fields are depicted in Figure
4a). This Figure shows that our network is able to accurately predict the wave speed and correctly
infer the reflection on solid walls and diffraction on sharp edges. This is evidenced by the predicted
height field at frame 25 (after 20 time-steps), where we observe that the position and wavelength
of the predicted and true waves are coincident. The main discrepancy between ground truth and
predictions is the height of the wavefronts diffracted on the edges, which are of lower magnitude in
the predicted fields. The reason for this may be that the network is less exposed to wave diffraction
than to wave propagation and reflection during training.

The previous domain is a straightforward extension of the domain in Figure 2b, which was used
during training, so the ability of the network to extrapolate to this configuration is not unexpected.
We now explore the generalisation of the network to curved boundaries, which is potentially more
challenging. Figures 5a and 5b depict the inputs and outputs for a simulation in the domain depicted
in Figure 2d. By visual inspection, these results suggest that the network is able to accurately predict

3Links to animations comparing the ground truth and the U-Net predictions can be found in
https://doi.org/10.6084/m9.figshare.13182623.v1.
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(a)

Frame number 1 Frame number 2 Frame number 3 Frame number 4 Frame number 5

(b) Ground truth

Frame number 10

Prediction |Truth - Prediction|

Frame number 15

Frame number 20

Frame number 25

0.98

0.99

1.00

1.01

1.02

1.03

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Figure 4: Predictions for a previous unseen partially open geometry, incorporating multiple corners.
(a) Input sequence to the network. (b) Ground truth (left column), predictions (centre) and absolute
difference (right) for such inputs. Colour values in metres [video].

wave reflections on circular convex walls, and errors are of the same magnitude to those in Figure
4b. The same conclusion was obtained for circular concave walls.

The network is also able to produce good-quality predictions for configurations involving reflec-
tions on walls whose radii of curvature is not uniform, although in these cases more substantial
differences between targets and predictions can be seen. The temporal frames depicted in Figure 1
illustrate the good generalisation to a fluid domain surrounded by spline-sided walls. The successful
generalisation to this kind of domain is likely due to the localised support of the convolution kernels
and the architecture. When the convolutions are applied, the network may interpret curved walls
as polygonal walls made up of lots of many straight walls of size equal to the stride size. In that
case, the higher the image resolution, the smaller the radius of curvature that could be handled by
the network.

4.3 GENERALISATION TO A HIGHER NUMBER OF DROPLETS

Our U-Net demonstrated a satisfying accuracy on simulations with two or more droplets in the initial
condition. For instance, Figure 6 shows the solution field after 20 time-steps on a domain surrounded
by curved walls. Here, the resemblance between the ground truth and the network prediction evi-
dences the proper propagation and reflection of the initial excitations while they interfere with each
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(a)

Frame number 1 Frame number 2 Frame number 3 Frame number 4 Frame number 5

(b) Ground truth
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Figure 5: Prediction for a previously unseen partially open geometry, incorporating a curved bound-
ary. (a) Input to the network. (b) Ground truth (left column), predictions (centre) and absolute
difference (right) for such inputs. Values in metres [video].

Figure 6: Ground truth (left column), predictions (centre) and absolute difference (right) after 20
time-step and two initial droplets. Values in metres [video].

other. The height field depicted in Figure 7 was obtained predicting the evolution of four droplets for
20 time-steps. While this prediction is far from exact, we can observe that the network reproduces
well the complex height patterns originated in this chaotic simulation.

4.4 LONG-TIME PREDICTIONS

Firstly, we would like to highlight that the size of the time-steps performed by our network are
considerably bigger than in previous work. For instance compared to the work of Fotiadis et al.
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Figure 7: Ground truth (left column), predictions (centre) and absolute difference (right) after 20
time-step and four initial droplets. Values in metres [video].

(2020), our ratio ∆t/tc is four times bigger (we consider the characteristic time scale of the shallow
water equation defined as tc =

√
L/g). This challenges the network accuracy, but also decreases the

number of time steps required to simulate certain time interval, which decreases the computational
time. This is another advantage of NN-based solvers, since traditional PDE solvers must keep a low
time-step size due to stability constraints.

We assessed the ability of the network to make accurate predictions over longer time periods by
simulating in a domain four times longer. Figure 8 shows predictions and ground truth after 30,
55 and 80 time-steps. The initial condition is a single droplet placed in the centre of the narrow
channel. The network is able to predict accurately the speed of the leading wavefront, however,
the wave magnitude is not retained and it is not able to maintain the propagation of the wavefronts
originating from reflections within the narrower channel, which can be seen to quickly dissipate.
This problem could be addressed by training the U-Net for longer output sequences and possibly
increasing the depth of the network.

Figure 8: Ground truth (left) and predictions (right) for simulations in a channel with a sudden
expansion. The initial condition is a droplet placed at the middle of the narrower segment. Values in
metres.

4.5 BASELINE

We contrast now our U-Net with the one proposed by Fotiadis et al. (2020). In their work, they
compared a U-Net, a LSTM, a ConvLSTM and a Casual LSTM for the task of forecasting surface
waves; and they demonstrated the superiority of the U-Net in achieving high accuracy and low
computational time. Our U-Net has a smaller depth than the one in Fotiadis et al. (2020), resulting
in 4.2 times less learnable parameters and faster network evaluations. However, each forward pass of
their U-Net returns predictions for the next 20 time-points, instead of the single time-step performed
by our network. As a result our simulations are one order of magnitude slower, but also about one
order of magnitude more accurate. We trained the U-Net in Fotiadis et al. (2020) in a similar way to
ours (see section 3.4), but with the MSE as loss function and predicting 20 frames as they did in their
original work. Figure 9 shows the RMSE between the ground truth and these two U-Nets predictions
for our datasets in Table 1. We can appreciate that the RMSE of our U-Net predictions increases
linearly with time, whereas the RMSE of the U-Net in Fotiadis et al. (2020) remains approximately
constant after the 5th time-point, but considerably higher. The decrease in the RMSE in the datasets
B, C and D is explained by the wavefronts leaving the fluid domain due to the presence of open
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boundaries. From these results we can conclude that the network depth in Fotiadis et al. (2020) is
unnecessarily big, and more important, that training in an auto-regressive fashion for five time-steps
is better than training for 20 frames predicted in a single evaluation of the network.

Figure 9: RMSE between target and prediction for the datasets in Table 1.

4.6 PERFORMANCE

Performing one time step with our network is 62 times faster than simulating that same time-interval
in Nektar++ when the same single-core CPU is used. On the other hand, performing the network
evaluation on a Tesla T4 results in a 21765x speed up with respect to Nektar++ running on the CPU.
This improvement, and the low RMSE reported in the different datasets, should be enough to justify
the use of our model for fast-solution applications.

5 CONCLUSION

In this work, we investigated the application of fully convolutional deep neural networks for fore-
casting wave dynamics on fluid surfaces. In particular, we focused on a U-Net architecture with
two skip connections, and we trained the network to predict the spatio-temporal evolution of wave
dynamics, including: wave propagation, wave interference, wave reflection and wave refraction. We
demonstrated that including the MSE between the gradients of the predicted height and the truth
height in the loss function significantly reduces spurious oscillations in the solution and helps to
predict the position of the wavefronts more accurately. This suggests that loss functions which
capture discrepancies in the predicted spatial gradients provide valuable information when training
networks to forecast wave dynamics, especially over long-time intervals. The domains considered
during training only included a closed box and a single right-angled corner. However, our U-Net
was able to extrapolate to curved walls with varying radii of curvature. The RMSE remained of
order 10−4 times the characteristic length for at least 20 time steps for both the training and testing
datasets. When run on a GPU, these simulations are around 104 times faster than the equivalent nu-
merical simulation used for generating our datasets. These findings highlight the potential for neural
networks to accurately approximate the evolution of wave dynamics with computational times sev-
eral orders of magnitude smaller than conventional numerical simulation.
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A DATASETS

Datasets A-C contain only straight-sided fluid domains. Dataset A only includes wall boundary
conditions, whereas B and C include open boundaries. Datasets D-G contain curved-sided domains.
The domains in dataset F were generated randomly given four random control points and using B-
Splines to create a closed domain. The domains in dataset G were also generated randomly given a
concave quarter of an ellipse and a convex quarter of an ellipse, whose minor axes follow a uniform
distribution between 0.25 and 0.5 m. Only the datasets A and B were used during training. The
remaining datasets were used to demonstrate the ability of the network to generalise to unseen fluid
domain geometries.

B U-NET ARCHITECTURE

The diagram in Figure 10 depicts the U-Net architecture used in the present work. The network re-
ceives six fields as input: the geometry field Ω and a sequence of five consecutive height fields
{hs, hs+1, hs+2, hs+3, hs+4}. The output is a prediction of the subsequent height field ĥs+5.
Whereas some recent studies (Fotiadis et al., 2020; Thuerey et al., 2018) have used bi-linear in-
terpolation to perform the up-sampling, we opted to use transpose convolutions with a 2x2 kernel
and stride 2. This increases the number of trainable parameters to 1,864,577, but we also noticed a
significant improvement in the quality of the predictions.

Figure 10: Our U-net architecture with 1,864,577 trainable parameters. It receives six fields as input:
the geometry field and a sequence of five consecutive height fields. The output is a prediction of the
height field in the subsequent time step.

C NORMALISATION AND DATA AUGMENTATION

To improve generalisation across a range of wave dynamics, the height fields were re-scaled accord-
ing to h̃ ← (h− h̄)/(max(h)− h̄), where h̄ = 1 and max(h) = 1.1. This re-scaling was reversed
for visualising the network predictions. In order to avoid over-fitting and improve the generalisation
capabilities of the network, we apply two sets of transformations to the training datasets. For the
dataset A such transformations consist on random rotations of 90, 180 and 270 deg as well as hori-
zontal and vertical flips. For the dataset B random rotations by multiples of 15 deg are applied and
the physical size of the frames is reduced to 1 m × 1 m by cropping the original frames to domains
whose center position follows an uniform distribution from 0.9 to 1.1 m in both spatial directions.
Finally, the images of all these sequences were linearly interpolated to a 128 × 128 resolution to
satisfy the 128 pix/m requirement. Regarding the testing datasets, sets E, F and G were augmented
in the same manner as the dataset A, since they contain only closed boundaries; and datasets C and
D are augmented like B, as they include open boundaries.
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