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Abstract
With the surge in popularity of Text-to-Image001
(TTI) models it has become crucial that we002
are able to quantify the reliability of such003
models. This "reliability" is closely related004
to how strictly these models are able to ad-005
here to a given prompt and not generate incor-006
rect/unnecessary details, also called "halluci-007
nations". Although alot of work has gone into008
classifying coarse-grained hallucinations, ef-009
forts still have to be made in detecting and mit-010
igating fine-grained or attribute-level hallucina-011
tions such as colour, number and position have012
not been looked at. To this end, in this paper,013
our contribution is multi-fold: (i) we first for-014
malize our proposed definition of fine-grained015
hallucinations and describe its various types;016
(ii) subsequently, we propose a modularized017
fine-grained hallucination detection framework018
to detect hallucinations (including fine-grained)019
in TTIMs and; (iii) propose a novel metric for020
quantifying these hallucinations. Our pipelined021
framework for automatically detecting these022
attribute-level hallucinations consists of four023
sub-modules: (i) a detection and segmentation024
module, (ii) a dense captioning module, for gen-025
erating captions for targeted regions of the im-026
age, (iii) a meta-model, which comprises of an027
LLM, to cohesively reconstitute the dense cap-028
tions and (iv) finally, a tree-matching module,029
which computes targeted attribute level metrics030
using the syntax trees of both the input prompt031
and the generated meta-caption. Through ex-032
tensive experiments with open-source TTIMs,033
using well-known datasets, we establish the ef-034
ficacy and adaptability of our proposed method-035
ology.036

1 Introduction037

The phenomenon of hallucination has been well-038

documented in recent literature, particularly within039

vision-language models (Rawte et al., 2024). From040

image captioning tasks (He et al., 2020), where041

models may fabricate details not present in the vi-042

sual input, to generative models (Goodfellow et al.,043

2020; Rombach et al., 2022) like diffusion mod- 044

els, hallucinations manifest in varied ways. In 045

this work, we take a deeper look at hallucinations 046

elicited by text-to-image models. With such a surge 047

in their popularity it becomes increasingly crucial 048

to be able to quantify how effectively these mod- 049

els align with user intents and faithfully translate 050

textual prompts into visual outputs. This necessi- 051

tates the development of robust evaluation metrics 052

to assess the fidelity, relevance, and consistency 053

of the generated images, particularly in identify- 054

ing and mitigating issues like hallucinations and 055

misalignment with the input prompts. 056

Numerous efforts have been made to detect hal- 057

lucinations in text-to-image models, but the ma- 058

jority of these focus on object-level hallucinations 059

(Rohrbach et al., 2018), (Li et al., 2023) where 060

the model hallucinates objects that are absent or 061

incorrectly identifies objects. However, less atten- 062

tion has been given to attribute-level hallucinations 063

also known as fine-grained hallucinations, which 064

involve a more subtle misalignment (Li et al., 2023). 065

Text-to-image models usually elicit a lot of halluci- 066

nated artefacts due to the task of image generation 067

requiring a "creative license", to fill in details not 068

mentioned in the prompt (input). But, this also 069

opens up an avenue for unnecessary, misleading or 070

completely wrong generations. These fine-grained 071

hallucinations may include errors in colour, size, 072

or other properties of an object, which can be just 073

as detrimental, particularly in tasks that demand 074

fine-grained precision. 075

To this end, in this work, we explore different 076

fine-grained hallucinations within text-to-image 077

models, identifying the different types that com- 078

monly occur and their impact. Subsequently, we 079

propose a modularized framework to detect fine- 080

grained hallucinations. Furthermore, we introduce 081

a novel metric to quantify these hallucinations, 082

aiming to provide a more nuanced evaluation of 083

model performance in generating aligned and co- 084
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Figure 1: Example of fine-grained hallucinations from TTIMs and its different types: (a) Color & Number; (b)
Number; (c) Position; and (d) Text

herent outputs. Through extensive experiments085

using open-source text-to-image models spanning086

well-known datasets and ablation performance we087

demonstrate the efficacy of our proposed approach.088

The contributions of this paper is multi-fold:089

(i) we first formalize our proposed definition of090

fine-grained hallucinations and describe its various091

types; (ii) subsequently, we propose a modular-092

ized methodology to detect hallucinations (includ-093

ing fine-grained) in TTIMs; (iii) propose a novel094

metric for quantifying these hallucinations; (iv)095

Through extensive experiments using open-source096

TTI-models, we establish the efficacy and adapt-097

ability of our proposed methodology.098

2 Related Works099

Hallucinations in Large Vision-Language Models100

(LVLMs) (Liu et al., 2024) have garnered signifi-101

cant attention due to their impact on the reliability102

and utility of generated content in real-world ap-103

plications. Vision-language hallucinations refer to104

cases where the generated visual output includes105

elements or attributes that were not specified in the106

input prompt. This phenomenon is problematic107

for tasks like image generation (Goodfellow et al.,108

2020; Rombach et al., 2022), captioning (He et al.,109

2020), and multimodal understanding (Yue et al.,110

2024), where maintaining semantic alignment be-111

tween text and image is crucial.112

Previous research has explored hallucinations in113

various forms, however most of them focus on im-114

age captioning task. Several studies have identified115

common categories of hallucinations (Rawte et al.,116

2024), such as incorrect object generation, identity117

incongruity, and the inclusion of extraneous details118

not aligned with the input prompt. Models such as119

DALL-E (Ramesh et al., 2021), Imagen (Saharia120

et al., 2022), and Stable Diffusion (Rombach et al.,121

2022) have shown to occasionally produce fine- 122

grained hallucinations, where specific attributes 123

like color, size, or orientation deviate from the orig- 124

inal prompt description. For instance, Saharia et al. 125

highlighted the challenges of controlling object at- 126

tributes in diffusion-based models, pointing to the 127

limitations in current image-text alignment mecha- 128

nisms. 129

Recent approaches to mitigating these visual- 130

hallucinations have focused on object instance level 131

metrics, although they prove to be a good signal 132

to quantify how well the model follows the given 133

prompt, larger concerns arise when the halluci- 134

nation is on the attribute level instead of object 135

level. Object level metrics focus on quantifying 136

how many objects the TTIM has incorrectly gen- 137

erated (Rohrbach et al., 2018) or by repeatedly 138

querying a large multi-modal model about the im- 139

age (Li et al., 2023; Chen et al.). More recent works 140

like (Chen et al., 2024) focus on using powerful 141

closed-source model APIs as multi-modal question 142

answering tools. Using these, they query a very 143

large model about the contents of the generated 144

image at the attribute level. Although effective, 145

the use of such closed-source models make these 146

pipelines prohibitive to researchers and users with 147

resource constraints. 148

Despite these advances, existing techniques of- 149

ten fail to capture and quantify hallucinations at 150

a fine-grained level and the methods which try to 151

are very expensive to use. Most prior methods 152

have centered around overall alignment metrics, 153

which do not provide detailed insights into indi- 154

vidual attribute-level hallucinations, such as color, 155

shape, or position mismatches. Our proposed fine- 156

grained hallucination detection framework/metric 157

builds on these foundations by offering a more 158

granular perspective, targeting specific attributes to 159
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identify and quantify hallucinations in TTIMs.160

3 Definition: Fine-Grained Visual161

Hallucinations162

Text-to-image models, such as DALL-E (Ramesh163

et al., 2021) and Stable Diffusion (Rombach et al.,164

2022), have gained significant attention for their165

ability to generate high-quality images from tex-166

tual descriptions. Despite their impressive capabili-167

ties, these models often exhibit a critical limitation:168

"hallucination" refers to instances where the output169

image contains elements that do not align with the170

input text/prompt or are misrepresented.171

Fine-grained hallucinations or attribute-level172

hallucinations are subtle and intricate discrepan-173

cies between the generated image and the textual174

prompt. These inaccuracies can manifest in various175

forms, including erroneous object attributes, mis-176

interpreted spatial relationships, incorrect textures,177

and compositional inconsistencies. For example, a178

model may misrepresent the color of an object, in-179

troduce unnecessary elements, or misplace objects180

relative to one another. These hallucinations are181

particularly problematic in cases where precision182

is crucial, such as medical imaging, architectural183

design, and scientific visualization. Understanding184

and addressing fine-grained hallucination is critical185

for improving the fidelity of text-to-image models.186

To this end, we categorise the various types of fine-187

grained hallucinations commonly seen in such mod-188

els (taken into consideration in this paper). This189

is by no means an exhaustive list, these kinds of190

hallucinations are highly context-dependent, mak-191

ing it difficult to categorize them into fixed types.192

However, a few common types are as follows:193

• Color: This type of hallucination occur when194

the model misinterprets the hue or colour of an195

object. For example, a model might generate "a196

red apple" when the input text specifies "a green197

apple". This type of hallucination can also manifest198

in gradients, with objects appearing in unexpected199

or unrealistic shades that deviate from the prompt’s200

intended palette. Figure 1a shows an example of201

this type.202

• Number: This type of hallucination involves203

the model generating an incorrect number of ob-204

jects based on the prompt. For example, when205

a prompt specifies "two dogs", the model might206

produce "one", "three", or "an indeterminate num-207

ber". This discrepancy is particularly noticeable in208

prompts requiring exact counts, such as “a row of209

five trees,” where these models struggle to meet the 210

specified quantity. Figure 1a & b show examples 211

of this type. 212

• Position: Position-based hallucinations refer 213

to inaccuracies in the spatial placement of objects 214

within the image. This can include incorrect posi- 215

tioning relative to other objects, such as "placing a 216

chair on top of a table" instead of "beside it". Mis- 217

understanding spatial relationships between objects 218

such as- "above", "below", or "next to"—can break 219

the coherence of the generated image, especially in 220

complex scenes. Figure 1c shows an example of 221

this type. 222

• Text: Hallucinations involving text are com- 223

mon when models are tasked with generating writ- 224

ten language within images, such as labels, signs, 225

or captions. Models often produce gibberish, mis- 226

spellings, or irrelevant words that bear little re- 227

semblance to the input prompt. Even when the 228

model attempts to capture the meaning, the specific 229

text can be flawed due to poor understanding of 230

the symbolic representations or limitations in ren- 231

dering readable typography. Figure 1d shows an 232

example of this type. 233

4 Methodology 234

We propose a modularised pipeline to detect and 235

quantify fine-grained visual hallucinations in an im- 236

age generated from a TTIM given a text input. As 237

fine-grained hallucinations are quite varied in their 238

occurrence and depend heavily on the user, it is not 239

possible to formulate a unified method of quanti- 240

fying all of them. However, our proposed pipeline 241

can easily be expanded to fit niche use-cases as 242

well. We also provide guidelines to formulating 243

an algorithm to detect a specified type of halluci- 244

nation. Subsequently, we also introduce a novel 245

metric to measure fine-grained hallucination. Our 246

method exclusively uses open-sourced models for 247

each module, making it accessible to anybody. This 248

also means that for each module users can decide 249

on how big of a model to use as per their resource 250

constraints. 251

4.1 Fine-Grained Hallucination Detection 252

Framework 253

The proposed pipelined framework is based on the 254

textual mapping of the original text input to the 255

generated description of the hallucinated image 256

(which is generated using TTIMs). Our pipeline 257

consists of four submodules: (1) Detection & Seg- 258
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Figure 2: The architectural representation of the proposed fine-grained hallucination detection framework

mentation Module; (2) Dense Captioning Module;259

(3) Meta-Captioning Module; and (4) Tree Match-260

ing Module. Our hypothesis behind this pipelined261

methodology is that the dense caption being richer262

in information produce more detailed captions and263

also lead to a reduction in hallucination in by the264

captioning models as well. To facilitate creation265

of these dense captions we use a detection mod-266

ule, to create segments of the image which contain267

reference to objects mentioned in the input prompt.268

The details of each sub-module is discussed be-269

low.270

• Detection & Segmentation Module. This271

module consists of two models, namely, the detec-272

tor and the segmenter. These models work in suc-273

cession to produce segments of the image. These274

targeted segments reduce the amount of distractor-275

information for the subsequent modules. Given a276

generated image, I of size (nxn), and an accom-277

panying prompt S, we define the segments created278

as: (i) Noun phrases, P1, P2, . . . , Pk are extracted279

from prompt, S using a NER model. Each noun280

phrase Pi is input into a detection model, D to ob-281

tain a corresponding bounding box, Bi = D(Pi).282

Finally, each bounding box, Bi is passed into the283

segmentation model, M to obtain the correspond-284

ing segments, Si = M(Bi). For extracting noun285

phrases from prompts, we used a small instruction286

model, Phi-3-mini (Abdin et al., 2024), to ensure no287

target observation was missed. These noun-phrases288

were then fed into the detection model (prompted289

ones) to create bounding-boxes for their localisa-290

tion. For creating segments of the detected objects,291

we use the Segment Anything Model from Meta292

(Kirillov et al., 2023). This is because this model293

takes bounding box coordinates as inputs to create294

the segments.295

• Dense Captioning Module. For each 296

segment, Si ∈ S, captions are generated, 297

DenseCaptioni = DCM(P1, Si), using an 298

image-to-text captioning model, where P1 refers 299

to the prompt given to the model. These captions 300

are rich in information about the target object as a 301

lot of unnecessary details have been removed by 302

the first module. The model used in this section 303

is prompted to generate detailed captions with re- 304

gards to all the fine-grained features considered in 305

this paper. Although, these captioning models do 306

tend to hallucinate irrelevant details, we observed 307

that giving them targeted segments of an image mit- 308

igates this issue. This is, in essence, due to them 309

being less informative to hallucinate on account of 310

only one object being present. 311

• Meta-Captioning Module. Once the dense 312

captions have been generated for each object in 313

the image, the task at hand is to stitch these to- 314

gether into a coherent caption accurately and in- 315

tricately describing the image. Along with this, 316

a signal is passed for the position of the object 317

in the image. This is done by prompting the 318

LLM with the generated caption and the median of 319

each object. For each input sequence of the form 320

Fi = ((xi, yi), Di) ∈ F , where Di ∈ D and its 321

corresponding median (xi, yi), MetaCaptioni = 322

MCM(P2, F ). This facilitates the underlying 323

LLM to spatially reason about the entire image 324

and thus, produce a caption that captures both vi- 325

sual and spatial details of the objects. The medians 326

are calculate for each segment S in the following 327

way: 328

Medianx =
1

|S|
∑

(x,y)∈S

x
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Mediany =
1

|S|
∑

(x,y)∈S

y

where
∣∣S∣∣ is the number of pixels in each seg-329

ment S330

• Tree Matching Module. The resultant meta-331

caption now contains a fine-grained description of332

the original image which is parsed into its syn-333

tax tree via any natural language processing li-334

brary (spaCy (Altinok, 2021) is used in our case).335

Once both the meta-caption and original prompt336

have been converted into their tree structure, we337

can quantify the similarity and/or hallucination be-338

tween both.339

4.2 Fine-Grained Hallucination Score (FiG)340

We propose a Fine-Grained Hallucination score,341

named FiG to quantify and measure attribute-level342

hallucinations in TTIMs. Our metric is computed343

on three levels of granularity, we call them Stage-344

1, Stage-2 and Stage-3 metrics which are detailed345

below:346

• Stage-1 Metric: This deals with the coarse347

hallucinations typically objects that is found in the348

TTIM generated outputs. It signals how many ob-349

jects mentioned in the prompt were correctly gen-350

erated by the model, and is computed as the object351

level recall. More formally,352

S1(orig,meta) = |objects(orig)∩objects(meta)|
|objects(orig)|353

where objects(·) is the set of distinct objects354

mentioned in the sentence. This metric indicates355

how well the image-generator model has done in356

representing each individual object that was men-357

tioned in the prompt.358

• Stage-2 Metric: The Stage-2 metric is de-359

signed to capture fine-grained inconsistencies be-360

tween two descriptions (original and generated) by361

providing a set of scores for each attribute under362

analysis. This approach allows for targeted evalu-363

ation of specific attributes, such as color, position364

etc. in the generated image. For instance, if we aim365

to detect hallucinations related to color and posi-366

tion, we can compute two separate Stage-2 metric367

scores—one for each attribute. Algorithm 1 & 2368

outline the general procedure for calculating the369

Stage-2 metric for any given attribute. In this paper,370

we focus on four common types of fine-grained hal-371

lucinations observed in generative models: color,372

position, text, and number. However, the proposed373

metric is flexible and can be extended to capture374

hallucinations related to other attributes, depending375

on the use case.376

Figure 3: Demonstrating the usability of Stage-3 FiG
Metric

• Stage-3 Metric: This metric plays a critical 377

role in flagging potential hallucinations by 378

listing extra, unprompted objects found in the 379

meta-caption (i.e., the generated caption that 380

describes the TTIMs output). Unlike numerical 381

metrics that directly quantify performance, this 382

metric serves as a qualitative signal, aimed at 383

ensuring that generative models do not introduce a 384

disproportionate number of extraneous elements 385

into their outputs. The Stage-3 metric is com- 386

puted by extracting all noun phrases from the 387

meta-caption using NER techniques. These noun 388

phrases, representing objects, are then compared 389

against those mentioned in the original prompt. 390

Any object or entity appearing in the meta-caption 391

but absent from the original prompt is flagged. 392

Although the number of such objects is not directly 393

tied to a performance score, their presence can be 394

indicative of a model’s tendency to hallucinate 395

irrelevant details. This is evident in Figure 3, where 396

the Stage-3 metric correctly extracted "people" 397

as a possible hallucination. More formally, it 398

can be calculated as the set difference between 399

objects in the meta-caption and the original prompt. 400

401

S3(orig,meta) = objects(meta)− objects(orig) 402

5 Experimentation Details 403

In this section, we deliberate on the experimenta- 404

tion that were carried out with regards to the pro- 405

posed framework and the metric, i.e., FiG Score, 406

the datasets used and the different models taken 407

into consideration. To the best of our knowledge, 408

no other metric directly tackles fine-grained hal- 409

lucinations effectively, thus making comparisons 410
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Table 1: Performance of popular open-source text-to-image models on the proposed framework. (↑)-Higher score is
better, (↓)-Lower Score is better

Model(s)
DrawBench MSCOCO

Stage-1 (↑) Stage-2 (↑) CHAIRi Stage-1 (↑) Stage-2 (↑) CHAIRi
Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓) Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓)

SDXL 1.0 39.39 47.43 31.12 10.12 28.57 50.10 35.90 41.30 29.20 15.12 N/A 48.10
SD-2 42.79 34.61 32.03 5.23 9.52 50.10 25.70 24.12 19.96 10.30 N/A 50.10

Flux-Dev 46.92 62.82 40.51 20.83 23.80 24.70 34.05 28.80 26.80 12.30 N/A 43.90

Table 2: Impact in performance by the variation of Detection Models. (↑)-Higher score is better, (↓)-Lower Score is
better

Model(s)
DrawBench MSCOCO

Stage-1 (↑) Stage-2 (↑) CHAIRi Stage-1 (↑) Stage-2 (↑) CHAIRi
Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓) Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓)

Grounding-DINO 39.39 47.43 31.12 10.12 28.57 50.1 42.12 48.47 37.82 15.23 N/A 44.1
YOLOv8 32.49 46.43 26.10 10.12 14.28 55.12 40.89 47.33 38.23 15.23 N/A 43.2

difficult. However, we report the CHAIRi metric411

to evaluate the quality of meta-captions generated412

during the pipeline.413

5.1 Datasets414

To evaluate the performance of our proposed fine-415

grained hallucination framework & metric, we use416

two well-known datasets: the DrawBench dataset417

(Saharia et al., 2022) and the MSCOCO Captions418

dataset (Chen et al., 2015).419

The DrawBench dataset (Saharia et al., 2022)420

consists of 200 prompts that are specifically curated421

to provoke fine-grained hallucinations in TTIMs.422

Each prompt is carefully designed to challenge423

models in capturing subtle details such as color,424

shape, and spatial relationships, making it an ideal425

benchmark for assessing fine-grained inconsisten-426

cies. This dataset provides a controlled environ-427

ment where the hallucination of certain attributes428

can be systematically measured.429

In addition to DrawBench, we leverage the430

MSCOCO Captions dataset (Chen et al., 2015). Al-431

though this dataset is traditionally used for image432

captioning, it can be effectively repurposed for im-433

age generation by treating the captions as prompts.434

The dataset contains over 500,000 captions, offer-435

ing a vast variety of scenarios that could lead to436

attribute-based hallucinations. For the purposes of437

our experiments, we randomly select a subset of438

50,000 captions, ensuring that the dataset remains439

diverse while being computationally manageable.440

Together, these datasets form a robust testing441

ground for detecting fine-grained hallucinations442

across different generative models. The controlled443

nature of the DrawBench prompts, combined with444

the scale and diversity of MSCOCO captions, en- 445

sures that our metric is evaluated on a wide range 446

of potential hallucination cases. 447

5.2 Evaluation 448

Along with the FiG metric introduced in this pa- 449

per, we also report results on the CHAIRi metric 450

(Rohrbach et al., 2018) on all the experiments per- 451

formed. The CHAIRi score is an hallucination 452

detection metric for image captioning tasks. Given 453

the ground truth objects in the image, CHAIR cal- 454

culates the proportion of objects that appear in the 455

caption but not the image. Existing work com- 456

monly adopts its two variants, i.e., CHAIRI and 457

CHAIRS , which evaluate the hallucination de- 458

gree at the object instance level and sentence level 459

respectively. They are be formulated as: 460

CHAIRi = |{hallucinated objects}|
|{all mentioned objects}| 461

CHAIRs = |{captions with hallucinated objects}|
|{all captions}| 462

As the CHAIR metric is used for detecting hallu- 463

cinations in image captioning tasks, it can be used 464

to judge the quality of the generated meta-captions. 465

However, as this metric only works on object level, 466

it cannot be directly compared to the FiG metric 467

proposed in this paper. 468

6 Results and Analysis 469

In this section, we analyze the performance of 470

our proposed fine-grained hallucination detection 471

framework using the FiG and CHAIR metrics, on 472

several open-source TTIMs focusing on the impact 473

of model selection within the different modules of 474

our proposed pipeline. We assess the effectiveness 475
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Table 3: Impact in performance by the variation of Dense Captioning Models. (↑)-Higher score is better, (↓)-Lower
Score is better

Model(s)
DrawBench MSCOCO

Stage-1 (↑) Stage-2 (↑) CHAIRi Stage-1 (↑) Stage-2 (↑) CHAIRi
Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓) Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓)

InstructBLIP-Vicuna 7b 46.92 62.82 40.51 10.23 23.80 24.7 44.22 59.64 37.82 12.23 N/A 43.90
mPLUG-OWL 44.41 28.73 29.43 2.81 47.61 50.1 40.21 24.33 28.32 12.53 N/A 40.32

BLIP2 46.65 32.18 45.07 19.74 42.85 24.7 47.68 30.24 42.07 19.01 N/A 50.21

Table 4: Impact in performance by the variation of Meta-Captioning Models. (↑)-Higher score is better, (↓)-Lower
Score is better

Model(s)
DrawBench MSCOCO

Stage-1 (↑) Stage-2 (↑) CHAIRi Stage-1 (↑) Stage-2 (↑) CHAIRi
Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓) Object

FiG
Colour

FiG
Number

FiG
Positional

FiG
Text
FiG (↓)

Qwen-7b 46.92 62.82 40.51 20.83 23.80 24.70 34.05 28.80 26.80 12.30 N/A 43.90
Mistral-v2 7b 44.83 59.77 32.71 19.48 52.38 22.12 32.82 27.23 25.13 11.24 N/A 40.21
Llama-3.1 8b 41.07 45.97 32.30 19.23 52.38 23.90 31.23 29.21 22.12 16.23 N/A 44.54

NeMo-Minitron 8b 49.23 57.47 27.29 12.12 52.38 24.45 31.75 35.71 28.01 9.82 N/A 50.10

of these models in capturing specific types of hallu-476

cinations in TTIMs and highlight areas where per-477

formance is suboptimal. Additionally, we provide478

a detailed analysis of the FiG metric’s robustness479

across various generative models, identifying key480

shortcomings and offering insights into potential481

improvements for future iterations. By examining482

the interplay between model choice and hallucina-483

tion detection, we discovered the best performing484

pipeline to consist of: (1) Grounding-DINO as the485

detection model, SAM as the segmentation model;486

(2) Instruct-BLIP as the dense captioning model;487

and (3) Qwen-7b as the meta-captioning model.488

Comparison of Different Text-To-Image Models.489

We performed experiments on three TTIMs: SDXL490

(Podell et al., 2023), Stable Diffusion 2.0 (SD-2)491

(Rombach et al., 2021), and FLUX1, each of which492

varies in architecture, training data, and fine-tuning493

strategies.494

As evident by Table 1, FLUX outperformed495

the other two models by consistently generating496

images with minimal fine-grained hallucinations.497

FLUX exhibited strong alignment with the orig-498

inal prompts, particularly in attributes like color,499

number, and position. Its robust performance sug-500

gests that its underlying architecture and training501

setup allow it to handle intricate prompt details502

better, leading to fewer erroneous visual objects in503

the generated images. In contrast, SD-2 struggled504

the most in our evaluation. The high hallucina-505

tion rate in SD-2 may be attributed to its training506

data, indicating that while it performs well in gen-507

1https://huggingface.co/black-forest-labs/
FLUX.1-dev

erating aesthetically pleasing images, it may not 508

be as well-equipped to manage the nuanced, fine- 509

grained relationships required for precise text-to- 510

image alignment. 511

Impact of Detection Models. We experimented 512

with two detection models: Grounding-DINO and 513

YOLOv8. Grounding-DINO consistently outper- 514

formed YOLOv8 in our experiments (see Table 2). 515

This performance boost can be attributed to the 516

design of Grounding-DINO, which allows prompt- 517

ing the model to specifically target and detect each 518

object of interest. This capability of focusing on 519

specific objects aligns well with the goals of fine- 520

grained hallucination detection, where the goal is 521

not only to detect objects but to ensure precise 522

alignment with the original prompt. In contrast, 523

YOLOv8 operates as a general object detector, at- 524

tempting to detect all objects in an image regardless 525

of the task at hand. While YOLOv8 is robust in gen- 526

eral object detection tasks, it lacks the fine-tuned 527

capability to prioritize specific objects of interest. 528

As a result, it occasionally misses objects that are 529

present but were not part of its original training. 530

This generalization gap causes YOLOv8 to strug- 531

gle with certain nuanced cases of object hallucina- 532

tions, which require a more targeted approach for 533

accurate detection. Thus, for applications involving 534

the fine-grained detection of hallucinations, partic- 535

ularly where precise alignment between the prompt 536

and generated image is crucial, Grounding-DINO 537

proves to be the superior model. 538

Impact of Dense Captioning Models. The dense 539

captioning model is responsible for capturing the 540
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Figure 4: Use Case: (a) Highlighting the strength of the
proposed framework/metric; (b) Depicting the weakness
of the proposed method

detailed attributes of each segmented object, and541

these details are crucial for generating accurate542

meta-captions, which our metric uses to assess hal-543

lucinations. In our experiments, we evaluated three544

dense captioning models: InstructBLIP, mPLUG-545

OWL, and BLIP2. Amongst these, InstructBLIP546

and BLIP2 demonstrated the best overall perfor-547

mances, although each model excelled in differ-548

ent metrics, as shown in Table 3. InstructBLIP549

achieved higher scores in Object FiG and Colour550

FiG scores, indicating that it is more effective at551

accurately identifying and describing objects and552

their colors within generated images. This can be553

attributed to InstructBLIP’s stronger focus on ob-554

ject recognition and attribute-level captioning. On555

the other hand, BLIP2 outperformed InstructBLIP556

in terms of Number and Text FiG scores. These557

attributes are critical for detecting hallucinations558

in scenarios where precise spatial and numerical559

alignment with the prompt is essential.560

Impact of Meta-Captioning Models. The meta-561

captioning model plays a crucial role in our hallu-562

cination detection pipeline, as it synthesizes indi-563

vidual object captions into a coherent meta-caption,564

capturing the overall scene and relationships be-565

tween objects. This model is particularly important566

for calculating the Positional FiG score, which re-567

lies on accurately deducing the relative positions568

of objects based on their median coordinates from569

the segmented output. We evaluated four models570

for this task: Mistral 7b, Llama 3.1 8b, NeMo 8b,571

and Qwen 7b. Amongst these, Qwen 7b consis-572

tently outperformed the others in terms of accu-573

rately generating cohesive meta-captions and de-574

ducing the relative positions of objects. This can575

be seen clearly in Table 4.576

Error Analysis. The pipeline, though effective 577

still is not perfect. To provide a clearer under- 578

standing of the strengths and limitations of our 579

fine-grained hallucination detection pipeline, we 580

present two example cases: one where the pipeline 581

successfully detected all hallucinations and another 582

where it failed to capture certain fine-grained de- 583

tails. As seen in Figure 4(a), our proposed FiG 584

metric is successfully able to capture an incorrect 585

generation by the model. The prompt specifies the 586

relative positions of both the pizza and suitcase, 587

however, the underlying TTIM ignored that. Due 588

to this, the FiG Score for the Positional attribute 589

computes to 0% correctly signaling an erroneous 590

generation. However, our pipeline is not full-proof 591

as seen in Figure 4(b), the input prompt was a 592

description of a clock, but as it did not explicitly 593

mention the word "clock", our metric was not able 594

to capture the correct generation and gave it a poor 595

FiG score. This outlines a drawback of our pipeline, 596

namely, that it cannot match words/phrases which 597

are semantically similar to each other but not ex- 598

actly the same. Refer to the appendix A to see more 599

examples and analysis of our pipeline. 600

7 Conclusion 601

In this paper, we introduce a novel fine-grained 602

hallucination detection framework and metric for 603

text-to-image models, addressing a critical gap in 604

the evaluation of visual hallucinations in generative 605

models. Our approach offers a detailed, attribute- 606

level analysis of hallucinations, moving beyond 607

traditional, coarse-grained metrics. By breaking 608

down hallucinations into categories such as object 609

presence, color, position, number, and text, our met- 610

ric provides a more comprehensive understanding 611

of the types of hallucinations that occur in gener- 612

ated images. Through extensive experimentation, 613

we demonstrated the versatility of our approach by 614

testing it across various generative models, dense 615

captioning models, detection models, and meta- 616

captioning systems. Our findings shows that model 617

choice in each of the modules of the pipeline signif- 618

icantly impacts the overall performance. We also 619

conducted an error analysis to highlight both the 620

strengths and limitations of our pipeline, reveal- 621

ing that while it is effective in detecting a wide 622

range of fine-grained hallucinations, there are still 623

challenges in areas like shape detection and seg- 624

mentation. 625
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8 Limitations626

While the FiG Metric proves to be effective at quan-627

tifying the fine-grained hallucinations in TTIMs, it628

does not completely eliminate the issue. The use629

of multiple modules makes it prone to the biases630

of each of the models used. While the pipeline is631

effective, finding each model to fit your use-case632

can be an arduous task. Our pipeline also faces633

difficulty when multiple objects overlap each other634

thereby causing their gaps or fractures in their seg-635

mentations. This prevents the dense captioning636

model from understanding what the original object637

was and therefore causing a drop in the Object FiG638

score. Another limitation we observed occurring639

in during our experimentation was that the caption-640

ing models refuse to generate names of institutions,641

famous characters or personalities. This could be642

because these models have been trained not to gen-643

erate certain words due to licensing issues. Due to644

this, our pipeline gives erroneous results when the645

input prompt contains these types of nouns.646
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A Appendix 742

A.1 Algorithms 743

Here, we expand on the way we compute the FiG Metric as described in the paper. The first algorithm 1 is 744

how we extract (noun, attribute) pairs from a given statement. The second algorithm 2 describes how 745

these extracted pairs are used to compute the FiG metric for each attribute. 746

Algorithm 1 Attribute Pair Extraction
1: Input: Attribute A, Sentence S
2: Output: List of attribute pairs attr_pairs
3: attr_pairs← []
4: for each noun n in nouns(S) do
5: if A exists as a child in the subtree of n then
6: Append (n,A) to attr_pairs
7: end if
8: end for
9: return attr_pairs

Algorithm 2 Fine-Grained Attribute Consistency

1: Input: List of target attributes attributes, Meta-caption meta, Original caption orig
2: Output: Consistency scores for each attribute
3: scores← {}
4: for each attribute A in attributes do
5: meta_attr← Algorithm1(A, meta)
6: orig_attr← Algorithm1(A, orig)

7: scores[A]← |orig_attr∩meta_attr|
|orig_attr|

8: end for
9: return scores

A.2 Additional Examples 747

In this subsection, we include a few additional examples of the successes and failures of our proposed 748

pipeline to provide a better view of how the framework functions. 749

In Figure 5, we see that the FiG metric is correctly able to identify when the generated image follows 750

the input prompt correctly. More specifically, we see in 5(c), that the Object FiG and Positional FiG are 751

correctly able to indicate a mistake in the generation. 752

Figure 6 shows the limitations of our pipeline, in 6(a) we see that even though the Text FiG is 0%, 753

the meta-caption consists of the word "Google", even though it is not written in the picture anywhere. 754

This may lead to a mis-identification of correct words by the Stage-3 metric. This might be happening 755

because the captioning model is trying to fill in the gaps and assume what was supposed to be written in 756

the text by identifying the letters individually. In the second example 6(b), we see even though the model 757

has correctly generated an image of ’Darth Vader’, the captioning model is not able to identify him. We 758

have seen through our experiments that captioning models rarely ever generate proper nouns or names of 759

certain institutions and franchises. 760
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Figure 5: Image showing examples where the FiG metric was able to correctly quantify the inconsistencies between
the image and input prompt

Figure 6: Image showing examples where the FiG metric was not able to correctly quantify the inconsistencies
between the image and input prompt
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