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Abstract—Peripheral Artery Disease (PAD) is a common
atherosclerotic condition that is underdiagnosed due to the lack of
accessible screening options. Photoplethysmography (PPG) serves
as a potentially valuable tool in accessible screening for PAD
due to its ubiquitous nature and ability to be measured on a
smartphone. However, the relationship between PPG and PAD
is underexplored. In this paper, we seek to identify features of a
PPG signal that correlate with PAD. In an analysis of 5,237 legs
from N=2,362 unique patients, we find significant correlations
with multiple different features and the ankle-brachial index
(ABI), which is used to diagnose PAD. Additionally, these features
agree with physiological explanations of PAD and how the disease
affects blood flow. These results set up the ability of future
work to develop an accessible screening tool for PAD that uses
physiologically relevant features of PPG morphology.

Index Terms—cardiovascular health, atherosclerosis, PPG, fea-
turization

I. INTRODUCTION

Peripheral Artery Disease (PAD), a circulatory condition in
which narrowed arteries reduce blood flow to the extremities,
affects nearly 8 million Americans and 200 million adults
worldwide; PAD increases the risk of limb loss along with
major adverse cardiovascular events that significantly reduce
life quality and expectancy [1]-[3]. The gold standard diagno-
sis of PAD involves a noninvasive ankle-brachial index (ABI)
performed in specialized facilities. The ABI is calculated for
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each leg as the ratio of the blood pressure in the arteries
between the ankle and the arm.

PAD is an underdiagnosed condition, with most patients
diagnosed at a more advanced stage of disease. This is
especially apparent among high-risk populations where health
disparities exist, leading to substantial medical and financial
burdens for patients and the US healthcare system [3]-[5].
Consequently, PAD disproportionally affects underserved pop-
ulations, including minorities, where there is a rising incidence
rate of lower extremity amputations [3], [6]. Given the lack
of widespread innovations to improve the detection of PAD
(to avoid traveling to specialized clinics for ABI screenings),
particularly in underserved communities, there exists an unmet
clinical need to develop accessible PAD screening alternatives.

Photoplethysmography (PPG) is a non-invasive, simple,
cost-effective, optical technique that detects blood flow
changes through a vascular bed available on smartphones and
non-invasive wearable devices [7]. By shining light into tissue,
such as the fingertip or toe tip, and quantifying the backscat-
tered light that corresponds with changes in blood volume,
smartphone-based PPG algorithms are well positioned to cap-
ture the multifactorial endovascular sequelae of cardiovascular
disease, including metabolic changes, endothelial dysfunction,
and vascular tone [8]. As such, PPG technologies have been
utilized to detect chronic cardiovascular conditions including
hypertension and atrial fibrillation [9], [10]. Since smartphone-
based PPG measurements are generally understood to be a
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reliable methodology with excellent PPG capturing capabilities
[11], this provides a promising avenue for making PAD
screening more ubiquitous and accessible.

Previous work by Allen et al. has explored the potential for
deep learning to detect PAD from PPG signals. However, this
work was limited to 214 people and used minutes-long PPG
signals [12]. Additionally, the deep learning approach used is
not transparent in what aspects of the PPG signal correlate
with the presence of PAD. As such, the direct relationship
between PPG signals and PAD is still underexplored.

In this work, we explore the relationship between PPG
signals and PAD across a large, diverse cohort to unpack
what features of PPG signals correlate with a PAD clinical
diagnosis. By uncovering the specific PPG pulse morphologies
that correlate with disease state (determined by the ABI
clinical gold standard), we provide necessary physiological
explanations. This brings much-needed transparency to the
understanding of the relationship between PPG and PAD,
and sets up the physiological basis for future PAD screening
algorithms.

II. METHODS

This retrospective data analysis study used data collected
from patients who presented for a clinically indicated ABI
assessment at the University of California San Diego La Jolla
or Hillcrest locations between 2020 and 2025. As part of a
routine ABI assessment, PPG signals are collected at each
toe, and blood pressure (BP) readings are taken at various
sites of the body. For each leg for each patient, an ABI
value is calculated using the collected BP readings during
the assessment. Note that two different company’s equipment
is used at each location, and as such the PPG capturing
mechanisms are different. Therefore, the presented data spans
across two datasets of patients. All PPG samples used in
analysis are four seconds long.

The population of patients in La Jolla is N=2,400 and in
Hillcrest is N=1,319. These datasets combine to give N=3,354
unique patients for analysis (some are shared across dataset).
Across the combined dataset, 25% is Hispanic, the average
age is 68, 35% has an ABI less than 0.9 (i.e., PAD), and 1%
have an ABI greater than 1.4 (i.e., non-compressible).

The featurization pipeline is consistent across datasets. First,
the signals are preprocessed. The two datasets are sampled
at different frequencies. Therefore, both sets of signals are
resampled such that it matches the lower resolution of 75 Hz
(the higher resolution dataset has 125 Hz). Next, both sets of
signals are band-pass filtered such that only frequencies in the
range of 0.5 Hz and 8 Hz remain in the signal. This frequency
range was selected to filter out artifact noise from breathing
or other movements, as well as high frequency noise from
sensing equipment.

After filtering, both sets of signals are passed through a
data cleaning pipeline to discard signals that are deemed
too noisy for appropriate analysis. Signals are discarded if
the main frequency components of the signal are outside
the physiological expected range for heart rate. With not all

patients having two legs included in the analysis and some
having repeat measurements, the total number of signals sent
into this pipeline from the unique 3,354 patients is 7,445
signals. Approximately 26 percent of these signals are deemed
too noisy for featurization and others lack tabulated BP data,
and as such, 5,237 total PPG signals are used moving forward
for analysis from N=2,362 unique patients.

To generate features for each PPG signal, one representative
pulse per four-second PPG signal is generated. This one
pulse is normalized in height and relative time. Features of
amplitude and time are calculated prior to normalization to
preserve the raw morphology of the pulse. All other features
are calculated after normalization. Features in seven different
general categories were constructed: rise features, fall features,
derivative features, width features, symmetry features, mis-
cellaneous features (e.g., area under the curve), and TSFEL
features. TSFEL features are generated automatically using
Python’s Time Series Feature Extraction Library. Fig. 1 shows
some example features; note that these help to visualize the
features used in the presented results.

Representative Pulse for Patient Representative Pulse for Patient
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Fig. 1. Three sample features visualized on two normalized PPG pulses. A)
Normalized width at half amplitude feature. B) Normalized fall percent time
from 90 to 60 percent amplitude. C) Normalized fall percent time from 60 to
10 percent amplitude.

With all features computed, they can be directly compared
against that PPG signal’s associated ABI measurement. As
such, each data point in the results graphs corresponds to one
PPG signal (in other words, one patient’s right or left leg). As
PAD can manifest in one leg and not the other, it is appropriate
to treat each leg as a separate data point.

III. RESULTS

Presented below are the correlation plots between specific
features of the PPG signal and ABI. Note that hundreds
of features were calculated so it is impracticable to present
most of them. As such, we pick out noteworthy examples for
discussion.

Fig. 2 presents the correlation between the ’normalized
width at half amplitude’ feature and ABI for the combined
dataset of 5,237 clean pulses from N=2,362 patients. Each
data point represents an individual’s right or left leg, where
the x-axis denotes the leg’s ABI measurement, and the y-axis
denotes that PPG pulse’s normalized width at half amplitude
value. Data points are color-coordinated for disease level.
Individuals with an ABI of greater than 1.0 are healthy.
Borderline PAD is classified as ABI values between 0.9 and



1.0. Likely PAD is classified as ABI between 0.7 and 0.9, and
severe PAD is classified as ABI values below 0.7.
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Fig. 2. The PPG feature of normalized width at half amplitude time has a
statistically significant correlation with ABI for N=2,362 unique individuals.

Fig. 3 presents the correlation between the *'maximum rising
slope’ feature and ABI for the same dataset of 5,237 clean
pulses from N=2,362 patients. Data points are colored as
described previously.
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Fig. 3. The PPG feature of maximum rising slope has a statistically significant
correlation with ABI for N=2,362 unique individuals.

Fig. 4 presents the results of three different falling edge
features. Specifically, the feature of 'normalized fall percent
time’ was computed for three segments of the falling edge. In
the upper left is the time for the pulse to fall from 90 percent
amplitude to 60 percent amplitude. In the upper right, from 60
percent amplitude to zero, and in the bottom, from 80 percent
amplitude to 10 percent amplitude. In other words, the results
show the correlation of fall time at the beginning of the fall,
the end of the fall, and throughout the entire fall, against ABI.
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Fig. 4. The PPG features of normalized fall percent time across different
segments have different correlations with ABI for N=2,362 unique individuals.
(Top left) Fall percent time from 90 to 60 percent. (Top right) Fall percent
time from 60 to O percent. (Bottom) Fall percent time from 80 to 10 percent.

Lastly, Fig. 5 presents the same correlation as in Fig. 3,
where the 'maximum rising slope’ feature is correlated with
ABI. Here, the data points are color coded for the given site
location to show the correlation results from the La Jolla (blue)
and Hillcrest (orange) sites.
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Fig. 5. The correlation between the PPG feature of maximum rising slope
and ABI is compared for each dataset. Data from the La Jolla location is
shown in blue (N=3,424), and data from the Hillcrest location is shown in
orange (N=1,813).

IV. DISCUSSION

These results demonstrate our ability to extract PAD specific
morphology features from PPG signals. Fig. 5 verifies that
the given pipeline and results are not dependent on a specific
dataset or piece of sensing equipment as the features are



consistent across site location. Additionally, it is important to
highlight why the given correlations agree with the physiolog-
ical explanations of PAD. As such, next is a discussion as to
why each presented feature agrees with the physiology.

When a patient has PAD, their blood flow to the limbs is
reduced due to plaque buildup in their blood vessels. As such,
with restricted blood flow and less elastic arteries, the PPG
signal becomes more dampened and less defined in shape. A
healthy signal is characterized by a steep systolic upstroke and
the presence of a dicrotic notch. In individuals with stiffer
arteries, the PPG morphology is less specifically defined as
the blood reflections at different stages in the cardiac cycle
blend together. With this understanding, we can explain the
correlations seen in PPG features across ABI value.

Fig. 2 demonstrates that healthier patients (larger ABI
values) have smaller widths at half amplitude than patients
with PAD. This agrees with the aforementioned description
as the PPG signal of a healthy patient has a defined, quicker
rising and falling period than a patient with stiffer arteries in
which the blood flow through the vessels is more prolonged.

Similarly, Fig. 3 shows that the maximum slope of the
systolic upstroke is larger for healthy patients compared to
patients with PAD. This concurs with the concept of healthy
signals having a faster, defined rising edge.

Finally, the analysis of the PPG falling edge in Fig. 4 pro-
vides a more complicated insight. As shown, the correlation of
PPG falling time with ABI changes relationship depending on
what segment of the falling edge is under analysis. Specifically,
our results show that healthy patients have a faster falling edge
closer towards the peak of the signal, yet a slower falling
edge near the base of the signal, when compared to PAD.
In other words, healthy pulses fall faster at first, and slower
at the end. This is due to the elasticity of healthy arteries
and their ability to reflect the distinct phases of the cardiac
cycle. As such, before any reflections reach the extremity, the
PPG signal drops quickly from the systolic peak. However, the
relative amplitude is prolonged as the elastic arteries reflect the
different phases of the cardiac cycle. In unhealthy signals, the
reflections all morph together, the signal does not drop quickly
from its peak, and there is no distinct trailing edge apart from
the end of the cardiac cycle and the end of the PPG signal.
Therefore, looking across the entire falling edge of the signal
does not reveal a correlation with PAD (as seen in the bottom
plot of Fig. 4), but looking at just the top or bottom of the
falling edge does.

These insights enable future work to perform a compre-
hensive analysis of these informative features. Further, future
model development can become more transparent by using
explicit features of PPG signals to predict PAD, rather than a
black-box approach.

It is important to highlight some limitations of the presented
work. First, about a quarter of the PPG signals were excluded
prior to analysis due to the low quality of the toe PPG signals.
This may limit future models in their ability to perform on
messy signals. In addition, all of the PPG signals used in this
work were obtained by specialists in a clinical setting. Future

work is required to validate the correlations and future model
performance with smartphone-obtained PPG signals.

V. CONCLUSION

In this paper, we identify PPG morphology features that
correlate with PAD, using the diagnostic metric of ABI, in
an analysis of N=2,362 unique patients (5,237 right/left legs).
Further, we provide physiological explanations for each pre-
sented significant correlation and how our findings agree with
the fundamental processes that define PAD. These findings
enable future work to focus on using the presented correlative
PPG features in the development of a screening algorithm for
PAD that is grounded in physiological meaning. By training a
model to screen for PAD with just a PPG signal, we can enable
accessible screening for PAD to help alleviate the current
disproportionate affects of PAD across communities.
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