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Abstract: Understanding the 3D motion of articulated objects is essential in robotic
scene understanding, mobile manipulation, and motion planning. Prior methods
for articulation estimation have primarily focused on controlled settings, assuming
either fixed camera viewpoints or direct observations of various object states, which
tend to fail in more realistic unconstrained environments. In contrast, humans ef-
fortlessly infer articulation by watching others manipulate objects. Inspired by this,
we introduce ArtiPoint, a novel estimation framework that can infer articulated
object models under dynamic camera motion and partial observability. By com-
bining deep point tracking with a factor graph optimization framework, ArtiPoint
robustly estimates articulated part trajectories and articulation axes directly from
raw RGB-D videos. To foster future research in this domain, we introduce Arti4D,
the first ego-centric in-the-wild dataset that captures articulated object interactions
at a scene level, accompanied by articulation labels and ground-truth camera poses.
We benchmark ArtiPoint against a range of classical and learning-based baselines,
demonstrating its superior performance on Arti4D. We make code and Arti4D
publicly available at https://artipoint.cs.uni-freiburg.de.

Keywords: Articulated Object Estimation, 3D Scene Understanding, Interactive
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Figure 1: We present ArtiPoint, our novel approach to articulated object estimation in the wild. ArtiPoint makes
use of deep point tracking and factor graph optimization. It does not rely on costly scene-wise optimization
or deep models that are prone to overfit. We evaluate our approach on the Arti4D dataset, a novel scene-level
articulated object dataset that is recorded with a moving, ego-centric camera, compared to previous benchmarks
that are limited to isolated objects and static camera poses.
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1 Introduction

Robotic manipulation is concerned with moving external objects to achieve a task-relevant goal. While
recent approaches have made tremendous progress in manipulating unconstrained objects [1, 2, 3],
manipulating constrained articulated objects remains challenging in model-free settings that rely
on affordances [4, 5]. On the other hand, model-based approaches have thoroughly investigated
manipulating articulated objects, demonstrating both manipulation success and transferability to
novel objects [6, 7, 8, 9, 10]. However, the aforementioned approaches focus on offline learning of
predictive models in curated settings, where only the articulated object itself moves [11, 12]. If we
consider deploying a robot in a novel environment, these requirements are not met [4, 13, 14]. As a
consequence, most approaches for estimating articulated objects and estimating motion models fail
when operating in-the-wild, i. e., when faced with dynamic camera poses, occlusions, and significant
clutter, where objects are not isolated and interactions are less constrained. While humans acquire
manipulation skills through observing others interacting with various entities such as articulated
objects [15], endowing robotic systems with those capabilities remains an open problem. Ultimately,
this limits the transfer of insights from articulated object estimation [6, 9] to the problem of human-
to-robot imitation in everyday robotics.

In this work, we propose to address this limitation by exploiting interaction priors. As humans
manipulate environments with their hands, we aim to observe those interactions. First, we extract
interaction segments containing object interactions. Secondly, we obtain point trajectories within
regions close to the detected hand, which describe both the static and dynamic parts of the observed
scene. We leverage recent state-of-the-art models in any-point tracking [16, 17], which yields point
trajectories throughout whole interaction segments, including an estimated visibility score. Third, we
lift those point trajectories into 3D using depth measurements and compensate for camera motion
using accurate camera odometry. We separate all static 3D trajectories with a negligible length from
dynamic trajectories, which potentially represent the motion of dynamic objects. This enables us to
estimate the motion of the moving part triggered through hand interaction. Finally, given the acquired
point trajectories, we estimate the underlying articulation model, classify the joint type (prismatic or
revolute), and globally register the model in the observed scene.

As we address the novel task of estimating articulated object motion in-the-wild, we introduce Arti4D,
the first ego-centric in-the-wild dataset for scene-level articulated object manipulation from human
demonstrations. It comprises 45 RGB-D sequences across four diverse scenes, capturing 414 human-
object interactions under dynamic camera motion, occlusions, and uncurated environments ranging
from kitchen scenes to robot lab rooms. The dataset was recorded by a human operator holding an
RGB-D camera while actively exploring scenes and interacting with articulated objects. Unlike prior
datasets, Arti4D includes se(3)-labeled ground-truth articulation axes, interaction windows, difficulty
annotations, reconstructed scenes, and accurate camera pose ground truth. It offers a challenging
benchmark not only for articulated object estimation but also for visual odometry and SLAM research
in complex, real-world settings.

Concretely, we make the following contributions:

1. We present a novel articulated object estimation framework called ArtiPoint that operates on
deep point trajectories, enabling robust deployment in uncontrolled settings.

2. We introduce Arti4D, the first real-world in-the-wild dataset of articulated object interactions
providing human exploration and ego-centric articulation demonstrations on a scene-level.
The dataset includes articulation axes labels and 3D ground truth camera poses.

3. We compare our method against a set of classical and deep articulation model estimation
pipelines and present extensive ablations.

4. We publish code, data, and model predictions of our method at https://artipoint.cs.
uni-freiburg.de.
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2 Related Work

In the following, we review previous work in articulated object estimation and review recent develop-
ments in any-point tracking.
Probabilistic Methods: Early work in articulation model estimation often employed probabilistic
formulations to infer the relationships among articulated object parts. Sturm et al. [18, 6] proposed a
probabilistic framework that infers the articulation model from 6D trajectories of object parts. While
the initial work used marker-based tracking to obtain these trajectories, subsequent work [19, 20]
extended these frameworks to handle sparse (markerless) objects by extracting visual features, such
as SURF [21] or by detecting rectangles in dense-depth images [22].
Deep-Learning-based Methods: Recent advancements in deep learning diversify the articulation esti-
mation methods. By consuming a sequence of depth images with a fixed viewing pose, ScrewNet [23]
enables category-agnostic articulation motion prediction in an end-to-end manner. A follow-up work,
DUST-net [24] further estimates the uncertainty of the motion to introduce interpretability. While
these works take a depth image sequence as input, ANCSH [25] predicts articulation joint parameters
and state for unseen instances using a depth image, assuming prior knowledge of the instance category.
Other works utilize neural networks as a part of their pipelines for articulation motion prediction.
While Heppert et al. [26] formulate a two-stage pipeline consisting of a learning-based part tracking
stage and a factor graph optimization stage, Buchanan et al. [9] combine the learning-based method
with interactive perception, leveraging a neural network to propose an initial estimation of the ar-
ticulation motion and interactive perception for prediction refinement. FormNet [27] predicted the
motion field residual and the part connectedness prior to post-processing the final prediction.
3D Reconstruction of Articulated Objects: Reconstructing articulated objects in 3D is more
challenging than reconstructing rigid objects, as it requires modeling the articulation between their
constituent parts [28]. Early works [29, 30] leverage structure-from-motion to reconstruct the
articulated object at different configurations, followed by post-processing techniques to estimate joint
axes and types. More recent works inspired by Gaussian splatting offer a smooth and continuous
representation for complex shapes. For instance, ArtGS [12] utilizes 3D Gaussians to jointly optimize
for canonical Gaussians and the articulation model. Ditto [31] is a neural network-based method for
estimating the articulation model and the 3D geometry of an articulated object, given point cloud
observations before and after interaction. PARIS [11] takes multiview images at different articulation
states and jointly estimates the articulation parameters and the 3D geometry of the object.
Tracking Any Point (TAP): Tracking points is a key problem in various computer vision and
robotics tasks, such as 3D reconstruction, video analysis, and object tracking. Early works relied
on sparse feature extractors, such as SIFT [32], SURF [21], and GFTT [33], as well as optical
flow. Tracking any point as a task was introduced in PIP [34], where the goal was to track pixel
locations across entire sequences. TAP-Vid [35] enhances the problem formulation by providing
a benchmark and introducing TAP-Net. Subsequent works [16, 36, 37, 38] improved performance
while Karaev et al. [17, 39] introduce joint tracking of points to account for their dependencies.

In this work, we address the novel problem of estimating articulations from mobile observations
in-the-wild. We connect deep any-point tracking [39] to the estimation approach of Buchanan et
al. [9] to form a holistic approach to inferring the parameters of multiple articulated objects in
extensive, interactive environments.

3 Approach

The goal of ArtiPoint is to estimate the underlying motion models of articulated objects given posed
RGB-D observations of human interactions with such objects. To support this goal, we exploit as a
prior that humans typically use their hands to interact with objects. Our approach consists of four
stages, which we visualize in Fig. 2: First, we extract segments that contain hand-object interactions.
We then sample 2D keypoints near the hand and track them throughout the segment to capture the
object in motion. To obtain 3D motion, we lift the 2D tracks to 3D, compensate for camera motion,
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Figure 2: Overview of our method: We take an ego-centric RGB-D video as input and employ hand tracking
as a trigger signal to identify interaction segments (top left). We uniformly sample points around the hand masks
and prompt a class-agnostic instance segmentation model (MobileSAM [40]), which yields object masks in
the immediate vicinity that may be undergoing articulation. Given those masks, we detect stable keypoints
(bottom left) that are fed into an any-point tracking model (CoTracker3 [39]) in order to obtain point trajectories
throughout each entire articulation segment (top right). Finally, we estimate the underlying articulation model
of the object through a factor graph formulation that operates on the obtained point trajectories (bottom right).

filter out static points in 3D, and apply trajectory smoothing in our third stage to mitigate noise.
Finally, we input refined 3D tracks into a factor graph framework to jointly estimate the trajectory of
the object parts and the parameters of the articulation motion model.

3.1 Extraction of Interaction Intervals

Given a scene level ego-centric RGB-D sequence {It, Dt}Tt=1 of a human operating and interacting

with articulated objects in the scene, we extract interaction segments S =
{
(t

(n)
start, t

(n)
end)

}N

n=1
containing frames of interactions. We use a preexisting hand segmentation model [41] to extract a
hand mask Ht from each RGB frame It, and assign a binary label dt ∈ {0, 1} to the frame based on
the hand visibility. To avoid irregular false positives/negatives, we compute the moving average d̄t
for the last wh frames as d̄t = 1

wh

∑t
i=t−wh

di. A frame is identified if the smoothed detection d̄t
exceeds τh, initiating a segment sn at time tstart = t. The segment continues as long as d̄t ≥ τh,
and terminates at tend = t when d̄t drops below this threshold. Finally, the extracted segments S are
filtered based on their duration, ensuring that Tmin ≤ t

(i)
end − t

(i)
start ≤ Tmax, where Tmin and Tmax

represent the minimum and maximum allowed segment lengths, respectively.

3.2 Deep Point Tracking

For each obtained segment sn ∈ S and hand masks {Ht}
t
(n)
end

t=t
(n)
start

associated with a frame within the

segment, we uniformly sample points around the hand. We use the sampled points as prompts for the
class-agnostic instance segmentation model [40] to identify masks of potential articulated objects
near the hand for each frame. Given the resulting K objects’ 2D masks {Ot

k}Kk=1 in frame t, our
goal is to select F query points qt ∈ RF×2 that lie on the aforementioned masks and allow tracking
throughout the entire segment. We achieve this by extracting GFTT keypoints via the lightweight
Shi-Tomasi method [33] within each object mask in frame t. By concatenating all selected query
points for a segment sn, we obtain a set of query points Qi ∈ RK×F×2 where K represents the
number of keyframes selected from the segment sn. Subsequently, we employ CoTracker3 [39] to
track keypoints Xn ∈ RTn×F×2 and obtain point visibilites Vi ∈ {0, 1}Tn×F of the query points
across all Tn frames of each segment sn.

3.3 3D Track Estimation and Filtering

Given the resulting 2D trajectory of query points Xn for segment sn, first, we lift the trajectory
to 3D using the corresponding depth frame Dt and camera intrinsics K, and we filter out points
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with invalid depth values. This results in a set of 3D tracks Pn ∈ RTn×F×3 and a corresponding
visibility mask Vn ∈ {0, 1}Tn×F indicating the validity of each 3D point at each time step. Second,
to compensate for camera motion and obtain 3D trajectories in global coordinates, we transform all
the 3D point tracks within each segment to the global frame, assuming accurate camera odometry.
Third, since some points may lie on static objects, we filter out these static points by computing the
positional variance of each 3D track within the segment. Tracks with a variance below a certain
percentile threshold σstatic are considered static and are discarded. Fourth, points may undergo
occlusion during the interaction, potentially leading to unreliable point tracks. Therefore, we filter
out tracks that are occluded for more than a specified percentage σreliable of the frames within each
segment. Lifting the 2D trajectory to 3D introduces high-frequency temporal jitter in the resulting
3D trajectory. We employ trajectory smoothing via minimizing a cost function (Eq. (1)) penalizing
spikes in acceleration and high velocities while preserving fidelity

E(p) =

T∑
t=1

vt||pt − p̂t||2 + λvel||pt − pt−1||2 + λjerk||pt − 3pt−1 + 3pt−2 − pt−3||2, (1)

where the first term promotes closeness between smoothed points p̂t and observed points pt weighted
by the point visibility vt. The second term regularizes significant velocity changes weighted by λvel

whereas the third term minimizes sudden changes in acceleration weighted by λjerk.

3.4 Exploiting the Articulation Prior

The most recent works examining articulation model estimation [23, 26, 9] opt for representing
1-DoF articulations as an articulation parameter ξ = ⟨ω, v⟩ ∈ se(3) ⊆ R6. Scaling an element
ξ ∈ se(3) with a configurational position θ is sufficient to represent any rigid-body transformation
which can be decomposed into a proportional linear translation and rotation. Such a transformation
ξθ can be converted to the equivalent, non-linear SE(3) rigid-body transform using the exponential
map exp : se(3) → SE(3), while the inverse of the exponential map is referred to as the log map
log : SE(3) → se(3) [42]. The advantage of this representation is its ability to represent diverse
articulations, i. e. prismatic, revolute, and screw joints, while also being differentiable which makes
them suitable for optimization.

In this work, we employ the factor graph formulation of Buchanan et al. [9] to estimate the articulation
model which best fits an extracted point trajectory. However, this estimator operates on a sequence
of pose observations between two moving parts, not directly on points of these parts. Thus, we
extract poses as follows: Given our extracted points Pn and visibility masks Vn, we interpret these as
observation Z as

Z =
{
Pm =

{〈
ptf , p

t+ϵ
f

〉 ∣∣∣ Vt
n,f ∧ Vt+ϵ

n,f

}}M

m=1
, (2)

where ptf , p
t+ϵ
f are two observations of point f at times t and t + ϵ taken from Pn. Extracting

pose trajectories from these observations is equivalent to identifying the transformations tTt+ϵ,m

minimizing

tT∗
t+ϵ,m = min

tTt+ϵ,m

|Pm|∑
j=1

∥∥pt+ϵ
j − tTt+ϵ,m · ptj

∥∥ , (3)

where
〈
ptj , p

t+ϵ
j

〉
∈ Pm. These local transformations can be integrated to yield poses WTm in the

global frame of reference as by recursion: We define WT0 = WTA and build on this root with
WTm = WTm−1 · m−1Tm where WTA describes a global offset of the local trajectory. This local
offset can reasonably be obtained as the mean of P1

n. In our approach, we propose exploiting the
context of our problem, an extend the estimation in Eq. (3) to be articulation-regularized across the
entire motion. We do so, by introducing a shared base twist ξ̂ for the entire path as

ξ̂∗, θ∗1 , . . . , θ
∗
M = min

ξ̂,θ1,...,θM

M∑
m=1

|Pm|∑
j=1

∥∥∥pt+ϵ
j − exp(ξ̂θm) · ptj

∥∥∥ , (4)
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where tTt+ϵ can finally be extracted as tTt+ϵ,m = exp(ξ̂∗θ∗m). As this formulation can be interpreted
as a factor graph, we use GTSAM [43] to solve for it.

Finally, we extract the relative poses required by the articulation estimator [9], as ATm = WTA
−1 ·

WTm which is similar to the technique described in [9], where the authors use the initial frame of
the articulation as the static frame. From this data the estimator then determines ξ∗n for segment sn.

4 Arti4D Dataset

We present the Arti4D dataset, which, to the best of our knowledge, is the first ego-centric in-the-
wild human demonstration dataset capturing scene-level articulated object manipulation. With this
dataset, we aim to create a foundation for studying the problem of circumstantial articulated object
estimation from human demonstrations. In this problem, a human collects videos of interactions with
multiple objects. The aim is to detect all interactions and estimate the articulation parameters of all
manipulated objects. Arti4D consists of 45 egocentric RGB-D sequences across four distinct scenes
(RR080, DR080, RH078, and RH201), featuring 414 human-object interactions recorded in-the-wild.

Unlike previous datasets such as PARIS [11], DTA-Multi [44], or ArtGS-Multi [12], the in-the-wild
character presents novel challenges: the camera poses are dynamically changing as the scene is
explored, the articulated objects are partially occluded throughout the interaction, and the objects are
not isolated, i. e., are an integrated part of the larger environment. We present exemplary interactions
and the associated camera trajectory in Fig. 1. In this manner, our dataset markedly differentiates
itself from existing datasets in the domains of articulated object estimation [11, 45, 46] and 3D scene
understanding [47, 48, 49, 50, 51].

In tandem with the sequences, our dataset provides ground-truth axis labels for all articulations in the
scenes as se(3) points, ground-truth temporal interaction segments, as well as difficulty ratings of all
interactions ranked as either EASY or HARD. This is based on the level of hand visibility throughout
each interaction, whether an object exhibits a reasonable number of depth measurements, whether
the articulating hand is fully retrieved in between articulations, and whether large extents of the
object are occluded. Furthermore, we provide cm-accurate ground-truth camera poses, obtained via
external tracking, to ease the task of estimating articulations from dynamic camera observations. In
addition, we believe that Arti4D constitutes a challenging benchmark for the tasks of visual odometry
and simultaneous localization and mapping. Given that the articulations cover significant extents
of the field of view, finding stable correspondences becomes difficult [52], ultimately complicating
odometry estimation.

5 Experimental Results

In the following, we present our experimental findings by comparing against two sets of capable
baselines, demonstrating the performance of ArtiPoint on various splits of Arti4D, and lastly, ablating
key components of our proposed pipeline. As introduced in Sec. 4, we employ the Arti4D dataset
to evaluate the performance of estimating articulation models in-the-wild. The reported results are
averaged across all object interactions recorded across 45 RGB-D sequences stemming from four
diverse environments: RR080, DR080, RH078, and RH201.
Baselines: We consider two sets of baselines. The first set consists of the deep learning-based
approach Ditto [53] and the Gaussian splatting-based method ArtGS [12]. Both methods are tailored
towards semi-static variations of articulation states of isolated objects. As this is somewhat different
from the in-the-wild paradigm introduced as part of the Arti4D dataset, we adapted these methods by
masking out hands and selecting a representative number of frames from before, during, and after the
interaction (Sec. 3.1) from which to reconstruct the motion model. However, both Ditto and ArtGS
are prone to occlusions and variations in camera poses as they aim to identify correspondences among
various articulation states.
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Table 1: Overall comparison of classical and deep articulation estimation methods on the Arti4D dataset. We
report the axis-angle errors θerr , the positional errors dL2 of revolute joints, and the accuracy of joint type
detection. We note that ArtiPoint achieves the lowest error in estimating articulation parameters.

Method Prismatic joints Revolute joints Type accuracy [%]
θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

ArtGS 52.29 – 56.82 0.25 1.00 0.00
Ditto 55.03 – 60.89 0.29 0.00 1.00

Sturm et al. [18] w/ bbox 63.15 – 57.98 1.34 0.00 1.00
Buchanan [9] w/ bbox 49.67 – 58.82 0.22 0.00 1.00
ArtiPoint w/ Sturm et al. [18] 26.85 – 18.32 1.40 0.70 0.96
ArtiPoint w/ indep. transforms 15.60 – 18.61 0.15 0.65 0.96

ArtiPoint (ours) 14.54 – 17.14 0.07 0.68 0.98

Our second set of baselines consists of two factor graph-based articulation estimation pipelines. As
Sturm et al. [18, 6, 22] only provides a back-end for estimating the articulation model, we employ
the ArtiPoint frontend but fit oriented bounding boxes to all detected objects based on the masks
extracted by MobileSAM [40]. Using the 3D bounding boxes of the objects, we derive part poses
across all frames and feed these into the estimation framework of Sturm et al. [18]. Lastly, we also
employ our front-end pipeline to provide object poses WTA from any-point tracking for Sturm et
al. [18].
Metrics: In order to evaluate estimated articulation models, we match predicted interaction segments
against ground truth segments under an IoU > 0.5. Given this matching, we employ the following
metrics to quantify articulation estimation performance: 1. The angular error θerr = arccos(|â · a|)
evaluated between unit-length ground truth and predicted axes, and 2., the Euclidean distance dL2

between predicted and ground truth axes (revolute joints only), and the accuracy of predicted joint
types.
Implementation Details: For our interaction extraction module (Sec. 3.1) we use wh = 6, Tmin =
30, and Tmax = 90. For our 3D track estimation and filtering (Sec. 3.3) we choose a track reliability
threshold σreliable = 0.5, and for the optimization-based smoothing we choose λvel = 0.5, λjerk = 5.
Our approach requires 20 GB of RAM and 16GB of VRAM.

5.1 Quantitative Results on Arti4D

We report an overall comparison on Arti4D in Tab. 1. We note that ArtGS [12] and Ditto [31] perform
poorly in both estimating and classifying joints, which is primarily due to partial observability
throughout interactions. In addition, we observe that the non-isolatedness of objects complicates
estimation accuracy in the case of ArtGS and Ditto. Using the estimator proposed by Sturm et al. [18]
with a bounding box-based front-end leads to worse results compared to ArtGS [12] and Ditto [31].
Furthermore, we find that the estimator of Buchanan et al. [9] outperforms Sturm et al. [18], making
use of a bounding box-based frontend approach as proposed in [54]. Ultimately, we find that the
pose trajectories obtained using the independent-transform estimator operating on a frame-pair basis
(Eq. (3)) yield higher rotational and translational errors compared to ArtiPoint, Thus, the proposed
articulation-regularized estimator (Eq. (4)) increases articulation model estimation accuracy. We note
that our trajectory estimator also benefits the estimation approach of Sturm et al.. We also study the
performance of the different approaches across easy and difficult interactions in Tab. 2. We find that
ArtiPoint performs best in both cases in parameter estimation.

5.2 Qualitative Results on Arti4D

In addition to the quantitative comparisons, we depict predictions on two drawers (prismatic) and
a revolute joint of a storage case in Fig. 3. The two drawers are observed under a small number of
keypoints whereas the case exhibits frequently missing depth measurements. Nonetheless, ArtiPoint
is able to estimate the underlying motion model robustly.
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Table 2: Difficulty-level comparison of estimation methods on Arti4D.
Prismatic joints Revolute joints Type accuracy [%]

Diff. Method θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

EASY ArtGS 53.65 - 54.06 0.30 1.00 0.00
Ditto 54.46 - 51.83 0.37 0.00 1.00
ArtiPoint w/ Sturm et al. [18] 20.24 - 13.11 0.96 0.82 0.95

ArtiPoint 12.63 - 11.66 0.05 0.75 0.95

HARD ArtGS 50.12 - 59.48 0.20 1.00 0.00
Ditto 56.09 - 67.11 0.23 0.00 1.00
ArtiPoint w/ Sturm et al. [18] 38.94 - 22.10 1.80 0.48 0.96

ArtiPoint 18.03 - 21.10 0.87 0.54 1.00

Table 3: Ablations of key components of our approach on the Arti4D dataset. As before, we report the same set
of metrics as in Tab. 1.

Prismatic joints Revolute joints Type Accuracy [%]
θerr [deg] dL2 [cm] θerr [deg] dL2 [cm] Prismatic Revolute

w/ ORB keypoints 19.22 - 25.61 0.10 0.55 0.92
w/ keyframe stride 4 14.67 - 20.48 0.08 0.67 0.94
w/o trajectory smoothing 16.24 - 19.38 0.11 0.58 0.92
w/ unreliable tracks 14.61 - 18.86 0.09 0.67 0.93

ArtiPoint (ours) 14.54 – 17.14 0.07 0.68 0.98

Figure 3: Qualitative results on Arti4D: Estimated joint axis and pose trajectory of a drawer in a kitchen scene
(RH201), a revolute joint of a storage case (RH078), and another drawer in RH201.

5.3 Ablation Study

To further understand the contribution of different components of the ArtiPoint pipeline, we conducted
an ablation study on the Arti4D dataset. From Tab. 3, we can conclude that using ORB keypoints
[55] leads to worse results across all metrics. Increasing the keyframe stride to 4 in Sec. 3.2 reduces
the computation overhead but also reduces estimation performance. Furthermore, deactivating the
trajectory smoothing impacts the accuracy of both estimated revolute and rotational joints, as well as
reducing the overall joint type prediction accuracy. Finally, incorporating unreliable tracks or highly
occluded tracks slightly decreases the predicted axis quality, proving the robustness of our proposed
estimator.

6 Conclusion

We presented ArtiPoint, a novel framework for estimating articulation motion models from human
object interactions in-the-wild. Unlike prior works operating in controlled settings involving fixed
camera poses, isolated objects, and full observability, we employ deep any-point tracking and factor
graph optimization to infer articulation models from ego-centric human demonstrations. As part of our
work, we introduced Arti4D, the first real-world, ego-centric articulation demonstration dataset that
includes interaction segments, axis labels, and ground truth camera odometry. ArtiPoint demonstrates
robust performance while outperforming both classical and previous deep and object-wise rendering
methods in articulated object estimation. To foster further research in articulation understanding in
realistic, unconstrained settings, we make code, model predictions, and dataset publicly available.
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7 Limitations

Our proposed ArtiPoint framework relies on key point tracking, which inherently requires the presence
of somewhat distinct features that allow tracking. State-of-the-art any-point tracking methods as
discussed in Sec. 2 show strong robustness even under feature-sparse conditions. However, when
objects do not yield dependable depth estimates, due to properties such as color, surface paint, or
reflections, tracking their motion becomes particularly challenging. To address this limitation, future
work will explore the integration of inpainting methods informed by monocular depth estimation.
Additionally, our system is currently limited to relatively simple articulation models that involve only
two-body kinematics, making it infeasible to estimate more complex articulations. Another limitation
of our approach is the requirement for a trigger signal to temporally segment the RGB-D sequence.
In our implementation, this trigger takes the form of human hand detection, which is chosen due
to its reliability in indicating articulations. Alternative methods in action recognition, whether in
egocentric or third-person views, often lack robustness or require extensive inference times.

Acknowledgments

This work was funded by the BrainLinks-BrainTools center of the University of Freiburg and an
academic grant from NVIDIA.

References
[1] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,

G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang,
and C. Finn. Openvla: An open-source vision-language-action model. Conference on Robot
Learning, 2024.

[2] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. International Journal of Robotics
Research, 2024.

[3] E. Chisari, N. Heppert, M. Argus, T. Welschehold, T. Brox, and A. Valada. Learning robotic
manipulation policies from point clouds with conditional flow matching. Conference on Robot
Learning, 2024.

[4] A. Gupta, M. Zhang, R. Sathua, and S. Gupta. Opening cabinets and drawers in the real world
using a commodity mobile manipulator. Robotics: Science and Systems, 2025.
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[49] C. Kassab, S. Morin, M. Büchner, M. Mattamala, K. Gupta, A. Valada, L. Paull, and M. Fallon.
Openlex3d: A new evaluation benchmark for open-vocabulary 3d scene representations. arXiv
preprint arXiv:2503.19764, 2025.

[50] A. Delitzas, A. Takmaz, F. Tombari, R. Sumner, M. Pollefeys, and F. Engelmann. SceneFun3D:
Fine-Grained Functionality and Affordance Understanding in 3D Scenes. In IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2024.
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Articulated Object Estimation in the Wild:
Supplementary Material

In this supplementary material, we provide additional insights on the evaluation protocol and utilized
metrics in Sec. S.1.1, shed light on the necessity of ground truth camera poses to make ArtiPoint work
in real-world deployment in Sec. S.1.2, evaluate to what degree ground truth interaction segments
benefit the prediction performance in Sec. S.1.3 compared to predicted ones, and provide additional
ablations regarding the hand detection as well as the point tracking in Sec. S.1.4. Furthermore, we
provide qualitative insights in Sec. S.1.6 and in-depth explanations regarding the introduced Arti4D
dataset in Sec. S.2.

S.1 Experimental Evaluation

In this section, we present additional details on our experiments, the metrics we employ, and the
additional ablation study.

S.1.1 Evaluation Protocol & Metrics

In Sec. 5, we report quantitative results of our approach and the baselines. In the following, we detail
the prediction to ground truth association procedure as well as the definition of the metrics that we
employ to quantify performance.

In order to account for the fact that multiple interactions with the same object instance are likely
throughout a single sequence, we match each obtained axis prediction against the corresponding
ground truth axes based on the underlying interaction windows. This entails computing the 1-
D intersection-over-union (IoU) between all predicted interaction segments and all ground truth
interaction segments, as labeled as part of Arti4D. We consider a match whenever an IoU > 0.5 is
exceeded.

As stated in the main manuscript, our metrics consist of positional and angular error. We compute the
positional error di for the placement of an articulation’s rotation axis â and the ground truth axis agt
using the help of supporting points p̂,pgt as

di =

{
(p̂i−pgt)

⊤(âi×agt)
∥âi×agt∥ if ∥âi × agt∥ > ϵ

∥(p̂i − pgt)× agt∥ else
, (1)

where the first case covers the case in which the axes are not parallel with ϵ = 10−4. If a model does
not provide a point on the axis directly, but a twist, we compute p̂i =

ωi×vi
∥ωi∥2 . The angular error of a

prediction, we compute simply by using the normalized dot-product of the axes

Θerr,i = cos−1

(
a⊤gtâi

∥agt∥ ∥âi∥

)
. (2)

We report only angular errors for prismatic joints, as the location of the axis does not have any effect
on the motion of the parts of the articulated object.

S.1.2 Performance Under Estimated Camera Poses

The experimental results reported in the main manuscript rely on ground truth camera odometry from
the Arti4D dataset. However, in order to account for direct real-world deployment of our method,
we have conducted additional experiments that do not require access to those. To do so, we have
evaluated a number of prominent RGB-D SLAM approaches that produce metric map estimates:
ORB-SLAM3 [56], Open-VINS [57], MAST3R-SLAM [58], and DROID-SLAM [59]. While all
deep learning-based methods provide globally consistent maps, all traditional approaches fail due to
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loss of camera tracking. Given their non-static character, the interaction segments pose the greatest
challenge. As our method requires camera odometry instead of only keyframe-level pose estimates,
we employ DROID-SLAM over MAST3R-SLAM.

First, we note that the maps produced by DROID-SLAM are registered against the ground truth
point cloud using KISS-Matcher [60] in order to provide grounds for evaluation, which, in turn, may
induce translational and rotational errors. When utilizing DROID-SLAM camera poses, we achieve
reasonable results with only slightly increased angular and translational errors for both prismatic and
revolute joints. Nonetheless, we observe a slight increase in prismatic type prediction accuracy when
employing DROID-SLAM poses.

Table S.1: Comparison of estimated object axis under estimated and ground truth camera poses

Method Prismatic joints Revolute joints Type accuracy [%]
θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

w/ DROID-SLAM poses 14.67 – 18.12 0.10 0.71 0.94
w/ Arti4D odometry 14.54 – 17.14 0.07 0.68 0.98

S.1.3 Evaluation Using Ground-Truth Interaction Segments

In addition to the results relying on predicted interaction segments using the windowed hand detection
scheme, we provide an evaluation based on ground truth interaction segments that are labeled as part
of Arti4D. In general, we would expect lower angular and translational errors given that the method
is not affected by hand occlusions (under large opening angles), motion blur, or non-detected hands.
However, we find that our articulation estimation is robust wrt. to the interaction segmentation as we
observe smaller angular errors on prismatic objects but larger errors for revolute-jointed objects, thus
not allowing a clear interpretation.

Table S.2: Evaluation under ground-truth interaction segments

Method Prismatic joints Revolute joints Type accuracy [%]
θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

w/ GT segments 11.99 – 20.24 0.09 0.74 0.97
w/ pred. segments 14.54 – 17.14 0.07 0.68 0.98

S.1.4 Additional Ablation Study

In the following sections, we share additional ablations on hyperparameters of ArtiPoint and scene-
respective results.

S.1.4.1 Ablation on Hand Detection

Extracting the interaction intervals, as described in Sec. 3.1 and illustrated in Fig. S.1, is a critical
component of the ArtiPoint pipeline as it directly affects the number of articulated objects detected.
As such, it requires careful parameter tuning, as small values of wh or Tmin increase the number of
false positives. To better understand the impact of these parameters on the final results, we conduct
a detailed ablation study with its findings presented in Tab. S.3. Decreasing Tmin leads to a small
degradation in both angular error (θerr) and joint type classification accuracy. Increasing wh leads
to over-smoothing of the raw hand detection signal, causing the segments to contain elongated
idle phases at the start and the end, thus inducing unfavorable noise, and resulting in a noticeable
degradation in both angular error (θerr) and joint type classification accuracy for both joint types.
Furthermore, we also list the effect of not filtering outlier tracks, not using backward tracking, using
CoTracker2 over CoTracker3, and performing static trajectory using three-dimensional trajectory
data instead of two-dimensional data that is less subject to noisy depth.
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Table S.3: Ablations of key parameters for extracting the interaction intervals component Sec. 3.1 on the Arti4D
dataset. As before, we report the same set of metrics as in Tab. 1. Default values: Tmax = 90, Tmin = 30, wh =
6.

Method Prismatic joints Revolute joints Type accuracy [%]
θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

w/o filtering outlier tracks 13.17 – 22.80 0.14 0.64 0.84
w/o backward tracking 13.92 – 20.67 0.13 0.71 0.94
CoTracker2 15.78 – 21.04 0.10 0.66 0.94
static traj. filter in 3D 15.18 – 18.23 0.10 0.65 0.92
wh = 12 15.58 – 19.88 0.08 0.66 0.97
Tmax = 120 14.57 – 18.13 0.07 0.68 0.96
Tmin = 15 14.57 – 17.88 0.07 0.68 0.96

ArtiPoint 14.54 – 17.14 0.07 0.68 0.98

Figure S.1: Hand detection and interaction extraction: We visualize a live frame of an interaction, including a
hand mask marked violet (top). In addition, we visualize the frequency of raw hand detections over time up to
the live frame as well as its moving average (bottom). The horizontal red line indicates the threshold at which
an interaction segment is created, given the moving average signal. The vertical dashed red line indicates the
current frame.

S.1.4.2 Ablation on Point Tracking

In this section, we present ablation results on the any-point tracking component as illustrated in
Fig. S.2. In particular, we evaluate to which degree different keyframe strides used as input to the
point tracking component affect the downstream axis prediction performance (see Sec. 3.2). Choosing
the keyframe stride is vital hyperparameter of the point tracking stage. While a smaller stride leads to
an increase in the number of detected points to be tracked by Cotracker3 [39], larger strides reduce
the number of detected points to be tracked, thereby lowering the computational load. Retaining a
sufficient number of points is necessary for estimating an object’s 3D trajectory over time. Overall,
we observe the lowest prediction errors for a keyframe stride of 2 to 3 based on the angular errors.
However, in the case of the translational errors, we are not able to derive a distinct statement.
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Figure S.2: Impact of keyframe stride on tracking accuracy and error. (a) The revolute joint angular error
θerr[deg] exhibits a minimum at stride 2. (b) The revolute joint positional error dL2[m] is lowest at a stride of 2,
with higher errors observed for both smaller and larger strides. (c) Similarly, the prismatic joint angular error
θerr exhibits its minimum at stride of 2. We conclude that a stride of 2 is optimal in terms of point density and
computational efficiency.

S.1.5 Scene-Respective Results

In addition, to the EASY/HARD differentiation evaluated in Tab. 2, we show scene-respective results in
Tab. S.4. This involves averaging the predictions of all object interactions contained in a scene split.
We list the number of sequences per scene as well as the number of labeled objects per sequence in
Sec. S.2. As reported in Tab. S.4, RH078 constitutes the most difficult split of the Arti4D dataset. In
comparison, DR080 and RH201 seem to represent simpler environments.

We attribute worse results on RH078 to a number of non-separable interactions as the hand is
occasionally not fully retrieved between interactions. As a consequence, the proposed interaction
extraction baseline potentially fails at differentiating two different interactions. We have mentioned
the hand trigger limitation in Sec. 7 and leave improvements on that front to feature work. In addition
to that, we observe that there are comparably more revolute joints in scene RH078 whose associated
objects are rather textureless and of metallic character, thus hindering consistent depth observations.

Table S.4: Scene-respective results: We report the scene-wise results using the established set of metrics. We
find that RH078 constitutes the most difficult split of the Arti4D dataset.

Method Prismatic joints Revolute joints Type accuracy
θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

RH078 35.11 – 10.37 0.05 0.55 1.00
RR080 15.11 – 9.41 0.10 0.56 1.00
DR080 7.86 – 17.97 0.12 0.83 1.00
RH201 8.73 – 20.88 0.04 0.84 0.95

Overall 14.55 – 17.14 0.07 0.68 0.98

S.1.6 Qualitative Results

In the following, we provide additional qualitative results. In Fig. S.3, we visualize the output of our
proposed interaction extraction, any-point tracking and track filtering components. We observe a
sufficient number of point trajectories even under partially missing depth measurements or feature-
sparse textures. In addition to that, we visualize a full scene-level output of ArtiPoint on DR080 scene
in Fig. S.4. Overall, ArtiPoint detects the majority of interactions and produces reliable estimates
considering the in-the-wild character of the recorded Arti4D sequences.

S.2 Arti4D Dataset

In the following, we provide additional insight on the in-the-wild object articulation dataset Arti4D.
We provide 45 sequences across four distinct environments as listed in Sec. S.2 and visualized in
Fig. S.7. In addition to the sequence IDs and the recording names of the produced sequences, we
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Figure S.3: Smoothed point trajectories: We visualize a cabinet (revolute) and its tracked keypoints (left) as well
as a linear slider shelf (prismatic) on the right. Each keypoint trajectory is represented with a unique color. Both
sets of point trajectories visualized constitute the output of our track filtering introduced in Sec. 3.3.

Figure S.4: Scene-level prediction: We depict a full scene-level output of the ArtiPoint framework on sequence
scene 2025-04-11-11-44-32 of the DR080 scene. Yellow arrows denote axes of motion of predicted object
interactions while coordinate frames represent the estimate part poses throughout articulation based on the
proposed estimation framework (see Sec. 3.4).

report the number of labeled objects for each sequence, the ratio between prismatic and revolute
joints as well as the ratio between easy and hard objects. First, note that the number of objects is
not equal to the number of object interactions per sequence, as several sequences contain repeated
interactions with the same single object instance. This constitutes a corner case in terms of articulated
object interaction as it requires prediction methods to fuse, e.g., two predictions belonging to a single
object. While most interactions are separable by detecting the absence of a hand mask, especially the
RH078 split which contains a number of hard-to-separate interactions. This is due to the fact that the
interacting hand was not always fully retrieved in-between interactions of two distinct objects. Similar
to the repeated interactions case mentioned before, this represents another corner case requiring
advanced action recognition.

As part of the dataset, we make both rosbags and processed raw data public. While the rosbags
include TF data at a higher frequency, the raw data includes aligned RGB, depth, and camera
poses at 15 Hz. We employed an Azure Kinect RGB-D camera that was handheld throughout all
interactions. In terms of ground truth camera pose retrieval, we employed external tracking using
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HTC Vive trackers, which provide cm-level accuracy. In case of sudden odometry glitches induced
by considerable occlusions or reflections on glass or metal, we have removed those sequences from
the dataset. We found that running classical structure-from-motion approaches to reconstruct the
underlying sequence fails as significant parts of the camera field of view cover articulations. In turn,
the contained articulations break assumptions towards mostly static visual correspondence made in
structure-from-motion methods. Thus, we leverage the ground truth camera poses and perform TSDF
fusion to produce scene reconstructions. We depict four TSDF-reconstructed sequences stemming
from each of the splits in Fig. S.5. The reconstructions reflect minimal ground truth odometry drift
and enable precise anchoring of object axes.

The ground truth object axes were labeled based on the reconstructed sequences using Blender,
exported as JSONs, and verified by a second reviewer. Furthermore, we provide metadata on
difficulty levels and temporal interaction segment ground truth labels. We provide four exemplary
depth-masked RGB frames covering an interaction of a microwave featuring semi-transparent glass
and metal surfaces in Fig. S.6. As depicted, a considerable part of the object does not produce depth
estimates. Objects of that kind are labeled using the HARD category.

Finally, we depict several RGB frames drawn from the four distinct scene splits in Fig. S.7, underlining
the variety of objects and challenging conditions of the proposed dataset. We also make the sequence
reconstructions in the form of meshes and point clouds available.
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DR080 RH078

RH201 RR080

Figure S.5: We visualize the reconstructed scenes of the four Arti4D environments: DR080, RH078, RH201, and
RR080.
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Figure S.6: We visualize an exemplary interaction with the depth projected onto the RGB observation in red
wherever a depth reading was unavailable for the particular image coordinate. As depicted, metallic, semi-
transparent, or dark-colored objects do not produce reliable depth estimates, ultimately complicating the lifting
of 3D point trajectories used to estimate the underlying articulation.
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Table S.5: Overview of all Arti4D demonstration sequences: We assign sequence identifiers to each recording
and list the number of objects interacted with per sequence as well as the distribution of prismatic vs. revolute
joints (PRISM / REV) and objects classified as either EASY or HARD. The number of objects corresponds to the
number of annotated axes per sequence, whereas the number of interactions denotes the number of performed
articulations, thus including objects that are articulated multiple times per sequence.

Scene Sequence Recording # # # #
ID Objects Interactions PRISM / REV EASY / HARD

R
H
0
7
8

RH078-00 scene 2025-04-04-19-14-38 7 7 3 / 4 7 / 0
RH078-01 scene 2025-04-04-19-18-54 6 7 2 / 4 4 / 2
RH078-02 scene 2025-04-07-11-39-17 7 7 3 / 4 7 / 0
RH078-03 scene 2025-04-07-11-41-52 8 9 3 / 5 6 / 2
RH078-04 scene 2025-04-07-11-48-40 7 7 3 / 4 7 / 0
RH078-05 scene 2025-04-09-10-30-11 8 8 5 / 3 3 / 5
RH078-06 scene 2025-04-09-10-32-52 6 6 5 / 1 3 / 3
RH078-07 scene 2025-04-09-10-35-47 7 7 6 / 1 2 / 5
RH078-08 scene 2025-04-09-10-38-38 7 7 5 / 2 3 / 4
RH078-09 scene 2025-04-09-10-46-48 7 8 7 / 0 4 / 3
RH078-10 scene 2025-04-09-10-49-20 7 7 6 / 1 2 / 5

R
R
0
8
0

RR080-00 scene 2025-04-10-13-11-16 17 17 14 / 3 9 / 8
RR080-01 scene 2025-04-10-16-05-09 14 14 13 / 1 8 / 6
RR080-02 scene 2025-04-17-15-25-14 11 12 11 / 0 7 / 4
RR080-03 scene 2025-04-17-15-33-44 9 9 9 / 0 7 / 2
RR080-04 scene 2025-04-22-09-53-49 8 8 8 / 0 5 / 3
RR080-05 scene 2025-04-22-09-56-24 10 10 9 / 1 9 / 1
RR080-06 scene 2025-04-22-09-58-49 7 8 7 / 0 4 / 3
RR080-07 scene 2025-04-22-11-45-15 9 9 8 / 1 7 / 2
RR080-08 scene 2025-04-22-11-48-01 9 9 8 / 1 7 / 2
RR080-09 scene 2025-04-22-11-50-40 8 8 7 / 1 6 / 2

D
R
0
8
0

DR080-00 scene 2025-04-11-11-44-32 11 11 7 / 4 5 / 6
DR080-01 scene 2025-04-11-12-58-58 10 10 6 / 4 5 / 5
DR080-02 scene 2025-04-11-13-01-59 9 9 5 / 4 4 / 5
DR080-03 scene 2025-04-11-13-18-00 9 10 4 / 5 3 / 6
DR080-04 scene 2025-04-11-13-43-03 11 11 7 / 4 5 / 6
DR080-05 scene 2025-04-11-14-01-06 11 11 7 / 4 5 / 6
DR080-06 scene 2025-04-11-15-43-24 11 12 7 / 4 5 / 6
DR080-07 scene 2025-04-11-15-46-48 11 11 6 / 5 4 / 7

R
H
2
0
1

RH201-00 scene 2025-04-24-17-52-21 11 11 5 / 6 6 / 5
RH201-01 scene 2025-04-24-17-54-13 9 9 5 / 4 5 / 4
RH201-02 scene 2025-04-24-19-18-42 11 11 5 / 6 7 / 4
RH201-03 scene 2025-04-24-19-21-50 8 8 2 / 6 5 / 3
RH201-04 scene 2025-04-24-19-24-09 8 8 5 / 3 5 / 3
RH201-05 scene 2025-04-25-10-36-37 9 9 5 / 4 7 / 2
RH201-06 scene 2025-04-25-10-53-40 8 8 4 / 4 3 / 5
RH201-07 scene 2025-04-25-10-56-33 8 8 3 / 5 3 / 5
RH201-08 scene 2025-04-25-11-11-47 15 16 6 / 9 6 / 9
RH201-09 scene 2025-04-25-11-15-47 7 7 5 / 2 4 / 3
RH201-10 scene 2025-04-25-14-58-42 9 9 6 / 3 4 / 5
RH201-11 scene 2025-04-25-15-02-14 7 7 3 / 4 4 / 3
RH201-12 scene 2025-04-25-15-04-48 7 7 4 / 3 3 / 4
RH201-13 scene 2025-04-25-15-16-29 9 9 5 / 4 3 / 6
RH201-14 scene 2025-04-25-15-19-22 10 10 5 / 5 5 / 5
RH201-15 scene 2025-04-25-15-22-54 8 8 4 / 4 3 / 5
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DR080

RH078

RH201

RR080

Figure S.7: We visualize several object interactions across the four different environments (DR080, RH078,
RH201, RR080) captured as part of the Arti4D dataset.
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