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ABSTRACT

Continual learning aims to acquire new tasks while preserving performance on
previously learned ones, but most methods struggle with catastrophic forgetting.
Existing approaches typically treat all layers uniformly, often trading stability for
plasticity or vice versa. However, different layers naturally exhibit varying lev-
els of uncertainty (entropy) when classifying tasks. High-entropy layers tend to
underfit by failing to capture task-specific patterns, while low-entropy layers risk
overfitting by becoming overly confident and specialized. To address this im-
balance, we propose an entropy-aware continual learning method that employs a
dynamic feedback mechanism to regulate each layer based on its entropy. Specifi-
cally, our approach reduces entropy in high-entropy layers to mitigate underfitting
and increases entropy in overly confident layers to alleviate overfitting. This adap-
tive regulation encourages the model to converge to wider local minima, which
have been shown to improve generalization. Our method is general and can be
seamlessly integrated with both replay- and regularization-based approaches. Ex-
periments on Split-CIFAR100 and Tiny-ImageNet demonstrate substantial perfor-
mance gains over state-of-the-art baselines.

1 INTRODUCTION

Continual learning (Masana et al., 2023; De Lange et al., 2022) aims to enable models to acquire
new tasks without suffering from catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999),
the degradation of performance on previously learned knowledge. This issue stems from the fun-
damental stability-plasticity dilemma; a model must be stable enough to preserve old knowledge
while remaining sufficiently plastic to learn new information. To navigate this trade-off, research
has predominantly explored three families of approaches: regularization-based, replay-based, and
parameter-expansion methods.

A primary limitation of many existing approaches is their reliance on simple regularization tech-
niques, such as L1 or L2, which often guide the model toward sharp minima in the loss landscape,
which are known to generalize poorly (Foret et al., 2021). This convergence to a narrow ”deep well”
rather than a broad ”flat valley” is a form of overfitting that degrades test-time performance. Fur-
thermore, these methods are typically layer-agnostic, lacking any mechanism to modulate learning
based on layer-specific performance. By failing to preserve the knowledge in well-performing layers
while simultaneously encouraging underperforming layers to adapt, they compromise the model’s
ability to balance stability and plasticity, ultimately hindering overall accuracy.

Our primary contribution is a novel technique we call Self-Adaptive Entropy Scaling. While reg-
ularizing the final layer’s classification entropy is a known and effective technique for improving
model robustness (Cha et al., 2021b), a naive, uniform application to all layers has a significant
drawback. Indiscriminately penalizing layers that already exhibit high entropy can be detrimental,
potentially degrading valuable learned representations. To address this, our entropy scaling method
adaptively adjusts the regularization strength for each layer through the lens of Bayesian inference.
The penalty is applied strongly to layers with low entropy (i.e., those with over-confident outputs)
while being reduced for layers that already possess high-entropy features, preserving their diversity.

To further enhance the efficacy of entropy scaling, we introduce a complementary adaptive training
mechanism. Our adaptive training modulates the plasticity of each layer based on its performance
on previous tasks. Specifically, we constrain updates for high-performing layers to preserve their
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acquired knowledge, while conversely amplifying updates for underperforming layers to encourage
more rapid adaptation.

To demonstrate the effectiveness of our approach, we conduct both theoretical analysis and empiri-
cal evaluation. Theoretically, we show that our method leads to a tighter generalization error bound.
Empirically, our experiments on standard image classification benchmarks confirm that the pro-
posed approach significantly improves average accuracy while simultaneously reducing forgetting,
outperforming state-of-the-art methods. Our contributions are as follows:

• We propose a novel framework for continual learning that employs a dynamic feed-
back mechanism to apply layer-aware regularization, overcoming the limitations of layer-
agnostic approaches.

• We design a new algorithm that integrates two techniques, entropy scaling and adaptive
training through Bayesian inference, to intelligently modulate plasticity across the network.

• We conduct in-depth theoretical analysis that firmly supports the effectiveness of our
method.

• We conduct comprehensive experiments on popular continual learning datasets, achieving
state-of-the-art results and showing marked improvements in both accuracy and knowledge
retention.

2 RELATED WORK

Continual learning (CL) addresses the challenge of training models on a sequence of tasks without
catastrophically forgetting previously acquired knowledge. To this end, three primary classes of
methods have been developed. Regularization-based approaches (Rebuffi et al., 2017; Zenke et al.,
2017; Nguyen et al., 2018; Aljundi et al., 2018; Yan et al., 2024) introduce penalty terms into the loss
function to constrain updates on parameters critical for past tasks. Another line of work, memory-
replay, maintains a buffer of exemplars from previous tasks (Shin et al., 2017; Rolnick et al., 2019;
Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Pham et al., 2021; Arani et al., 2022; Verwimp
et al., 2021) that are revisited during subsequent training to prevent knowledge degradation. A third
approach, architecture expansion (Rusu et al., 2022; Mallya & Lazebnik, 2018; Serra et al., 2018; Li
et al., 2019; Hung et al., 2019), dynamically grows the network by adding new weights or adapters
as new tasks arrive, thereby isolating task-specific parameters to prevent interference.

While these general strategies are effective, recent works have explored output regularization-based
approaches. For instance, CPR (Cha et al., 2021b) provides a strong baseline by regulating only the
final output layer to find wider local minima. However, this singular focus means that the crucial
intermediate layers are not explicitly regularized, potentially limiting their robustness against forget-
ting. In our work, we argue that not all layers are created equal. We bridge this gap by introducing
a method that dynamically applies supervision across multiple layers, recognizing that earlier and
later layers play distinct roles. This allows our model to reap the benefits of broad minima across
the entire network, unlike CPR, while also leveraging the unique contributions of each layer.

3 METHOD

3.1 PRELIMINARIES

In the standard continual learning (CL) setup, a model is trained on a sequence of tasks, arriving
one after another. Let the sequence of tasks be denoted by T = {T1, T2, . . . , TN}, where N is the
total number of tasks. Each task Tt for t ∈ {1, . . . , N} is associated with its own data distribution
Dt = {(xi, yi)}, where xi represents the input data and yi is the corresponding label. Except for a
small memory buffer, the data from previous tasks T1, . . . , Tt−1 is not available when the model is
learning the current task Tt.
Our model is represented by a function f(·;θ), parameterized by a set of parameters θ ∈ Rd.
The goal of the model is to learn a mapping from inputs to outputs. Upon observing task Tt, the
model updates its parameters θ to minimize a task-specific loss function, Lt. This loss is typically
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Figure 1: As the input data propagates through each successive block of the network, its feature vec-
tor at each layer is fed into a dedicated classification head. We calculate the entropy of the resulting
output distribution from each head. This entropy measurement then dynamically adjusts the strength
of the regularization term applied to that specific layer, allowing for adaptive regularization through-
out the model. Without our method, layer output entropies (solid red, green, and blue) exhibit high
variance, indicating that some layers become over-confident while others remain uncertain. Our
method guides the entropy of each layer towards a stable, medium-entropy target (dashed red line),
promoting more consistent representations throughout the network.

computed as the empirical risk over the data distribution Dt:
Lt(θ) = E(x,y)∼Dt

[ℓ(f(x;θ), y)] (1)

where ℓ(·, ·) is a standard loss function, such as cross-entropy for classification. Let θ∗
t−1 denote

the optimal parameters found after training on tasks up to Tt−1. When task Tt arrives, the learning
process aims to find a new set of parameters θ∗

t that minimizesLt(θ) without significantly increasing
the loss on previous tasks. This is the core challenge of continual learning, known as catastrophic
forgetting. The ideal objective of a continual learning agent is to find a single set of parameters θ∗

N
that performs well across all tasks simultaneously. This can be formulated as minimizing the total
loss over the entire sequence:

θ∗
N = argmin

θ

N∑
t=1

Lt(θ) (2)

However, due to the sequential and constrained nature of data availability, achieving this joint opti-
mization directly is not feasible. The primary goal of CL methods is to approximate this solution by
sequentially updating the parameters θ in a way that balances performance on the current task with
the preservation of knowledge from past tasks.

3.2 GUIDED ENTROPY-ADAPTIVE FEEDBACK FOR CONTINUAL LEARNING (GRACE)

Our proposed method, GRACE, is a framework designed to mitigate catastrophic forgetting in con-
tinual learning. The fundamental principle is to dynamically adjust the learning process for each
layer based on two key signals: its current output entropy and its historical performance on past
tasks. We formulate this as a general optimization problem where we adaptively scale the standard
task and augment it with a regularization term that is entropy-scaled.

The general optimization objective for a given task is:

L(θ) = Lt(θ) +Rt(θ) =

L∑
l=1

(αl · Ll(θ) + γl ·Rl(θ)) (3)
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Here, Ll represents the primary objective function cross-entropy loss of layer l on the current task,
and it is modified by αl, an adaptive training modulator that scales the main loss term based on the
layer’s historical performance. For each layer, the regularization function Rl is modulated by γl, an
entropy scaling factor. We sum over all the layers 1 . . . L to get the total task loss Lt. The following
sections detail the two core components of this framework: entropy scaling and adaptive training,
which respectively define γl and αl.

Algorithm 1 Training with Layer-wise Adaptive Regularization

Require: ResNet model f(·;θ) with L layers. Sequence of training datasets D1, . . . , DT . Valida-
tion set Dval. Learning rate η.

1: Initialize modulators αl ← 1 for all l ∈ {1, . . . , L}.
2: for task t← 1 to T do ▷ Adaptive Training: Calculate αl for the current task
3: if t > 1 then
4: Let Aset be an empty set
5: for l← 1 to L do
6: Al ← EvaluateAccuracy(f(·;θ)l, Dval) ▷ Evaluate layer on past data
7: Add Al to Aset
8: end for
9: µA ← Mean(Aset) σA ← StdDev(Aset) Lt ← 0

10: for l← 1 to L do
11: sl ← (Al − µA)/σA

12: αl ← etanh(−sl) ▷ Calculate the modulator based on the score
13: Lt ← Lt + αl · Ll

14: end for
15: end if
16: for each training epoch do ▷ Train on current task t
17: for each mini-batch (Xb, Yb) ∈ Dt do
18: Perform forward pass to get activations hl for each layer l.
19: LetHset be an empty list
20: for l← 1 to L do
21: pl ← softmax(hl), H(pl)← −

∑
i pl,i log pl,i

22: H̄l ← E(x,y)∈(Xb,Yb)[H(pl)] ▷ Average entropy over batch
23: Add H̄l toHset
24: end for
25: µH ← Mean(Hset), σH ← StdDev(Hset),Rt ← 0
26: for l← 1 to L do
27: zl ← (Hl − µH)/σH

28: γl ← etanh(zl) ▷ Calculate scaling factor based on z-score
29: Rt ← Rt + γl · H̄l

30: end for
31: L ← Lt +Rt

32: Update parameters: θ ← θ − η∇θL.
33: end for
34: end for
35: Update Dval with representative samples from current task t.
36: end for

Self-Adaptive Entropy Scaling (γl): The goal of entropy scaling is to encourage layers with over-
confident (low-entropy) outputs to learn more generalizable representations, while protecting the
features of layers that already exhibit high-entropy, diverse outputs. To achieve this, our method
dynamically modulates the regularization penalty based on a layer’s relative entropy compared to
other layers within the same mini-batch, rather than its absolute entropy.

We propose a principled adaptive entropy scaling approach. We model the adaptive entropy scaling
factor γℓ in layer ℓ as a latent variable in a Bayesian framework. The goal is to infer a suitable
regularization strength for each layer, based on its entropy Hℓ. We use variational inference to
approximate the posterior distribution over γℓ given the observed entropy.
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Let γℓ ∈ R+ be the entropy regularization strength for layer ℓ, and Hℓ ∈ R+ the entropy observed
at that layer. We assume a Gaussian noise model for entropy given regularization:

Hℓ = H∗ +
c

γℓ
+ εℓ, εℓ ∼ N (0, σ2)

Where H∗ is a target entropy value – a reference or anchor that represents the desired entropy level
for a model layer. We do not need to estimate H∗ since our approach can normalize the entropy
values across different layers without knowing H∗. c is a constant and σ is the standard deviation.
Thus, the likelihood becomes:

p(Hℓ | γℓ) = N
(
Hℓ | H∗ +

c

γℓ
, σ2

)
We place a log-normal prior on γℓ:

p(γℓ) = LogNormal(µ0, τ
2) ⇒ log γℓ ∼ N (µ0, τ

2)

A log-normal prior is chosen for γℓ because it ensures positivity, as γℓ > 0 by design. It naturally
models multiplicative uncertainty, which is appropriate for scaling factors in entropy regularization.
The distribution also has heavy tails, allowing the model to flexibly assign both strong and weak
regularization across layers. Furthermore, operating in log-space– where log γℓ ∼ N– enables effi-
cient variational inference via the reparameterization trick and permits closed-form KL divergence
computation. The posterior over γℓ is intractable, so we approximate it via variational inference. Let
the variational posterior be:

qϕ(γℓ) = LogNormal(µϕ, σ
2
ϕ) ⇒ log γℓ ∼ N (µϕ, σ

2
ϕ)

We optimize the evidence lower bound (ELBO):

L(ϕ) = Eγℓ∼qϕ [log p(Hℓ | γℓ) + log p(γℓ)− log qϕ(γℓ)]

Therefore, the ELBO becomes:

L(ϕ) = Eγℓ∼qϕ

[
− 1

2σ2

(
Hℓ −H∗ − c

γℓ

)2

− 1

2τ2
(log γℓ − µ0)

2 − log γℓ

+
1

2σ2
ϕ

(log γℓ − µϕ)
2 + log γℓ

]
+ const

To avoid optimizing L(ϕ) explicitly during training, we approximate the posterior mean:

γ̂ℓ = Eqϕ [γℓ] = exp

(
µϕ +

σ2
ϕ

2

)
(4)

Assuming a small variance σ2
ϕ ≈ 0, we approximate γ̂ℓ ≈ exp(µϕ). Empirically, we set:

µϕ ≈ tanh (zℓ) , where zℓ =
Hℓ − µH

σH
(5)

For each mini-batch, we first compute the average output entropy H̄l for every layer l. The µH

denotes the mean of this set of entropies {H̄1, . . . , H̄L} and σH denotes the corresponding standard
deviation. zℓ (z-score) denotes the relative entropy for each layer. This z-score, which measures
how far a layer’s entropy deviates from the batch average, is used to compute the final scaling factor
γl. This yields the final approximation used in GRACE:

γℓ ≈ exp

(
tanh

(
Hℓ − µH

σH

))
(6)

This formulation ensures an inverse relationship between relative entropy and the regularization
strength. A layer with lower-than-average entropy (negative zl) will yield a scaling factor γl < 1,
promoting higher entropy to reduce overconfident predictions. Conversely, a layer with higher-
than-average entropy (positive zl) will receive a scaling factor γl > 1, thereby strengthening the
regularization effect to reduce entropy and alleviate underfitting.
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Adaptive Training (αl): Inspired by our proposed Self-Adaptive Entropy Scaling, the principle
of adaptive training is to dynamically adjust each layer’s plasticity based on its performance on
previously seen tasks. This allows us to preserve knowledge in stable, well-performing layers while
encouraging adaptation in underperforming ones. This is implemented via the learning modulator
αl. After completing training on a task, we evaluate the average accuracy Al for each layer on a
validation set of past tasks. We then quantify the relative performance of each layer by calculating its
z-score, which measures the deviation from the mean accuracy (µA) in units of standard deviation
(σA). (Here we use the variable s for ”score” to differentiate it from the z-score used in entropy
scaling): sl = Al−µA

σA
. This z-score is then mapped to the modulator αl for the next training

task. This mapping is designed such that high-performing layers (sl > 0) receive a smaller αl

(e.g., < 1), reducing the impact of regularization and thus preserving their weights. Conversely,
underperforming layers (sl < 0) receive a larger αl (e.g., > 1), emphasizing their importance.
Finally, we calculate αl as follows, to bound it within a reasonable range around 1:

αl = etanh(−sl) (7)

We use αl to modify this Ll (the loss for the classification head attached to layer l on the current
task’s data). We then present the detailed algorithm in Algorithm 1:

4 THEORETICAL ANALYSIS

We perform theoretical analysis about the generalization error with our adaptive entropy control in
Theorem 4.4 and forgetting bound in Theorem 4.5.
Assumption 4.1. (Smoothness). Each population objective Lt is Lt-smooth; i.e., for all θ,θ′,∥∥∇Lt(θ)−∇Lt(θ

′)
∥∥ ≤ Lt ∥θ − θ′∥.

Assumption 4.2. (Entropy Lipschitzness). Along the training trajectory, each layer-entropy is Lip-
schitz in the parameters: for all θ,θ′ and each layer ℓ,

|Hl(θ)−Hl(θ
′)| ≤ cℓ ∥θ − θ′∥.

Assumption 4.3. (Posterior concentration). The training algorithm induces a posterior qt with finite
second moment such that

Eθ∼qt

∥∥θ − θ̄t
∥∥2 ≤ σ2

t ,

where θ̄t := Eθ∼qt [θ].

Cumulative entropy deviation. We define the cumulative (layerwise) entropy deviation at task t:

∆t :=

L∑
ℓ=1

(
Hl(θt)−H∗

ℓ,t

)2
.

where H∗
ℓ,t denotes the target entropy for layer l at task t.

Theorem 4.4 (PAC-Bayes generalization with entropy control). Fix δ ∈ (0, 1). For task t with
sample size nt ≥ 2, let

Lt(θ) = Rt(θ) + λ∆t(θ), Rt(θ) = E(x,y)∼Dt

[
ℓt(fθ(x), y)

]
,

where ℓt ∈ [0, 1] and ∆t(θ) =
∑L

ℓ=1

(
Hl(θ))−H∗

ℓ,t

)2
.

Let L̂t(θ) = R̂t(θ) + λ ∆̂t(θ) be the empirical analogue on nt samples. For any posterior qt
absolutely continuous w.r.t. a prior pt (chosen before seeing the task-t data), with probability at
least 1− δ over the sample,

Eθ∼qt

[
Lt(θ)

]
≤ Eθ∼qt

[
L̂t(θ)

]
+

√
KL(qt∥pt) + ln

2
√
nt

δ

2(nt − 1)
+ λEθ∼qt

[
∆t(θ)

]
. (8)

Moreover, if pt = N (θt−1,Σp) and qt has mean θ̄t and covariance Σq ,

KL(qt∥pt) ≤
κt

2
∥θ̄t−θt−1∥2 + Ct, κt := λmax(Σ

−1
p ), Ct :=

1
2

(
tr(Σ−1

p Σq)− k + ln
detΣp

detΣq

)
.
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Theorem 4.5 (Forgetting bound via parameter drift). Let Fs→t := Ls(θt) − Ls(θs) for 1 ≤ s <
t ≤ T . Assume:

(A1) ℓs ∈ [0, 1] and along the optimization trajectory the population objective Ls has bounded
gradient: supθ∈Γ ∥∇Ls(θ)∥ ≤ Ls, where Γ contains {θk}tk=s and the line segments
between successive iterates.

(A2) (Entropy Lipschitzness) For each layer ℓ, H(Zℓ(θ)) is Lipschitz in θ with constant cℓ along
Γ.

(A3) (Local strong convexity/PL for task k) The empirical objective Jk(θ) := L̂k(θ) = R̂k(θ)+

λ ∆̂k(θ) is µk-strongly convex on the segment between θk−1 and θk, i.e.,〈
∇Jk(θ)−∇Jk(θ′), θ − θ′〉 ≥ µk ∥θ − θ′∥2.

Then

Fs→t ≤ Ls

t∑
k=s+1

1

µk

(∥∥∇R̂k(θk−1)
∥∥ + 2λC∆

√
∆̂k(θk−1)

)
, C∆ :=

( L∑
ℓ=1

c2ℓ

)1/2
. (9)

Equivalently, since ∥∇R̂k∥ ≤ ∥∇L̂k∥+ 2λC∆

√
∆̂k,

Fs→t ≤ Ls

t∑
k=s+1

1

µk

(∥∥∇L̂k(θk−1)
∥∥ + 4λC∆

√
∆̂k(θk−1)

)
.

Due to space limitations, we provide theorem proof in Appendix.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Datasets: We evaluate our method on three benchmark datasets: CIFAR-10, CIFAR-100, and Tiny-
ImageNet. Following standard class-incremental learning protocols, we partition each dataset into a
sequence of distinct tasks. Specifically, CIFAR-10 is divided into 5 tasks of 2 classes each, CIFAR-
100 is split into 10 tasks of 10 classes each, and Tiny-ImageNet is partitioned into 10 tasks of 20
classes each.

Baselines: We compare our method to strong baselines, including AGEM (Chaudhry et al., 2019a),
ER (Chaudhry et al., 2019b), MIR (Aljundi et al., 2019a), GSS (Aljundi et al., 2019b), ASER (Shim
et al., 2021), ER-AML (Caccia et al., 2022), GDumb (Prabhu et al., 2020), SCR (Mai et al., 2021),
OCM (Guo et al., 2022), OnPro (Wei et al., 2023), GSA (Guo et al., 2023), DER++ (Buzzega et al.,
2020), IL2A (Zhu et al., 2021), CO2L (Cha et al., 2021a), LUCIR (Hou et al., 2019), CCIL (Mittal
et al., 2021), BIC (Wu et al., 2019), SSIL (Ahn et al., 2021), and MOSE (Yan et al., 2024).

Implementation details: For our experiments, baseline results for all methods were adapted from
(Yan et al., 2024). The only exception was the MOSE baseline itself, which we reproduced to ensure
a fair comparison. On the Tiny-ImageNet dataset, our reproduction using the unmodified official
code yielded between 2 to 6% higher accuracy than the results reported in the original paper. We
therefore average these baselines for all subsequent comparisons. All experiments were conducted
on a single NVIDIA RTX 2080 Ti GPU with 12GB of VRAM, except for Tiny-ImageNet (with a
buffer size of 10,000) required an NVIDIA RTX A4000 with 16GB of RAM. Each reported result
is the mean and standard deviation computed over 10 independent runs.

5.2 RESULTS

Our proposed method demonstrates significant improvements over existing state-of-the-art ap-
proaches in continual learning, as shown in Table 1 (overall accuracy) and Table 2 (forgetting).
On the Split CIFAR-100 benchmark, our method outperforms the strongest baseline by up to 2.0%

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive comparison of continual learning methods on Split CIFAR-100 and Split
Tiny-ImageNet under various memory constraints. All values are Accuracy (%).

Method Split CIFAR-100 (10 tasks) - ACC(%) ↑ Split Tiny-ImageNet (100 tasks) - ACC(%) ↑
M = 1k M = 2k M = 5k M = 2k M = 4k M = 10k

AGEM (2019) 5.8±0.2 5.9±0.3 6.1±0.4 0.9±0.1 2.0±0.5 3.9±0.2
ER (2019) 15.7±0.3 21.3±0.5 28.8±0.8 4.7±0.5 10.1±0.7 11.7±0.2
MIR (2019) 16.0±0.4 19.0±0.1 24.1±0.2 6.1±0.5 11.7±0.2 13.5±0.2
GSS (2019) 11.1±0.2 13.3±0.5 17.4±0.1 3.3±0.5 10.0±0.2 10.5±0.2
ASER (2021) 16.4±0.3 12.2±1.9 27.1±0.3 5.3±0.3 8.2±0.2 10.3±0.4
ER-AML (2022) 16.1±0.4 17.6±0.5 22.6±0.1 5.4±0.2 7.1±0.5 10.1±0.4
GDumb (2020) 17.1±0.4 25.1±0.2 38.6±0.5 12.6±0.1 12.7±0.3 15.7±0.2
SCR (2021) 27.3±0.4 30.8±0.5 36.5±0.3 12.6±1.1 18.2±0.1 21.1±1.1
OCM (2022) 28.1±0.3 35.0±0.4 42.4±0.5 15.7±0.2 21.2±0.4 27.0±0.3
OnPro (2023) 30.0±0.4 35.9±0.6 41.3±0.5 16.9±0.4 22.1±0.4 29.8±0.5
GSA (2023) 31.4±0.2 39.7±0.6 49.7±0.2 18.4±0.4 26.0±0.2 33.2±0.4
DER++ (2020) 15.3±0.2 19.7±1.5 27.0±0.7 4.5±0.3 10.1±0.3 17.6±0.5
IL2A (2021) 18.2±1.2 19.7±0.5 22.4±0.2 5.5±0.7 8.1±1.2 11.6±0.4
Co2L (2021) 17.1±0.4 24.2±0.2 32.2±0.5 10.1±0.2 15.8±0.4 22.5±1.2
LUCIR (2019) 8.6±1.3 19.5±0.7 16.9±0.5 7.6±0.5 9.6±0.7 12.5±0.7
CCIL (2021) 18.5±0.3 19.1±0.4 20.5±0.3 5.6±0.9 7.0±0.5 15.2±0.5
BiC (2019) 21.2±0.3 36.1±1.3 42.5±1.2 10.2±0.9 18.9±0.3 25.2±0.6
SSIL (2021) 26.0±0.1 33.1±0.5 39.5±0.4 9.6±0.7 15.2±1.5 21.1±0.1
MOSE (2024) 37.4±0.3 47.0±0.4 55.6±0.4 24.7±0.5 32.4±0.3 40.6±0.5

GRACE (Ours) 39.4±0.4 47.6±0.1 56.3±0.1 28.1±0.2 34.8±0.2 41.4±0.3

in average accuracy, and the performance gains are even more pronounced on the more challeng-
ing Split Tiny-ImageNet dataset, where our method achieves up to 3.4% higher average accuracy.
When compared to the second-most accurate method, our approach reduces the forgetting metric
by an average of 1.1% on CIFAR-100 and 6.6% on Tiny-ImageNet. While some methods focus-
ing exclusively on mitigating forgetting may report lower forgetting values in isolation, they do so
at a significant cost to overall accuracy, making our method the most effective and practical solu-
tion. We attribute these gains to our dynamic, layer-aware regularization strategy, which contrasts
with the static approaches common in prior work. The improvement in overall accuracy is pri-
marily driven by the entropy scaling component. By selectively penalizing over-confident layers,
our method effectively mitigates overfitting, a conclusion supported by observing higher valida-
tion accuracy despite lower training accuracy compared to baselines. Concurrently, the reduction
in catastrophic forgetting stems from the adaptive training mechanism. By constraining updates
to well-performing layers, this component successfully preserves previously acquired knowledge.
Furthermore, we validate the practical utility of our method in resource-constrained environments
in Table 3, demonstrating its strong performance in small-buffer scenarios characteristic of online
learning.

5.3 ABLATION STUDY

We perform ablation study for GRACE in Table 4.

w/o Entropy Scaling: Removing the entropy scaling mechanism causes the most significant perfor-
mance degradation, with accuracy falling to 37.2%. This confirms that adaptive scaling is the core
contribution of our method. The performance suffers because, without scaling, any entropy regular-
ization is applied uniformly. This is detrimental because early layers in a network are responsible
for learning general, low-level features (e.g., edges, textures) that are common across many classes.

w/o Adaptive Training: Removing the adaptive training component resulted in a modest drop in
accuracy from 39.4% to 38.9%. This is expected, as this mechanism is designed to intelligently
manage the stability-plasticity trade-off. By adaptively reducing the regularization strength for lay-
ers that have already learned robust features for past tasks, it preserves critical knowledge. Removing
this targeted intervention leads to slightly increased forgetting and a predictable drop in accuracy.
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Table 2: Average Forgetting results on Split CIFAR-100 and Split Tiny-ImageNet benchmarks.

Method
Split CIFAR-100 (10 tasks) - AF(%) ↓ Split Tiny-ImageNet (100 tasks) - AF(%) ↓
M = 1k M = 2k M = 5k M = 2k M = 4k M = 10k

AGEM (2019) 77.6±2.0 76.9±1.5 78.3±1.2 73.9±0.2 77.9±0.2 74.1±0.3
ER (2019) 66.1±1.3 59.3±0.9 60.0±1.6 68.2±2.8 66.2±0.8 67.2±0.2
MIR (2019) 24.5±0.3 21.4±0.3 21.0±0.1 61.1±3.2 60.4±0.5 59.5±0.3
GSS (2019) 73.4±4.2 69.3±3.1 70.9±2.9 72.8±1.2 72.6±0.4 71.5±0.2
ASER (2021) 25.0±0.2 12.2±1.9 13.2±0.1 65.7±0.7 64.2±0.2 62.2±0.1
ER-AML (2022) 51.5±0.8 49.2±0.5 38.7±0.6 47.4±0.5 43.2±0.3 41.0±0.5
GDumb (2020) 16.7±0.5 17.6±0.2 16.8±0.4 15.9±0.5 14.6±0.3 11.7±0.2
SCR (2021) 17.5±0.2 11.6±0.5 5.6±0.4 19.4±0.3 15.4±0.3 14.9±0.7
OCM (2022) 12.2±0.3 8.5±0.3 4.5±0.3 23.5±1.9 21.0±0.3 18.6±0.5
OnPro (2023) 10.4±0.5 6.1±0.6 5.3±0.6 17.4±0.4 16.8±0.4 14.6±0.3
GSA (2023) 33.2±0.6 22.8±0.4 8.7±0.3 35.5±0.3 25.8±0.4 16.9±0.6
DER++ (2020) 43.4±0.2 44.0±1.9 25.8±3.5 67.2±1.7 63.6±0.3 55.2±0.7
IL2A (2021) 24.6±0.6 12.5±0.7 20.0±0.5 65.5±0.7 60.1±0.5 57.6±1.1
Co2L (2021) 16.9±0.4 16.6±0.6 9.9±0.7 60.5±0.5 52.5±0.9 42.5±0.8
LUCIR (2019) 60.0±0.1 47.5±0.9 44.3±0.7 46.4±0.7 42.2±0.9 37.6±0.7
CCIL (2021) 16.7±0.5 16.1±0.3 17.5±0.2 59.4±0.3 56.2±1.3 48.9±0.6
BiC (2019) 40.2±0.4 30.9±0.7 18.7±0.5 43.5±0.5 32.9±0.5 24.9±0.4
SSIL (2021) 40.1±0.5 33.9±1.2 21.7±0.8 44.4±0.7 36.6±0.7 29.0±0.7
MOSE (2024) 34.7±0.3 23.6±0.4 12.7±0.4 33.3±0.5 22.1±0.4 11.5±0.4

GRACE (Ours) 33.9±0.3 22.1±0.4 11.6±0.5 22.7±1.0 15.3±0.8 8.95±0.3

(a) (Left) In a baseline model without our interven-
tion, a significant entropy divergence emerges during
training. Earlier layers consistently maintain high en-
tropy, while deeper layers collapse to a low-entropy
state, suggesting over-confidence.

(b) (Right) With entropy scaling, the entropies across
all layers are successfully regularized. They converge
towards a stable, medium-entropy state, showing that
our method prevents individual layers from becoming
either over-confident or under-confident.

Table 3: Comparison of memory efficiency on
Split CIFAR-100 and Split Tiny-ImageNet.

Method Split CIFAR-100 Split Tiny-ImageNet

M=200 M=500 M=500 M=1K

OCM (2022) 12.2±0.4 19.7±0.5 7.3±0.5 10.5±0.6
OnPro (2023) 14.1±0.9 21.5±1.4 7.2±0.4 10.2±0.3
GSA (2023) 14.9±0.3 22.9±0.2 10.4±0.3 14.8±0.2
MOSE (2024) 20.2±0.5 28.3±0.7 15.2±0.7 20.2±0.9

GRACE (Ours) 21.5±0.5 29.8±0.6 16.6±0.6 21.7±0.8

Table 4: Ablation study on Split-CIFAR-100
(with a buffer size of 1,000), showing accuracy
drop when removing components.

Method / Variation Accuracy (%)
Main Model (Full) 39.4

w/o Entropy Scaling 37.2
w/o Adaptive Training 38.9

6 CONCLUSION

In this work, we introduced a novel, layer-wise framework to mitigate catastrophic forgetting in con-
tinual learning. Our core method dynamically regularizes each layer by applying a penalty inversely
proportional to its output entropy. Our approach is principled and modular and can be readily in-
tegrated into existing continual learning pipelines. We have demonstrated its effectiveness through
significant performance gains on the CIFAR-10, CIFAR-100, and Tiny-ImageNet benchmarks.
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A APPENDIX

Theorem A.1 (PAC-Bayes generalization with entropy control). Fix δ ∈ (0, 1). For task t with
sample size nt ≥ 2, let

Lt(θ) = Rt(θ) + λ∆t(θ), Rt(θ) = E(x,y)∼Dt

[
ℓt(fθ(x), y)

]
,

where ℓt ∈ [0, 1] and ∆t(θ) =
∑L

ℓ=1

(
Hl(θ))−H∗

ℓ,t

)2
.

Let L̂t(θ) = R̂t(θ) + λ ∆̂t(θ) be the empirical analogue on nt samples. For any posterior qt
absolutely continuous w.r.t. a prior pt (chosen before seeing the task-t data), with probability at
least 1− δ over the sample,

Eθ∼qt

[
Lt(θ)

]
≤ Eθ∼qt

[
L̂t(θ)

]
+

√
KL(qt∥pt) + ln

2
√
nt

δ

2(nt − 1)
+ λEθ∼qt

[
∆t(θ)

]
. (10)

Moreover, if pt = N (θt−1,Σp) and qt has mean θ̄t and covariance Σq ,

KL(qt∥pt) ≤
κt

2
∥θ̄t−θt−1∥2 + Ct, κt := λmax(Σ

−1
p ), Ct :=

1
2

(
tr(Σ−1

p Σq)− k + ln
detΣp

detΣq

)
.

Proof of Theorem A.1. By a standard PAC-Bayes inequality for [0, 1]-bounded losses (e.g.,
Seeger/McAllester form), with probability at least 1 − δ over the sample of size nt ≥ 2, for any
posterior qt ≪ pt,

Eθ∼qt

[
Rt(θ)

]
≤ Eθ∼qt

[
R̂t(θ)

]
+

√
KL(qt∥pt) + ln

2
√
nt

δ

2(nt − 1)
. (1)

A succinct derivation is as follows. Let rθ = R̂t(θ) and Rθ = Rt(θ). The “shift-of-measure”
(Donsker–Varadhan) inequality implies that for any measurable ϕ,

Eqt [ϕ(θ)] ≤ KL(qt∥pt) + lnEpt

[
eϕ(θ)

]
.

Apply this with ϕ(θ) = λ
(
Rθ − rθ

)
and bound the moment-generating function uniformly over θ

by Hoeffding’s lemma for [0, 1]-bounded losses (together with a union/intersection trick that yields
the nt−1 and the ln(2

√
nt/δ) refinements), then optimize over λ > 0 to obtain equation 1.

By definition,
Eqt

[
Lt(θ)

]
= Eqt

[
Rt(θ)

]
+ λEqt

[
∆t(θ)

]
.

Combining with equation 1 gives

Eqt

[
Lt(θ)

]
≤ Eqt

[
R̂t(θ)

]
+

√
KL(qt∥pt) + ln

2
√
nt

δ

2(nt − 1)
+ λEqt

[
∆t(θ)

]
. (2)

Now note L̂t(θ) = R̂t(θ) + λ ∆̂t(θ) ≥ R̂t(θ) since ∆̂t(θ) ≥ 0. Hence

Eqt

[
R̂t(θ)

]
≤ Eqt

[
L̂t(θ)

]
,

and substituting this into equation 2 yields the claimed bound equation 10. (This step deliber-
ately avoids an empirical-process bound for ∆t − ∆̂t; adding such a bound would replace the last
+λEqt [∆t] term by +λEqt [∆̂t]+ a vanishing OP(1/

√
nt) term.)

If pt = N (θt−1,Σp) and qt has mean θ̄t and covariance Σq , the Gaussian KL identity gives

KL(qt∥pt) = 1
2

(
tr(Σ−1

p Σq) + (θ̄t − θt−1)
⊤Σ−1

p (θ̄t − θt−1)− k + ln
detΣp

detΣq

)
.

Using (θ̄t − θt−1)
⊤Σ−1

p (θ̄t − θt−1) ≤ λmax(Σ
−1
p ) ∥θ̄t − θt−1∥2 gives the stated bound with

κt = λmax(Σ
−1
p ) and the remaining terms absorbed into Ct.
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Theorem A.2 (Forgetting bound via parameter drift). Let Fs→t := Ls(θt) − Ls(θs) for 1 ≤ s <
t ≤ T . Assume:

(A1) ℓs ∈ [0, 1] and along the optimization trajectory the population objective Ls has bounded
gradient: supθ∈Γ ∥∇Ls(θ)∥ ≤ Ls, where Γ contains {θk}tk=s and the line segments
between successive iterates.

(A2) (Entropy Lipschitzness) For each layer ℓ, Hl(θ) is Lipschitz in θ with constant cℓ along Γ.

(A3) (Local strong convexity/PL for task k) The empirical objective Jk(θ) := L̂k(θ) = R̂k(θ)+

λ ∆̂k(θ) is µk-strongly convex on the segment between θk−1 and θk, i.e.,〈
∇Jk(θ)−∇Jk(θ′), θ − θ′〉 ≥ µk ∥θ − θ′∥2.

Then

Fs→t ≤ Ls

t∑
k=s+1

1

µk

(∥∥∇R̂k(θk−1)
∥∥ + 2λC∆

√
∆̂k(θk−1)

)
, C∆ :=

( L∑
ℓ=1

c2ℓ

)1/2
. (11)

Equivalently, since ∥∇R̂k∥ ≤ ∥∇L̂k∥+ 2λC∆

√
∆̂k,

Fs→t ≤ Ls

t∑
k=s+1

1

µk

(∥∥∇L̂k(θk−1)
∥∥ + 4λC∆

√
∆̂k(θk−1)

)
.

Proof of Theorem A.2. Reduce forgetting to parameter displacement. By the fundamental theo-
rem of calculus along the line segment from θs to θt and the bounded-gradient assumption (A1),

Fs→t =

∫ 1

0

〈
∇Ls

(
θs + τ(θt − θs)

)
, θt − θs

〉
dτ ≤

(
sup
θ∈Γ
∥∇Ls(θ)∥

)
∥θt−θs∥ ≤ Ls ∥θt−θs∥.

By the triangle inequality,

∥θt − θs∥ ≤
t∑

k=s+1

∥θk − θk−1∥.

Hence

Fs→t ≤ Ls

t∑
k=s+1

∥θk − θk−1∥. (12)

Bound each inter-task jump by the local geometry of Jk. Since θk is a (local) minimizer or a
first-order stationary point of Jk on task k,∇Jk(θk) = 0. By strong convexity/strong monotonicity
along the segment (Assumption (A3)) and Cauchy–Schwarz,

µk ∥θk − θk−1∥ ≤
∥∥∇Jk(θk−1)−∇Jk(θk)

∥∥ =
∥∥∇Jk(θk−1)

∥∥.
Therefore

∥θk − θk−1∥ ≤
1

µk

∥∥∇Jk(θk−1)
∥∥ =

1

µk

∥∥∇R̂k(θk−1) + λ∇∆̂k(θk−1)
∥∥. (13)

Control the entropy-gradient by entropy deviation. Write ∆̂k(θ) =
∑L

ℓ=1 dℓ,k(θ)
2 with

dℓ,k(θ) = Hl(θ))−H∗
ℓ,k.

By the chain rule,

∇∆̂k(θ) = 2

L∑
ℓ=1

dℓ,k(θ)∇Hl(θ)).

By Assumption (A2) and Rademacher’s theorem (Lipschitz⇒ a.e. differentiable with gradient norm
bounded by the Lipschitz constant) we have ∥∇Hl(θ)∥ ≤ cℓ along Γ. Thus, by Cauchy–Schwarz,

14
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∥∇∆̂k(θ)∥ ≤ 2
( L∑

ℓ=1

dℓ,k(θ)
2
)1/2( L∑

ℓ=1

c2ℓ

)1/2
= 2C∆

√
∆̂k(θ). (14)

Evaluating at θ = θk−1 yields∥∥∇Jk(θk−1)
∥∥ ≤ ∥∥∇R̂k(θk−1)

∥∥ + 2λC∆

√
∆̂k(θk−1).

Combine this estimate with equation 13 to obtain

∥θk − θk−1∥ ≤
1

µk

(∥∥∇R̂k(θk−1)
∥∥ + 2λC∆

√
∆̂k(θk−1)

)
.

Plug the last inequality into equation 12 to conclude

Fs→t ≤ Ls

t∑
k=s+1

1

µk

(∥∥∇R̂k(θk−1)
∥∥ + 2λC∆

√
∆̂k(θk−1)

)
,

which is equation 11. Finally, since ∥∇R̂k(θk−1)∥ ≤ ∥∇L̂k(θk−1)∥ + λ∥∇∆̂k(θk−1)∥ ≤
∥∇L̂k(θk−1)∥ + 2λC∆

√
∆̂k(θk−1) by equation 14, the equivalent variant stated in the theorem

also follows.

B BAYESIAN DERIVATION OF ADAPTIVE ENTROPY SCALING

We model the adaptive entropy scaling factor γℓ in layer ℓ as a latent variable in a Bayesian frame-
work. The goal is to infer a suitable regularization strength for each layer, based on its entropy Hℓ.
We use variational inference to approximate the posterior distribution over γℓ given the observed
entropy.

B.1 GENERATIVE MODEL

Let γℓ ∈ R+ be the entropy regularization strength for layer ℓ, and Hℓ ∈ R+ the entropy observed
at that layer. We assume a Gaussian noise model for entropy given regularization:

Hℓ = H∗ +
c

γℓ
+ εℓ, εℓ ∼ N (0, σ2)

Thus, the likelihood becomes:

p(Hℓ | γℓ) = N
(
Hℓ | H∗ +

c

γℓ
, σ2

)
We place a log-normal prior on γℓ to enforce positivity:

p(γℓ) = LogNormal(µ0, τ
2) ⇒ log γℓ ∼ N (µ0, τ

2)

B.2 POSTERIOR DISTRIBUTION

The posterior over γℓ is intractable, so we approximate it via variational inference. Let the variational
posterior be:

qϕ(γℓ) = LogNormal(µϕ, σ
2
ϕ) ⇒ log γℓ ∼ N (µϕ, σ

2
ϕ)

We optimize the evidence lower bound (ELBO):

L(ϕ) = Eγℓ∼qϕ [log p(Hℓ | γℓ) + log p(γℓ)− log qϕ(γℓ)]

We place a log-normal prior on γℓ to ensure positivity and induce regularization:

γℓ ∼ LogNormal(µ0, τ
2) which implies log γℓ ∼ N (µ0, τ

2)

15
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The density of the log-normal distribution is:

p(γℓ) =
1

γℓτ
√
2π

exp

(
− (log γℓ − µ0)

2

2τ2

)
Taking the logarithm gives the log-prior:

log p(γℓ) = −
(log γℓ − µ0)

2

2τ2
− log γℓ + const

Substituting the log-densities:

log p(Hℓ | γℓ) = −
1

2σ2

(
Hℓ −H∗ − c

γℓ

)2

+ const

log p(γℓ) = −
1

2τ2
(log γℓ − µ0)

2 − log γℓ + const

log qϕ(γℓ) = −
1

2σ2
ϕ

(log γℓ − µϕ)
2 − log γℓ + const

Therefore, the ELBO becomes:

L(ϕ) = Eγℓ∼qϕ

[
− 1

2σ2

(
Hℓ −H∗ − c

γℓ

)2

− 1

2τ2
(log γℓ − µ0)

2 − log γℓ

+
1

2σ2
ϕ

(log γℓ − µϕ)
2 + log γℓ

]
+ const

Observe that the − log γℓ + log γℓ terms cancel out, simplifying the ELBO.

B.3 REPARAMETERIZATION TRICK

We use the reparameterization trick for gradient estimation:

log γℓ = µϕ + σϕ · ϵ, ϵ ∼ N (0, 1)

We can now estimate the ELBO and its gradient using Monte Carlo samples of ϵ.

B.4 DETERMINISTIC APPROXIMATION: GRACE SCALING RULE

To avoid optimizing L(ϕ) explicitly during training, we approximate the posterior mean:

γ̂ℓ = Eqϕ [γℓ] = exp

(
µϕ +

σ2
ϕ

2

)

Assuming a small variance σ2
ϕ ≈ 0, we approximate:

γ̂ℓ ≈ exp(µϕ)

Empirically, we set:
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µϕ ≈ tanh (zℓ) , where zℓ =
Hℓ − µH

σH

This yields the final approximation used in GRACE:

γℓ ≈ exp

(
tanh

(
Hℓ − µH

σH

))

17
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