
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOOLDIAL: MULTI-TURN DIALOGUE GENERATION
METHOD FOR TOOL-AUGMENTED LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-Augmented Language Models (TALMs) leverage external APIs to answer
user queries across various domains. However, existing benchmark datasets for
TALM research often feature simplistic dialogues that do not reflect real-world
scenarios, such as the need for models to ask clarifying questions or proactively
call additional APIs when essential information is missing. To address these limi-
tations, we construct and release ToolDial, a dataset comprising 11,111 multi-turn
dialogues, with an average of 8.95 turns per dialogue, based on APIs from Rap-
idAPI. ToolDial has two key characteristics. First, the dialogues incorporate 16
user and system actions (e.g., “request”, “clarify”, “fail inform”) to capture the
rich dynamics of real-world interactions. Second, we simulate dialogues where
the system requests necessary information from the user based on API documen-
tation and seeks additional APIs if the user fails to provide the required informa-
tion. To facilitate this process, we introduce a method for generating an API graph
that represents input and output compatibility between APIs. Using ToolDial, we
evaluate a suite of language models on their ability to predict correct actions and
extract input parameter values for API calls from the dialogue history. Modern
language models achieve accuracy scores below 70%, indicating substantial room
for improvement. We provide a detailed analysis of the areas where these models
fall short.1

1 INTRODUCTION

A Tool-Augmented Language Model (TALM) is a language model designed to select and call appro-
priate tools (usually APIs) while interacting with the user to answer the user’s query. By leveraging
external tools, the TALM can conduct complex tasks beyond its parametric knowledge and adapt
its actions based on API results. Recent TALM benchmarks mostly feature single-turn interactions
(Qin et al., 2023; Tang et al., 2023) with a primary focus on improving tool selection and reasoning
capabilities to address complex user queries within a single turn. However, such interactions do not
reflect real-world scenarios where the TALM should request additional information from the user or
the user clarifies their intent. Even in studies that involve multi-turn interactions (Li et al., 2023),
dialogues tend to be short and limited to scenarios where the TALM asks the user for more details.
The lack of richer datasets that reflect complex user-system interactions makes it difficult to accu-
rately assess the ability of modern language models to handle challenging tool use scenarios in the
wild, such as when the system identifies and requests information from the user based on available
APIs, or when the user cannot provide requested information, requiring the model to call additional
APIs to obtain the information.

To address this issue, we present a new dataset named ToolDial, which consists of multi-turn dia-
logues between the user and TALM based on APIs from RapidAPI2. The main focus of our dataset
is to simulate dialogues where multiple APIs should be called in sequence (e.g., due to the user
failing to provide information that is needed to call the main API) and where the user and the TALM
can take diverse actions (16 total), such as clarifying the user’s intent or handling the user’s failure
to provide requested information. To that end, our data generation pipeline consists of four steps,
as shown in Figure 1. First, to facilitate selecting two APIs that should be called in sequence, we

1We will release all the source code and data upon the publication of the paper.
2https://rapidapi.com/hub

1

https://rapidapi.com/hub

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Action Sequence ConstructionGraph Construction Scenario Generation <Dialogue Data>

ChatGPT
PromptingTriple

Extraction

Input

Output
User turn
- Action: Inform intent clear
- User ask to system with ...

System turn
- Action: Request
- System asks information...

User turn
- Action: Fail Inform
- User can’t provide the...

System turn
- Action: System Goodbye
- System says good bye

Scenario
Generation

API
Chain usage
Information Define

Interaction

User: I want the weather information.

System: I need the coordinates!

User: I don’t know the coordinates.

System: Thank you! Goodbye!

API
Inform Intent

Clear

Request

Fail Inform

System
Goodbye

System Goodbye

Fail Inform

Request

Inform Intent Clear

Figure 1: Overall structure of ToolDial. This represents the whole pipeline of our method.

construct an API graph where nodes are APIs and edges between two APIs indicate that one API’s
output can be used as input for the other API (§3.1). Second, to simulate rich dynamics between the
user and TALM, we define 16 types of user and system actions informed by the literature of task-
oriented dialogue systems and compile 23 plausible sequences of actions that are likely to occur
in dialogues (e.g., Inform Intent Clear → Retriever Call → Request → Fail Inform) (§3.2). Third,
to generate each dialogue, we select a pair of APIs from the API graph and choose a sequence of
actions that serves as a skeleton. Based on this, we enrich the skeleton by augmenting it with in-
structions specific to the APIs and the context of each turn (§3.3). Fourth, we convert the augmented
action sequence into natural utterances to complete a dialogue (§3.4). As a result, ToolDial contains
11,111 dialogues with an average of 8.95 turns per dialogue.

Based on ToolDial, we designed three evaluation tasks to assess a suite of language models in
their ability to use tool. Specifically, we evaluated their ability (1) to predict appropriate actions
to progress toward answering the user query, (2) to choose the correct API and predict dialogue
states (i.e., extracting user-informed values for API inputs), and (3) to generate responses faithful
to API outputs. We found that GPT-based models struggle with dialogue state prediction, and their
performance declines as the dialogue length increases. Additionally, these models perform poorly
at predicting next actions, particularly struggling with requesting input parameters and asking clar-
ifying questions. For smaller Llama models, they generally underperform compared to GPT-based
models, but fine-tuning on our dataset significantly improved the overall performance. Notably,
it led to substantial improvements in many actions that GPT models struggled with. Our experi-
ments suggest that ToolDial can be a valuable resource for both assessing and improving TALMs in
complex multi-turn interactions with users.

The main contributions of our work are summarized as follows:

• We generate and release ToolDial, a dataset consisting of dialogues that reflect real-world
interactions between the user and a TALM, encompassing 16 user and system actions.

• We present a framework for creating a large-scale and multi-turn dialogue benchmark using
an API graph and GPT with minimal human effort.

• We provide insights into the abilities of various language models to answer user queries
while interacting with the user across multiple turns and using external APIs.

2 RELATED WORKS

Tool Augmented Language Models Table 1 compares our dataset with existing benchmarks. Re-
cent research on TALM has evolved toward investigating how to effectively select tools and deter-
mine which reasoning steps (Yao et al., 2023) are beneficial for solving complex problems (Schick
et al., 2023; Shen et al., 2023; Qin et al., 2023; Patil et al., 2023; Tang et al., 2023). Similar to
our work, ToolNet (Liu et al., 2024) leverages an API graph, but this graph connects APIs that
are called back-to-back in dialogues without considering the compatibility of the input and out-
put of APIs. Most existing datasets contain single-turn dialogues between the user and a TALM.
TaskBench (Shen et al., 2024) attempted to construct graphs by matching API inputs and outputs
and generating user queries that can be solved using API chains. However, they did not propose

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison between ToolDial and other TALM datasets. We derived the number of actions
based on how many action types occur in each dataset with our action taxonomy as a reference.

Resource ToolDial ToolBench API-Bank ToolAlpaca
Real-world API? ✓ ✓ ✓ X
Multi-turn Scenario? ✓ X ✓ X
Multi-tool Scenario? ✓ ✓ ✓ X
Multi-step Reasoning? ✓ ✓ ✓ X
Situation Complexity? ✓ X X X
Number of Actions 16 3 7 3
Number of Dialogues 11,111 188,304 6,860 4,889
Avg. Turn per Dialogue 8.95 2 2.84 2

a method for graph construction, and focused solely on inferring the sequence of APIs required to
solve a user query in a single turn rather than through a multi-turn dialogue. Although API-Bank (Li
et al., 2023) contains multi-turn interactions, the number of turns in each dialogue is limited (2.84
on average), and the interactions are relatively simplistic. ToolTalk (Farn & Shin, 2023) also reflects
some degree of multi-turn interactions (6.44 on average), but it relies on dialogue generation using
human annotators, resulting in only a small amount of data (a total of 78 dialogues).

Task-Oriented Dialogue System A Task-Oriented Dialogue System (TOD) is a goal-oriented
dialogue system that processes user queries, understands the intent, and provides answers based on
database searches or tool calls. Representative datasets for TOD include MultiWOZ (Budzianowski
et al., 2020) and Schema-Guided Dialogue (SGD) (Rastogi et al., 2020). MultiWOZ is a multi-turn
dialogue dataset generated by human annotators, which reflects the interactions between users and
the system. Additionally, the annotations of dialogue states allow for the evaluation of a system’s
ability to track dialogue states. The Schema-Guided Dialogue (SGD) dataset also consists of multi-
turn dialogues. Notably, the way SGD was generated shares similarities with our data generation
method, particularly in that an action sequence is chosen first for each dialogue, and then utterances
are generated. However, the main difference is that SGD relied on human annotators for action
sequence generation, whereas our work does not require additional human annotators for generating
action sequences. The literature on TOD offers useful concepts such as dialogue state tracking
(Moghe et al., 2024a) and rich taxonomies of user and system actions that occur in interactions with
real-world agents. There have also been attempts to transfer TOD datasets into TALM-style data
(Moghe et al., 2024b). We designed the ToolDial dataset by referencing the benchmark dataset of
TOD (e.g., the format of dialogue states in MultiWOZ and action types in SGD).

3 TOOLDIAL

The dialogues in ToolDial are generated to reflect complex interactions between the user and system
in realistic situations involving chained API usage (i.e., the output of one API is used as the input
for another API). To achieve this, we follow four steps, as shown in Figure 1. First, we construct an
API graph by connecting the input and output entities of APIs (§3.1). This graph plays a critical role
in selecting interdependent APIs to be used for each dialogue. Second, we define 16 types of user
and system actions to capture the complex dynamics in interactions with tool agents. Based on these
actions, we create 23 plausible action sequences that are likely to occur in dialogues (§3.2). Third,
to generate a dialogue, we choose a pair of APIs from the API graph, select an action sequence,
and augment the action sequence with instructions specific to the APIs and the context of each
turn (§3.3). Lastly, we generate utterances that reflect the instructions using GPT-4o (§3.4). These
processes are carried out with minimal human effort and without the need for additional human
annotators.

3.1 GRAPH CONSTRUCTION

Motivation To simulate dialogues where APIs should be called in sequence to fulfill the user’s
need (e.g. the user fails to provide a necessary argument for an API, and thus the system should

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Thought 1: User seems to have intent. I’ll call the retriever.)

(Thought 2: I need to call LeagueHomeStandings. To call it,
I need to ask 'seasonId' and tournamentId to user.)

- Retrieve API: {LeagueHomeStandings: 0.87...})
(Internal Action: Retriever Call)

Action: Request

Action: Request

Dialogue State: {seasonId: “ ”, tournamentId: “ ”}

Dialogue State: {categoryid:“ ” }

(Thought 1: User provided seasonId but no the tournamentId.
 I’ll call the retriever to find the API to get tournamentId.)

(Thought 2:I need to call CategoryTournaments. To call it,
I need to ask 'categoryid' to user. request.)

(Internal Action: Retriever Call)
- Retrieve API: {CategoryTournaments}

Dialogue State:{seasonId:“45”, tournamentId: “ ”}

Dialogue State:{seasonId:“45”,tournamentId:“1”}

Dialogue State: {categoryid:“264” }

Action: Request

(Thought 1: Based on the user's response,I can call
the API CategoryTournaments.)

(Thought 2: I got multiple results. I need to ask the name.)

(Internal Action: Call)
- Call Result: {id: 1, name: NBA}, {id: 2, name: NCAA Men}

Action: Response

(Thought 1: Based on the user's response and dialogue
history, I can call the LeagueHomeStandings.)

(Thought 2: Based on the results, I can respond to user.)

(Internal Action: Call)
- Call Result:
1. Team A: 9 wins, 3 losses, 2. Team B: 8 wins, 4 losses ...

Inform

Can you help me find detailed league
information for a specific basketball
category and home standings for the
current season?

Here are the home standings for the
Premier Basketball League:
1. Team A: 9 wins, 3 losses, 860 points
for, 710 points against, home record 7-1.

I know the seasonId is 45, but I
don't know the tournamentId.

Please provide the id of the
basketball category to retrieve

Certainly! The id of the
basketball category is 264.

Please choose one of the
following leagues: NBA, NCAA

Sure! I choose NBA.Please tell me the seasonId and
tournamentId for the league

Action: Inform Intent Clear

Reasoning Step Reasoning StepDialogue

Action: Request

Action: Fail Inform

Action: Request

Action: Response

Action: Inform

Action: Inform

Action: Request

Figure 2: A high-level overview of ToolDial dialogue dataset. This illustrates each turn’s user
and TALM actions, along with corresponding utterances. It also shows the reasoning steps TALM
undergoes, including API calls and retriever calls, before asking or responding to the user.

proactively find and run another API that can provide it), it is necessary to identify which API’s
output can be used as the input for another API (i.e., API chaining). To facilitate this, we construct
an API graph where APIs from Rapid API are represented as nodes, and two APIs are connected
by an edge if one API’s output can be used as input for the other API. Eventually, this API graph
will be used in dialogue generation by allowing us to easily select compatible APIs to be called in
sequence.

Settings To determine whether to build an edge between two APIs, we used the names and de-
scriptions of their input and output entities in the API documentation from Rapid API. However,
the input and output entities often have generic names (e.g., ‘id’) and their descriptions do not suffi-
ciently explain their meanings. To address this, we augmented the descriptions using GPT-4o-mini
with the API documentation and instructions (A.1). For the name, we summarized the augmented
description into a 5- to 7-word sentence to replace the original name. Additionally, we extracted 4 to
5 keywords from the descriptions to represent the API to distinguish APIs from excessively different
domains during edge construction (A.2).

Edge Construction Using the API’s keyword and the name and description of their input and
output entities, we established three criteria to construct edges Edge based on their similarities.
This can be formalized as (1).

Edge =

{
1, if emb(do, di) > td ∧ emb(do + ko, di + ki) > tk ∧ LCS(no, ni) > tl
0, otherwise

(1)

where i, o represent the input and output entities, d, k, n, d + k denote the description, keywords,
name, and the concatenation of keywords and description, respectively. emb is the embedding of
the description obtained from the S-Bert model all-mpnet-base-v2 (Reimers & Gurevych, 2019).
LCS stands for the longest common subsequence (Hirschberg, 1977). t represents the threshold for
each criterion. With embedding similarity of di, do and longest common subsequence similarity of
ni, no, we aimed to match input and output entities that exactly correspond to each other. By using
the embedding similarity of di+ki, do+ko, we prevented the matching of entities from excessively
different domains. As a result, we construct 6,145 edges from 500 million edge candidates (4,474 x
4,474 API pairs, with each pair averaging 25 edge candidates).

Edge Evaluation To verify the edges in the constructed graph, we design an automated evalua-
tion metric to classify whether each edge is valid. Directly calling the API can be the most reliable
method for validating edges, but it requires a substantial amount of time and cost and suffers from
non-executable APIs in Rapid API. To address this, we utilize StableToolBench (Guo et al., 2024),
an API simulator based on large language models. StableToolBench can generate API outputs sim-
ilar to real API calls, allowing us to validate edges in a similar way to actual API calls. However,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Inform Intent Clear

Inform Intent Vague

Inform Intent Clear Add Retriever call

Fail Inform

Request Inform

Suggest

Retriever Score
0.5~0.6

Input parameter
X

Input parameter
O

Input parameter
Fulfilled

Input parameter
Fulfilled X

Retriever Score
lower than 0.5

Clarify

Negate

Affirm

Call

Response Fail

Response

User Bye

System Bye

Figure 3: Action graph based on predefined user and system actions. This represents the whole
multi turn interaction between user and TALM in our dataset.

StableToolBench has some issues; for example, the same API outputs results in different formats
upon multiple calls. We fixed such issues by augmenting StableToolBench with additional infor-
mation from API documentation (A.11). We sampled 200 edges from our API graph and measured
the Matthews Correlation Coefficient (Matthews, 1975) against human evaluations, resulting in a
score of 0.868. This score indicates a strong correlation between the evaluation metric and human
judgment. For the 6,145 constructed edges, the precision (the proportion of valid edges among
constructed edges) was 71%. This indicates that our constructed graph covers most valid edges at
the expense of 30% invalid edges. Next, to estimate the amount of missing edges, we measured
Negative Predictive Value (the proportion of invalid edges among non-constructed edges). Since
the graph has too many unconstructed edges (i.e., no connection between APIs), we sampled 5,501
pairs of input and output entities that are not connected. The NPV score shows 94%, indicating that
among the candidates that can be edges, the proportion missing is small. For dialogue generation,
we discarded the invalid edges for the subsequent steps.

3.2 ACTION SEQUENCES

Motivation In dialogue systems, an action refers to a dialogue act representing a specific behavior
taken by the user or system during a conversation (e.g., “request information”, “deny suggestion”,
etc.). A taxonomy of user and system actions allows a dialogue system to manage dialogue flow
effectively, by focusing on high-level behaviors before generating utterances and providing inter-
pretability. We compile a taxonomy that covers a wide range of actions occurring in user-system
interactions so that the generated dialogues and trained systems reflect the complexity of the real
world. To generate a dialogue in the next step, we will first choose a plausible sequence of actions
(i.e., dialogue flow) as a skeleton before generating utterances (a similar approach was adopted in
SGD (Rastogi et al., 2020)).

Definition of Actions We have defined a total of 16 actions that the user and system can take.
User actions include three types of informing their intents: “Inform intent clear” (unambiguous
queries that can specify the correct API); “Inform intent add” (unambiguous queries along with one
additional input entity of the corresponding API); and “Inform intent vague” (ambiguous queries).
There are also actions such as “Inform” and “Fail inform”, which refer to the success and failure to
provide an API’s input entities requested by the system. With “Affirm” and “Negate”, the user can
accept and reject the system’s suggestions, respectively.

System actions include “Request”, which asks the user for information, and “Response”, which
provides answers to the user’s query. When the user’s query is ambiguous, the system may take
actions like “Clarify” or “Suggest” to make the user’s query more precise. We also define internal
system actions such as “Retriever call” and “Call”, which occur during the TALM’s reasoning steps.
The “Retriever call” action retrieves the appropriate API, and “Call” executes the selected API once
all input parameters have been obtained from the dialogue history (A.3).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Action Sequences Based on the predefined actions, we defined plausible action sequences.
ToolDial is created by combining API pairs from the API graph with action sequences. The types of
combinable action sequences depend on whether the APIs in the pair require input parameters, and
the form of their outputs (e.g., single value vs. list of values).

For example, in Figure 2, the “CategoryTournaments” API outputs “id”, which can serve as the input
parameter “tournamentId” for the “LeagueHomeStandings” API. Both APIs need input parameters
to call, and “CategoryTournaments” returns a list of “id”s. In this case, the high-level action se-
quence is as follows:

• (inform intent) → retriever call → request → fail inform → retriever call → request →
inform → call → request → inform → call → response.

There are three request actions in this action sequence. The first request is for the input parameters
needed to execute “LeagueHomeStandings”, the second is to execute “CategoryTournaments”, and
the third is to select one “id” from the multiple IDs output by “CategoryTournaments”. In Figure 2,
“CategoryTournaments” is an API that returns multiple “id”s, requiring an additional user prompt
to select the correct value (see the 6th turn of Figure 2).

If the APIs in Figure 2 require no input parameters or returned single values instead of lists, the
number of “request” actions will be 1 or 2, altering the overall flow. We constructed high-level action
flows based on the characteristics of each API pair. We also construct different action sequences
depending on whether the inform intent is clear or vague, and if vague, whether it transitions into
clarify or suggest actions. Additionally, we designed different action sequences based on the user’s
fail inform action within the same API pair (see details in A.5). The whole rules about action
sequence can be visualized as Figure 3 (see all types of action sequences in A.6).

3.3 SCENARIO INSTRUCTION GENERATION

Given the API graph and action sequences, we proceed to generate dialogues. For each dialogue to
generate, instead of generating utterances directly, however, we first choose APIs to be used in the
dialogue and then build a skeleton by choosing an action sequence and augmenting with user query
and instruction. This skeleton is called a scenario instruction (A.8) and will later be converted to
utterances in the next phase of dialogue generation (§3.4).

User Query Generation For each dialogue, we randomly sample one API or two connected APIs
from the API graph. We also randomly sample an action sequence to be used in the dialogue. The
next key step is to generate a user query that is relevant to the API(s). We prompt GPT-4o with the
names and documentation of the API(s) and instruct it to generate a user query that covers all the
API(s). For example, given two APIs “search weather station (input: coordinates, output: weather
station)” and “nearby weather station coordinate API (input: location name, output: coordinates)”,
GPT generated the query “I’m going hiking next week, and I’d like to know a nearby weather
station”. This query becomes the first user utterance, initiating the dialogue.

Instruction Generation During the dialogue scenario generation stage, we plan what information
each user and system utterance should include in each turn to perform the corresponding action
(e.g., input parameters the system would request, parameter values the user would provide, etc.).
For instance, the dialogue in Figure 3 is generated from a instruction like the following:

• Inform intent clear: the user utters a pre-constructed query related with API LeagueHome-
Standings and CategoryTournament.

• (Retriever call) → request: the system to ask the user for seasonId and tournamentId.
• Fail inform: the user responds with seasonId 45 but fails to provide tournamentId.
• (Retriever call) → request: the system prompts the user for id.
• Inform: the user responds with the requested information.
• (call) → request: the system asks the user for the name variable, to select one id from

multiple results.
• Inform: Instruction: the user responds with NBA

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Overall statistics of ToolDial.

Metric Value
Train 8,859
Validation 1,086
Test 1,166
Total 11,111

of turns 99,476
of turns per dialogue 8.95

Table 3: Dialogue quality scores.

Criterion G-Eval Humans
Naturalness (1–3) 2.28 2.54
Coherence (1–3) 2.58 2.81
Efficiency (1–3) 2.81 2.60
Correctness (0–1) 0.90 0.95

• (call) → response: the system responds based on the results of the call.

For parameter values (e.g., 45, 264, NBA), plausible inputs and outputs for the API used in dia-
logue generation are first generated and then utilized. Scenario prompts are created with predefined
templates for each action and filling them with the API’s input parameters and values. During this
process, the dialogue state and retriever status (A.4) used in the experiment are also automatically
generated for each turn, using the same values and APIs.

3.4 DIALOGUE GENERATION

Data Generation We prompted GPT-4o with simple instructions, the scenario instruction, and the
relationship between the two APIs in the API pair. Based on this guideline, GPT-4o generates each
utterance of user and system that aligns with each turn’s dialogue state. We utilize all combinations
of valid edges and scenarios (samples in Figure 2).

Data Statistics Our dataset ToolDial contains 11,111 dialogues in English that reflect various
scenarios that can happen in the real world. The statistics of ToolDial are shown in Table 2. ToolDial
is constructed based on 23 types of action sequences and has an average of 8.95 turns per dialogue.

Data Quality To assess the quality of our dataset, we sampled a total of 100 dialogues from all
action sequences and evaluated them using both G-Eval (Liu et al., 2023) and human annotators3.
The evaluation criteria are as follows:

• Naturalness (1–3): Is the dialogue a natural interaction between the user and TALM?
• Coherence (1–3): Are the user’ and the TALM’s utterances relevant to and coherent with

the dialogue context?
• Efficiency (1–3): Is the system’s reasoning and actions to perform the user’s request effi-

cient and natural?
• Correctness (True or False): Is the system’s response consistent with the output of the API

call?

Table 3 presents the scores from G-Eval and human annotators. On average, G-Eval assigned high
scores when evaluating the 100 sample dialogues across four criteria. The dialogues received partic-
ularly high scores in Efficiency, indicating that the TALM efficiently performed the necessary steps
to call APIs and collect information.

Model Biases In ToolDial, we have leveraged several methods to mitigate GPT’s biases in dia-
logue generation. When GPT generates dialogues without any guidance, the resulting dialogues tend
to be overly repetitive and monotonous. Specifically, certain types of APIs are disproportionately
preferred, and the actions performed by both the user and system lack variety, typically following
a simple “inform intent - response” pattern. In ToolDial, we address this by creating dialogue data
using 473 real-world APIs spanning 23 domains from Rapid API (§3.1) and incorporating 16 actions
and 23 action sequences to cover diverse scenarios (§3.2). Furthermore, for certain actions, GPT-
generated utterances tend to have overly consistent speaking styles. As a solution, we predefined

3Three Master’s students majoring in data science volunteered as annotators. The authors are not included.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Evaluation scores on three tasks. (w GT: ground-truth labels are included in the dialogue
history, w/o GT: no ground-truth labels are provided)

Dialogue State Tracking Action Prediction Faithfulness

Model w GT w/o GT w GT w/o GT w/o GT

GPT-3.5-turbo 38.8 33.1 53.5 54.1 95.4
GPT-4o-mini 58.8 67.7 63.7 60.2 96.6
GPT-4-turbo 77.5 68.6 64.2 61.5 97.1

GPT-4o 81.4 67.8 57.6 63.7 96.7
CodeLlama-7b-Instruct-hf 47.2 28.9 35.7 30.0 81.7

Qwen2.5-Coder-7B-Instruct 48.9 34.2 55.8 46.8 93.9
Llama3-8B-Instruct 53.4 24.5 37.7 35.5 91.5

TD-Llama 92.7 72.2 77.5 91.0 88.4

speaking styles for specific actions (A.7) and incorporated a mechanism to randomly select from
these predefined speaking styles during the scenario instruction generation (§3.3).

4 EXPERIMENTS

In these experiments, we designed evaluation tasks to assess the capabilities that TALM should
possess when engaging in multi-turn interactions with users. The input to the model includes

Hn = (u1, s1, . . . , un, sn), Rn = (r1, r2, . . . , rn), rn = {tn,An,RSn,Dn,DSn} (2)

where Hn is the dialogue history up to the n-th turn, and ui and si are the utterances of the user and
TALM in the i-th turn. Rn represents the reasoning steps of the TALM up to the n-th turn, where ri
is the reasoning step in turn i. Each reasoning step includes the thought t, action A, retriever status
RS, retrieved API documentation D from the retriever, and dialogue state DS of the corresponding
turn (see the formation of dialogue state and retriever status in A.4). The reasoning step of Figure
2 illustrates each component. We used Hn and Rn to predict DS and A in each turn to evaluate
whether the model accurately captures the dialogue context, extracts the appropriate information,
and takes the correct action. Additionally, we evaluated the last utterance sn where An =“response”
in order to assess the consistency between the model’s response and the output of the API call.

4.1 EVALUATION TASKS

Dialogue State Tracking Dialogue State Tracking (DST) evaluates the model’s ability to deter-
mine which API should be called based on the dialogue history, as well as the accuracy of the
collected input parameter values. DST can be formalized as

DSn = M(Hn−1,Rn−1, un) (3)

where DSn is the dialogue state of turn n, M is the TALM’s output, Hn−1 and Rn−1 are the
dialogue history and the TALM’s reasoning steps up to turn n − 1. We evaluate a total of 6,747
annotated dialogue states within the test set. Each turn’s label dialogue state dictionary and pre-
dicted dialogue state dictionary are converted to lowercase, and special characters are removed. The
evaluation is based on whether the two dialogue states matched completely.

Action Prediction The action prediction task involves selecting the next action to be taken based
on the dialogue history and reasoning steps. For this task, the reasoning steps do not include ground-
truth thought t, as it offers a direct cue for which action to take. Action prediction is formalized as

An = M(Hn−1, (Rn−1 \ t), un) (4)

where An is the system action in turn n. We evaluate a total of 9,200 annotated actions within
the test set. Each turn’s label action and predicted action are converted to lowercase, and special
characters were removed. Evaluation is based on whether they matched exactly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: F1 score for each action in the action prediction task. This indicates that fine-tuning with
our data supports the system in selecting appropriate actions in multi-turn conversations.

response responsefail request retrievercall clarify systembye suggest call

w GT

GPT-3.5-turbo 63.8 0.0 28.4 66.2 1.3 95.5 0.0 53.4
GPT-4o-mini 78.9 0.0 44.3 67.4 64.5 97.2 0.0 67.0
GPT-4-turbo 93.6 0.0 18.1 87.5 56.7 97.2 29.9 56.4
GPT-4o 88.3 0.0 13.7 74.9 29.6 97.2 24.6 54.1
Llama3-8b-Inst 46.4 0.0 8.5 23.7 0.0 99.8 14.0 44.4
TD-Llama 100.0 77.5 44.8 97.2 77.4 99.9 16.8 68.6

w/o GT

GPT-3.5-turbo 70.7 0.0 1.3 77.6 0.0 93.0 0.0 49.7
GPT-4o-mini 88.5 0.0 36.1 62.6 0.0 97.2 0.0 65.1
GPT-4-turbo 96.6 0.0 10.8 79.9 40.6 97.2 35.5 57.8
GPT-4o 95.8 0.0 14.3 81.2 38.6 97.2 46.1 62.0
Llama3-8b-Inst 30.5 0.0 1.9 27.3 0.0 93.1 9.4 42.0
TD-Llama 98.2 99.1 78.4 94.5 99.8 100.0 99.9 86.9

Faithfulness For TALM, generating responses faithful to API call results is critical. We evaluate
whether the final response of the TALM is grounded in the API call output. We provide the model
with dialogue history that includes the API call results and use G-Eval (Liu et al., 2023) to assess
whether the responses reflect the API call output. The evaluation method aligns with the correct-
ness criteria outlined in Dialogue Generation (§3.4). We evaluate a total of 943 system’s responses
(removing response fail) within the test set. Following the same method as G-Eval, a GPT model
with temperature set above 0 evaluates each response for 10 times. The average of the 10 results (all
either 0 or 1) is used as the score.

4.2 EXPERIMENT SETTINGS

In the real world, the model is not provided with ground-truth actions or dialogue states in the di-
alogue history. Hence, we evaluate models in two settings: “with GT (ground truth)” and “without
GT”. The latter is to see the upperbound performance of the models assuming that all prior predic-
tions are correct. “With GT” uses formulation (3) and (4), and “without GT” is formalized as

DSwogt
n = M(Hn−1, (Rn−1 \ DS), un), Awogt

n = M(Hn−1, (Rn−1 \ (t ∪ A)), un) (5)

For the faithfulness task, we only conduct the experiment in the “without GT” setting, as the model
generates the final turn response and no ground-truth label exists in Hn−1 or Rn−1 (All instruction
prompts used in each task are in A.13).

As baseline models, we choose GPT-3.5-turbo, GPT-4o-mini, GPT-4-turbo, GPT-4o, and
CodeLlama-7b-Instruct-hf, Qwen2.5-Coder-7B-Instruct, and LLaMA3-8B-instruct. We also
instruction-tuned LLaMA3-8B-instruct with the ToolDial dataset (TD-Llama) and conducted the
same experiments.

4.3 RESULTS

The experiment results are summarized in Table 4.

Dialogue State Tracking For the GPT-based models (rows 1–4), we observed that the latest ver-
sions outperform their predecessors. Additionally, both closed-source and open-source LLMs scored
lower in the “w/o GT” setting compared to the “with GT” setting, as expected. Instruct-tuning the
Llama model (TD-Llama) on our dataset (row 7) significantly enhances its performance in both set-
tings, demonstrating the value of our dataset for training TALMs. Furthermore, we observed that
accuracy decreases as the number of turns increases (A.10). For TD-Llama, performance remains
stable in the “with GT” setting even with longer turns. However, in the “w/o GT” setting, which
better reflects real-world scenarios, performance declines as the number of turns increases. This
suggests that dialogue state tracking over multiple turns in real-world settings remains a challenging
task (Detailed error analysis of DST is provided in A.9).

Action Prediction In the action prediction task, GPT models (rows 1–4) achieved an accuracy
of around 60%, which suggests that there is significant room for improvement. On the other hand,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Llama3-8B-Instruct received a much lower accuracy of around 35%, indicating the difficulty in
determining appropriate actions based on dialogue history. However, once fine-tuned on our dataset,
TD-Llama (row 6) achieved an accuracy of 77.5% and 91.0% on with GT and w/o GT respectively,
outperforming GPT models.

To better understand the models’ performance across actions, Table 5 shows the F1-score for each
action. Here, GPT models show relatively low scores for predicting actions like “Request”, “Clar-
ify”, and “Suggest”. This result is consistent with our observation that ChatGPT often rushes to pro-
vide answers without collecting further information or asking clarifying questions. These actions
are essential in real-world interactions to serve the user’s needs precisely, and TD-Llama demon-
strates improved performance on these actions. Another notable result is the low performance of
GPT models on the Response Fail” action. When the user refuses to proceed with a suggested API,
the models often attempt to clarify the user’s intent (‘Clarify”) rather than acknowledging the failure
and terminating the dialogue. While this move could be considered somewhat reasonable, it violates
the instruction provided in the prompt and may bother the user.

Faithfulness GPT models achieved over a 90% accuracy in the correctness task. However, the
performance of the smaller Llama-based models remains around 88.4%. This demonstrates that
small language models are vulnerable to hallucination, and we need better methods for improving
the faithfulness of these models.

Overall Performance To solve user’s query in real world, generating correct reasoning trace (dia-
logue state, action) with dialogue history and user’s last utterance is crucial for each turn. We evalu-
ate the overall performance of the fine-tuned TD-llama model in this context. We assess whether the
model can generates correct dialogue state and action after 5,213 user utterances in the test set. A
result is marked as True if both the action and dialogue state are accurately generated for each rea-
soning step; otherwise, it is marked as False. This evaluation yields a performance score of 76.6%.
Additionally, for 1,166 test dialogues, we measure the rate at which the reasoning trace for all turns
is accurately generated from the first to the last turn, achieving an accuracy rate of approximately
57.1%. This suggests that there is significant room for improvement on overall performance

5 CONCLUSION

In this work, we created ToolDial, a multi-turn dialogue dataset that reflects interactions between
users and TALM in real-world scenarios. To generate realistic dialogues, we constructed and em-
ployed an API graph that represents the interdependency between APIs, aiming to simulate scenarios
where the TALM should call multiple APIs to obtain necessary information. In addition, we defined
16 user and system actions to reflect rich the dynamics in tool use conversations. To generate a
dialogue, we first sampled APIs and an action sequence as a skeleton. This skeleton was in turn aug-
mented with dialogue states specific to the APIs and finally converted to utterances using GPT. Our
evaluation demonstrates that modern language models perform poorly in predicting proper actions
and dialogue states in complex multi-turn interactions. We believe ToolDial can serve as a valuable
resource for advancing the field of TALM.

REFERENCES

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gašić. Multiwoz – a large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling, 2020. URL https://arxiv.org/abs/1810.00278.

Nicholas Farn and Richard Shin. Tooltalk: Evaluating tool-usage in a conversational setting, 2023.
URL https://arxiv.org/abs/2311.10775.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models, 2024. URL https://arxiv.org/abs/2403.07714.

Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM, 24
(4):664–675, October 1977. ISSN 0004-5411. doi: 10.1145/322033.322044. URL https:
//doi.org/10.1145/322033.322044.

10

https://arxiv.org/abs/1810.00278
https://arxiv.org/abs/2311.10775
https://arxiv.org/abs/2403.07714
https://doi.org/10.1145/322033.322044
https://doi.org/10.1145/322033.322044

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.
URL https://arxiv.org/abs/2304.08244.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan
Xu. Toolnet: Connecting large language models with massive tools via tool graph, 2024. URL
https://arxiv.org/abs/2403.00839.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment, 2023. URL https://arxiv.org/abs/
2303.16634.

Brian W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et biophysica acta, 405 2:442–51, 1975. URL https://api.
semanticscholar.org/CorpusID:44596673.

Nikita Moghe, Patrick Xia, Jacob Andreas, Jason Eisner, Benjamin Van Durme, and Harsh Jhamtani.
Interpreting user requests in the context of natural language standing instructions, 2024a. URL
https://arxiv.org/abs/2311.09796.

Nikita Moghe, Patrick Xia, Jacob Andreas, Jason Eisner, Benjamin Van Durme, and Harsh Jhamtani.
Interpreting user requests in the context of natural language standing instructions, 2024b. URL
https://arxiv.org/abs/2311.09796.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset, 2020. URL
https://arxiv.org/abs/1909.05855.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019. URL https://arxiv.org/abs/1908.10084.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving ai tasks with chatgpt and its friends in huggingface. In Advances in Neural
Information Processing Systems, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation,
2024. URL https://arxiv.org/abs/2311.18760.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases, 2023. URL
https://arxiv.org/abs/2306.05301.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

11

https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2403.00839
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://api.semanticscholar.org/CorpusID:44596673
https://api.semanticscholar.org/CorpusID:44596673
https://arxiv.org/abs/2311.09796
https://arxiv.org/abs/2311.09796
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/1909.05855
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ENTITY DESCRIPTION GENERATION

Table 6: Prompt used to generate input entity

Prompt for generating input entity descriptions
System
You are an intelligent annotator. Your mission is to write the description of input parameters more
specifically, referring to the given information.
Write as specifically as possible, referring to the given information. The new description should be
based on the existing description but rewritten to better reflect the content of the API description and
API endpoint description than before. Just return the input and its description, not individual words.
For example:
Category of the API: Data Description of the Category: APIs facilitate the seamless exchange of
data between applications and databases, enabling developers to integrate functionalities securely
and swiftly. API Name: YouTube Media Downloader API Description: A scraper API for YouTube
search and download. Get videos, subtitles, comments without age or region limits (proxy URL
supported). API Endpoint Name: Get Channel Details API Endpoint Description: This endpoint
fetches details of a YouTube channel.
List of input parameters:
Input parameter name: channelId Description: Channel ID, custom URL name, or handle. @ is
required as a prefix for a channel handle.
Input parameter name: lang Description: Language code (ISO-639) for localized results. Defaults
to en-US. Unsupported codes will fallback to en-US.
For this, you should return:
[[“channelId”, “The unique identifier for the YouTube channel, which can be the channel’s ID, a
custom URL name, or a channel handle. When using a channel handle, ensure to prefix it with ‘@’
(e.g., ‘@channelname’)”.], [“lang”, “The language code (ISO-639) used to specify the language for
the localized results. If not provided, the default is ‘en-US’. In case an unsupported language code
is supplied, the results will revert to ‘en-US”’.]] Now, I’ll give you another description. Follow the
instructions, referring to the example.
Write as specifically as possible, referring to the given information. The new description should
be based on the existing description but written in a way that better reflects the content of the API
description and API endpoint description than before. Just return the input and its description, not
individual words.

Table 7: Prompt used to generate output entity description

Prompt for generating output entity descriptions
System
You are an intelligent annotator. Your mission is to write the description of the output components
of an API endpoint, referring to the given information below.
For example:
Category of the API: Data Description of the Category: APIs facilitate the seamless exchange of
data between applications and databases, enabling developers to integrate functionalities securely
and swiftly. API Name: YouTube Media Downloader API Description: A scraper API for YouTube
search and download. Get videos, subtitles, comments without age or region limits (proxy URL
supported). API Endpoint Name: Get Channel Details API Endpoint Description: This endpoint
fetches details of a YouTube channel.
Based on the given description, write the description of the output component of this API endpoint.
Write as specifically as possible. Do not generate examples for each component. The description
should reflect as closely as possible the description of the API and the API endpoint, so that even
someone seeing this API endpoint for the first time can understand exactly what the output compo-
nent means. (A component separated with — refers to the hierarchy of the schema. For example,
avatar—height refers to the height of the avatar.)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Output components: [{ “name”: “status” }, { “name”: “type” }, { “name”: “id” }, { “name”:
“name” }, { “name”: “handle” }, { “name”: “description” }, { “name”: “isVerified” }, { “name”:
“isVerifiedArtist” }, { “name”: “subscriberCountText” }, { “name”: “videoCountText” }, { “name”:
“viewCountText” }, { “name”: “joinedDateText” }, { “name”: “country” }, { “name”: “links—title”
}, { “name”: “links—url” }, { “name”: “avatar—url” }, { “name”: “avatar—width” }, { “name”:
“avatar—height” }]
For this example, you have to return,
[{ “name”: “status”, “description”: “Indicates whether the API call was successful. True means the
call was successful, while False means it failed” }, { “name”: “type”, “description”: “Specifies the
type of YouTube channel, such as ’User’ or ’Brand’, indicating the category of the channel”. }, {
“name”: “id”, “description”: “The unique identifier assigned to the YouTube channel, which can be
used to reference the channel in other API calls or services”. }, { “name”: “name”, “description”:
“The official name of the YouTube channel as displayed on the platform, which is set by the channel
owner”. }, { “name”: “handle”, “description”: “The unique handle of the YouTube channel, which
often appears in the URL of the channel’s page”. }, { “name”: “description”, “description”: “A
textual description provided by the channel owner that gives an overview of the channel’s content,
themes, and purpose”. }, { “name”: “isVerified”, “description”: “Indicates whether the YouTube
channel is verified by YouTube. A verified status signifies authenticity and is usually granted to
public figures, brands, and popular content creators”. }, { “name”: “isVerifiedArtist”, “description”:
“Specifies if the YouTube channel is recognized as a verified artist’s channel, which is a special
status for musicians and bands to highlight their official content”. }, { “name”: “subscriberCount-
Text”, “description”: “A human-readable representation of the number of subscribers the channel
has, formatted for display purposes”. }, { “name”: “videoCountText”, “description”: “A human-
readable representation of the total number of videos uploaded by the channel, formatted for display
purposes”. }, { “name”: “viewCountText”, “description”: “A human-readable representation of the
total number of views across all videos on the channel, formatted for display purposes”. }, { “name”:
“joinedDateText”, “description”: “A human-readable representation of the date when the YouTube
channel was created, formatted for display purposes”. }, { “name”: “country”, “description”: “The
country where the YouTube channel is registered or primarily based, providing geographical con-
text”. }, { “name”: “links—title”, “description”: “The title of an external link provided by the
channel, which can lead to the channel’s social media profiles, websites, or other related content”.
}, { “name”: “links—url”, “description”: “The URL of an external link associated with the chan-
nel, which directs users to other online presences of the channel”. }, { “name”: “avatar—url”,
“description”: “The URL of the channel’s avatar image, which is the profile picture displayed on
the channel’s page”. }, { “name”: “avatar—width”, “description”: “The width of the avatar im-
age in pixels, providing information about the image dimensions”. }, { “name”: “avatar—height”,
“description”: “The height of the avatar image in pixels, providing information about the image
dimensions”. }]
Now, I’ll give you another API endpoint description. Write the description of the output components
and return it in the same format as the example. Just return the result, not individual words. Based
on the given description, write the description of the output components of this API endpoint. Write
as specifically as possible. Do not generate examples for each component. The description should
reflect the API and the API endpoint as closely as possible, so that even someone seeing this API
endpoint for the first time can understand exactly what the output component means. (A component
separated with — refers to the hierarchy of the schema. For example, avatar—height refers to the
height of the avatar.)
Fill the <Your response>.
<Your response>

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 KEYWORDS EXTRACTION

Table 8: Prompt used to extract keywords

Prompt for extracting keywords
System
Extract the keywords from the given paragraph. Prioritize proper nouns first and nouns second,
selecting up to 4 words that best describe the paragraph. Return the keywords in CSV format.
Remember, the maximum is 4 words.
Paragraph:

A.3 USER AND SYSTEM ACTION LIST

Our work defines eight user actions and eight system actions, which form the basis for conceptual-
izing interactions. Table 3 and Table 4 provide the names and descriptions of these actions.

Table 9: User action and description

User Action Description
Inform intent clear Say what one wants specifically.
Inform intent clear add Say what one wants specifically with the information of

input parameter.
Inform intent vague Say what one wants vaguely.
Inform Inform the requested information to system.
Fail inform Fail to reply to system’s request.
Affirm Agree to the system’s proposition.
Negate Deny the system’s proposal.
User bye Say thank you and goodbye to system.

Table 10: TALM action and description

System Action Description
Request Asks some information to user.
Response Reply to user’s request based on the result of API call.
Clarify If user’s query is vague,

re-ask user to get intent specifically.
Suggest Making a suggestion for an unclear user’s intent and ask-

ing whether it satisfies the user.
Response fail Notify the user that the system cannot execute the request

due to insufficient information.
System bye System says goodbye to user politely.
Call Call the API with collected information from user or else

and don’t reply to user yet.
Retriever call Call the retriever to find proper API to satisfy user’s re-

quests.

A.4 DIALOGUE STATE AND RETRIEVER STATUS ANNOTATION FORMAT

Our data is annotated with “retriever status” each turn. This indicates whether the retriever was
called for each turn of the conversation, the APIs retrieved as a result, and their respective retriever
scores. The actions that the TALM should take vary depending on the retriever score. If there is an
API with a score of 0.6 or higher, the TALM asks the user for input parameters to call it. If the score
is between 0.5 and 0.6, the TALM suggests the retrieved API, and if the score is lower, it asks for
clarification of the user’s query. Format of retriever status can have three types described below.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Inform Intent Request

Request

Request RequestFail inform

Fail informCase1

Case2

Inform Inform

Fail inform

Response

Can you solve.. I need Id and
name

Name is John
but I don’t know Id I need email

I need email

It’s abc@net

It’s abc@net Can you give me
the name?

I can’t provide Id

Retriever Call
(API2 retrieved)

Retriever Call
(API1 retrieved)

Retriever Call
(API1 retrieved)

Call API1 {email: abc@net}
Result: {Id: 123454}

Call API1 {email: abc@net}
Result: {Id: 123454}

Call API2
{Id: 123454, name: John}

Call API2
{Id: 123454, name: John}It’s John

(User provide “name” previously)

(User didn’t provide “name” previously)

Here are the results

Figure 4: Possible cases of two action sequences according to perform types “Fail inform”.

• When retriever is not called
{Retriever status: false, Retrieved API: none}

• Situation where the TALM needs to find the appropriate API to solve the user’s query.
{Retriever status: true, Retrieved API: {API 1: 0.65, API2: 0.54, API3: 0.51...}}

• Situation that TALM needs to obtain an input parameter that the user has not provided.
{Retriever status: true, Retrieved API: [Output component of source API to procure target API’s
input parameter param1 → output1]}

Additionally, our dataset is labeled with the dialogue state for each turn. The dialogue state includes
the API that the TALM is currently attempting to execute and the input parameter information col-
lected for that API, based on the dialogue history. The dialogue state has the following format.

• When there is no confirmed API
{API confirmed: false, API status: none}

• When the API is confirmed
{API confirmed: true, API status: {API name: “API1”, Required parameters: {param1: “ ”,
param2: “ ”}, Optional parameters: {param3: “ ”}}}

• When the API is confirmed and some input parameter information can be extracted from
dialogue history
{API confirmed: true, API status: {API name: “API1”, Required parameters: {param1:
“value1”, param2: “ ”}, Optional parameters: {param3: “value3”}}}

A.5 VARIATION OF FAIL INFORM ACTION

User can perform “Fail Inform” in two ways: either indicating they don’t know one parameter while
providing the rest, or simply stating they don’t know the missing parameter without further input.
Figure 4 shows

A.6 COMPREHENSIVE ACTION SEQUENCES

Assuming that at most two APIs are called in a dialogue, a total of 23 action sequences are derived
for data generation. Among these, 15 sequences involve two APIs, 7 involve one API, and 1 involves
a failure to call any APIs. The 15 sequences with two APIs are further categorized based on the type
of action sequence request: either directly requesting input parameters from the user (request) or
making an additional request to select an appropriate value from multiple results (request - multi).

Table 11: Action Sequences with two APIs

No. Action Sequence
1 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘fail inform’,

‘retriever call’, ‘request’, ‘inform’, ‘call’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘fail inform’,
‘retriever call’, ‘call’, ‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

3 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-
triever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘call’, ‘request’, ‘inform’,
‘call’, ‘response’, ‘user bye’, ‘system bye’

4 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-
triever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘request’, ‘inform’, ‘call’,
‘request-multi’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

5 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-
triever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘request’, ‘inform’, ‘call’,
‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

6 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘call’,
‘request-multi’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

7 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘re-
quest’, ‘inform’, ‘call’, ‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘sys-
tem bye’

8 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘re-
quest’, ‘inform’, ‘call’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

9 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘call’,
‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

10 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘fail inform’,
‘retriever call’, ‘request’, ‘inform’, ‘call’, ‘request-multi’, ‘inform’, ‘call’, ‘re-
sponse’, ‘user bye’, ‘system bye’

11 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-
triever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘request’, ‘inform’, ‘call’,
‘call’, ‘response’, ‘user bye’, ‘system bye’

12 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘fail inform’,
‘retriever call’, ‘request’, ‘inform’, ‘call’, ‘request’, ‘inform’, ‘call’, ‘response’,
‘user bye’, ‘system bye’

13 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘re-
quest’, ‘inform’, ‘call’, ‘request-multi’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘sys-
tem bye’

14 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-
triever call’, ‘request’, ‘fail inform’, ‘retriever call’, ‘call’, ‘request-multi’,
‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’

15 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘fail inform’,
‘retriever call’, ‘call’, ‘request-multi’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘sys-
tem bye’

Table 12: Action Sequences with one API

No. Action Sequence
1 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear’, ‘re-

triever call’, ‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’
2 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear add’, ‘re-

triever call’, ‘call’, ‘response’, ‘user bye’, ‘system bye’
3 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘affirm’, ‘request’, ‘inform’, ‘call’,

‘response’, ‘user bye’, ‘system bye’
4 ‘inform intent vague’, ‘retriever call’, ‘clarify’, ‘inform intent clear add’, ‘re-

triever call’, ‘request’, ‘inform’, ‘call’, ‘response’, ‘user bye’, ‘system bye’
5 ‘inform intent clear add’, ‘retriever call’, ‘request’, ‘inform’, ‘call’, ‘response’,

‘user bye’, ‘system bye’
6 ‘inform intent clear add’, ‘retriever call’, ‘call’, ‘response’, ‘user bye’, ‘sys-

tem bye’
7 ‘inform intent clear’, ‘retriever call’, ‘request’, ‘inform’, ‘call’, ‘response’,

‘user bye’, ‘system bye’

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Action Sequence with failure

No. Action Sequence
1 ‘inform intent vague’, ‘retriever call’, ‘suggest’, ‘negate’, ‘response fail’

A.7 UTTERANCE STYLE

We have defined several utterance styles for some actions to prevent GPT from generating consistent
speaking styles.

• User Action
– Inform

* Sure! ∼, Ok ∼, Certainly!
– Affirm

* Yes, that works., That would be great., Sure, that sounds good., Yes, please pro-
ceed.

– Negate

* No, that’s not what I meant, I’m good. Thank you though, Umm... that’s not what
I want

• System Action
– Request

* To call ∼, I need ∼, May I ask for ∼, Please tell me ∼,
– Clarify

* Could you please provide more ∼, I’m not sure I understand. Can you clarify ∼,
Could you explain that in more ∼, Can you clarify your ∼

A.8 SCENARIO PROMPT

We use detailed dialogue scenario prompts to ensure that the predefined interactions are accurately
reflected in the dialogue data and that the correct entities are included in each utterance. Table 5
show the example of scenario prompt.

Table 14: Prompt used to simulate APIs. Continued on the next page.

Scenario prompt

User turn
-user action: inform intent vague (Say what one wants vaguely.)
-situation: User requests something from the system. User says “Can you provide detailed informa-
tion about a city I plan to visit, including its geographical context and population data, so I can find
some highly-rated local businesses with good reviews and contact details nearby?”

System turn
-system action: retriever call (Call the retriever to find the proper API to satisfy the user’s request.)
-situation: The system, having received the user’s query, calls the retriever to find an appropriate
API. In this turn, the system’s thought is, “The user seems to have intent. I will call the retriever”.
Retriever status: retriever call: ‘true’, retrieved api: ‘Data—local business data—Search Nearby’:
0.56445915, ‘Data—local business data—Search In Area’: 0.5539355, ‘Mapping—places—Place
properties’: 0.5367253, ‘Location—spott—Search places’: 0.53351307, ‘Data—serpwow—Google
Place and Maps Details’: 0.5169816
Dialogue state: api confirmed: ‘false’, api status: ‘none’

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

System turn
-system action: suggest (Make a suggestion for an unclear user intent and ask whether it satisfies the
user.)
-situation: Since the user’s query is unclear, no API with a retriever score higher than 0.6 has been
found. However, several APIs have scores between 0.5 and 0.6. The system asks whether it would be
appropriate to run Data—local business data—Search Nearby, which has the highest score among
them, and retrieve the result. At this time, the system does not mention the name of the API directly.
Retriever status: retriever call: ‘false’, retrieved api: ‘none’
Dialogue state: api confirmed: ‘false’, api status: ‘none’

User turn
-user action: affirm (Agree to the system’s proposition.)
-situation: User agrees with the system’s proposition. User’s speech should follow this format: “Yes,
please proceed”.

System turn
-user action: request (Asks some information to user.)
-situation: System asks user to..

A.9 DST ERROR ANALYSIS

Table 15: DST error analysis for GPT models

GPT-3.5-turbo GPT-4o-mini GPT-4-turbo GPT-4o
W GT W/O GT W GT W/O GT W GT W/O GT W GT W/O GT

of Error 4128 4512 2781 2177 1515 2117 1257 2169
Generation Err 0 0 0 0 0 0 0 0
API Conf Err (GT = T) 1609 1841 1060 504 211 224 243 1607
API Conf Err (GT = F) 750 410 848 373 692 891 343 133
Format Err 532 502 153 0 0 74 0 531
Slot Err 1139 1674 508 912 430 774 443 221
Value Err 561 630 398 823 498 626 495 221

Table 16: DST error analysis for Llama3-8b-instruct and TD-llama

Llama3-8b-instruct TD-llama
W GT W/O GT W GT W/O GT

of Err 3138 5090 492 1873
Generation Err 3 0 260 1619
API Conf Err (GT = T) 583 1014 30 1
API Conf Err (GT = F) 723 923 0 0
Format Err 531 319 61 103
Slot Err 1101 2663 6 23
Value Err 846 1423 134 144

Tables 15 and Table 16 present the error analysis results for each model on the dialogue state tracking
(DST) task. We categorized the errors in DST as follows.

• Generation Error: This occurs when the dialogue state dictionary is not generated at all.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• API Confirmation Error (GT = True): This error happens when the API is
confirmed (api confirmed=true), but is incorrectly predicted as not confirmed
(api confirmed=false).

• API Confirmation Error (GT = False): This error occurs when the API is not con-
firmed (api confirmed=false), but the model incorrectly predicts it as confirmed
(api confirmed=true).

• Format Error: This occurs when the dialogue state does not fully generate all fields such
as api confirmed, api status, required parameters, and optional parameters.

• Slot Error: When api confirmed is true, this error involves generating a dialogue
state that does not include all required and optional parameter slots as specified in the API
documentation.

• Value Error: This error involves incorrectly extracting the slot’s value from the dialogue
history, with the following types:

– Extracting Input Value from Multiple Result Error: This error occurs when an
appropriate value cannot be selected from multiple results returned by the API output
(as seen in turns 6 and 7 of Figure 2).

– Inform Intent Add Error: This occurs when there is a value within the user query
that could be used as an input parameter (inform intent clear add), but the
model fails to track it.

– Other General Input Parameter Extraction Errors: Errors that occur in typical
situations where the input parameter is extracted incorrectly.

The error analysis tables show error counts, where slot and value errors can overlap in a single
prediction, causing their sum to exceed the total errors. We also provide examples of DST errors as
part of a qualitative error analysis.

--
<Example1. Extracting Input Value from Multiple Result Error>
...
- Retriever status:{‘retriever call’:‘true’, ‘retrieved api’: [‘getPaymentInitiationInstruction-
Summary’,‘Output to procure input parameter uetr of getPaymentInitiationInstruction:
end to end identification’]} ...
- Call result:

[{’end_to_end_identification’: ’XYZ/123-45678/2021-07-15’,
’creation_date_time’: ’2022-05-20T14:30:00’,
’requested_execution_date’: ’2021-10-01T09:00:00’,
’instructed_amount’: ’1500000.50’},
{’end_to_end_identification’: ’XYZ/123-45679/2021-07-16’,
’creation_date_time’: ’2022-05-25T10:15:00’,
’requested_execution_date’: ’2021-10-02T09:00:00’,
’instructed_amount’: ’750000.00’}]

- Thought: The API call to ‘getPaymentInitiationInstructionSummary’ returned multiple results. I
need to ask the user to select one based on the ‘requested execution date’. ...
- Message: Please tell me the requested execution date of the transaction you are interested in:
‘2021-10-01T09:00:00’ or ‘2021-10-02T09:00:00’?

--
Label: {...{‘api name’:‘getPaymentInitiationInstruction’,‘required parameters’: {‘uetr’:‘’},...}}
Predict:{...{‘api name’:‘getPaymentInitiationInstruction’,‘required parameters’:{‘uetr’:‘XYZ/123-
45678/2021-07-15’},...}}
--
Example 1 is a situation where the output ‘end to end identification’ of API ‘getPaymentInitia-
tionInstructionSummary’ can procure the ‘uter’ of ‘getPaymentInitiationInstruction’. In this turn,
multiple ‘end to end identification’ values are returned, requiring a request to the user to select one
value and gather the uter value accordingly. However, it was observed that the model’s prediction
arbitrarily selected one of the results, which leads to generate wrong dialogue state.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

--
<Example2. Inform Intent Add Error Error>

User: How do I create a Basic Plan for recurring billing payments?
System:
...
(retrieved createPlan from the retriever)
...
- API docs: {‘api name’:‘createPlan’,
{‘input parameter name’: ‘name’,
‘description’: ‘The name of the billing plan that is being created for the purpose of managing pay-
ment schedules and billing cycles in the PayPal payment processing system.’,
...(and other input parameter’s name and descriptions)...
},
- Message: To call the API to create a Basic Plan, I need the following information: accessToken,
description, paymentDefinitions, type, merchantPreferences, and sandbox.
--
Label: {...{‘api name’: ‘createPlan’, ‘required parameters’: {‘accessToken’: ‘’, ‘description’:
‘’, ‘paymentDefinitions’: ‘’, ‘name’: ‘Basic Plan’, ‘type’: ‘’, ‘merchantPreferences’: ‘’}, ‘op-
tional parameters’: {‘sandbox’: ‘’}}}
Predict: {...{‘api name’: ‘createPlan’, ‘required parameters’: {‘accessToken’: ‘’, ‘description’: ‘’,
‘paymentDefinitions’: ‘’, ’name’: ‘’, ‘type’: ‘’, ‘merchantPreferences’: ‘’}, ‘optional parameters’:
{‘sandbox’: ‘’}}}
--
Example 2 is a case where the input parameter ‘name’ required for executing the ‘createPlan’ API is
specified as the value ‘Basic Plan’ in user’s query. Additionally, the system’s request action message
only inquires about input parameters other than ‘name’. In such a situation, the dialogue state should
be generated with ‘name’ already populated as ‘Basic Plan’. However, it was generated with ‘name’
left empty, resulting in this case being classified as an error.

--

A.10 DST ACCURACY BASED ON TURN LENGTH

2 3 4 5 6 7 8 9 10
Turns

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DS
T

Ac
cu

ra
cy

DST in w GT

gpt-3.5-turbo
gpt-4o-mini
gpt-4-turbo
gpt-4o
Llama3-8b-Inst
TD-Llama

2 3 4 5 6 7 8 9 10
Turns

0.2

0.4

0.6

0.8

1.0

DS
T

Ac
cu

ra
cy

DST in w/o GT

gpt-3.5-turbo
gpt-4o-mini
gpt-4-turbo
gpt-4o
Llama3-8b-Inst
TD-Llama

Figure 5: DST Accuracy for each model as the number of dialogue turns increases.

A.11 REMOVING MISMATCH ERRORS

Blow examples shows the mismatch errors that occur during edge construction. There is a domain
mismatch and an entity mismatch.

Domain mismatch

API 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• Domain and Tools: Sports basketapi
• API name: LeagueTopPlayersPlayoffs
• Entity name: tournamentId
• Entity Description: The id of the specific basketball tournament for which the top players

in the playoffs are being retrieved.

API 2

• Domain and Tools: Sports baseballapi
• API name: PlayerRegularSeasonStatistics
• Entity name: tournamentId
• Entity Description: The id of the specific baseball tournament for which the regular season

statistics of a player are being requested.

Entity mismatch

API 1

• Domain and Tools: Sports icehockeyapi
• API name: PlayerRegularSeasonStatistics
• Entity name: playerId
• Entity Description: The unique identifier for a specific ice hockey player whose regular

season statistics are being requested.

API 2

• Domain and Tools: Sports icehockeyapi
• API name: LeaguePlayoffsTopPlayers
• Entity name: seasonId
• Entity Description: The id of the specific ice hockey season for which the top players are

being retrieved during the playoffs.

A.12 PROMPT FORMAT FOR THE EXPERIMENT

Table 18 presents the prompt format used in the experiments conducted in our work. Both open-
source and closed-source LLMs utilized this format. DST involves predicting all dialogue states
present in the format for each dialogue, while action prediction focuses on predicting all actions. In
the case of action prediction, all “thought” within the format are removed prior to the task. The W/O
GT setting requires predicting the dialogue state and action for each turn using the dialogue history
in the format without any dialogue states or actions included in the reasoning steps (for DST and
action prediction, respectively).

A.13 EVALUATION PROMPTS

We release all the prompts used in our experiments. Table 17 contains the prompt used for evaluating
edges in graph construction (§3.1), Table 19 includes the prompt used for dialogue state tracking
evaluation, Table 20 provides the prompt used for action prediction evaluation, and Table 21 presents
the prompt used for faithfulness evaluation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 17: Prompt used to evaluate edges.

Edge Evaluaiton Prompt
System
Your task is to determine whether the source attribute in the response from the source API is compat-
ible with the api input of the target API. Then, craft a JSON formatted response that aligns with the
expected output of the API, guided by the provided examples. For your judgment, we will provide
descriptions of tool description, API Documentation, source attribute and target attribute of both
APIs.
The judgment is a two step process. In the first step, determine whether the two attributes are
compatible based on a deep understanding of the source attribute and target attribute. Determine
whether the source attribute and target attribute are compatible through attribute descriptions. The
second step is to determine whether the input of the target API is compatible with the intent of the
target API. If both steps are considered compatible, follow the Output format for True to output the
result. If not, follow the Output format for False to output the result. Your responses must adhere to
a specific JSON structure, which is as follows:
Output format for True:
{"error": "","response": "<Your_Response>"}

Output format for False:
{"error": "Invalid Edge Error","response": "<Your_Response>"}

The response field should contain the content you formulate based on the API’s functionality and the
input provided. Ensure that your responses are meaningful, directly addressing the API’s intended
functionality. If the provided examples are mostly error messages or lack substantial content, use
your judgment to create relevant and accurate responses. The key is to maintain the JSON format’s
integrity while ensuring that your response is an accurate reflection of the API’s intended output
within the tool. Please note that your answer should not contain anything other than a json format
object, which should be parsable directly to json.
Note that:

• Your response should be around 100 to 200 words, containing rich information given the
api input parameters. Keep Your answer short and simple.

• Your response must be effective and have practical content.
• If the api response example if null or ineffective, ignore the example and give your inde-

pendent response.

User
API Documentation:
source API Documentation JSON file
target API Documentation JSON file
source attribute: description of source attribute
tource attribute: description of target attribute
API Examples:
Example input 1: Example response 1
Example input 2: Example response 2
Example input 3: Example response 3
API Input:
Argument JSON string, e.g:
{"category":"Logistics", "tool_name": "SQUAKE",
"api_name": "Checkhealth", "tool_input": "{}",
"strip": "filter"}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 18: Prompt Format for the Experiment

Prompt for generating input entity descriptions

User: Can you provide insights into which articles on NYTimes.com have been shared the most on
social media platforms, particularly Facebook, to understand active engagement trends?

System:
- Thought: The user seems to have intent. I will call the retriever.
- Action: retriever call
- Retriever status: {retriever call: true, retrieved api: {NYTimesAPI: 0.71, . . .}}
- API documentation: {api name: NYTimesAPI, (with required and optional parameter informa-
tions)}
- Thought: Based on results of the retriever, I need to call NYTimesAPI. To call it, I need to ask
“share type” and “period” to the user.
- Action: request
- Retriever status: {retriever call: false, retrieved api: none}
- Message: Could you please provide the type of sharing on Facebook for articles and the time
period for retrieving popular articles?
- Dialogue State: <Current dialogue state>

User: Certainly! The share type is Facebook and the period is 7 days.

System:
- Dialogue State: <Current dialogue state>
- Thought: Based on the user’s response, now I can call the API NYTimesAPI
- Action: call . . .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 19: Instruction prompt for the Dialogue State Tracking task

Dialogue state tracking task evaluation prompt
System
Instruction: You will be given part of a dialogue between the user and the system. In this dialogue,
the user is requesting information from the system, and the system will execute an API call to retrieve
the necessary information.
Your task is to output the appropriate dialogue state for the current turn, based on the dialogue
provided.
System Rules:

1. The system selects the API with the highest score from among the APIs in the retriever
status that have a score of 0.6 or higher and are suitable for processing the user’s query.

2. If no API has a score higher than 0.6, the system cannot confirm the API to call.
Dialogue state format:
Case 1. When the API has not been confirmed (if the retrieved API does not have a score of 0.6 or
higher):
{’api_confirmed’: ’false’, ’api_status’: ’none’}

• The API is not confirmed, so api confirmed is set to false.
• Therefore, api status is ‘none’.
• If api confirmed is false, api status must be ‘none’.

Case 2. When the API is confirmed (if the retrieved API has a score of 0.6 or higher):
{’api_confirmed’: ’true’, ’api_status’: {’api_name’: ’API1’,
’required_parameters’: {’param1’: ’’, ’param2’: ’value1’},
’optional_parameters’: {’param3’: ’’}}}

• The API is confirmed, so api confirmed is set to true.
• api status contains the name of the API and the input parameter list needed for the API call.

Any parameter whose value can be extracted from the dialogue history will have its value
filled in.

• The ‘param1’, ‘param2’, and ‘param3’ in Case 2 are just example values. Do not use these
parameters. Refer to the given API documentation on each turn.

• The input parameters should always be determined by consulting the API documentation.
Do not hallucinate them.

Now, part of the dialogue will be given. Just generate the dialogue state in the given format, without
adding any extra words.

Dialogue:
{dialogue_history}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 20: Instruction prompt for the Action prediction task

Action prediction task evaluation prompt
System
Instruction: You will be given part of a dialogue between the user and the system. In this dialogue,
the user is requesting information from the system, and the system will execute an API call to retrieve
the necessary information.
Your task is to predict the action that the system should take after the last utterance of the user. Read
the dialogue history and return the one action that is most appropriate for the system to take next.
The actions that the system can take are as follows:

• Request: Asks the user for some information.
• Response: Replies to the user’s request based on the result of the API call.
• Clarify: If the user’s query is vague, re-ask the user to specify their intent. If there is no

API in the most recently retrieved results with a score above 0.5, “clarify” is required.
• Suggest: Makes a suggestion for an unclear user’s intent and asks whether it satisfies the

user. If there is an API in the most recently retrieved results with a score above 0.5 but
none exceeding 0.6, a ‘suggest’ action is required.

• Response fail: Notifies the user that the system cannot execute the request due to insuffi-
cient information.

• System bye: Politely says goodbye to the user.
• Call: Calls the API with the collected information from the user or other sources but does

not reply to the user yet.
• Retriever call: Calls the retriever to find the proper API to satisfy the user’s request. The

system should call the retriever in the following two situations:

1. When the user specifies a requirement, and the system needs to search for an API to
fulfill it.

2. When the user does not provide the input parameters required for an API call, and the
system needs to search for another API to obtain those parameters.

Of the eight actions given, return only the one that you think is most appropriate. Do not return any
value other than the action provided above. Just return the action, not a single word more.
Dialogue History:
{dialogue_history}

Table 21: Instruction prompt for the Faithfulness task

Correctness task evaluation prompt
System
Instruction: You will be given part of a dialogue between the user and the system. In this dialogue,
the user is requesting information from the system, and the system will execute an API call to retrieve
the necessary information. Your task is to generate a response that satisfies the user’s initial query
based on the API call results provided in the dialogue history.
Dialogue History:
{dialogue_history}

25

	Introduction
	Related Works
	ToolDial
	Graph Construction
	Action Sequences
	Scenario Instruction Generation
	Dialogue Generation

	Experiments
	Evaluation Tasks
	Experiment Settings
	Results

	Conclusion
	Appendix
	Entity description generation
	Keywords extraction
	User and system Action list
	Dialogue state and Retriever status annotation format
	Variation of Fail inform Action
	Comprehensive Action Sequences
	Utterance style
	Scenario prompt
	DST Error Analysis
	DST accuracy based on turn length
	Removing mismatch errors
	Prompt Format for the Experiment
	Evaluation Prompts

