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Abstract

Academic documents are packed with texts,001
equations, tables, and figures, requiring com-002
prehensive understanding for accurate Opti-003
cal Character Recognition (OCR). While end-004
to-end OCR methods offer improved accu-005
racy over layout-based approaches, they often006
grapple with significant repetition issues, espe-007
cially with complex layouts in Out-Of-Domain008
(OOD) documents. To tackle this issue, we009
propose LOCR1, a model that integrates loca-010
tion guiding into the transformer architecture011
during autoregression. We train the model on012
an original large-scale dataset comprising over013
53M text-location pairs from 89K academic014
document pages, including bounding boxes015
for words, tables and mathematical symbols.016
LOCR adeptly handles various formatting ele-017
ments and generates content in Markdown lan-018
guage. It outperforms all existing methods in019
our test set constructed from arXiv, as mea-020
sured by edit distance, BLEU, METEOR and021
F-measure. LOCR also eliminates repetition022
in the arXiv dataset, and reduces repetition fre-023
quency in OOD documents, from 13.19% to024
0.04% and from 8.10% to 0.11% for natural025
science and social science documents respec-026
tively. Additionally, LOCR features an inter-027
active OCR mode, facilitating the generation028
of complex documents through a few location029
prompts from human.030

1 Introduction031

Academic literature comprises a wealth of high-032

quality content, yet much of it is provided in for-033

mats like PDF that are not readily for machine read-034

ing. Particularly, most academic documents of the035

previous centuries are scanned version. Digitizing036

academic documents are important for scientific037

research, literature retrieval, and large-language038

model training. However, academic document lay-039

1Source codes and datasets will be available under the MIT
license upon publication

out tends to be highly intricate, including text, equa- 040

tions, images, tables, and annotations, posing chal- 041

lenges for obtaining accurate OCR results. 042

One approach to document OCR is to first analyze 043

the layout of the document and then extract the text 044

content (Zhu et al., 2022,mindee, 2023). While 045

progress has been made in any of the two stages or 046

handling specific types of elements, such as table 047

detection and recognition (Yang et al., 2022), hand- 048

written formula recognition (Sakshi and Kukreja, 049

2023) and structured information extraction (Lu 050

et al., 2022; Liao et al., 2023), it is very difficult for 051

models to understand all the elements and connect 052

the different chunks into a coherent sequence. 053

Recently, an end-to-end transformer structure, 054

Donut (Kim et al., 2022), was proposed for doc- 055

ument understanding. It effectively addresses the 056

complexity of combining multiple models and the 057

issue of error propagation. Without too many 058

changes in the model, Nougat (Blecher et al., 2023) 059

processes academic PDFs into markup language. 060

However, these methods are prone to hallucination 061

and repetitions, such as continuously repeating the 062

same sentence on a page. 063

In fact, getting trapped in a repetitive loop is a com- 064

mon problem with Transformer-based models sam- 065

pling with greedy search decoding (Holtzman et al., 066

2019). It is challenging for a language model to 067

accurately capture all the content of text-intensive 068

documents without position perception. By visu- 069

alizing the cross-attention during the prediction 070

process of Nougat (see Appendix E), we found that 071

the cross-attention cannot be focused on the correct 072

position when the layout is complex. This phe- 073

nomenon indicates that the positional information 074

influence the text decoding to a great extent. In- 075

spired by this, we consider incorporating positional 076

guidance for the model to focus on the correct word 077

to address the issue of repetitive loop. We introduce 078
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Location-based Scientific Document Dataset：

• 53M text-location pairs

• 89K academic document pages

• Bounding box including table, mathematical 

        expressions and various special formatting

• A data engine for collecting positional annotated 

        data for documents outside the domain
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(b) Model: location-guided transformer

Model

Dataset
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human-interactive prompting

(c) Interactive: align with human intent

Figure 1: An overview of three components of our work: a large-scale dataset with positional annotation and a data
engine, a location-guided OCR model for various layouts, and an interactive mode for humans to prompt the model
and modify data collection.

LOCR, a location-guided document understanding079

model, together with an original large-scale dataset080

and an interactive OCR mode to align with human081

intention (see Figure 1 for an overview).082

The most significant feature that distinguishes our083

model from previous works is the incorporation of084

positional autoregression alongside text autoregres-085

sion. LOCR simultaneously predicts the current086

token and the position of the next token, which087

is used to prompt the decoding of the next token.088

Through this method, we not only combine posi-089

tional information with text information but also090

avoid the tedious process and error accumulation091

in the two-stage OCR method. Taking document092

images as input, our model outputs document con-093

tent in Markdown format, including special formats094

such as superscripts and subscripts.095

Furthermore, we propose an importance decay096

strategy to intuitively penalize locations that have097

already been visited to avoid repetition. With the098

record of visited locations, we decrease the impor-099

tance of these positions. The repetition behavior100

is eliminated in the arXiv test set, and decreases101

for out-of-domain documents. For documents with102

complex layouts, we also introduce an interactive103

OCR mode, allowing the model to continue to de-104

code the text where the user has dragged a box.105

With these enhancement strategies, the generation106

ability of the model is significantly improved.107

Additionally, we propose a data engine for con-108

structing academic document OCR dataset with109

positional annotations. We collect a large-scale110

dataset of 89K academic document pages with 53M111

text-location pairs. To the best of our knowledge, it112

is the first dataset that includes a bounding box of113

each mathematical symbol in academic documents.114

In summary, the contributions of this paper are: 115

• We introduce LOCR, a transformer-structured 116

OCR model with positional supervision. Our 117

model achieves the state-of-the-art score in aca- 118

demic document understanding task in the arXiv 119

test set (see Section 5.2) and alleviates the repeti- 120

tive degradation to a great extent (Section 5.3). 121

• We innovatively introduce an interactive OCR 122

mode, enabling the model to handle any out-of- 123

domain documents. Humans only need to pro- 124

vide the position box for the next word without 125

any cumbersome operations (see Section 5.5). 126

• We will release a large-scale dataset composed of 127

89K pages of academic documents. Each piece of 128

data contains a document page image, the texts in 129

Markdown format, and the bounding boxes of all 130

words and mathematical symbols (see Section 3). 131

2 Related Work 132

2.1 General-purpose OCR 133

Optical Character Recognition (OCR) caters to a 134

diverse array of applications, including document 135

digitization (Smith, 2007; Moysset et al., 2017), 136

handwriting recognition, and scene text recogni- 137

tion (Li et al., 2021; Bautista and Atienza, 2022). 138

The classic OCR methods consist of two stages: 139

text detection and text recognition. The text detec- 140

tion algorithm obtains the position of text boxes 141

from the image, and then the recognition algorithm 142

recognizes the content within the text boxes. Re- 143

searches in these sub-fields have achieved satis- 144

factory results, such as EAST (Zhou et al., 2017) 145

for text detection, CRNN (Shi et al., 2015) for text 146

recognition, and LayoutLM family (Xu et al., 2019; 147

Xu et al., 2020; Huang et al., 2022) for document 148

element identification. There also has been vari- 149
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ous integrated toolbox to connect the above func-150

tions, such as DocXChain (Yao, 2023) and EffOCR151

(Bryan et al., 2023).152

2.2 Academic document OCR153

For academic document understanding, additional154

tasks like table and mathematical equation parsing155

are also involved. Marker (Paruchuri and Lampa,156

2023) is a pipeline of text extracting, layout detec-157

tion, and block combination, which converts PDF,158

EPUB, and MOBI to Markdown with a series of159

deep learning models. PaddleOCR develops a docu-160

ment analysis system PP-Structure (Li et al., 2022),161

which first analyses the layout information and162

then extracts key information. Such OCR-based163

approaches have shown promising performance but164

suffer from complexity and error propagation to the165

subsequent process. To address this issue, docu-166

ment understanding models based on transformer167

structure were proposed. Donut (Kim et al., 2022)168

is an encoder-decoder model that directly decodes169

the expected sequences from visual inputs. Nougat170

(Blecher et al., 2023) is a specific model trained171

on academic documents to process academic PDFs172

into markup language, with the ability to parse im-173

ages of math equations and tables.174

With the emergence of general large models, some175

Large Vision-Language Models (LVLMs) mark a176

significant milestone across OCR tasks. Vary (Wei177

et al., 2023) is a document parsing method, equip-178

ping the large model with the fine-grained percep-179

tion and understanding by scaling up the vision vo-180

cabulary of LVLMs. As the state-of-the-art LVLM,181

GPT-4v (Yang et al., 2023) performs well in rec-182

ognizing and understanding Latin contents. But183

it shows limitations when dealing with complex184

tasks such as table structure recognition and seman-185

tic entity recognition (Shi et al., 2023). When it186

comes to unstructured layouts or inconsistent text187

distribution, GPT-4v tends to omit lengthy tables188

and only reconstruct the short beginning of that.189

Without the box detection of two-stage OCR, the190

methods above are prone to hallucination and repe-191

titions. This phenomenon indicates that it is crucial192

for the model to find the correct position in order193

to generate the correct sequences, especially for194

ambiguous layouts and out-of-domain documents.195

2.3 Promptable model196

Interactive models play a significant role in align-197

ing behavior of artifical intelligence with human198

intentions, which have shown promising perfor- 199

mance within a variety of domains. SAM(Kirillov 200

et al., 2023) presents an interactive segmentation 201

model capable of accommodating point, box, and 202

text-based input. DINOv (Li et al., 2023) achieves 203

visual in-context prompting in both referring and 204

general segmentation. T-Rex (Jiang et al., 2023) ex- 205

plores object detection and counting, which can in- 206

teractively refine the counting results by prompting 207

on missing or falsely-detected objects. In contrast, 208

the field of OCR revolves less interactive explo- 209

rations, despite the dealing with complex layout 210

has an urge for human prompts and interactions. 211

3 Dataset 212

3.1 Data collection 213

To the best of our knowledge, there is no paired 214

dataset containing markup-formatted document 215

contents along with corresponding bounding boxes 216

(bbox) for each word and mathematical symbol. 217

We proposed a data engine to collect such paired 218

data. The process is shown in Figure 2. 219

We get the Tex source files of academic papers 220

from arXiv. In the first step, we assign a unique 221

RGB color identifier to each word and mathemati- 222

cal symbol automatically by using xcolor package 223

in LaTeX (see Step1). In the second step, follow- 224

ing the same pipeline as Nougat (Blecher et al., 225

2023), we compile LaTeX files into PDF and Mark- 226

down files respectively. Since PDF is a rich text 227

format that supports color changes, we obtain col- 228

orful PDF files. While Markdown is a plain text 229

format, the RGB identifiers are compiled into text 230

forms (see Step2). In the third step, we use the 231

PyMuPDF package of python to parse the colorful 232

PDF files and extract the pair of (color, bbox). At 233

the same time, we parse the Markdown file with 234

regular expressions to get the paired (color, text) 235

data. Finally, we merge the two pairs of data by the 236

key of RGB color to get paired (text, bbox) data 237

(see Step3). 238

We collected academic papers released on arXiv 239

from 2007 to 2023. During data processing, some 240

articles failed the conversion due to user-defined 241

macros or non-standardized formats. After all con- 242

version and data cleaning, our dataset is composed 243

of 88998 pages, which include, but are not limited 244

to, the bounding box of plain text, Greek letters, 245

arithmetic symbols, superscripts, subscripts, and 246

tabular symbols. Examples of our dataset is avail- 247

3



LaTeX

\section{Criticality in deep learning nets}
\subsection{From feed-forward to…}

We will focus now on a a feed-forward network, 
with two layers, $a_i$ and $b_j$ connected…

LaTeX

\section{\textcolor[RGB]{180,000,000}{Criticality}…}
\subsection{\ textcolor[RGB]{180,000,050}{From}…}

\textcolor[RGB]{180,000,100}{We} 
\textcolor[RGB]{180,000,105}{will}… 
$\textcolor[RGB]{180,000,185}{a}_{i}$ 
\textcolor[RGB]{180,000,190}{and}…

PDF

3 Criticality in deep learning nets

3.1 From feed-forward to fully connected…

We will focus now on a feed-forward network, with

two layers, 𝑎𝑖 and 𝑏𝑗 connected…

Markdown

## 3 textcolor[RGB]180,000,010Criticality…
### textcolor[RGB]180,000,050From…

textcolor[RGB]180,000,100We
textcolor[RGB]180,000,105will
\(textcolor[RGB]{180,000,185}{a}_{i}\) 
textcolor[RGB]180,000,190and…

Step1 Add Color to Each Word

Step0        The Original LaTeX Step2        Compile Markdown and PDF Step3 Match Pairs

PyMuPDF    (color,bbox)

re    (color,text)

PyMuPD (color,bbox)

re         (color,text)

Data       (text, bbox)

+

=

Figure 2: Data Processing. Step1: Add a unique RGB identifier to each word by parsing the Tex file. Step2:
Convert source file into Markdown and PDF formats respectively. Step3: Extract color-bbox pairs from colored
PDF, color-text pairs from Markdown, and merge the two to get the text-bbox pairs.

able in Appedix A1.248

3.2 Data augmentation249

Image augmentation To simulate the imperfec-250

tions and variability of scanned documents, we251

follow (Simard et al., 2003) to apply data augmen-252

tation to document images, including of erosion,253

dilation, gaussian noise, gaussian blur, bitmap con-254

version, image compression, grid distortion and255

elastic transform. Each of the transformations is256

applied with a certain probability.257

Text augmentation To address the issue of the258

model getting stuck in repetitive loops, we ran-259

domly skip 0 to 5 tokens and their corresponding260

positions in the ground truth labels. Compared261

with the perturbation method in Nougat, which ran-262

domly replaces tokens, our method shows a more263

pronounced effect (see Section 5.3).264

Position augmentation Since bounding boxes are265

involved in the autoregressive process, there may266

be some imprecise output. In some cases, a user267

may also draw a loose box in the interactive mode.268

Therefore, it is reasonable to add noise to the bound-269

ing boxes during the training phase. We add Gaus-270

sian noise with a mean of 0 and a standard deviation271

of 0.5 times the side length to each box.272

4 Methodology273

4.1 Model structure274

The over view of our model is shown in Figure 3,275

with a transformer-based backbone and an addi-276

tional prompt module to process positional informa- 277

tion. Given an image as input, the image encoder 278

transforms it as image embedding. Semantic infor- 279

mation and visual information are integrated within 280

the decoder, enabling simultaneous prediction of 281

the current token and its next position. 282

Backbone Theoretically, our prompt module can 283

be applied to any multimodal models with an image 284

encoder and a text decoder. When no positional 285

information is provided, the backbone model would 286

autonomously generate sequences. In this paper, 287

we choose Nougat (Blecher et al., 2023) as the 288

backbone, which uses the implementation of Swin 289

Transformer (Liu et al., 2021) as image encoder 290

and mBART (Lewis et al., 2019) as decoder. Given 291

an image of x ∈ R3,H0,W0 , the image encoder 292

transfers it into dense embedding himg ∈ RH,W,d, 293

which is then decoded into a sequence of token 294

embeddings ht ∈ Rd. Finally, the sequence of 295

token embeddings is projected into a logit matrix 296

with the size of the vocabulary v. 297

Prompt Module Without location guiding, the 298

backbone model may get confused about where to 299

find the next token. The prompt module is designed 300

to perceive spatial information prompted by previ- 301

ous steps or human, consisting of two-dimensional 302

positional encoding and position detection heads. 303

We opt for positional encodings with Fourier Fea- 304

tures (Tancik et al., 2020) to represent the positions 305

of bounding boxes for both tokens and the image. 306

The token bounding box, defined by its top-left and 307
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# Informal Control 

#### Abstract
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as well as rules of 

reasoning regarding 

control code…

## 1 Introduction

Although the 
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Figure 3: Model Architecture. Left: Image encoder and decoder of transformer structure. Right: Position detection
head and token projection. Purple: Prompt module consisting of positional encodings and position detection head.
Red: Interactive mode with human-reviewed input.

bottom-right corners, is transformed into a dense308

position embedding hbox ∈ Rd. For the image em-309

bedding himg ∈ RH,W,d, we divide it into grids310

of size (H, W) (shown in Figure 3), and apply po-311

sitional encodings to each grid box to get the its312

position embedding hgrid ∈ RH,W,d.313

The position detection heads are used to predict the314

position of the next token. Given that the weights315

of the cross-attention layers indicate the similarity316

between image grids and the current token, we uti-317

lize them as input for position detection. Inspired318

by CenterNet (Duan et al., 2019), an effective ob-319

ject detection algorithm, we use three convolutional320

heads to predict the position of the next token. The321

first convolution head predicts the grid containing322

the next token by conducting a classification task323

on all grids in an image. The second and third con-324

volution heads regress the size and center offset of325

the next bounding box respectively. Finally, the co-326

ordinates of the bounding box are calculated based327

on the center point and the width and height. To im-328

prove prediction accuracy, we upsample the image329

grid output by decoder from (H,W) to (2H,2W),330

allowing finer-grained positition prediction.331

Information fusion The token information and332

spatial information is fused in cross-attention lay-333

ers of decoder. In backbone models without prompt334

module, the cross-attention layers take solely im-335

age embedding as encoder hidden states and token336

embedding as hidden states input. Instead, we use337

the sum of the image embedding himg ∈ RH,W,d338

and its position embedding hgrid ∈ RH,W,d as the339

encoder hidden states, and the sum of token embed-340

ding ht ∈ Rd and position embedding hbox ∈ Rd 341

as the hidden states input. As a consequence, in 342

cross-attention layers where token information in- 343

teracts with the image contents, the positional in- 344

formation of tokens and image are also fused. 345

4.2 Decay strategy for anti-repetition 346

During the inference stage, we introduce position 347

decay strategies based on prior knowledge to guide 348

the prediction of positions. 349

Accumulation Decay The accumulation decay 350

strategy is implemented by recording the count 351

of tokens that have appeared in each grid. The 352

heatmap for predicting the next grid is adjusted by 353

penalizing grids where many tokens have already 354

been located as follows: 355

hm = hm+ log(σ) · cnt (1) 356

Where hm ∈ R2H,2W denotes the upsampled 357

heatmap predicted by the first position detection 358

head and cnt ∈ R2H,2W denotes the count of to- 359

kens that have appeared in each grid. The σ ∈ 360

(0, 1] denotes decay rate. Smaller σ value means 361

stronger decay effect. When σ is set to 1, the decay 362

function is deactivated. We recommend using a 363

decay rate between 0.75 and 0.95, depending on 364

the density of text in the target documents. 365

Blank Decay Another intuitive idea is to apply 366

positional decay to blank grids. We calculate the 367

standard deviation std for pixels within each grid, 368

where grids with smaller standard deviations (in 369

extreme cases, containing no characters at all) are 370

considered less likely to contain the next token. 371
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Together with blank decay strategy, the heatmap is372

adjusted as follows:373

hm = hm+ log(σ) · cnt+ log(η · std) (2)374

4.3 Loss function375

Our loss function consists of two parts: token loss376

and position loss.377

Token loss We use the cross-entropy loss of tokens378

Lt to train the language decoder.379

Position loss For the three convolutional heads380

in the position detection module, we apply cross-381

entropy loss to the first classification head and the382

Intersection over Union (IOU) metric to the sub-383

sequent two heads. Additionally, we integrate the384

normalized Euclidean distance between the center385

of the predicted box and that of the target box to386

mitigate the shortcomings of slow convergence and387

inaccurate regression inherent in IOU (Zheng et al.,388

2019). The position loss function is as follows:389

Lp = αLce
p + β(1− iou+ γd2) (3)390

Where Lce
p denotes the cross-entropy loss of the391

classification. d represents the normalized Eu-392

clidean distance to adjust the IOU loss. Addition-393

ally, α, β, and γ are hyperparameters, correspond-394

ing to 1, 0.3, and 10 respectively in our settings.395

As the prediction of the text at the beginning of a396

page is much more challenging and important, we397

assigned a higher weight θ for the initial text than398

the subsequent text.399

The final loss function is as follows:400

l = θ(Linit
p + Linit

t ) + Lsub
p + Lsub

t (4)401

4.4 Human interaction402

As a complement to our method, we provide an403

interactive mode, which serves both for improving404

the model’s performance and as a part of our data405

construction engine.406

Model Assistant To deal with extremely hard407

cases, we provide a browser-based tool to enable408

users to give real-time position prompts by simply409

dragging a box. When the autoregressive process410

encounters a state of confusion, characterized by a411

predicted token or position confidence lower than 412

a predetermined threshold, users can opt to pro- 413

vide a positional prompt. With the correct position 414

provided, the autoregressive process would go on 415

more smoothly (see Section 5.5 for results). 416

Data construction With the model automatically 417

predicting positions, minimal human intervention 418

is required to acquire additional out-of-domain 419

data, particularly the positional bounding box la- 420

bels. As a result, LOCR is able to parse a broader 421

range of layouts and document domains beyond 422

academic papers. For instance, when tested on 423

patent documents, LOCR’s recognition of the ma- 424

jority of content is satisfactory (see Figure B4), 425

showing the model’s flexibility. This paves the way 426

for broader applications of location-based OCR 427

method. 428

5 Result and Evaluation 429

5.1 Implementation details 430

Baseline We use both the state-of-the-art integrated 431

toolbox Marker, PaddleOCR and end-to-end gen- 432

eration model Nougat as our baselines. For Pad- 433

dleOCR, which outputs each bounding box by text 434

detection and corresponding text by text recogni- 435

tion, we concatenate the sequences in the order of 436

its model output. 437

Dataset Since our main baseline model, Nougat, 438

does not provide an open resource dataset, we eval- 439

uate our method with the dataset introduced in Sec- 440

tion 3, which shares the same data source and pro- 441

cessing pipeline as Nougat. The test set contains 442

1000 pages of academic documents. In the testing 443

phase, only images are used as inputs, which en- 444

sures the fairness and rationality of our evaluation. 445

Setup We resize the input dimensions of the images 446

to (H0, W0) = (896, 672), an aspect ratio that ac- 447

commodates the majority of academic paper sizes. 448

The maximal sequence length of transformer de- 449

coder is set to 4096 to allow the output of intensive 450

text in academic research papers. During inference 451

the text is generated using greedy decoding. 452

Training details We initialize the backbone pa- 453

rameters using the pretrained Nougat small model, 454

while the prompt module is initialized randomly. 455

LOCR was trained for 50 epochs using 64 A100 456

80GB GPUs, with a total batch size of 128. The 457

maximum learning rate is set to 5 × 10−4, with 458

exponential decay until reaching 1× 10−5. 459
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Figure 4: Examples of our model output. Left: Origin image of document page. Right: Model output converted to
Markdown and rendered back into a PDF. More detailed examples are available in Appendix B

Method Edit dist↓ BLEU↑ METEOR↑ Precision↑ Recall↑ F1↑
PaddleOCR 0.475 0.500 0.589 0.713 0.690 0.696

Marker 0.221 0.696 0.783 0.838 0.804 0.814
Nougat small (247M*) 0.166 0.825 0.882 0.900 0.898 0.899
Nougat base (348M*) 0.159 0.829 0.889 0.900 0.905 0.902
LOCR (248M*,σ = 1) 0.106 0.854 0.913 0.915 0.916 0.915

LOCR (248M*,σ = 0.85) 0.104 0.854 0.912 0.915 0.915 0.915
LOCR (248M*,σ = 0.75) 0.109 0.850 0.910 0.914 0.911 0.912

Table 1: Comparative performance results on the arXiv test set. Our LOCR method demonstrates superior
performance across multiple metrics, significantly outperforming the baseline methods. *Number of parameters.

5.2 Metrics460

Following Nougat (Blecher et al., 2023), we use461

Edit distance, BLEU (Papineni et al., 2002), ME-462

TEOR (Banerjee and Lavie, 2005), Precision, Re-463

call and F1 to measure the quality of output text.464

As shown in Table 1, while the number of LOCR’s465

parameters is only slightly more than the small ver-466

sion of Nougat, our model outperforms the base467

version of Nougat in all evaluation metrics. In con-468

trast, the multi-stage pipelines do not convert all469

equations to LaTeX and not all lines are joined470

properly. For the autogressive method without po-471

sition supervision, Nougat prones to hallucination472

and repetition. These results confirm the effective-473

ness of LOCR and the positional decay strategy.474

Besides, we use IOU metrics to measure the per-475

formance of our prompt module. LOCR achieves 476

a IOU score of 0.702. Our method successfully 477

handles various layouts, including pages with mul- 478

tiple subfigures, tables, mathematical formulas, and 479

references (Examples are available in Appendix B). 480

5.3 Repetition 481

Following Nougat (Blecher et al., 2023), we detect 482

the repetition behavior during inference by com- 483

puting the variances of the largest logit values of 484

each step. If the signal drops below a threshold, we 485

regard the sequence to have repetitions. 486

We evaluate the generation ability of our model 487

and present the frequency of repetition in Table 2. 488

Due to the majority of arXiv manuscripts being 489

formatted in single or double columns and lack- 490
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Method ArXiv Quantum Marketing
Page Doc* Cover Page Doc* Cover Page Doc* Cover

Nougat small 4.39% 27.60% 6.40% 13.77% 63.90% 22.70% 8.30% 60.80% 14.50%
Nougat base 4.42% 27.80% 5.30% 13.19% 55.40% 15.40% 8.10% 60.20% 16.90%

LOCR (σ = 1) 0.88% 5.20% 0.30% 2.78% 17.10% 0.60% 1.36% 11.90% 0.70%
LOCR (σ = 0.85) 0.01% 0.10% 0.10% 0.08% 0.60% 0.00% 0.11% 1.40% 0.00%
LOCR (σ = 0.75) 0.00% 0.00% 0.00% 0.04% 0.30% 0.00% 0.14% 1.60% 0.10%

Table 2: Robustness of LOCR across diverse domains, showcasing the significant reduction in generation failures.
The three columns for each domain are calculated based on failed pages / total pages, failed doc / total doc, and doc
with failed cover / total doc. *Statistics on the number of pages in each document can be found in Appendix D.

ing complex layout such as footnotes and covers,491

we selected out-of-domain (OOD) datasets from492

diverse fields to ensure varied layouts. Specifically,493

we select 1000 papers each from natural sciences494

(quantum physics) and social sciences (marketing),495

as OOD test documents. We calculate both the pro-496

portion of failed pages and that of failed documents.497

As the first page of an academic document typically498

shows a more complex layout than the subsequent499

pages, we additionally calculate the proportion of500

documents with failures in the cover.501

The model exhibits an impressive decrease in repe-502

tition failures. Specifically, in arXiv dataset, LOCR503

with σ = 0.75 eliminates repetition for all pages504

from 4.42%. For OOD documents where the doc-505

uments are more challenging to comprehend with506

more complex formulas, LOCR with σ = 0.75507

reduces the failure rate for all pages to 0.04% for508

quantum documents and LOCR with σ = 0.85 re-509

duces that to 0.11% for marketing documents. On510

the other hand, among all failed documents, the pro-511

portion of failures on the first page is significantly512

decreased, demonstrating better ability of LOCR513

to handle more complex layouts. Some pages that514

failed with Nougat but were successfully converted515

by LOCR are shown in Appendix B.516

5.4 Ablation study517

We conduct ablation study to illustrate the indi-518

vidual contribution of the decay strategy and the519

positional module.520

Regarding the decay strategy, the bottom three rows521

in Table 1 preliminarily demonstrate its efficacy,522

where σ = 1 signifies no decay strategy applied.523

Further, we conducted ablation experiments on the524

repetition rate. As Table 2 shows, our decay strat-525

egy proves further performance improvement com-526

pared to scenarios without the decay strategy. Be-527

sides, the model results show good robustness to528

slight fluctuations of decay rate. 529

Regarding the positional module, comparing the 530

performance of LOCR with that of the Nougat 531

model serves as a valuable ablation experiment. 532

Since our final training set constitutes a subset of 533

Nougat’s training set, in the absence of the decay 534

strategy (σ = 1) in Table 1, the performance im- 535

provement of our model serves as evidence of the 536

effectiveness of the positional module. 537

5.5 Interaction 538

Although the problem of repetitive degeneration 539

has been largely alleviated, we aim to complete the 540

remaining layouts in the interactive mode. When 541

the model encounters a layout that is difficult to 542

judge and the confidence of the predicted posi- 543

tion is lower than the threshold, simply dragging 544

a bounding box allows the model to automatically 545

return to the expected position and continue out- 546

putting correct results. Interactive examples are 547

available in Appendix C. As a result, LOCR is able 548

to parse a broader range of document domains be- 549

yond academic papers. An example of LOCR to 550

parse patent documents is shown in Figure B4. 551

6 Discussion 552

In our work, we introduce LOCR, which incor- 553

porates location guiding into the language model. 554

Our approach significantly mitigates the problem of 555

repetitive loops often encountered by transformer- 556

based models. The interactive mode can be utilized 557

to construct datasets for fine-tuning OCR models 558

to specific domain literature, and enhancing the 559

generalization capability of our model. We believe 560

that LOCR can be applied to digitize documents 561

from various fields with complex layouts, thereby 562

assisting academic research, literature retrieval, and 563

large language model training. We hope this work 564

can help the development of the area of OCR. 565
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7 Limitations566

Although the frequency of repetition has been sig-567

nificantly mitigated, it has not been entirely eradi-568

cated in out-of-domain documents. Secondly, when569

parsing other types of documents beyond academic570

papers, some human interaction is needed. Addi-571

tionally, our model encounters difficulties when the572

initial word on a page is incomplete, leading to573

imperfect handling. We will continue our work to574

address these issues.575
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A Dataset Examples 738

To the best of our knowledge, this is the first paired dataset containing markup-formatted document 739

contents along with corresponding bounding boxes. What makes our dataset distinguished from existing 740

ones is that our bounding boxes covers all visible mathematical symbols, such as
∑

, ⟨⟩ and θα. 741

Figure A1: Dataset example. Bounding boxes of texts are highlighted in pink, mathematical expressions in blue,
and tables in green.

B Output Examples 742

In Figure B1, we compared the output of LOCR and that of Nougat in Markdown format, together with 743

the original PDF pages. Compared with Nougat, LOCR successfully handled the repetition problem. The 744

corresponding part in PDF is highlighted in blue. 745

As a more clear illustration, Figure B2 shows the output of LOCR recompiled into PDF format. 746

Figure B3 shows the visualization of bounding boxes predicted by position detection head. LOCR predicts 747

bounding boxes with high accuracy not only for plain texts, but also for figure captions, mathematical 748

symbols and tables. 749
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# Constraints on model atmospheres from complex asteroseismology of the\(\beta\) 

Cephei stars 

 

Szevczuk Wojciech, Walczak Przemysław and Daszyńskas-Daszkiewicz Jadwig 

 

###### Abstract 

 

Using the method termed complex asteroseismology, we derive constraints on model 

atmospheres, in particular, on the NLTE effects. We fit simultaneously pulsational 

frequencies and the corresponding values of the nonadiabatic complex parameter\(f\) 

for the four\(\beta\) Cephei stars:\(\theta\) Oph,\(\nu\) Eri,\(\gamma\) Peg and12 Lac. 

The LTE Kuruc models and the BSTAR2006 NLTE models are tested. 

 

## 1 Complex asteroseismology 

 

We compute seismic models which fit centroid frequencies for different values of 

mass, chemical composition and the core overshooting parameter. From this set of 

models we choose those which reproduce the nonadiabatic parameter\(f\) using the 

method of[3]. The\(f\)-parameter describes the ratio of the bolometric flux 

perturbation to the radial displacement at the photosphere level and its theoretical 

values are obtained from linear nonadiabatic theory of stellar pulsation. All 

computations were obtained with the OPAL opacities. Two chemical mixtures were 

adopted: A04([1]) for\(\nu\) Eri and\(\theta\) Oph, and AGSS09([2]) for12 Lac 

and\(\gamma\) Peg. The empirical values of\(f\) were determined with the LTE 

Kurucz([4]) models and the NLTE model atmospheres([5]). Two values of the 

microturbulent velocity,\(\xi_{s}\), were considered. 

 

## 2 Constraints on model atmospheres 

 

The empirical values of the nonadiabatic\(f-\)parameter of the\(\beta\) Cep stars are 

sensitive to the model atmospheres([3]). In the case of12 Lac and\(\gamma\) Peg, the 

values of\(f\) 
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The origin of the enhancement is clarified by looking at the pair transition density, 

which is shown in Fig. 2(a) and (b) for \(120\leq A\leq 132\) and \(132<A\leq 150\), 

respectively. It is seen that the profile of the transition density suddenly changes as the 

neutron number exceeds the \(N=82\) magic number and \(N=90\). The transition 

density for \(132<A\leq 150\) extends outside the surface, reaching \(r\sim 11\) fm for 

\(132<A<140\), and \(r\sim 14\) fm for \(140<A<150\). The amplitude in the exterior 

region \(r\,\lower 3.01pt\hbox{$\sim$}\hbox to 0.0pt{\raise 1.86pt\hbox{$<$}}\raise 

1.8 6pt\hbox{$<$}\raise 1.86pt\hbox{$<$}\raise 1.86pt\hbox{$<$}\raise 

1.86pt\hbox{$<$}\raise 1. 
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The origin of the enhancement is clarified by looking at the pair transition density, 

which is shown in Fig.2(a) and(b) for\(120\leq A\leq132\) and132\(<\)\(A\leq150\), 

respectively. It is seen that the profile of the transition density suddenly changes as the 

neutron number exceeds the\(N\)=82 magic number and\(N\)=90. The transition 

density for\(132\)\(<\)\(A\leq150\) extends outside the surface, reaching\(r\sim11\) fm 

for\(132\)\(<\)\(A\)\(<\)140, and\(r\sim14\) fm for\(140\)\(<\)\(A\)\(<\)150. The 

amplitude in the exterior region\(r\mathop{\vbox{\offinterlineskip\hbox{$>$}\hbox 

to for\(A\geq132\) is evidently larger than those for\(132\), where the amplitudes 

extend only up to\(r\sim9\) fm. Comparing the results for\(A\)=120 and for\(A\)=144, 

for instance, the maximum values of the amplitude around the nuclear 

surface\(r\sim6\) fm are approximately the same, but because of the large spatial 

extension of the transition density, the pair transfer strength in\({}^{144}\)Sn is larger 

by a factor of\(\sim2\)(cf. Fig.1). 

 

The reason for the spatial extension of the pair transition density to develop suddenly 

beyond\(N\)=82 and\(N\)=90 can be ascribed to the shell gap at\(N\)=82 and 

properties of the neutron single-particle states. We here note that the transition density 

of the pair rotational mode, i.e., the pair density\(\tilde{\rho}(r)\) is written as a 

coherent sum of contributions of quasiparticle states, and the quasiparticle states with 

lower excitation energy(i.e., those originating from orbits close to the Fermi energy) 

have larger contributions. The calculated Hartree-Fock single-particle energies for 

neutrons in\({}^{132}\)Sn are\(e_{\rm HF}\)=\(-\)1.99,\(-\)0.25,0.26 MeV for 

the\(2f_{7/2}\),\(3p_{3/2}\), and\(3p_{1/2}\) orbits located above the\(N\)=82 gap, 

respectively(\(3p_{1/2}\) is an unbound resonance), and the\(h_{11/2}\) orbit 

with\(e_{\rm=\(-7.68\) MeV is located below the shell gap. For 

the132\(<\)\(A\)\(<\)140 isotopes(where the neutron Fermi energy is located near the 

position of\(2f_{7/2}\)), the main component of the transition density originates from 

this orbit. Since the binding energy of\(2f_{7/2}\) is rather small, the tail of its wave 

function extends to outside, leading to the long tail in the pair transition density. When 

the neutron number exceeds\(N\)=90(\(A\)=140), the next single particle 

orbits\(3p_{3/2}\) and3\(p_{1/2}\) give large contribution to the pair density. Since 

these\(p\) orbits have very small binding or are unbound, the spatial extension further 

develops in isotopes with\(N\geq90\)(\(A\geq140\)). 

 

## IV Pairing vibration 

 

### Strength function 

 

We now discuss the two-neutron transfer modes pop excited\(0^{+}\) states. 

Figure3(a),(b),(c) and(d) show 
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An important study [5] showed that compressible thermal flows of the level of 

accuracy of the Navier-Stokes equation could be recovered by using the lattice 

Boltzmann equation with 37 discrete velocities in two-dimensional space comprised 

of a square lattice and this was confirmed again [6]. However, we can reduce the 

minimal number by altering discrete velocities. Here, we present a 33-velocities 

model having the same order of accuracy to the 37-velocities one. As described in Fig. 

1, the vectors of the 33-velocities model are sparsely and widely distributed than those 

of the 37-velocities one. The discrete velocities of the 33-velocities model 

\(v_{i}=(v_{i,x},v_{i,y})\) is comprised of \(v_{1}=(0,0)\), \(v_{2}=c(1,0)\), 

\(v_{3}=c(2,0)\), \(v_{4}=c(3,0)\), \(v_{5}=c(1,1)\), \(v_{6}=c(2,2)\), 

\(v_{7}=c(4,4)\), \(v_{8}=c(2,1)\) and the other velocities obtained by the symmetry 

with respect to the \(x\)-axis, \(y\)-axis, and \(y=x\) where \(c=0.819381\), so that the 

discrete velocities satisfy isotropy. Their corresponding weight coefficients are 

\(w_{1}\approx 0.161987\), \(w_{2}\approx 0.143204\), \(w_{3}\approx 

0.00556112\), \(w_{4}\approx 0.00113254\), \(w_{5}\approx 0.0338840\), 

\(w_{6}\approx 0.0000844799\), \(w_{7}\approx 3.45552 
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An important study[5] showed that compressible thermal flows of the level of 

accuracy of the Navier-Stokes equation could be recovered by using the lattice 

Boltzmann equation with37 discrete velocities in two-dimensional space comprised of 

a square lattice and this was confirmed again[6]. However, we can reduce the minimal 

number by altering discrete velocities. Here, we present a33-velocities model having 

the same order of accuracy to the37-velocities one. As described in Fig.1, the vectors 

of the33-velocities model are sparsely and widely distributed than those of the37-

velocities one. The discrete velocities of the33-velocities 

model\(v_{i}\)=\((v_{i,x_{i},v_{j,y})\) is comprised 

of\(v_{1}\)=\((0,0)\),\(v_{2}\)=\(c(1,0)\),\(v_{3}\)=\(c(2,0)\),\(v_{4}\)=\(c(3,0)\),\(v_

{5}\)=\(c(1,1)\),\(v_{5}\)=\(c(2,2)\),\(v_{7}\)=\(c(4,4)\),\(v_{8}\)=\(c(2,1)\) and the 

other velocities obtained by the symmetry with respect to the\(x\)-axis,\(y\)-axis, 

and\(y\)=\(x\) where\(c\)=0.819381, so that the discrete velocities satisfy isotropy. 

Their corresponding weight coefficients 

are\(w_{1}\approx0.161987\),\(w_{2}\approx0.143204\),\(w_{3}\approx0.00556112\

),\(w_{4}\approx0.00113254\),\(w_{5}\approx0.0338840\),\(w_{6}\approx0.0008447

99\),\(w_{7}\approx3.45552\times10^{-6}\),\(w_{8}\approx0.0128169\), and for the 

other velocities obtained by the symmetry,\(w_{i}\)=\(w_{j}\) 

if\(\|v_{i}\|\)=\(\|v_{j}\|\). For simplicity, we have presented the approximate values 

of\(c\) and\(w_{i}\) with six significant figures instead of the exact values. Note that 

this solution can be obtained by the system of equations 

 

\[\sum_{i=1}^{33}w_{i}v_{i,x}^{k}v_{i,y}^{k}=\Gamma\left(\frac{1+\frac{a}{2}\

right)\Gamma\left(\frac{1+\frac{b}{2}\right)/\pi\] 

 

for\((a,b)\)=\((0,0)\),\((0,2)\),\((2,2)\),\((0,4)\),\((2,4)\),\((0,6)\),\((4,4)\),\((2,6)\), 

and\((0,8)\) where\(\Gamma\) is the Gaussian Gamma function[7]. The discretized 

equilibrium distribution 

  

Figure B1: Examples of pages that Nougat failed to convert but LOCR succeeded. Left: Original PDF pages, with
failed parts highlighted in blue. Medium: Markdown output by Nougat. Right: Markdown output by LOCR.
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are imposed. Algebraic geometry codes over elliptic curves are natural gen-
eralizations of Reed-Solomon codes. Hence it is interesting to consider the
possible generalization of GM-MDS conjecture and then a beautiful theorem
to algebraic geometry codes over elliptic curves. Theorem 2.2 and Corollary
2.1 are natural extensions in this case, however the sufficient conditions in
Theorem 2.2 and Corollary 2.1 are clearly much stronger than the necessary.

A linear [n, k]q code over Fq is called r-MDS for some r in the range
1 ≤ r ≤ k, if dr = n− k + r. Then it is also s-MDS for any s ≥ r, see [23].
The linear MDS codes are then 1-MDS. Hence r-MDS codes for r ≥ 2 are
natural generalizations of linear MDS codes. A well-known result in weight
hierarchy or higher weights about algebraic-geometric codes due to Tsfas-
man and Vlǎdut is that these codes are g + 1-MDS if they are from genus
g curves, see [23] Corollary 4.2. As algebraic-geometric codes from genus
0 curves, the Reed-Solomon codes are MDS (1-MDS). The next interesting
cases are these algebraic-geometric 2-MDS codes from elliptic curves.

Since the GM-MDS conjecture are about 1-MDS linear codes, we can
consider the direct generalization of the GM-MDS conjecture for 2-MDS
linear codes. The generalized Hamming weights of 2-MDS linear (not MDS)
codes are as follows,

d1 = n− k,

d2 = n− k + 2,

· · · ,
dr = n− k + r,

· · · ,
dk = n.

Many algebraic-geometric [n, k]q codes from elliptic curves with code lenght
n > q + 2 have their generalized Hamming weights as above. However for
algebraic-geometric code from elliptic curve cases, not every subset of [n]
of the cardinality k can be the set of zero coordinate positions of nonzero
codeword, the condition |Si| ≤ k − 1 is a natural constraint.

Therefore the GHW -based support constrained conditions on the subset
systems for two or more subsets are the same as the MDS condition in the
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Figure B2: Examples of our model output. Left: Origin image of document page with tables and equations. Right:
Model output converted to Markdown and rendered back into a PDF.
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(a) Origin page with figures (b) Result

(c) Origin page with mathematical formulas (d) Result
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(e) Origin page with tables (f) Result

(g) Origin page with references (h) Result

Figure B3: Example of position prediction. Green box: Rough result of grid classification. Yellow: Final result of
box regression.
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(i) Origin patent page (j) Result

Figure B4: Example of our model output on patent documents. LOCR is able to parse a broader range of layouts
and document domains beyond academic papers, indicating the flexibility of location-based OCR method. Besides,
with the interactive mode and the model automatically predicting positions, minimal human intervention is required
to acquire additional out-of-domain data, particularly the positional bounding box labels. This paves the way for
broader applications of location-based OCR method.
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C Interactive Mode 750

Figure C1 shows the interactive process with human intervention. The orange bounding boxes denote 751

the areas that have been scanned by the model. The model predicted a low confidence score when it 752

decoded to the position shown in 1(a), with the incorrectly predicted position highlighted in red. In 1(c), 753

human gave a box prompt highlighted in blue and the model output the subsequent contents smoothly and 754

correctly. 755

(k) A case model predicting wrong position (l) Result

Figure C1: Visualization of interaction on out-of-domain documents. Red box: Wrong position. Blue box: Human
prompt input.
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D Statistics of Test Documents756

As a complementary illustration for Table 2, we show the histograms of the number of pages per document757

in Figure D1. Consistent with the conclusion in Table 2, when counting in document number, domains758

with more pages per document, such as marketing, have a higher generation failure rate.759

Figure D1: Histograms of the number of pages per document in each repetition test set.

E A case when Nougat gets trapped into repetition760

Figure E1 shows a case when nougat got trapped into repetition. After decoding the name of the first761

author, Nougat tried to find the correlation between the footnote and the authors but failed. The heatmap762

of cross-attenions ended with cycling through the three subfigures and the output ended with repeating the763

name "Szewczuk Wojciech Szewczuk Wojciech Szewczuk Wojciech Wojci". The original PDF page, the764

output of Nougat and that of LOCR is shown in Figure B1.765

(a) Correct attentions for the authors. (b) Correct attentions for the footnote (c) Incorrect attentions when repetition.

Figure E1: The heatmap of cross-attention of Nougat, in which yellow denotes larger attention scores and purple
denotes smaller scores. Left: Cross-attention scores when Nougat decoded to the name of the first author. Medium:
Cross-attention scores when Nougat tried to decode the footnote. Right: Cross-attention scores when Nougat began
repetition and failed to find the correct position.
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