
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Common Foundations for SHACL, ShEx, and PG-Schema
Anonymous Author(s)

ABSTRACT
Graphs have emerged as an important foundation for a variety of
applications, including capturing and reasoning over factual knowl-
edge, semantic data integration, social networks, and providing
factual knowledge for machine learning algorithms. To formalise
certain properties of the data and to ensure data quality, there is a
need to describe the schema of such graphs. Because of the breadth
of applications and availability of different data models, such as
RDF and property graphs, both the Semantic Web and the database
community have independently developed graph schema languages:
SHACL, ShEx, and PG-Schema. Each language has its unique ap-
proach to defining constraints and validating graph data, leaving
potential users in the dark about their commonalities and differ-
ences. In this paper, we provide formal, concise definitions of the
core components of each of these schema languages. We employ a
uniform framework to facilitate a comprehensive comparison be-
tween the languages and identify a common set of functionalities,
shedding light on both overlapping and distinctive features of the
three languages.

ACM Reference Format:
Anonymous Author(s). 2024. Common Foundations for SHACL, ShEx, and
PG-Schema. In Proceedings of The Web Conference. ACM, New York, NY,
USA, 20 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Driven by the unprecedented growth of interconnected data, graph-
based data representations have emerged as an expressive and ver-
satile framework for modelling and analysing connections in data
sets [46]. This rapid growth however, has led to a proliferation of
diverse approaches, each with its own identity and perspective.

The two most prominent graph data models are RDF (Resource
Description Framework) [14] and Property Graphs [9]. In RDF, data
is modelled as a collection of triples, each consisting of a subject,
predicate, and object. Such triples naturally represent either edges
in a directed labelled graph (where the predicates represent rela-
tionships between nodes), or attributes-value pairs of nodes. That
is, objects can both be entities or atomic (literal) values. In contrast,
Property Graphs model data as nodes and edges, where both can
have labels and records attached, allowing for a flexible representa-
tion of attributes directly on the entities and relationships.

Similarly to the different data models, we are also seeing dif-
ferent approaches towards schema languages for graph-structured
data. Traditionally, in the Semantic Web community, schema and
constraint languages have been descriptive, focusing on flexibility to
accommodate varying structures. However, there has been a grow-
ing need for more prescriptive schemas that focus on validation of
data. At the same time, in the Database community, schemas have
traditionally been prescriptive but, since the rise of semi-structured
data, the demand for descriptive schemas has been growing. Thus,

The Web Conference, 28 April - 2 May 2025, Sydney, Australia
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the philosophies of schemas in the two communities have been
growing closer together.

For RDF, there are two main schema languages: SHACL (Shapes
Constraint Language) [29], which is also a W3C recommendation,
and ShEx (Shape Expressions) [43]. In the realm of Property Graphs,
the current main approach is PG-Schema [2, 3]. The development
processes of these languages have been quite different. For SHACL
and ShEx, the formal semantics were only introduced after their
initial implementations, echoing the evolution of programming
languages. Indeed, an analysis of SHACL’s expressive power and
associated decision problems appeared in the literature [6, 7, 34, 38–
40] only after it was published as a W3C recommendation, leading
up to a fully recursive variant of the language [1, 5, 12, 13, 39],
whose semantics had been left undefined in the standard. A similar
scenario occurred with ShEx, where formal analyses were only
conducted in later phases [8, 48]. PG-Schema developed in the
opposite direction. Here, a group of experts from industry and
academia first defined the main ideas in a sequence of research
papers [2, 3] and the implementation is expected to follow.

Since these three languages have been developed in different
communities, in the course of different processes, it is no surprise
that they are quite different. SHACL, ShEx, and PG-Schema use
an array of diverse approaches for defining how their components
work, ranging from declarative (formulas that specify what to look
for) to generative (expressions that generate the matching content),
and even combinations thereof. The bottom line is that we are left
with three approaches to express a “schema for graph-structured
data” that are very different at first glance.

As a group of authors coming from both the Semantic Web and
Database communities, we believe that there is a need for common
understanding.While the functionalities of schemas and constraints
used in the two communities largely overlap, it is a daunting task
to understand the essence of languages, such as SHACL, ShEx, and
PG-Schema. In this paper, we therefore aim to shed light on the
common aspects and the differences between these three languages.

Using a common framework, we provide crisp definitions of the
main aspects of the languages. Because the languages operate on
different datamodels, as a first stepwe introduce theCommonGraph
Data Model, a mathematical representation of data that canonically
embeds both RDF graphs and Property Graphs (see Section 2, which
also develops general common foundations). Precise abstractions
of the languages themselves are presented in Sections 3 (SHACL),
4 (ShEx), and 5 (PG-Schema); in the Appendices we explain how
and why we sometimes deviate from the original formalisms. Each
of these sections contains examples to give readers an immediate
intuition about what kinds of conditions each language can express.
Then, in Section 6, we present the Common Graph Schema Language
(CoGSL), which consists of functionalities shared by them all.

Casting all three languages in a common framework has the
immediate advantage that the reader can identify common func-
tionalities based on the syntax only: on the one hand, we aim at
giving the same semantics to schema language components that

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

syntactically look the same, and on the other hand, we can provide
examples of properties that distinguish the three languages using
simple syntactic constructs that are not part of the common core.
Aside from corner cases, properties expressed using constructs out-
side the common core are generally not expressible in all three
languages. By providing an understanding of fundamental differ-
ences and similarities between the three schema languages, we
hope to benefit both practitioners in choosing a schema language
fitting their needs, and researchers in studying the complexity and
expressiveness of schema languages.

2 FOUNDATIONS
In this section we present some material that we will need in the
subsequent sections, and define a data model that consists of com-
mon aspects of RDF and Property Graphs.

2.1 A common data model
When developing a common framework for SHACL, ShEx, and
PG-Schema, the first challenge is establishing a common data model,
since SHACL and ShEx work on RDF, whereas PG-Schema works
on Property Graphs. Rather than using a model that generalizes
both RDF and Property Graphs, we propose a simple model, called
common graphs, which we obtained by asking what, fundamentally,
are the common aspects of RDF and Property Graphs (Appendix A
gives more details on the distilling of common graphs).

Let us assume disjoint countable sets of nodes N , values V ,
predicates P, and keys K (sometimes called properties).

Definition 1. A common graph is a pair G = (𝐸, 𝜌) where
• 𝐸 ⊆fin N × P ×N is its set of edges (which carry predicates), and
• 𝜌 : N ×K⇀V is a finite-domain partial function mapping node-

key pairs to values.

The set of nodes of a common graph G, written Nodes(G), consists
of all elements of N that occur in 𝐸 or in the domain of 𝜌 . Similarly,
Keys(G) is the subset of K that is used in 𝜌 , and Values(G) is the
subset of V that is used in 𝜌 (that is, the range of 𝜌).

Example 1. Consider Figure 1, containing a graph to store in-
formation about users who may have access to (possibly multiple)
accounts in, e.g., a media streaming service. In this example, we
have six nodes describing four persons (𝑢1, ..., 𝑢4) and two accounts
(𝑎1, 𝑎2). As a common graph G = (𝐸, 𝜌), the nodes are 𝑎1, 𝑢1, etc.
Examples of edges in 𝐸 are (𝑢2, hasAcccess, 𝑎1) and (𝑢3, invited, 𝑢2).
Furthermore, we have 𝜌 (𝑢2, email) = d@d.d and 𝜌 (𝑎1, 𝑐𝑎𝑟𝑑) = 1234.
So, 𝐸 captures the arrows in the figure (labeled with predicates)
and 𝜌 captures the key/value information for each node. Notice
that a person may be the owner of an account, and may poten-
tially have access to other accounts. This is captured using the
predicates ownsAccount and hasAcccess, respectively. In addition,
the system implements an invitation functionality, where users
may invite other people to join the platform. The previous invita-
tions are recorded using the predicate invited. Both accounts and
users may be privileged, which is stored via a Boolean value of the
key privileged. We note that the presence of the key email (resp. of
the key (credit) card) is associated with, and indeed identifies users
(resp. accounts).

u1

!"#$%&&!'#(

!"#$%&&!'#(

)*$%&&+$$,#-,(+.
,#-,(+.

,#-,(+.

a1

email=d@d.d
privileged=false

email=c@c.c
privileged=false

email=b@b.b
privileged=true

email=a@a.a
privileged=true

card=4321
privileged=true

card=1234
privileged=false

Alex

!"#$%&&!'#(

Blake CameronDrew
!"#$%&&!'#(

)*$%&&+$$,#-,(+.
,#-,(+.

,#-,(+.

Acc1

Acc2
email=c@c.c
privileged=false

email=b@b.b
privileged=false

email=d@d.d
privileged=true

email=a@a.a
privileged=true

card=4321
privileged=true

card=1234
privileged=false

a2 u2 u3 u4

Figure 1: The media service common graph.

It is easy to see that a common graph is a special case of a
property graph (see [2] for a formal definition of property graphs).
A common graph can also be seen as a set of triples, as in RDF. Let

E = (N × P × N) ∪ (N × K ×V) .
Then, a common graph can be seen as a finite set G ⊆ E such that
for each 𝑢 ∈ N and 𝑘 ∈ K there is at most one 𝑣 ∈ V such that
(𝑢, 𝑘, 𝑣) ∈ G. Indeed, a common graph (𝐸, 𝜌) corresponds to

𝐸 ∪ {(𝑢, 𝑘, 𝑣) | 𝜌 (𝑢, 𝑘) = 𝑣} .
When we write 𝜌 (𝑢, 𝑘) = 𝑣 we assume that 𝜌 is defined on (𝑢, 𝑘).
Throughout the paper we see property graph G simultaneously as
a pair (𝐸, 𝜌) and as a set of triples from E, switching between these
perspectives depending on what is most convenient at a givenmoment.

2.2 Node contents and neighbourhoods
Let R be the set of all records, i.e., finite-domain partial functions
𝑟 : K⇀V . We write records as sets of pairs {(𝑘1,𝑤1), . . . (𝑘𝑛,𝑤𝑛)}
where 𝑘1, . . . , 𝑘𝑛 are all different, meaning that 𝑘𝑖 is mapped to𝑤𝑖 .

For a common graphG = (𝐸, 𝜌) and node 𝑣 inG, by a slight abuse
of notation we write 𝜌 (𝑣) for the record {(𝑘,𝑤) | 𝜌 (𝑣, 𝑘) = 𝑤} that
collects all key-value pairs associated with node 𝑣 in G. We call
𝜌 (𝑣) the content of node 𝑣 in G. This is how PG-Schema interprets
common graphs: it views key-value pairs in 𝜌 (𝑣) as properties of
the node 𝑣 , rather than independent, navigable objects in the graph.

SHACL and ShEx, on the other hand, view common graphs as sets
of triples and make little distinction between keys and predicates.
The following notion—when applied to a node—uniformly captures
the local context of this node from that perspective: the content of
the node and all edges incident with the node.

Definition 2 (Neighbourhood). Given a common graph G
and a node or value 𝑣 ∈ N ∪ V , the neighbourhood of 𝑣 in G is
NeighG (𝑣) = {(𝑢1, 𝑝,𝑢2) ∈ G | 𝑢1 = 𝑣 or 𝑢2 = 𝑣}.

That is, when 𝑣 ∈ N , then NeighG (𝑣) is a star-shaped graph
where only the central node has non-empty content. When 𝑣 ∈
V , then NeighG (𝑣) consists of all the nodes in G that have some
key with value 𝑣 , which is a common graph with no edges and a
restricted function 𝜌 .

2.3 Value types
We assume an enumerable set of value types T . The reader should
think of value types as integer, boolean, date, etc. Formally, for
each value type v ∈ T , we assume that there is a set JvK ⊆ V of
all values of that type and that each value 𝑣 ∈ V belongs to some

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

type, i.e., there is at least one v ∈ T such that 𝑣 ∈ JvK. Finally, we
assume that there is a type any ∈ T such that JanyK = V .

2.4 Shapes and schemas
We formulate all three schema languages using shapes, which are
unary formulas describing the graph’s structure around a focus
node or a value. Shapes will be expressed in different formalisms,
specific to the schema language; for each of these formalisms we
will define when a focus node or value 𝑣 ∈ N ∪V satisfies shape 𝜑
in a common graph G, written G, 𝑣 |= 𝜑 .

Inspired by ShEx shape maps , we abstract a schema S as a set of
pairs (sel, 𝜑), where 𝜑 is a shape and sel is a selector. A selector is
also a shape, but usually a very simple one, typically checking the
presence of an incident edge with a given predicate, or a property
with a given key. A graph G is valid wrt. S, written G |= S, if

G, 𝑣 |= sel implies G, 𝑣 |= 𝜑

for all 𝑣 ∈ N ∪V and (sel, 𝜑) ∈ S. That is, for each focus node or
value satisfying the selector, the graph around it looks as specified
by the shape. We call schemas S and S′ equivalent if G |= S iff
G |= S′ for all G. In what follows, we may use sel ⇒ 𝜑 to indicate
a pair (sel, 𝜑) from a schema S.

Example 2. We next describe some constraints one may want to
express in the domain of Example 1.
(C1) We may want the values associated to certain keys to belong

to concrete datatypes, like strings or Boolean values. In our
example, we want to state that the value of the key card is
always an integer.

(C2) We may expect the existence of a value associated to a key, an
outgoing edge, or even a complex path for a given source node.
For our example, we require that all owners of an account
have an email address defined.

(C3) We may want to express database-like uniqueness constraints.
For instance, we may wish to ensure that the email address
of an account owner uniquely identifies them.

(C4) We may want to ensure that all paths of a certain kind end
in nodes with some desired properties. For example, if an
account is privileged, then all users that have access to it
should also be privileged.

(C5) We may want to put an upper bound on the number of nodes
reached from a given node by certain paths. For instance,
every user may have access to at most 5 accounts.

3 SHACL ON COMMON GRAPHS
We first treat SHACL, because it is conceptually the simplest of the
three languages. It is essentially a logic—some call it a description
logic in disguise [6]. For each of the three languages, we need to
perform some minor deviations in order to define it over common
graphs. For SHACL,we discuss these in Appendix B. Our abstraction
of SHACL on common graphs is inspired by [1, 6, 7, 13, 16].

Definition 3 (Path Expression). A path expression 𝜋 is given
by the following grammar:

𝜋 F id
�� 𝑝 �� 𝑘 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋
�� 𝜋∗ .

with 𝑝 ∈ P, 𝑘 ∈ K and id the identity relation (or empty word).

Table 1: Evaluation of a path expressions.

𝜋 J𝜋KG ⊆ (N ∪V) × (N ×V) for G = (𝐸, 𝜌)
id {(𝑣, 𝑣) | 𝑣 ∈ N ∪V}
𝑝 {(𝑣,𝑢) | (𝑣, 𝑝,𝑢) ∈ 𝐸}
𝑘 {(𝑣,𝑢) | 𝜌 (𝑣, 𝑘) = 𝑢}
𝜋− {(𝑣,𝑢) | (𝑢, 𝑣) ∈ J𝜋KG}

𝜋 · 𝜋 ′ {(𝑣,𝑢) | ∃𝑣 ′ : (𝑣, 𝑣 ′) ∈ J𝜋KG ∧ (𝑣 ′, 𝑢) ∈ J𝜋 ′KG}
𝜋 ∪ 𝜋 ′ J𝜋KG ∪ J𝜋 ′KG

𝜋∗ JidKG ∪ J𝜋KG ∪ J𝜋 · 𝜋KG ∪ . . .

Definition 4 (SHACL shape). A SHACL shape 𝜑 is given by the
following grammar:

𝜑 F ⊤
�� is(𝑐) �� test(v) �� closed(𝑄) �� eq(𝜋, 𝑝) ��

disj(𝜋, 𝑝)
�� ¬𝜑 �� 𝜑 ∧ 𝜑

�� 𝜑 ∨ 𝜑
�� ∃≥𝑛𝜋.𝜑

�� ∃≤𝑛𝜋.𝜑 .

with 𝑐 ∈ V , v ∈ T , 𝑄 ⊆fin P ∪ K , 𝑝 ∈ P, and 𝑛 a natural number.
We may use ∃𝜋.𝜑 as syntactic sugar for ∃≥1𝜋.𝜑 .

Definition 5 (SHACL selector). A SHACL selector sel is a
SHACL shape of a restricted form, given by the following grammar:

sel F ∃ 𝑝.⊤
�� ∃𝑘.⊤ �� ∃ 𝑝− .⊤ �� ∃𝑘− .⊤ �� is(𝑐) .

with 𝑝 ∈ P, 𝑘 ∈ K , and 𝑐 ∈ V .

Putting it together, a SHACL Schema S is a finite set of pairs
(sel, 𝜑), where sel is a SHACL selector and 𝜑 is a SHACL shape.

To define the semantics of SHACL schemas, we first define in
Table 1 the semantics of a SHACL path expression 𝜋 on a graph G
as a binary relation J𝜋KG over N ∪V . The semantics of SHACL
shapes is defined in Table 2, which specifies when a node or value
𝑣 satisfies a SHACL shape 𝜑 w.r.t. a G, written G, 𝑣 ⊨ 𝜑 . Note that
both J𝜋KG and {𝑣 ∈ N∪V | G, 𝑣 ⊨ 𝜑}may be infinite: for example,
JidKG is the identity relation over the infinite set N ∪V .

The semantics of SHACL schemas then follows Section 2.4. Im-
portantly, SHACL selectors always select a finite subset of N ∪V:
the selected nodes or values come either from the selector itself, in
the case of is(𝑐), or from G, in the remaining four cases. For exam-
ple, ∃𝑝.⊤ selects those nodes of G that have an outgoing 𝑝-edge in
G—it is grounded to G in the second line of Table 1. In consequence,
each pair (sel, 𝜑) in a SHACL schema tests the inclusion of a finite
set of nodes or values in a possibly infinite set.

Example 3. For better readability we write ∃𝜋 instead of ∃≥1𝜋.⊤
(that is, we omit ⊤) and ∀𝜋.𝜑 instead of ∃≤0𝜋.¬𝜑 . Let us see how
the constraints from Example 2 can be handled in SHACL. For
(C1), we assume the value type int with the obvious meaning. The
following SHACL constraints express the constraints (C1–C5):

∃card− ⇒ test(int) (C1)
∃ownsAccount ⇒ ∃email (C2)

∃email− ⇒ ∃≤1email− (C3)
∃card ⇒ (∃privileged .¬is(true))∨

∀hasAcccess− .(∃privileged .is(true)) (C4)
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Semantics of a SHACL shape 𝜑 .

𝜑 G, 𝑣 ⊨ 𝜑 if:

⊤ trivially satisfied
¬𝜑 not G, 𝑣 ⊨ 𝜑

𝜑 ∧ 𝜑 ′ G, 𝑣 ⊨ 𝜑 and G, 𝑣 ⊨ 𝜑 ′

𝜑 ∨ 𝜑 ′ G, 𝑣 ⊨ 𝜑 or G, 𝑣 ⊨ 𝜑 ′

is(𝑐) 𝑣 = 𝑐

test(v) 𝑣 ∈ JvK
closed(𝑄) ∀𝑝 ∈ (P ∪ K) \𝑄 : not G, 𝑣 ⊨ ∃≥1𝑝.⊤
eq(𝜋, 𝑝) {𝑢 | (𝑣,𝑢) ∈ J𝜋KG} = {𝑢 | (𝑣,𝑢) ∈ J𝑝KG}
disj(𝜋, 𝑝) {𝑢 | (𝑣,𝑢) ∈ J𝜋KG} ∩ {𝑢 | (𝑣,𝑢) ∈ J𝑝KG} = ∅
∃≥𝑛𝜋.𝜑 #{𝑢 | (𝑣,𝑢) ∈ J𝜋KG ∧ G, 𝑢 ⊨ 𝜑} ≥ 𝑛

∃≤𝑛𝜋.𝜑 #{𝑢 | (𝑣,𝑢) ∈ J𝜋KG ∧ G, 𝑢 ⊨ 𝜑} ≤ 𝑛

∃email ⇒ ∃≤5hasAcccess. (C5)

Concerning constraint (C3), notice that by using inverse email
edges, the constraint indeed states that the email addresses uniquely
identify users.

The constructs eq(𝜋, 𝑝) and disj(𝜋, 𝑝) are unique to SHACL. Let
us see them in use.

Example 4. Using eq(𝜋, 𝑝), we can say, for instance, that an
owner of an account also has access to it:

∃ownsAccount ⇒ eq(hasAcccess ∪ ownsAccount, hasAcccess) .
Note how we use eq and ∪ to express that the existence of one path
(ownsAccount) implies the existence of another path (hasAcccess)
with the same endpoints.

A key feature in SHACL that is not available in ShEx is the
ability to use regular expressions to talk about complex paths. This
provides a limited form of recursive navigation in the graph, even
though the standard SHACL does not support recursive constraints
(in contrast to standard ShEx). See below for an example.

Example 5. Suppose that in Figure 1, we wanted to express that
a privileged user may only invite other privileged users, who in
turn can also only invite other privileged users. One way to express
this in SHACL is as follows:

∃privileged ⇒ ∃privileged .is(false)∨
∀(invited∗ · privileged) .is(true) .

4 SHEX ON COMMON GRAPHS
While SHACL is conceptually the simplest of the three language,
ShEx lies at the opposite end of the spectrum. It is an intricate,
mutually recursive combination of a simple logic for shapes and a
powerful formalism (triple expressions) for generating the allowed
neighbourhoods. In this work we consider non-recursive ShEx,
where shapes and triple expressions can be nested multiple times,
but cannot be actually recursive. We choose non-recursive ShEx
because it is significantly easier to understand (so it aligns with
our overall understandability goal). The abstraction of ShEx over

common graphs is based on the treatment of ShEx on RDF triples by
Boneva et al. [8]. The correspondence to standard ShEx is discussed
in Appendix C.

Definition 6 (shapes and triple expressions). ShEx shapes
𝜑 , triple expressions e, and closed triple expressions 𝑓 are defined
by the following grammar

𝜑 F is(𝑐)
�� test(v) �� {e} �� 𝜑 ∧ 𝜑

�� 𝜑 ∨ 𝜑
�� ¬𝜑 .

eF 𝑓 ; op−
�� 𝑓 ; op±

op− F (¬𝑃−)∗

op± F (¬𝑃−)∗ ;(¬𝑄)∗

𝑓 F 𝜀
�� 𝑝.𝜑

�� 𝑝− .𝜑
�� 𝑓 ; 𝑓

�� 𝑓 | 𝑓
�� 𝑓 ∗ .

where 𝑐 ∈ V , v ∈ T , 𝑝 ∈ P ∪ K , and 𝑃,𝑄 ⊆fin P ∪ K .

The notion of satisfaction for ShEx shapes and the semantics of
triple expressions are defined by mutual recursion in Table 3 and
Table 4. Triple expressions are used to specify neighbourhoods of
nodes and values. They require to consider incoming and outgoing
edges separately. For this purpose we decorate incoming edges
with − . Formally, we introduce a fresh predicate 𝑝− for each 𝑝 ∈ P
and a fresh key 𝑘− for each 𝑘 ∈ K . We let P− = {𝑝− | 𝑝 ∈ P},
K− = {𝑘− | 𝑘 ∈ K}, E− = N ×P− ×N ∪V×K− ×N , and define
Neigh±G (𝑣) ⊆ E ∪ E− as{

(𝑣, 𝑝, 𝑣 ′) | (𝑣, 𝑝, 𝑣 ′) ∈ G
}
∪
{
(𝑣, 𝑝−, 𝑣 ′) | (𝑣 ′, 𝑝, 𝑣) ∈ G

}
.

Compared to NeighG (𝑣), apart from flipping the incoming edges
and marking them with − , we also represent each loop (𝑣, 𝑝, 𝑣)
twice: once as an outgoing edge (𝑣, 𝑝, 𝑣) and once as an incoming
edge (𝑣, 𝑝−, 𝑣). Notice that in Table 4,¬𝑃 and its inverse counterpart
¬𝑃− are treated as any other triple expressions, even though in the
grammar they are allowed only at the top level.

Closed triple expressions 𝑓 define neighbourhoods that use only
a finite number of predicates and keys; such neighbourhoods are
also called closed in ShEx terminology. General triple expressions
e open the neighbourhood either only w.r.t. incoming triples (op−)
by allowing any incoming triples whose predicate or key is not
in a set 𝑃 , or w.r.t. both incoming and outgoing triples (op±) by
additionally allowing outgoing triples whose predicate or key is not
in a set 𝑄 . Let ⊤ = 𝜀 ;(¬∅−)∗ ; (¬∅)∗. Then ⊤ describes all possible
neighbourhoods and {⊤} is satisfied in every node and in every
value of every graph.

Definition 7 (ShEx Selectors). A ShEx selector is a ShEx shape
of a restricted form, defined by the grammar

sel F is(𝑐)
�� {𝑝.is(𝑐) ;⊤}

�� {𝑝− .is(𝑐) ;⊤}
��

{𝑝. {⊤} ;⊤}
�� {𝑝− . {⊤} ;⊤} .

where 𝑝 ∈ P ∪ K and 𝑐 ∈ V .

Following Section 2.4, a ShEx schema S is a set of pairs of the
form (sel, 𝜑) where 𝜑 is a ShEx shape and sel is a ShEx selector.

We will be using these syntactic short-hands:
• e𝑛 for some positive integer 𝑛 denotes the triple expression
e ; . . . ; e where e is used 𝑛 times,
• e≤𝑛 as a short-hand for 𝜀 | e1 | . . . | e𝑛 and e≥𝑛 for e𝑛 ; e∗,
• for a closed triple expression 𝑓 , we let

{𝑓 }◦ =
{
𝑓 ;(¬𝑃−)∗ ;(¬𝑃)∗

}
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: Satisfaction of ShEx shapes.

𝜑 G, 𝑣 ⊨ 𝜑 for 𝑣 ∈ N ∪V
test (v) 𝑣 ∈ JvK
is(𝑐) 𝑣 = 𝑐

{e} Neigh±G (𝑣) ∈ JeKG𝑣
𝜑1 ∧ 𝜑2 G, 𝑣 ⊨ 𝜑1 and G, 𝑣 ⊨ 𝜑2
𝜑1 ∨ 𝜑2 G, 𝑣 ⊨ 𝜑1 or G, 𝑣 ⊨ 𝜑2
¬𝜑 not G, 𝑣 ⊨ 𝜑

Table 4: Semantics of triple expressions.

e JeKG𝑣 ⊆ E ∪ E−

𝜀 {∅}
𝑝.𝜑

{
{(𝑣, 𝑝, 𝑣 ′)} ⊆ E

�� G, 𝑣 ′ ⊨ 𝜑
}

𝑝− .𝜑
{
{(𝑣, 𝑝−, 𝑣 ′)} ⊆ E− �� G, 𝑣 ′ ⊨ 𝜑

}
¬𝑃

{
{(𝑣, 𝑝, 𝑣 ′)} ⊆ E

�� 𝑝 ∉ 𝑃
}

¬𝑃−
{
{(𝑣, 𝑝−, 𝑣 ′)} ⊆ E− �� 𝑝 ∉ 𝑃

}
e1 ; e2

{
𝑇1 ∪𝑇2

��� 𝑇1 ∈ Je1K
G
𝑣 , 𝑇2 ∈ Je2K

G
𝑣 , 𝑇1 ∩𝑇2 = ∅

}
e1 | e2 Je1K

G
𝑣 ∪ Je2K

G
𝑣

e∗ {∅} ∪⋃∞
𝑛=1

{
𝑇1 ∪ · · · ∪𝑇𝑛

���� 𝑇1, . . . ,𝑇𝑛 ∈ JeKG𝑣 and
𝑇𝑖 ∩𝑇𝑗 = ∅ for all 𝑖 ≠ 𝑗

}

where 𝑃 is the set of predicates and keys that appear directly in 𝑓

without considering those that appear in 𝜑 for a sub-expression of
the form 𝑝.𝜑 . For instance, if 𝑓 = 𝑝. {𝑝′ .is(𝑐)}, then 𝑃 = {𝑝}. Also,
𝑃− is the set of predicates and keys that appear inversed in 𝑓 .

Example 6. Let us now see how the concrete constraints from
Example 2 can be handled in ShEx.

{card− . {⊤} ;⊤} ⇒ test(int) (C1)
{ownsAccount. {⊤} ;⊤} ⇒ {email. {⊤}}◦ (C2)

{email− . {⊤} ;⊤} ⇒
{
(email− . {⊤})≤1}◦ (C3)

{card . {⊤} ;⊤} ⇒ {privileged .¬is(true)}◦ ∨{
(hasAcccess− . {privileged .is(true)}◦)∗

}◦ (C4)

{email. {⊤} ;⊤} ⇒
{
(hasAcccess. {⊤})≤5}◦ (C5)

We next show a more complex example, which illustrates the
power of ShEx that is not readily available in SHACL or PG-Schema.

Example 7. Suppose that we want to express the following con-
straint on each user who owns an account: the number of accounts
to which the user has access is greater or equal to the number of
accounts that the user owns. We can do this in ShEx as follows:

{ownsAccount. {⊤} ;⊤} ⇒{
(hasAcccess. {⊤})∗ ;(ownsAccount. {⊤} ; hasAcccess. {⊤})∗

}◦
Finally, let us see why ShEx and SHACL count differently.

Example 8 (ShEx counts edges). The following SHACL schema
expresses that from every node with an outgoing hasAcccess-edge,

Table 5: Semantics of content types.

c JcK ⊆ R
J⊤K R
J{}K {r∅}

J{𝑘 : v}K
{
{(𝑘,𝑤)}

��𝑤 ∈ JvK
}

Jc1 & c2 K {(𝑟1 ∪ 𝑟2) ∈ R | 𝑟1 ∈ Jc1K ∧ 𝑟2 ∈ Jc2K}
Jc1 | c2 K Jc1K ∪ Jc2K

there should be exactly two nodes accessible via a hasAcccess-edge
or an ownsAccount-edge:

∃hasAcccess ⇒ ∃=2 (hasAcccess ∪ ownsAccount) .⊤ ;

here ∃=𝑛𝜋.𝜑 is a shorthand for ∃≤𝑛𝜋.𝜑 ∧∃≥𝑛𝜋.𝜑 . For instance, the
graph below on the left is valid, whereas the one on the right is not.

hasAccc
ess

ownsAccount

hasAcccess

ownsAccount

The same constraint cannot be expressed in ShEx because ShEx can-
not distinguish these two graphs. Indeed, ShEx triple expressions
count triples adjacent to a node, whereas SHACL and PG-Schema
count nodes on the opposite end of such triples.

5 PG-SCHEMA ON COMMON GRAPHS
PG-Schema is a non-recursive combination of a logic and two gen-
erative formalisms. It uses path expressions to specify paths (as
in SHACL), and content types to specify node contents. Both path
expressions and content types are then used in formulas defining
shapes. Content types in PG-Schema play a role similar to triple
expressions in ShEx, but they are only used for properties. Because
all properties of a node must have different keys, they are much
simpler than triple expressions (in fact, they can be translated into
a fragment of SHACL). Unlike for SHACL and ShEx, the abstrac-
tion of PG-Schema on common graphs departs significantly from
the original design. Original PG-Schema uses queries written in
an external query language, which is left unspecified aside from
some basic assumptions about the expressive power. Here we use a
specific query language (PG-path expressions). Importantly, up to
the choice of the query language, the abstraction we present here
faithfully captures the expressive power of the original PG-Schema.
A detailed comparison can be found in Appendix D.

Definition 8 (Content type). A content type is an expression
c of the form defined by the grammar

cF ⊤
�� {} �� {𝑘 : v}

�� c & c
�� c | c .

where 𝑘 ∈ K and v ∈ T .

Recall that R is the set of all records (finite-domain partial func-
tions 𝑟 : K⇀V). We write r∅ for the empty record. For records 𝑟1
and 𝑟2, we let 𝑟1 ∪ 𝑟2 be the function that behaves as 𝑟1 on dom(𝑟1)
and as 𝑟2 on dom(𝑟2). We require that 𝑟1 (𝑘) = 𝑟2 (𝑘) for every
𝑘 ∈ dom(𝑟1) ∩ dom(𝑟2). The semantics of content types is defined
in Table 5. Note that JcK is independent from G and can be infinite.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 6: Semantics of PG-path expressions.

𝜋 J𝜋KG ⊆ (N ∪V) × (N ∪V) for G = (𝐸, 𝜌)

{𝑘 : 𝑐} {(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ (𝑘, 𝑐) ∈ 𝜌 (𝑢)}
¬{𝑘 : 𝑐} {(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ (𝑘, 𝑐) ∉ 𝜌 (𝑢)}

c
{
(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ 𝜌 (𝑢) ∈ JcK

}
¬c

{
(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ 𝜌 (𝑢) ∉ JcK

}
𝑘 {(𝑢,𝑤) | 𝜌 (𝑢, 𝑘) = 𝑤}
𝑝 {(𝑢, 𝑣) | (𝑢, 𝑝, 𝑣) ∈ 𝐸}
¬𝑃 {(𝑢, 𝑣) | ∃𝑝 : (𝑢, 𝑝, 𝑣) ∈ 𝐸 ∧ 𝑝 ∉ 𝑃}
𝜋− {

(𝑢, 𝑣) | (𝑣,𝑢) ∈ J𝜋KG
}

𝜋 · 𝜋 ′
{
(𝑢, 𝑣) | ∃𝑤 : (𝑢,𝑤) ∈ J𝜋KG ∧ (𝑤, 𝑣) ∈ J𝜋 ′KG

}
𝜋 ∪ 𝜋 ′ J𝜋KG ∪ J𝜋 ′KG

𝜋∗ {(𝑢,𝑢) | 𝑢 ∈ Nodes(G)} ∪ J𝜋KG ∪ J𝜋 · 𝜋KG ∪ . . .

Example 9. We assume integers and strings are represented via
int, str ∈ T . Suppose we want to create a content type for nodes
that have a string value for the email key and optionally have an
integer value for the card key. No other key-value pairs are allowed.
We should then use {email : str} & ({card : int} | {}).

Definition 9 (PG-path expressions). A PG-path expression is
an expression 𝜋 of the form defined by the grammar

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

𝜋 F {𝑘 : 𝑐}
�� ¬{𝑘 : 𝑐}

�� c �� ¬c �� 𝑝 �� ¬𝑃 �� 𝜋− �� 𝜋 · 𝜋
�� 𝜋 ∪ 𝜋

�� 𝜋∗ .
where 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , c is a content type, 𝑝 ∈ P, and 𝑃 ⊆fin P. We
use 𝑘 , 𝑘− , and 𝑘− · 𝑘′ as short-hands for PG-path expressions ⊤ · 𝑘 ,
𝑘− · ⊤, and 𝑘− · ⊤ · 𝑘′, respectively.

Unlike in SHACL, PG-path expressions cannot navigate freely
through values. In the property graph world, this would correspond
to a join, which is a costly operation. Indeed, existing query lan-
guages for property graphs do not allow joins under ∗. However,
PG-path expressions can start in a value and finish in a value. This
leads to node-to-node, node-to-value, value-to-node, and value-to-
value PG-path expressions, reflected in the four cases in the first
rule of the grammar.

The semantics of PG-path expression 𝜋 for graph G is a binary
relation overNodes(G)∪Values(G), defined in Table 6. In the table,
𝑘 is treated as any other subexpressions, eventhough it can only
be used at the end of a PG-path expression, or in the beginning as
𝑘− . Notice that ¬c matches nodes whose content is not of type c,
¬𝑃 matches edges with a label that is not in 𝑃 (in particular, ¬∅
matches all edges). Also, J𝜋KG is always a subset ofN ×N ,N ×V ,
V × N , or V × V , corresponding to the four kinds of PG-path
expressions discussed above.

Definition 10 (PG-Shapes). A PG-Shape is an expression 𝜑 de-
fined by the following grammar:

𝜑 F ∃≤𝑛 𝜋
�� ∃≥𝑛 𝜋

�� 𝜑 ∧ 𝜑 .

where 𝜋 is a PG-path expression. We use ∃ and ∄ as short-hands for
∃≥1 and ∃≤0.

Table 7: Satisfaction of PG-shapes

𝜑 G, 𝑣 ⊨ 𝜑 for 𝑣 ∈ N ∪V

∃≤𝑛 𝜋 #
{
𝑣 ′ | (𝑣, 𝑣 ′) ∈ J𝜋KG

}
≤ 𝑛

∃≥𝑛 𝜋 #
{
𝑣 ′ | (𝑣, 𝑣 ′) ∈ J𝜋KG

}
≥ 𝑛

𝜑1 ∧ 𝜑2 G, 𝑣 ⊨ 𝜑1 and G, 𝑣 ⊨ 𝜑2

The semantics of PG-shapes is defined in Table 7. We say 𝑣 ∈
N ∪ V satisfies a PG-shape 𝜑 in a graph G if G, 𝑣 ⊨ 𝜑 . Every
PG-shape is satisfied by nodes only or by values only.

Definition 11 (PG-Selectors). A PG-selector is a PG-shape of
the form ∃ 𝜋 .

A PG-Schema S is a finite set of pairs (sel, 𝜑) where sel is a
PG-selector and 𝜑 is a PG-shape. The semantics of PG-Schemas is
defned just like in Section 2.4.

Example 10. The constraints (C1-C5) from Example 2 can be
handled in PG-Schema as follows:

∃card− ⇒ ∃
(
{card : int} & ⊤

)
(C1)

∃ownsAccount ⇒ ∃email (C2)

∃email− ⇒ ∃≤1email− (C3)
∃ ({card : any} & ⊤) · {privileged : true} ⇒

∄ hasAcccess− · ¬{privileged : true} (C4)

∃email ⇒ ∃≤5 hasAcccess (C5)

A characteristic feature of PG-Schema, revealing its database
provenience, is that it can close the whole graph by imposing re-
strictions on all nodes.

Example 11. Given a common graph such as the one in Figure 1,
we might want to express that each node has a key privileged with
a boolean value and either a key card with an integer value or a
key email with a string value, and no other keys are allowed. In
PG-Schema this can be expressed as follows:

∃⊤ ⇒ ∃{privileged : bool} &
(
{card : int} | {email : str}

)
.

We can also forbid any predicates except those mentioned in the
running example:

∃⊤ ⇒ ∄¬{ownsAccount, hasAcccess, invited} .

6 COMMON GRAPH SCHEMA LANGUAGE
We now present the Common Graph Schema Language (CoGSL),
which combines the core functionalities shared by SHACL, ShEx,
and PG-Schema (over common graphs).

Let us begin by examining the restrictions that need to be im-
posed. We shall refer to shapes and selectors used in CoGSL as
common shapes and common selectors.

Common shapes cannot be closed under disjunction and nega-
tion, because PG-Schema shapes are purely conjunctive. For the
same reason common shapes cannot be nested.

Kleene star ∗ cannot be allowed in path expressions because we
consider ShEx without recursion. By switching to ShEx with recur-
sion, wewould be able to support arbitrary SHACL path expressions

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

in shapes of the form ∃𝜋 , but not arbitrary PG-path expressions as
these are too expressive for SHACL.

Supporting path expressions traversing more than one edge
under counting quantifiers is impossible as this would not be ex-
pressible in ShEx. Supporting disjunctions of labels of the form
𝑝1 ∪ 𝑝2 is also impossible, due to a mismatch in the approach to
counting: while SHACL and PG-Schema count nodes and values,
ShEx counts triples, as illustrated in Example 8.

Closed content types and ¬𝑃 cannot be used freely, because
neither SHACL nor ShEx are capable of closing only properties or
only predicate edges: both must be closed at the same time.

Finally, selectors are restricted because SHACL and ShEx do not
support ⊤ as a selector; that is, one cannot say that each node (or
value) in the graph satisfies a given shape. This means that SHACL
and ShEx schemas always allow a disconnected part of the graph
that uses only predicates and keys not mentioned in the schema,
whereas PG-Schema can disallow it (see Example 11).

Putting these restrictions together we obtain the Common Graph
Schema Language. We define it below as a fragment of PG-Schema.

Definition 12 (common shape). A common shape 𝜑 is an ex-
pression given by the grammar

𝜑 F ∃ 𝜋
�� ∃≤𝑛 𝜋1

�� ∃≥𝑛 𝜋1
�� ∃ c ∧ ∄¬𝑃

�� 𝜑 ∧ 𝜑 .

cF {}
�� {𝑘 : v}

�� c & c
�� c | c .

𝜋0 F {𝑘 : 𝑐}
�� ¬{𝑘 : 𝑐}

�� c & ⊤
�� ¬(c & ⊤)

�� 𝜋0 · 𝜋0 .

𝜋1 F 𝜋0 · 𝑝 · 𝜋0
�� 𝜋0 · 𝑝− · 𝜋0

�� 𝜋0 · 𝑘
�� 𝑘− · 𝜋0 .

𝜋 F 𝜋0
�� 𝑝 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋 .

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

where 𝑛 ∈ N, 𝑃 ⊆fin P, 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , and 𝑝 ∈ P.

That is, c is a content type that does not use ⊤ (a closed content
type), 𝜋0 is a PG-path expression that always stays in the same node
(a filter), 𝜋1 is a PG-path expression that traverses a single edge or
property (forward or backwards), and 𝜋 is a PG-path expression
that uses neither ∗ nor ¬𝑃 . Moreover, 𝜋0, 𝜋1, and 𝜋 can only use
open content types; that is, content types of the form c & ⊤. The
use of ¬𝑃 is limited to closing the neighbourhood of a node (this is
the only way PG-Schema can do it).

Definition 13 (common selector). A common selector is a
common shape of one of the following forms

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ {𝑘 : 𝑐} · 𝜋 , ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 , ∃𝑘− · 𝜋 ,

where 𝑘 ∈ K , 𝑝 ∈ P, 𝑐 ∈ V , v ∈ T and 𝜋 = 𝜋 or 𝜋 = 𝜋 ·𝑘′ for some
PG-path expression 𝜋 generated by the grammar in Definition 12 and
some 𝑘′ ∈ K .

That is, a common selector is a common shape of the form ∃ 𝜋

such that the PG-path expression 𝜋 requires the focus node or value
to occur in a triple with a specified predicate or key.

A common schema is a finite set of pairs (sel, 𝜑) where sel is
a common selector and 𝜑 is a common shape. The semantics is
inherited from PG-Schema.

We note that we showed that the constraints (C1)-(C5) from
our running example can be expressed in all three formalisms.
Specifically, the PG-Schema representation from Example 10 is also
a common schema.

Proposition 1. For every common schema there exist equivalent
SHACL and ShEx schemas.

The translation is relatively straightforward (see Appendix E).
The two main observations are that star-free PG-path expressions
can be simulated by nested SHACL and ShEx shapes, and that
closure of SHACL and ShEx shapes under Boolean connectives
allows encoding complex selectors in the shape (as the antecedent
of an implication). We illustrate the latter in Example 12.

Example 12 (Complex paths in selectors). We want to express that
all users who have invited a user who has invited someone (so there
is a path following two invited edges) must have a key email of
type str. In PG-schema we express this as:

∃invited · invited ⇒ {email : str} & ⊤
At first glance, it seems unclear how to express this in the other

formalisms, since they do not permit paths in the selector. However,
we can see that paths in selectors can be encoded into the shape:
In SHACL, using the same example, we do this by

∃invited ⇒ ¬(∃invited · invited) ∨ ∃email.test(str)
And in ShEx for this example would be:

{invited. {⊤} ;⊤} ⇒ ¬𝜑2 ∨ {email.test(str)}◦

where 𝜑2 =
{
(invited.𝜑1)≥1 }◦ and 𝜑1 =

{
invited. {⊤}≥1 }◦. That

is, 𝜑1 is satisfied by nodes that have an outgoing path invited, and
𝜑2 by nodes that have an outgoing path invited · invited. For paths
of unbounded length, it is not apparent how such a translation
would proceed for ShEx schemas in the absence of recursion.

7 RELATEDWORK
SHACL literature. The authoritative source of SHACL is the

W3C recommendation [29]. Further literature on SHACL following
its standardisation can be roughly divided into two groups. The
first studies the formal properties and expressiveness of the non-
recursive fragment [7]. Notable examples in this category (in no par-
ticular order) is the work from Delva et al. on data provenance [16],
by Pareti et al. on satisfiability and (shape) containment [40] and
the work of Leinberger et al. connecting the containment prob-
lem to description logics [34]. The other body of work on SHACL
is concerned with either proposing a suitable semantics for the
recursive fragment [1, 5, 12, 13] or assuming a given one and study-
ing the complexity of certain problems in their chosen recursive
setting [39]. First reports on practical applications and use cases
for SHACL include, for instance, the expressivity of property con-
straints, or mining and extracting constraints in the context of
practical large KGs such as Wikidata and DBpedia [18, 44].

ShEx literature. ShEx was initially proposed in 2014 as a concise
and human-readable language to describe, validate, and transform
RDF data [43]. Its formal semantics was formally defined in [48].
The semantics of ShEx schemas combining recursion and negation
was later presented in [8]. The current semantic specification of
the ShEx language has been published as a W3C Community group
report [42] and a new language version is currently being defined as
part of the IEEEWorking group on Shape Expressions1. As for prac-
tical applications, ShEx has been applied as a descriptive schema
1https://shex.io/shex-next/

7

https://shex.io/shex-next/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

language through the Wikidata Schemas project2. Additional work
went into extending ShEx to handle graph models that go beyond
RDF, like WShEx to validate Wikibase graphs [31], ShEx-Star to
handle RDF-Star and PShEx to handle property graphs [30].

PG-Schema literature. PG-Schema, as introduced in [2], builds on
PG-Types and PG-Keys [3] to enhance schema support for property
graphs. Despite limited schema support in current systems and
the first GQL standard [25], PG-Schema combines flexible type
definitions via PG-Types with expressive key constraints from PG-
Keys. This formalism provides a robust syntax and semantics for
property graph management, aiming to inspire future versions of
the GQL standard and broaden the capabilities of graph database
systems.

Works that compare RDF schema formalisms. In Chapter 7 of [20],
the authors compare common features and differences between
ShEx and SHACL and [32] presents a simplified language called S,
which captures the essence of ShEx and SHACL. Tomaszuk [49]
analyzes advancements in RDF validation, highlighting key require-
ments for validation languages and comparing the strengths and
weaknesses of various approaches.

Interoperability between schema graph formalisms. Interoper-
ability between schema graph formalisms like RDF and Property
Graphs remains challenging due to differences in structure and
semantics. RDF focuses on triple-based modeling with formal se-
mantics, while Property Graphs allow flexible annotation of rela-
tionships with properties. RDF-star [22] and RDF 1.2 [27] extend
RDF 1.1 by enabling statements about triples, aligning more closely
with LPG: for instance, RDF-star allows triples to function as sub-
jects or objects, similar to how LPG edges carry properties.

It should be noted here that by adopting named graphs [11],
already RDF 1.1 provided a mechanism for making statements
about (sub-)graphs; likewise, different reification mechanisms have
been proposed in the literature for RDF in order to “embed” meta-
statements about triples (and graphs) in “vanilla” RDF graphs, rang-
ing from the relatively verbose original W3C reification vocabulary
as part of the original RDF specification, to more subtle approaches
such as singleton property reification [36], which is pretty close to
the unique identifiers used for edges in most LPG models. Lastly,
custom reification models are used, for instance, in Wikidata, to
map Wikibase’s property graph schema to RDF, cf. e.g. [18, 23]. All
these approaches, in principle, facilitate general or specific map-
pings between RDF and LPGs.

Contrary to such mappings using named graphs or reification,
there have been several prior proposals for uniying graph data
models. The OneGraph initiative [33] also aims to bridge the differ-
ent graph data models, by promoting a unified graph data model
for seamless interaction. Similarly, MilleniumDB’s Domain Graph
model [50] aims at providing a general graph model bridging be-
tween RDF, RDF-star and property graphs. Work on mappings
[4] has also explored schema-independent and schema-dependent
methods for transforming RDF into Property Graphs, providing
formal foundations for preserving information and semantics.

2https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas

Schemas for tree-structured data. The principle of defining (parts
of) schemas as a set of pairs (𝑠𝑒𝑙, 𝜑) is also used in schema languages
for XML. A DTD [10] is essentially such a set of pairs in which 𝑠𝑒𝑙
selects nodes with a certain label, and 𝜑 describes the structure of
their children. In XML Schema, the principle was used for defin-
ing key constraints (using selectors and fields) [19, Section 3.11.1].
The equally expressive language BonXai [35] is based on writing
the entire schema using such rules. Schematron [24] is another
XML schema language that differs from grammar-based languages
by defining patterns of assertions using XPath expressions [17].
It excels in specifying constraints across different branches of a
document tree, where traditional schema paradigms often fall short.
Schematron’s rule-based structure, composed of phases, patterns,
rules, and assertions, allows for the validation of documents.

RDF validation. Last, but not least, it should be noted that the re-
quirement for (constraining) schema languages—besides ontology
languages such as OWL and RDF Schema—in the Semantic Web
community is much older than the more recent additions of SHACL
and ShEx. Earlier proposals in a similar direction include efforts to
add constraint readings of Description Logic axioms to OWL, such
as OWL Flight [15] or OWL IC [47]. Another approach is Resource
Shapes (ReSh) [45], a vocabulary for specifying RDF shapes. The
authors of ReSh recognize that RDF terms originate from various
vocabularies, and the ReSh shape defines the integrity constraints
that RDF graphs are required to satisfy. Similarly, Description Set
Profiles (DSP) [37] and SPARQL Inferencing Notation (SPIN) [28]
are notable alternatives.While SHACL, ShEx, and ReSh share declar-
ative, high-level descriptions of RDF graph content, DSP and SPIN
offer additional mechanisms for validating and constraining RDF
data, each with its own strengths and applications.

8 CONCLUSIONS
We provided a formal and comprehensive comparison of the three
most prominent schema languages in the Semantic Web and Graph
Database communities: SHACL, ShEx, and PG-Schema. Through
painstaking discussions within our working group, we managed
to (1) agree on a common data model that captures features of
both RDF and Property Graphs and (2) extract, for each of the
languages, a core that we mutually agree on, which we define for-
mally. Moreover, the definitions of (the cores of) each of the schema
languages on a common formal framework allows readers to maxi-
mally leverage their understanding of one schema language in order
to understand the others. Furthermore, this common framework
allowed us to extract the Common Graph Schema Language, which
is a cleanly defined set of functionalities shared by SHACL, ShEx,
and PG-Schema. This commonality can serve as a basis for future
efforts in integrating or translating between the languages, promot-
ing interoperability in applications that rely on heterogeneous data
models. For example, we want to investigate recursive ShEx and
more expressive query languages for PG-Schema more deeply.

REFERENCES
[1] Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ognjen

Savkovic, and Mantas Simkus. 2020. Stable Model Semantics for Recursive
SHACL. InWWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020,
Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM /
IW3C2, 1570–1580. https://doi.org/10.1145/3366423.3380229

8

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
https://doi.org/10.1145/3366423.3380229

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[2] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi
Wu, and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs. Proc.
ACM Manag. Data 1, 2, Article 198 (June 2023), 25 pages. https://doi.org/10.1145/
3589778

[3] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin,WimMartens, FilipMurlak,
Josh Perryman, Ognjen Savković, Michael Schmidt, Juan Sequeda, Slawek Sta-
worko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property Graphs. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2423–2436. https://doi.org/10.1145/3448016.3457561

[4] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. 2020. Mapping RDF
databases to property graph databases. IEEE Access 8 (2020), 86091–86110.

[5] Bart Bogaerts and Maxime Jakubowski. 2021. Fixpoint Semantics for Recur-
sive SHACL. In Proceedings 37th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communications 2021, Porto (vir-
tual event), 20-27th September 2021 (EPTCS, Vol. 345), Andrea Formisano, Yan-
hong Annie Liu, Bart Bogaerts, Alex Brik, Verónica Dahl, Carmine Dodaro, Paul
Fodor, Gian Luca Pozzato, Joost Vennekens, and Neng-Fa Zhou (Eds.). 41–47.
https://doi.org/10.4204/EPTCS.345.14

[6] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. 2022. SHACL: A
Description Logic in Disguise. In Logic Programming andNonmonotonic Reasoning
- 16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022,
Proceedings (Lecture Notes in Computer Science, Vol. 13416), Georg Gottlob, Daniela
Inclezan, and Marco Maratea (Eds.). Springer, 75–88. https://doi.org/10.1007/978-
3-031-15707-3_7

[7] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. 2024. Expres-
siveness of SHACL Features and Extensions for Full Equality and Disjointness
Tests. Logical Methods in Computer Science Volume 20, Issue 1 (Feb. 2024).
https://doi.org/10.46298/lmcs-20(1:16)2024

[8] Iovka Boneva, Jose E. Labra Gayo, and Eric G. Prud’hommeaux. 2017. Semantics
and Validation of Shapes Schemas for RDF. In The Semantic Web – ISWC 2017,
Claudia d’Amato, Miriam Fernandez, Valentina Tamma, Freddy Lecue, Philippe
Cudré-Mauroux, Juan Sequeda, Christoph Lange, and Jeff Heflin (Eds.). Springer
International Publishing, Cham, 104–120.

[9] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.
2018. Querying Graphs. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00873ED1V01Y201808DTM051

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). Technical Report.
World Wide Web Consortium.

[11] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. 2005. Named
graphs. Journal of Web Semantics 3, 4 (2005), 247–267. https://doi.org/10.1016/j.
websem.2005.09.001 World Wide Web Conference 2005——Semantic Web Track.

[12] Julien Corman, Fernando Florenzano, Juan L. Reutter, and Ognjen Savkovic.
2019. Validating Shacl Constraints over a SPARQL Endpoint. In The Semantic
Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New
Zealand, October 26-30, 2019, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 11778), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek,
Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon
(Eds.). Springer, 145–163. https://doi.org/10.1007/978-3-030-30793-6_9

[13] Julien Corman, Juan L. Reutter, and Ognjen Savković. 2018. Semantics and
Validation of Recursive SHACL. In The Semantic Web – ISWC 2018, Denny Vran-
dečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene
Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena Simperl (Eds.). Springer
International Publishing, Cham, 318–336.

[14] R. Cyganiak, D. Wood, and M. Lanthaler. 2014. RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation. W3C. http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/.

[15] Jos De Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. 2005. OWL DL
vs. OWL Flight: Conceptual modeling and reasoning for the Semantic Web. In
Proceedings of the 14th international conference on World Wide Web. 623–632.

[16] Thomas Delva, Anastasia Dimou, Maxime Jakubowski, and Jan Van den Bussche.
2023. Data Provenance for SHACL. In Proceedings 26th International Conference
on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31,
2023. OpenProceedings.org, 285–297. https://doi.org/10.48786/edbt.2023.23

[17] Michael Dyck, Jonathan Robie, and Josh Spiegel. 2017. XML Path Language
(XPath) 3.1. W3C Recommendation. W3C. https://www.w3.org/TR/2017/REC-
xpath-31-20170321/.

[18] Nicolas Ferranti, Jairo Francisco de Souza, Shqiponja Ahmetaj, and Axel Polleres.
2024. Formalizing and Validating Wikidata’s Property Constraints using SHACL
and SPARQL. Semantic Web (2024). https://doi.org/10.3233/SW-243611

[19] Shudi (Sandy) Gao, C. M. Sperberg-McQueen, Henry S. Thompson, Noah Mendel-
sohn, David Beech, and Murray Maloney. 2012. W3C XML Schema Definition

Language (XSD) 1.1 Part 1: Structures. Technical Report. World Wide Web Con-
sortium.

[20] José Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dimitris
Kontokostas. 2017. Validating RDF Data. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00786ED1V01Y201707WBE016

[21] J. Labra Gayo, H. Knublauch, and D. Kontokostas. 2024. SHACL Test Suite and
Implementation Report. W3C Document. https://w3c.github.io/data-shapes/data-
shapes-test-suite/.

[22] Olaf Hartig. 2014. Reconciliation of RDF* and Property Graphs.
arXiv:1409.3288 [cs.DB] https://arxiv.org/abs/1409.3288

[23] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. 2015. Reifying RDF:
What Works Well With Wikidata?. In Proceedings of the 11th International Work-
shop on Scalable Semantic Web Knowledge Base Systems co-located with 14th
International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October
11, 2015 (CEUR Workshop Proceedings, Vol. 1457), Thorsten Liebig and Achille
Fokoue (Eds.). CEUR-WS.org, 32–47. https://ceur-ws.org/Vol-1457/SSWS2015_
paper3.pdf

[24] International Organization for Standardization. 2020. ISO/IEC 19757-3:2020 In-
formation technology – Document Schema Definition Languages (DSDL) – Part 3:
Rule-based validation using Schematron. Standard. International Organization
for Standardization, Geneva, CH.

[25] International Organization for Standardization. 2024. ISO/IEC 39075:2024 In-
formation technology – Database languages – GQL. Standard. International
Organization for Standardization, Geneva, CH.

[26] Maxime Jakubowski. 2024. Shapes Constraint Language: Formalization, Expres-
siveness, and Provenance. Ph. D. Dissertation. Universiteit Hasselt and Vrije
Universiteit Brussel.

[27] Gregg Kellogg, Pierre-Antoine Champin, Olaf Hartig, and Andy Seaborne.
2024. RDF 1.2 Concepts and Abstract Syntax. W3C Working Draft. W3C.
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240822/.

[28] Holger Knublauch, James A. Hendler, and Kingsley Idehen. 2011. SPIN - Overview
and Motivation. Technical Report. World Wide Web Consortium.

[29] H. Knublauch and D. Kontokostas. 2017. Shapes constraint language (SHACL).
W3C Recommendation. W3C. https://www.w3.org/TR/shacl/.

[30] José Emilio Labra Gayo. [n. d.]. Extending Shape Expressions for different types
of knowledge graphs. In 1st Workshop on Data Quality meets Machine Learning
and Knowledge Graphs, DQMLKG, part of Extended Semantic Web Conference
2024, ESWC24 (CEUR Workshop Proceedings, Vol. 3714), Sanju Tiwari, Nandana
Mihindukulasooriya, Francesco Osborne, Dimitris Kontokostas, Jennifer D’Souza,
Mayank Kejriwal, Maria Angela Pellegrino, Anisa Rula, Jose Emilio Labra-Gayo,
Michael Cochez, and Mehwish Alam (Eds.). CEUR-WS.org.

[31] Jose-Emilio Labra-Gayo. 2022. WShEx: A language to describe and validate
Wikibase entities. In Proceedings of the 3rd Wikidata Workshop 2022 co-located
with the 21st International Semantic Web Conference (ISWC2022), Virtual Event,
Hanghzou, China, October 2022 (CEUR Workshop Proceedings, Vol. 3262), Lucie-
Aimée Kaffee, Simon Razniewski, Gabriel Amaral, and Kholoud Saad Alghamdi
(Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-3262/paper3.pdf

[32] Jose Emilio Labra Gayo, Herminio García-González, Daniel Fernández-Alvarez,
and Eric Prud’hommeaux. 2019. Challenges in RDF Validation. In Current
Trends in Semantic Web Technologies: Theory and Practice, Giner Alor-Hernández,
José Luis Sánchez-Cervantes, Alejandro Rodríguez-González, and Rafael Valencia-
García (Eds.). Springer, 121–151. https://doi.org/10.1007/978-3-030-06149-4_6

[33] Ora Lassila, Michael Schmidt, Olaf Hartig, Brad Bebee, Dave Bechberger, Willem
Broekema, Ankesh Khandelwal, Kelvin Lawrence, Carlos Manuel Lopez Enriquez,
Ronak Sharda, et al. 2023. The OneGraph vision: Challenges of breaking the
graph model lock-in 1. Semantic Web 14, 1 (2023), 125–134.

[34] M. Leinberger, P. Seifer, T. Rienstra, R. Lämmel, and S. Staab. 2020. Deciding
SHACL Shape Containment through Description Logics Reasoning. In ISWC’20
(LNCS 12506). Springer, 366–383.

[35] Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. 2017.
BonXai: Combining the Simplicity of DTD with the Expressiveness of XML
Schema. ACM Trans. Database Syst. 42, 3 (2017), 15:1–15:42. https://doi.org/10.
1145/3105960

[36] Vinh Nguyen, Olivier Bodenreider, and Amit P. Sheth. 2014. Don’t like RDF
reification?: making statements about statements using singleton property. In
23rd International World Wide Web Conference, WWW ’14, Seoul, Republic of
Korea, April 7-11, 2014, Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and
Torsten Suel (Eds.). ACM, 759–770. https://doi.org/10.1145/2566486.2567973

[37] Mikael Nilsson. 2008. Description Set Profiles: A constraint language for Dublin
Core Application Profiles. Technical Report. Dublin Core.

[38] Paolo Pareti and George Konstantinidis. 2021. A Review of SHACL: From Data
Validation to Schema Reasoning for RDF Graphs. In Reasoning Web. Declara-
tive Artificial Intelligence - 17th International Summer School 2021, Leuven, Bel-
gium, September 8-15, 2021, Tutorial Lectures (Lecture Notes in Computer Sci-
ence, Vol. 13100), Mantas Simkus and Ivan Varzinczak (Eds.). Springer, 115–144.
https://doi.org/10.1007/978-3-030-95481-9_6

[39] P. Pareti, G. Konstantinidis, and F.Mogavero. 2022. Satisfiability and Containment
of Recursive SHACL. JWS 74 (2022), 100721:1–24.

9

https://doi.org/10.1145/3589778
https://doi.org/10.1145/3589778
https://doi.org/10.1145/3448016.3457561
https://doi.org/10.4204/EPTCS.345.14
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.46298/lmcs-20(1:16)2024
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1016/j.websem.2005.09.001
https://doi.org/10.1016/j.websem.2005.09.001
https://doi.org/10.1007/978-3-030-30793-6_9
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.48786/edbt.2023.23
https://doi.org/10.3233/SW-243611
https://doi.org/10.2200/S00786ED1V01Y201707WBE016
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://arxiv.org/abs/1409.3288
https://arxiv.org/abs/1409.3288
https://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://www.w3.org/TR/shacl/
https://ceur-ws.org/Vol-3262/paper3.pdf
https://doi.org/10.1007/978-3-030-06149-4_6
https://doi.org/10.1145/3105960
https://doi.org/10.1145/3105960
https://doi.org/10.1145/2566486.2567973
https://doi.org/10.1007/978-3-030-95481-9_6

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[40] P. Pareti, G. Konstantinidis, F. Mogavero, and T.J. Norman. 2020. SHACL Satisfi-
ability and Containment. In ISWC’20 (LNCS 12506). Springer, 474–493.

[41] Eric Prud’hommeaux and Thomas Baker. 2017. ShapeMap Structure and Language.
W3C Draft Community Group Report. W3C. http://shex.io/shape-map/.

[42] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo, and Gregg Kellog.
2019. Shape Expressions Language 2.1. W3C Community Group Report. W3C.
http://shex.io/shex-semantics/.

[43] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold Solbrig. 2014. Shape
expressions: an RDF validation and transformation language. In Proceedings
of the 10th International Conference on Semantic Systems (Leipzig, Germany)
(SEM ’14). Association for Computing Machinery, New York, NY, USA, 32–40.
https://doi.org/10.1145/2660517.2660523

[44] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2023. Extraction of Validating
Shapes from very large Knowledge Graphs. Proc. VLDB Endow. 16, 5 (2023), 1023–
1032. https://doi.org/10.14778/3579075.3579078

[45] Arthur Ryman. 2014. Resource Shape 2.0. Technical Report. World Wide Web
Consortium.

[46] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,
Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan
Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,
Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:
a community view on graph processing systems. Commun. ACM 64, 9 (2021),
62–71. https://doi.org/10.1145/3434642

[47] Evren Sirin. 2010. Data validation with OWL integrity constraints. InWeb Reason-
ing and Rule Systems: Fourth International Conference, RR 2010, Bressanone/Brixen,
Italy, September 22-24, 2010. Proceedings 4. Springer, 18–22.

[48] Slawek Staworko, Iovka Boneva, José Emilio Labra Gayo, Samuel Hym, Eric G.
Prud’hommeaux, and Harold R. Solbrig. 2015. Complexity and Expressiveness
of ShEx for RDF. In 18th International Conference on Database Theory, ICDT 2015,
March 23-27, 2015, Brussels, Belgium. 195–211. https://doi.org/10.4230/LIPIcs.
ICDT.2015.195

[49] Dominik Tomaszuk. 2017. RDF validation: A brief survey. In BeyondDatabases, Ar-
chitectures and Structures. Towards Efficient Solutions for Data Analysis and Knowl-
edge Representation: 13th International Conference, BDAS 2017, Ustroń, Poland,
May 30-June 2, 2017, Proceedings 13. Springer, 344–355.

[50] Domagoj Vrgoč, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego
Arroyuelo, Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cris-
tian Riveros, and Juan Romero. 2023. MillenniumDB: An Open-
Source Graph Database System. Data Intelligence (06 2023), 1–39.
https://doi.org/10.1162/dint_a_00209 arXiv:https://direct.mit.edu/dint/article-
pdf/doi/10.1162/dint_a_00209/2127027/dint_a_00209.pdf

A DISTILLING THE COMMON DATA MODEL
In this section we discuss the relationship between common graphs
and the standard data models of the three schema formalisms
formalisms—RDF and property graphs.

A.1 Comparison with RDF
As explained in Section 2, common graphs can be naturally seen
as finite sets of triples from E = (N × P × N) ∪ (N × K ×V),
with (𝐸, 𝜌) corresponding to 𝐸 ∪ {(𝑢, 𝑘, 𝑣) | 𝜌 (𝑢, 𝑘) = 𝑣}.

Unlike in RDF, a common graph may contain at most one tuple
of the form (𝑢, 𝑘, 𝑣) for each 𝑢 ∈ N and 𝑘 ∈ K . This reflects the
assumption that properties are single-valued, which is present in
the property graph data model.

In the RDF context, one would assume the following:
• N ⊆ IRIs ∪ Blanks,
• P ⊆ IRIs,
• K ⊆ IRIs,
• V = Literals.

However, the common graph data model does not refer to IRIs,
Blanks, and Literals at all, because these are not part of the property
graph data model.

In contrast to the RDF model, but in accordance with the per-
spective commonly taken in databases, both values and nodes are
atomic. For nodes we completely abstract away from the actual rep-
resentation of their identities. We do not even distinguish between
IRIs and Blanks. An immediate consequence of this is that schemas
do not have access to any information about the node other than the
triples in which it participates. In particular, they cannot compare
nodes with constants. This is a significant restriction with respect
to the RDF data model, but it follows immediately from the same
assumption made in the property graph data model. On the positive
side, this aspect is entirely orthogonal to the main discussion in
this paper, so eliminating it from the common data model does not
oversimplify the picture.

For values we take a more subtle approach: we assume a set T
of value types, with each v ∈ T representing a set JvK ⊆ V . This
captures uniformly data types, such as integer or string, and
user-defined checks, such as interval bounds for numeric values
or regular expressions for strings. On the other hand, the common
graph data model does not include any binary relations over values,
such as an order.

A.2 Comparison with property graphs
Let us recall the standard definition of property graphs [2].

Definition 14 (Property graph). A property graph is a tuple
(𝑁, 𝐸, 𝜋, 𝜆, 𝜌) such that

• 𝑁 is a finite set of nodes;
• 𝐸 is a finite set of edges, disjoint from 𝑁 ;
• 𝜋 : 𝐸 → (𝑁 × 𝑁) maps edges to their source and target;
• 𝜆 : (𝑁 ∪ 𝐸) → 2P maps nodes and edges to finite sets of

labels;
• 𝜌 : (𝑁 ∪ 𝐸) × K⇀V is a finite-domain partial function

mapping element-key pairs to values.

A common graph 𝐺 = (𝐸′, 𝜌′) can be easily represented as a
property graph by letting

10

https://doi.org/10.1145/2660517.2660523
https://doi.org/10.14778/3579075.3579078
https://doi.org/10.1145/3434642
https://doi.org/10.4230/LIPIcs.ICDT.2015.195
https://doi.org/10.4230/LIPIcs.ICDT.2015.195
https://doi.org/10.1162/dint_a_00209
https://arxiv.org/abs/https://direct.mit.edu/dint/article-pdf/doi/10.1162/dint_a_00209/2127027/dint_a_00209.pdf
https://arxiv.org/abs/https://direct.mit.edu/dint/article-pdf/doi/10.1162/dint_a_00209/2127027/dint_a_00209.pdf

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

• 𝑁 = Nodes(𝐺),
• 𝐸 = 𝐸′,
• 𝜋 = {(𝑒, (𝑣1, 𝑣2)) | 𝑒 = (𝑣1, 𝑝, 𝑣2) ∈ 𝐸},
• 𝜆 = {(𝑒, {𝑝}) | 𝑒 = (𝑣1, 𝑝, 𝑣2) ∈ 𝐸} ∪ {(𝑣, ∅) | 𝑣 ∈ 𝑁 }, and
• 𝜌 = 𝜌′.

It is possible to characterise exactly the property graphs that are
such representations of common graphs. These are the property
graphs (𝑁, 𝐸, 𝜋, 𝜆, 𝜌) for which it holds that:

(1) 𝜆(𝑣) = ∅ for all 𝑣 ∈ 𝑁 , and 𝜆(𝑒) is a singleton for all 𝑒 ∈ 𝐸,
(2) there cannot be two distinct edges 𝑒1, 𝑒2 ∈ 𝐸 such that

𝜋 (𝑒1) = 𝜋 (𝑒2) and 𝜆(𝑒1) = 𝜆(𝑒2), and
(3) 𝜌 (𝑒, 𝑘) is undefined for all 𝑒 ∈ 𝐸, 𝑘 ∈ K .

So, common graphs can be interpreted as restricted property
graphs: no labels on nodes, single labels on edges, no parallel edges
with the same label, and no properties on edges. All these restric-
tions are direct consequences of the nature of the RDF data model.

While these restrictions seem severe at a first glance, the result-
ing data model can actually easily simulate unrestricted property
graphs: labels on nodes can be simulated with the presence of cor-
responding keys, edges can be materialised as nodes if we need
properties over edges or parallel edges with the same label. This
means not only that common graphs can be used without loss of
generality in expressiveness and complexity studies, but also that
the corresponding restricted property graphs are flexible enough
to be usable in practice, while additionally guaranteeing interoper-
ability with the RDF data model.

A.3 Class information
The common graph data model does not have direct support for
class information. The reason for this is that RDF and property
graphs handle class information rather differently. In RDF, both
class and instance information is part of the graph data itself: classes
are elements of the graph, subclass-superclass relationships are rep-
resented as edges between classes, and membership relationships
are represented as edges between elements and classes. In property
graphs, membership of a node in a class is indicated by a label put
on the node. A node can belong to many classes, but the only way
to say that class𝐴 is a subclass of class 𝐵 is to ensure in the schema
that each node with label 𝐴 also has label 𝐵. That is,

• in property graphs class membership information is avail-
able locally in a node, but consistency must be ensured by
the schema,

• in RDF, obtaining class membership information requires
navigating in the graph, but consistency is for free.

Clearly, both approaches have their merits, but when passing from
one to the other data needs to be translated. This means that we
cannot pick one of these approaches for the common data model
while keeping it a natural submodel of both RDF and property
graphs. Therefore, to reduce the complexity of this study, we do
not include in our common data model any dedicated features for
supporting class information. Note, however, that common graphs
can support both these approaches indirectly: designated predicates
can be used to represent membership and subclass relationships,
and keys with a dummy value can simulate node labels.

B STANDARD SHACL
Standard SHACL defines shapes as a conjunction of constraint com-
ponents. The different constructs from our formalization correspond
to fundamental building blocks of these constraint components.
Next to that, the formalization of SHACL presented in this paper
is less expressive than standard SHACL: both because we defined
it here for the common data model (which is a strict subset of
RDF), and because we want to simplify our narrative. For example,
we leave out the comparison of RDF terms using sh:lessThan to
simplify our story. Furthermore, because the common graph data-
model does not define language tags, the corresponding constraint
components from standard SHACL are left out.

Our formalization is closely tied to the ones found in the lit-
erature. There, correspondence between the formalization of the
literature and standard SHACL has been shown in detail [26]. This
section highlights and discusses some relevant details.

Class targets and constraint component. As a consequence of the
common graph data model not directly supporting the modelling
of classes, some class-based features are not adapted in our formal-
ization. Specifically, there are no selectors (“target declarations” in
standard SHACL) that involve classes. Furthermore, the value type
constraint component sh:class is not covered by our formaliza-
tion.

Closedness. In standard SHACL syntax, closedness is a property
that takes a true or false value. The semantics of closedness is based
on a list of predicates that are allowed for a given focus node. This
list can be inferred based on the predicated used in property shapes,
or this list can be explicitly given using the sh:ignoredProperties
keyword. Our formalization effectively adopts the latter approach:
closed(𝑄) means that the properties mentioned in the set𝑄 are the
ignored properties.

Path expressions. The path expressions used in our formalization
deviate from the standard in three obvious ways. First, we make a
distinction between ‘keys’ and ‘predicates’. This is simply a conse-
quence of using our common graph data model. Second, we leave
out some of the immediately available path constructs from stan-
dard SHACL: one-or-more paths and zero-or-one path. However,
these are expressible using the building blocks of our formalization:
one-or-more paths are expressed as 𝜋 · 𝜋∗, and zero-or-one paths
are expressed as 𝜋∪ id. Lastly, our path expression allow for writing
the identity relation explicitly. This cannot be done in literal stan-
dard SHACL syntax, but its addition to the formalization serves to
highlight its hidden presence in the language. Writing the identity
relation directly in a counting construct, e.g., ∃≥𝑛 id.⊤, never adds
expressive power. In the case of 𝑛 = 1, the shape is always satisfied
(and thus equivalent to ⊤), and it is easy to see that for any 𝑛 > 1,
it is never satisfied. The situation with complex path expressions
in counting constructs is less clear from the outset. However, it
has been shown [7] (Lemma 3.3), that the only case where id adds
expressiveness is with complex path expressions of the form 𝜋 ∪ id.
This is exactly the definition of zero-or-one paths and is therefore
covered by standard SHACL. Another place where id can occur in
our formalization is in the equality and disjointness constraints,
e.g., eq(id, 𝑝). According to the standard SHACL recommendation,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

you cannot write this shape. However, in the SHACL Test Suite [21]
test core/node/equals-001, the following shape is tested for:

ex:TestShape
rdf:type sh:NodeShape ;
sh:equals ex:property ;
sh:targetNode ex:ValidResource1 .

on the following data:

ex:ValidResource1
ex:property ex:ValidResource1 .

The intended meaning of this test is, in natural language: “The
targetnode ex:ValidResource1 has a ex:property self-loop and
no other ex:property properties”. Effectively, this is the semantics
for our eq(id, 𝑝) construct. The situation with disj(id, 𝑝) is similar.

We therefore have an ambiguous situation: the standard descrip-
tion of SHACL does not allow for shapes of the form eq(id, 𝑝), but
the test suite, and therefore all implementations that pass it com-
pletely, do3. It then seems fair to include this powerful construct in
the formalization.

Comparisons with constants. A direct consequence of the assump-
tion that node identities in the common graph datamodel are hidden
from the user, our abstraction of SHACL on common graphs does
not support comparisons with constants from N . Comparisons
with constants fromV are allowed.

Node tests. Our formalization uses the test(v) construct to de-
note many of the node tests available in SHACL. We list the tests
from standard SHACL that are covered by this construct.

DatatypeConstraintComponent Tests whether a node has a
certain datatype.

MinExclusiveConstraintComponent
MinInclusiveConstraintComponent
MaxExclusiveConstraintComponent
MaxInclusiveConstraintComponent These four constraints

cover can check whether a node is larger (Max) or smaller
(Min) than some value, and whether this forms a partial
order (Inclusive) or a strict, or total, order (Exclusive).
Based on the SPARQL < or ≤ operator mapping.

MaxLengthConstraintComponent
MinLengthConstraintComponent These two constraints test

whether the length of the lexical form of the node is “larger”
or equal (resp. “smaller” or equal) than some provided inte-
ger value. Strictly speaking, the recommendation defines
these constraint components also on IRIs. However, we
limit their use to Literals.

PatternConstraintComponent Tests whether the length of
the lexical form of the node satisfies some regular expres-
sion. Strictly speaking, the recommendation defines these
constraint components also on IRIs. However, we limit their
use to Literals.

Then there are two types of tests not covered by our formaliza-
tion:

3Incidentally, all implementations currently mentioned in the implementation report
handle these cases correctly.

NodeKindConstraintComponent Tests whether a node is an
IRI, Blank Node, or Literal. Our tests apply only to RDF
Literals.

LanguageInConstraintComponent Test whether the language
tag of the node is one of the specified language tags. This
feature is not supported by our data model, since it lacks
language tags.

C STANDARD SHEX
The Shape Expressions Language (ShEx) [42] and the ShapeMaps
language [41] are defined by the Shape Expressions Community
group4 at W3C. Hereafter we use standard ShEx to refer to the lan-
guage defined in [42], while ShEx designates the language presented
in this paper.

In this appendix we support the following

Claim1. On common graphs, the expressive power of ShEx schemas is
equivalent to the expressive power of standard ShEx schemas without
recursion.

Section C.3 explains standard ShEx on common graphs, while
Section C.2 explains standard ShEx without recursion.

C.1 Standard ShEx schema and the validation
problem

A standard ShEx schema is a set of named shape expressions, and
is usually formalised as a pair (𝐿, def) where 𝐿 is a finite set of
shape names (in practice these are IRIs), and def is a function that
associates a shape expression with every shape name. In standard
ShEx, the validation problem G ⊨ S from Section 2.4 is not defined
as such. That is, the ShEx specification [42] does not say what it
means for a graph to be valid w.r.t. a standard ShEx schema; it
only defines what it means for a node in a graph to satisfy a shape
expression.

However, the problem considered in practice is whether some
selected nodes in the graph satisfy some indicated shape expressions
from the schema. This is specified by a shape map [41]. A shape
map can be formalised as a set of pairs of the form (sel, 𝑙), where
𝑙 ∈ 𝐿 and sel is a unary query. While the shape map specification
[41] allows the selectors from Definition 7, most implementations
allow general SPARQL queeries as selectors.

In the current paper, we integrate the shape map into the schema
itself, which allows us to specify the validation problem in a uniform
way for the three graph schema formalisms considered. Addition-
ally, in shape maps we do not use shape names but shape expres-
sions directly; the next section argues why this is not a problem
from the point of view of expressive power.

C.2 Shape names and recursion
Recursion is an important mechanism in standard ShEx. In the
current paper however we consider only ShEx schemas without
recursion (to be defined shortly). This restriction was made because
neither standard SHACL5 nor PG-Schema allow for recursion.

4https://www.w3.org/community/shex/
5There exist formalizations of SHACL that introduce recursion, but recursion is not
specified in the standard.

12

https://www.w3.org/community/shex/

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

In standard ShEx, the fact that shape expressions are named
allows to refer to them using their name. In particular, references
allow for circular recursive definitions. As an example, consider
the standard ShEx schema on Figure 2. It contains the single shape
name ex:User whose definition is given by the shape expression
inside the curly braces. The latter shape expression refers to itself:
@ex:User indicates a reference to the shape expression named
ex:User. Concretely, the shape expression requires from an RDF
node to have an ex:email predicate whose value is a string, as well
as any number of ex:invited predicates whose values are nodes
that satisfy the shape expression named ex:User.

PREFIX ex: <http://ex.example/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
ex:User {

ex:email xsd:string ;
ex:invited @ex:User *

}

Figure 2: A standard ShEx schema.

A standard ShEx schema (𝐿, def) is considered with recursion
when there is a shape name 𝑙 ∈ 𝐿 whose definition uses a reference
@𝑙 to itself, either directly or transitively through references to other
shape names. Every standard ShEx schemawithout recursion can be
rewritten to an equivalent schema without references, simply by re-
placing every reference by its definition. In other words, references
in standard ShEx do not add expressive power for non-recursive
schemas.

C.3 Syntax of standard ShEx on common graphs
The syntax and semantics of standard ShEx differ slightly from the
ones presented here. There are some purely syntactic differences, as
for instance the boolean operators that are called and, or and not
in standard ShEx, for which we adopt here the usual mathematical
notation∧,∨ and¬. Another difference concerns the so-called node
constraints of standard ShEx. These are constraints to be verified
on the actual node of an RDF graph (which is an IRI, a literal or
a blank node) without considering its neighbourhood. As pointed
out in Section A.1, node constraints for nodes (i.e. elements of N)
are irrelevant for common graphs. Standard ShEx node constraints
on values correspond to the atomic shape expressions test(v) and
is(𝑐) in ShEx. Their expressive power can be entirely captured by
selecting for T a language equivlent to node constraints on values
in standard ShEx. Note finally that the test(any) in ShEx allows
to distinguish nodes from values.

The grammar presented on Figure 3 gives an abstract syntax
for standard ShEx shape expressions se and triple expressions te for
common graphs. Note that we use the ShEx syntax for the boolean
operators and for node constraints. The other differences are:

• In standard ShEx, the atomic shape expression that defines
the neighbourhood of a node (non-terminal sh) is parame-
terised by a set of extra (possibly inversed) predicates and
keys𝑄 , indicated by the keyword extra. In Section C.4.1 we
show that extra is syntactic sugar in standard ShEx.

• In standard ShEx, the atomic shape expression derived from
the non-terminal sh can have an optional closed modifier.

On the other hand, ShEx introduces the triple expressions
¬𝑃 and ¬𝑃− . As we will see, the latter are used when trans-
lating standard ShEx to ShEx in order to distinguish be-
tween closed and non-closed standard ShEx shape expres-
sions.

• Triple expressions in ShEx contain the atomic expression 𝜀,
while standard ShEx does not allow it directly. On the other
hand standard ShEx allows to use intervals of the form
[min;max] to define bounded or unbounded repetition,
while ShEx allows only the unbounded repetition ∗. We
show in Section C.4.2 that the two variants have equivalent
expressive power.

• Triple constraints in standard ShEx (rule tc) allow to use
a . (dot) instead of the shape expression, which is in fact
equivalent to the ShEx shape expression {⊤}.

Note that, strictly speaking, the extra predicates and keys are op-
tional in standard ShEx. However, an absent extra set is equivalent
to extra ∅, therefore we will consider that it is always present.

seF is(𝑐)
�� test(v) �� sh �� closed sh

�� se ∧ se
�� se ∨ se

�� ¬se .
shF extra 𝑄 {te} .

teF tc
�� te ; te

�� te |te �� te[min;max] .
tc F 𝑞 se

�� 𝑞 . .

with 𝑐 ∈ N ∪V , v ∈ T , 𝑞 ∈ P ∪ K ∪ P− ∪ K− ,
𝑄 ⊆fin P ∪ K ∪ P− ∪ K− , min ∈ N and max ∈ N ∪ {∗}.

Figure 3: Abstract syntax for standard ShEx.

C.4 Translations between ShEx and standard
ShEx

In this section we introduce a back and forth translation between
standard ShEx without recursion and ShEx. We claim that these
translations preserve the semantics w.r.t. the validity of a graph. The
claim is presented without proof as it would require to define formal
semantics for standard ShEx. The proof is however not difficult to
make using the formal semantics from [8].

C.4.1 Eliminating extra from standard ShEx. We show on an exam-
ple how the extra constructed can be eliminated in standard ShEx.
The same example will be used later on for the translation from
standard ShEx to ShEx, therefore it is described in detail.

Example 13. Consider the standard ShEx shape expression

se = extra {𝑝1, 𝑝2} {te}
with te = 𝑝1 {𝑝 .} ; 𝑝1

{
𝑝′ .

}
; 𝑝3 . ; 𝑝−4 .

and 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝, 𝑝
′ ∈ P ∪ K

that has a set of extra predicates and keys {𝑝1, 𝑝2}. It is satisfied by
nodes whose neighbourhood has the following outgoing triples:

(1) one 𝑝1-triple leading to a node that satisfies {𝑝 .},
(2) another 𝑝1-triple leading to a node that satisfies {𝑝′ .},
(3) a 𝑝3-triple leading to an unconstrained node,

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

(4) because 𝑝1 appears as extra, other 𝑝1-triples are also al-
lowed as long as they satisfynone of the constraints present
for 𝑝1 in te, that is, they satisfy neither {𝑝 .} nor {𝑝′ .},

(5) because 𝑝2 appears as extra, 𝑝2-triples are allowed and their
target is not constrained because 𝑝2 does not appear in the
triple expression te,

(6) finally, because the shape is not closed, all outgoing triples
whose predicate is not 𝑝1 neither 𝑝3 are allowed, {𝑝1, 𝑝3} be-
ing the set of non-inversed predicates that occur directly in
te. Formally, {𝑝1, 𝑝3} = preds(te) ∩P∩K , see Section C.4.3.

The node has also the following incoming triples:
(7) one incoming 𝑝4-triple coming from an unconstrained node,
(8) because standard ShEx does not close the incoming triples,

all incoming triples whose predicate is different from 𝑝4
are allowed.

The shape expression se from Example 13 is equivalent to the
following shape expression without extra:{

te ; te∗𝑝1 ; te∗𝑝2

}
where

te𝑝1 = 𝑝1
(
¬ {𝑝 .} ∧ ¬

{
𝑝′ .

})
and te𝑝2 = (𝑝2 .)

The sub-expression te∗𝑝1 allows to satisfy the requirement (4) from
Example 13, while the sub-expression te∗𝑝2 allows to satisfy the
requirement (5).

This construction for eliminating extra can be generalised to
arbitrary shape expressions. The idea is to combine (with the ;
operator) the initial triple expression with a sub-expression of the
form 𝑞 se∗𝑞 for every (possibly inverse) extra predicate 𝑞, where se𝑞
is the conjunction of the negated shape expressions se′ such that
𝑞 se′ directly in te.

Without loss of generality, from now on, we consider only
standard ShEx shape expressions without extra.

C.4.2 Normalised triple expressions. We now show how standard
ShEx triple expressions and triple expressions can be normalised so
that they use a limited number of operators, which will be useful
for the translation between standard ShEx and ShEx.

Normalisation of standard ShEx triple expressions. A standard
ShEx triple expression is normalised when it uses only the intervals
[0; 1] and [0; ∗]. Standard ShEx triple expressions are normalised
using rewriting based on the following equivalences:

te[min; ∗] = te[0; ∗] ; te ; · · · ; te︸ ︷︷ ︸
min times

te[min;max] = te ; · · · ; te︸ ︷︷ ︸
min times

; te[0; 1] ; · · · ; te[0; 1]︸ ︷︷ ︸
max−min times

when max ≠ ∗

Normalisation of ShEx triple expressions. Here after, 𝑓 designates
a ShEx triple expression derivable from the third rule of the gram-
mar in Definition 6. For every ShEx triple expression 𝑓 , we define
𝑓 ? = 𝑓 | 𝜀. A ShEx triple expression 𝑓 is normalised if either 𝑓 = 𝜀,
or 𝑓 does not use 𝜀 as sub-expression, but can use the ? operator
defined here-above. Every triple expression can be normalised by

eliminating occurrences of 𝜀 using these two properties and the ?
operator:

• it is a neutral element for the ; operator, that is, 𝑓 ; 𝜀 = 𝜀 ; 𝑓 =

𝑓 for every ShEx triple expression 𝑓 ,
• 𝜀∗ = 𝜀.

Without loss of generality, from now on we consider only
normalised triple expressions.

C.4.3 Direct predicates of triple expressions. This section is de-
voted to two technical definitions. For every triple expression we
define the set of (possibly inversed) predicates and keys that appear
directly in the expression. Formally, if 𝑓 is a ShEx triple expression
derived by the third rule of the grammar in Definition 6, then we
define the set preds(𝑓) ⊆ P ∪ K ∪ P− ∪ K− inductively on the
structure of 𝑓 by:

preds(𝜀) = ∅
preds(𝑝.𝜑) = {𝑝}
preds(𝑝− .𝜑) = {𝑝−}
preds(𝜑 ;𝜑 ′) = preds(𝜑) ∪ preds(𝜑 ′)
preds(𝜑 | 𝜑 ′) = preds(𝜑) ∪ preds(𝜑 ′)
preds(𝜑∗) = preds(𝜑)

For a standard ShEx triple expression te, the set preds(te) is
defined similarly (recall that 𝑞 ∈ P ∪ K ∪ P− ∪ K−):

preds(𝑞 se) = {𝑞}
preds(𝑞 .) = {𝑞}
preds(se ; se′) = preds(se) ∪ preds(se′)
preds(se | se′) = preds(se) ∪ preds(se′)
preds(te[min;max]) = preds(se)

C.4.4 Translation from standard ShEx to ShEx. With every standard
ShEx shape expression se we associate the ShEx shape expression
𝜏 (se) as defined in Table 9. It is defined by mutual recursion with
the corresponding translation function 𝜏e (te) for standard ShEx
triple expressions te presented in Table 8.

Table 8: Translation from standard ShEx to ShEx for nor-
malised triple expressions, with 𝑞 ∈ P ∪ K ∪ P− ∪ K− .

te 𝜏e (te)
𝑞 se 𝑝. 𝜏 (se)
𝑞 . 𝑝. {⊤}
te ; te′ 𝜏e (te) ;𝜏e (te′)
te | te′ 𝜏e (te) | 𝜏e (te′)
te[0; ∗] 𝜏e (te)∗
te[0; 1] 𝜏e (te) | 𝜀

C.4.5 Translation from ShEx to standard ShEx. Unless otherwise
specified, in the sequel 𝑓 designates a ShEx triple expression pro-
duced by the third rule in the grammar in Definition 6. In Table 10
we present a function that with every normalised ShEx triple ex-
pression 𝑓 associates the standard ShEx triple expression 𝜎e (𝑓). It
is defined by mutual recursion with the translation function that

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 9: Translation from standard ShEx to ShEx for shape
expressions.

se 𝜏 (se)
is(𝑐) is(𝑐)
𝜏 (test(v)) test(v)
se ∧ se′ 𝜏 (se) ∧ 𝜏 (se′)
se ∨ se′ 𝜏 (se) ∨ 𝜏 (se′)
¬se ¬𝜏 (se)
closed {te} 𝜏e (te) ;(¬𝑄−)∗

with 𝑄 = preds(te) ∩ (P− ∪ K−)
{te} 𝜏e (te) ;(¬𝑄−)∗ ;(¬𝑃)∗

with 𝑄 = preds(te) ∩ (P− ∪ K−)
and 𝑃 = preds(te) ∩ (P ∪ K)

with every ShEx shape expression 𝜑 associates a standard ShEx
shape expression 𝜎 (𝜑), and that will be presented shortly. Note
that the case 𝑓 = 𝜀 is omitted in Table 10: recall that in normalised
ShEx triple expressions, 𝜀 can only appear standalone (not in sub-
expressions), therefore this case 𝑓 = 𝜀 will be treated with shape
expressions.

Table 10: Translation from ShEx to standard ShEx for nor-
malised triple expressions.

𝑓 𝜎e (𝑓)
𝑝.𝜑 𝑝 𝜎e (𝜑)
𝑝− .𝜑 𝑝− 𝜎e (𝜑)
𝑓 ; 𝑓 ′ 𝜎e (𝑓) ;𝜎e (𝑓 ′)
𝑓 | 𝑓 ′ 𝜎e (𝑓) | 𝜎e (𝑓 ′)
𝑓 ∗ 𝜎e (𝑓) [0; ∗]
𝑓 ? 𝜎e (𝑓) [0; 1]

The definition of 𝜎 (𝜑) is straightforward for the following cases:

𝜎 (is(𝑐)) = is(𝑐)
𝜎 (test(v)) = test(v)
𝜎 (𝜑 ∧ 𝜑 ′) = 𝜎 (𝜑) ∧ 𝜎 (𝜑 ′)
𝜎 (𝜑 ∨ 𝜑 ′) = 𝜎 (𝜑) ∨ 𝜎 (𝜑 ′)
𝜎 (¬𝜑) = ¬𝜎 (𝜑)

The remaining case is for a shape expression of the form {e} =

{𝑓 ; · · ·} where 𝑓 is normalised. Consider the most general case

e = 𝑓 ;(¬𝑃−)∗ ;(¬𝑄)∗

Let also

{𝑝1, . . . , 𝑝𝑚} =(preds(𝑓) ∩ P− ∩ K−) \ 𝑃
{𝑞1, . . . , 𝑞𝑛} =(preds(𝑓) ∩ P ∩ K) \𝑄.

Intuitively, {𝑝1, . . . , 𝑝𝑚} is the set of predicates that are not allowed
to appear on incoming edges in the neighbourhoods defined by e,
and similarly {𝑞1, . . . , 𝑞𝑛} are the forbidden predicates for outgoing

edges. Then

𝜎 ({e}) =

𝜎e (𝑓) ;
𝑝−1 .[0; 0] ; · · · ;𝑝−𝑚 .[0; 0] ;
𝑞1 .[0; 0] ; · · ·𝑞𝑛 .[0; 0]

If 𝑓 = 𝜀, then the term 𝜎e (𝑓) on the first line of the definition of
𝜎 ({e}) must be omitted.

The remaining case for the definition of 𝜎 ({e}) is for
e = 𝑓 ;(¬𝑃−)∗

Let {𝑝1, . . . , 𝑝𝑚} be as before. Then

𝜎 ({e}) = closed
{
𝜎e (𝑓) ;
𝑝−1 .[0; 0] ; · · · ;𝑝−𝑚 .[0; 0]

}
As before, if 𝑓 = 𝜀, then the term 𝜎e (𝑓) must be omitted.

D STANDARD PG-SCHEMA
We present here a version of PG-Schema that is restricted to com-
mon graphs, and therefore as such a simplified version of the origi-
nal PG-Schema, but stays closer to the original form of PG-Schema
as discussed in [2] than the version in the body of this paper. It
is meant to illustrate how the version of PG-Schema in the body
describes indeed a reasonable core of the original full PG-Schema.

The central idea of standard PG-Schema and of PG-Schema in
[2] is that a schema (called graph type in this context) consists of
three parts: (1) a set of node types, (2) a set of edge types, and (3) a
set of graph constraints that represents logical statements about
the property graph that must hold for it to be valid. A particular
property graph is then said to be valid wrt. such a graph type if (1)
every node in the property graph is in the semantics of at least one
node type, (2) every edge in the property graph is in the semantics
of at least one edge type, and (3) the property graph satisfies all
specified graph constraints.

The organisation of this section is as follows. We first discustion
the notions of node types and edge types. After that we discuss how
path expressions are defined, after which we discuss what graph
constraints look like in this setting. In the final two subsections we
discuss how this version of PG-Schema relates the original defined
in [2], and how ot relates to the one define in this paper.

D.1 Node types
The purpose of node types in PG-Schema is to describe nodes,
their properties and their labels. Since in the common graph model
nodes no longer have labels, node types become simply record types
where the record fields describe the allowed keys. In addition it is
indicated with these record type whether they are closed or open,
where the first indicates that only the indicated keys are allowed,
and the later that additional keys are allowed. This leads to the
following formal definition.

Definition 15 (Node type). A node type is an expression n of
the form defined by the grammar

nF {}
�� {}◦ �� {𝑘 : v}

�� {𝑘 : v}◦
�� n & n

�� n | n .

where 𝑘 ∈ K and v ∈ T .

Here {}◦ indicates the open record type without any keys, {𝑘 :
v}◦ is the open record type with just key 𝑘 of type v.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 11: Semantics of standard PG-path expressions.

𝜋 J𝜋KG ⊆ (N ∪V) × (N ∪V) for G = (𝐸, 𝜌)

e
{
(𝑢, 𝑣) | ∃𝑝 : (𝑢, 𝑝, 𝑣) ∈ 𝐸 ∧ (𝜌 (𝑢), 𝑝, 𝜌 (𝑣)) ∈ JeK

}
¬e

{
(𝑢, 𝑣) | ∃𝑝 : (𝑢, 𝑝, 𝑣) ∈ 𝐸 ∧ (𝜌 (𝑢), 𝑝, 𝜌 (𝑣)) ∉ JeK

}
For these node types n we define a value semantics JnK, just

like for content types, which is defined in the same way except that
J{}◦K = J⊤K and J{𝑘 : v}◦K = J{𝑘 : v} & ⊤K. It follows straightfor-
wardly that for each content type there is an equivalent node type
and vice versa.

D.2 Edge types
In PG-Schema there is a notion of edge type, which consists of three
parts: (1) a type describing the source node, (2) a type describing
describing the contents of the edge itself, and (3) a type describing
the the target node. Since in common graphs the content of an
edge is just a label, a type describing this content can be simply an
expression of the form ★ (a wild-card indicating that any label is
possible) or a finite set 𝑃 of labels (indicating that only these labels
are allowed). So we get the following definition for edge types.

Definition 16 (Edge type). An edge type is an expression e of
the form defined by the grammar

eF n
★→ n

�� n 𝑃→ n
�� e & e

�� e | e .

where 𝑃 is a finite subset of P.
As for node types, we define for edge types a value semantics,

which in this case defines which combinations of (1) source node
content, (2) edge content, and (3) target node content are allowed.

Definition 17 (Value semantics of edge types). With an edge
type e we associate a value semantics JeK ⊆ R × P × R which is
defined with induction on the structure of e as follows:

(1) Jn1
★→ n2K = Jn1K × P × Jn2K

(2) Jn1
𝑃→ n2K = Jn1K × 𝑃 × Jn2K

(3) Je1 & e2K = { ((𝑟1 ∪ 𝑠1), 𝑝, (𝑟2 ∪ 𝑠2)) ∈ R × P × R |
(𝑟1, 𝑝, 𝑟2) ∈ Je1K ∧ (𝑠1, 𝑝, 𝑠2) ∈ Je2K}

(4) Je1 | e2K = Je1K ∪ Je2K

D.3 Path expressions
We define here a notion of path expression that we call standard
PG-path expression and that is similar to the notion of PG-path
expression of Definition 9, except that in the positions where a
content type c is allowed, we allow the use of a node type n or
edge type e. As discussed earlier, node types are equivalent to
content types, and so we can given them the same semantics in path
expressions. Edge types, however, are different, and their semantics
in path expressions is given in Table 11.

D.4 Graph constraints
The graph constraints in PG-Schema are based on the constraints
discussed in PG-Keys [3]. Although the latter paper focuses on
key constraints, it also discusses other closely related cardinality

constraints. We capture these constraints here in the context of the
common graph data model with the following formal definition.

Definition 18 (PG-constraint). A PG-constraint is a formula
of one of the following three forms:

K1: ∀𝑥 : 𝜑 (𝑥) ⇐ Key𝑦 : 𝜓 (𝑥,𝑦)
K2: ∀𝑥 : 𝜑 (𝑥) → ∃≤𝑘 𝑦 : 𝜓 (𝑥,𝑦)
K3: ∀𝑥 : 𝜑 (𝑥) → ∃≥𝑘 𝑦 : 𝜓 (𝑥,𝑦)

where 𝑥 is a variable that ranges over nodes and values, 𝜑 (𝑥) and
𝜓 (𝑥,𝑦) are formulas of the form ∃𝑧 : 𝜉 with 𝑧 a vector of node and
value variables and 𝜉 a conjunction of atoms of the form 𝜋 (𝑧𝑖 , 𝑧 𝑗)
with 𝑧𝑖 and 𝑧 𝑗 either equal to 𝑥 , in𝑦, or in 𝑧, and 𝜋 a standard PG-path
expression, such that the free variables in 𝜑 (𝑥) are just 𝑥 and those
in𝜓 (𝑥,𝑦) are 𝑥 and the variables in 𝑦.

The intuition of the constraints of the form K1 is that they
define a key constraint for all values or nodes selected by 𝜑 (𝑥).
It states for such 𝑥 that any vector of values and/or nodes 𝑦 that
satisfies 𝜓 (𝑥,𝑦) identifies 𝑥 , i.e., is associated with at most one
such 𝑥 . So the symbol ⇐ should be read here as stating that the
left-hand side is functionally determined by the right-hand side.
More formally, its semantics is defined as being equivalent with the
formula ∀𝑦 : ∃≤1𝑥 : 𝜑 (𝑥) ∧𝜓 (𝑥,𝑦).

For the constraints of the forms K2 and K3 the interpretation is
simply the usual one in first-order logic.

D.5 The relationship with PG-Schema on full
Property Graphs

The presented definitions introduce two important simplification
w.r.t./ the original in [2]: (1) It is defined over common graphs which
simplifies the property graph data model in several ways and (2)
it assumes what is called the STRICT semantics of a graph type
in [2] and ignores the LOOSE semantics. We briefly discuss here
why these simplification preserve the essential characteristics of
the original schema language.

D.5.1 Concerning the simplification of the data model. Recall that
common graphs simplify property graphs in three ways: (1) nodes
only have properties and no labels, (2) edges only have one label and
no properties, and (3) edges have no independent identity. However,
these features can be readily simulated in the common graph data
model. For example. edges with identity can be simulated by nodes
that have an outgoing edge with label source and an outgoing edge
with label target to respectively the source node and the target
node of the simulated edge. Moreover, labels can be simulated
by introducing a special dummy value Λ that is used for keys
that represent labels. For example, a node 𝑛 where 𝜌 (𝑛) contains
the pairs (Person,Λ), (Employee,Λ), (hiringDate, 12-Dec-2023), and
(fulltime, true), simulates a node with labels Person and Employee,
and properties hiringDate and fulltime.

It is not hard to see how under such a simulation the PG-Schema
presented in this section could simulate a more powerful schema
language where we could use tests in path expressions for the
presence (or absence) of (combinations of) labels in path expressions
and tests for presence (or absence) of (combinations of) properties
of edges. Moreover, we could navigating via a simulated an edge
and test for certain properties with a path expression of the form

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

source− · 𝜋 · target where 𝜋 simulates any test over the content
of the edge. Finally, we could straightforwardly simulate key and
cardinality constraints for edges.

D.5.2 Concerning the STRICT and LOOSE semantics. In PG-Schema
as described in [2] there is a separate LOOSE semantics defined for
graph types. In that case the set of nodes types and the set of edge
types in the graph type are ignored and a property graph is said to
be already valid wrt. a graph type if it satisfies all graph constraints
in the graph type. Note that in the original PG-Schema this did
not mean that the sets of nodes types and edge types are entirely
ignored, since there they also have the function of defining short-
hands that can be used in the definitions of the graph constraints.

The LOOSE interpretation can be easily simulated in the version
presented here by letting the set of node types consist of ⊤, the
trivial node type, and the set of edge types consist of ⊤ ★→ ⊤, the
trivial edge type.

D.6 The relationship with PG-Schema in the
body of the paper

The constraints of the forms K2 and K3 are very similar to the
selector-shape pairs presented for PG-Schema in Section 5. Indeed,
the selector is in this case the formula 𝜑 (𝑥) and the shape are the
formulas of the forms ∃≤𝑘𝑦 : 𝜓 (𝑥,𝑦) and ∃≥𝑘𝑦 : 𝜓 (𝑥,𝑦). However,
there are also several notable differences: (1) The schema only
consists of constraints and does not separately mention node or
edge types. (2) There are no edge types in path expressions. (3)
All constraints are restricted so that 𝑦 is just a single variable. (4)
There are no constraints of the form K1. (5) The constraints are
syntactically restricted such that 𝜑 (𝑥) is restricted to just one atom,
so the form ∃𝑧 : 𝜋 (𝑥, 𝑧), and𝜓 (𝑥,𝑦) is restricted to just one atom,
so the form 𝜋 (𝑥,𝑦). Apart from these restriction, there is also a
generalisation, since in Section 5 the shape expression are closed
under intersection. That this does not change the expressive power
is easy to see, since a selector-shape pair of the form (sel, (𝜑1 ∧𝜑2))
can always be replaced with the combination of the pairs (sel, 𝜑1)
and (sel, 𝜑2) without changing the semantics of the schema.

In the following subsectionswe discuss the previouslymentioned
restrictions.

D.6.1 No separate sets of node types and edge types. It is not hard
to show that this can be simulated. Assume for example we have a
graph type with a set of node types {n1,n2,n3}. The check that
each node must be in the semantics of at least one of these node
types can be simulated by the constraint

∀𝑥 : ⊤(𝑥, 𝑥) → ∃𝑦 : (n1 | n2 | n3) (𝑥,𝑦)

Since node types are closed under the | operator, (n1 | n2 | n3)
is a node type, and therefore an allowed path expression. Recall
that a node type acts in a path expression as the identity relation
restricted to nodes that are in the semantics of that type.

Similarly, if the set of edge types of a graph type is {e1, e2, e3},
we can ensure that each edge is in the semantics of at least one of
these edge types using the constraint

∀𝑥 : ⊤(𝑥, 𝑥) → ∃≤0𝑦 : ¬(e1 | e2 | e3) (𝑥,𝑦) .

D.6.2 No edge types in path expressions. It is not hard to show that
path expressions that contains tests involving edge types can be
rewritten to equivalent path expressions that do not use edge types.

We first consider the non-negated edge types in path expressions.
We start with the observation that we can normalise edge types to
a union of edge types that do not contain the | operator. This is
based on the following equivalences for path semantics that allow
us to push down the | operator:

• (n1 | n2)
𝛼→ n3 ≡ (n1

𝛼→ n3 | n2
𝛼→ n3)

• n1
𝛼→ (n2 | n3) ≡ (n1

𝛼→ n2 | n1
𝛼→ n3)

In a next normalisation step we can remove bottom-up the & op-
erator using the following rules, where we use the symbol e∅ to
denote the empty edge type:

• (n1
𝛼→ n2) & (n3

𝛽
→ n4) ≡ (n1 & n3)

𝛼⊓𝛽
→ (n3 & n4)

where ⊓ is defined such that (1) ★⊓ 𝑃 = 𝑃 ⊓★ = 𝑃 for 𝑃 ⊆ P, and
(2) 𝑃 ⊓𝑄 = 𝑃 ∩𝑄 for 𝑃,𝑄 ⊆ P.

As a final normalisation step we get rid of edge types n1
𝑃→ n2

where 𝑃 contains two or more predicates, by applying the rule:

• n1
{𝑝1,...,𝑝𝑘 }→ n2 ≡ (n1

{𝑝1 }→ n2 | . . . | n1
{𝑝𝑘 }→ n2)

After these normalisation steps we will have rewritten the edge
type to the form (e1 | . . . | e𝑘) with each 𝑒𝑡𝑦𝑝𝑒𝑖 of one of the

following forms: (1) n1
★→ n2, (2) n1

{𝑝 }
→ n2, and (3) n1

∅→ n2. We
can express such an edge type (e1 | . . . | e𝑘) as a path expression
(𝜋1 ∪ . . . ∪ 𝜋𝑘), where each 𝜋𝑖 is constructed as follows:

• n1
★→ n2 ≡ n1 · ¬∅ · n2

• n1
{𝑝 }
→ n2 ≡ n1 · 𝑝 · n2

• n1
∅→ n2 ≡ ¬⊤

Recall that ¬⊤ is the negation of the trivial node type and so in a
path expression represents the empty binary relation.

We now turn our attention to negated edge types. These are
normalised in the same as we described before, and we end up
with an edge type of the form ¬(e1 | . . . | e𝑘) with each e𝑖 a
primitive edge type. This can also be represented as a union of path
expressions (𝜋1 ∪ . . . ∪ 𝜋𝑚) where each 𝜋 𝑗 is a path expression the
expresses one way that the edge does not conform to any of the
types in e1, . . . , e𝑘 . To illustrate this consider as an example the
following negated edge type:

¬
(
n1

{𝑝 }
→ n2 | n

′
1
{𝑝′ }
→ n′

2
)

This can be simulated in a path expression by replacing it with the
following path expression:

¬n1 · ¬n′
1 · ¬∅ ∪ ¬n1 · ¬{𝑝′} ∪ ¬n1 · ¬∅ · ¬n′

2 ∪
∪ ¬n′

1 · ¬{𝑝} ∪ ¬{𝑝, 𝑝′} ∪ ¬{𝑝} · ¬n′
2 ∪

∪ ¬n′
1 · ¬∅ · ¬n2 ∪ ¬{𝑝′} · ¬n2 ∪ ¬∅ · ¬n2 · ¬n′

2

Note that this indeed enumerates all the ways that an edge could

not be in the semantics of
(
n1

{𝑝 }
→ n2 | n′

1
{𝑝′ }
→ n′

2
)
. Basically we

pick for each of the primitive edge types whether the edge is not
in the semantics because of (1) the source node, (2) the label, or (3)
the target node.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

D.6.3 Only single variable counting. The restriction to allow only
one variable in 𝑦 is introduced because in SHACL and ShEx all
the counting is also restricted to single values and nodes, rather
than tuples of values and nodes. Although this is often useful in
real-world data modelling, e.g., to represent composite keys, this
restriction is introduced to make PG-Schema more comparable to
SHACL and ShEx.

D.6.4 No K1 constraints. After restricting to single-variable count-
ing, K1 constraints are of the form

∀𝑥 : 𝜑 (𝑥) ⇐ Key𝑦 : 𝜓 (𝑥,𝑦) .

Their semantics is defined by the formula∀𝑦 : ∃≤1𝑥 : 𝜑 (𝑥)∧𝜓 (𝑥,𝑦).
If 𝑦 matches nodes (which can be detected based on path expres-

sions used in the atoms involving 𝑦), we can equivalently express
this constraint as

∀𝑦 : ⊤(𝑦,𝑦) → ∃≤1𝑥 : 𝜑 (𝑥) ∧𝜓 (𝑥,𝑦)

If𝑦 matches values, then it is used in the first position of an atom
whose path expressions begins from 𝑘− or in the second position
of an atom whose path expression ends with 𝑘 . In either case, we
can equivalently express this constraint as

∀𝑦 : (𝑘− · 𝑘) (𝑦′, 𝑦) → ∃≤1𝑥 : 𝜑 (𝑥) ∧𝜓 (𝑥,𝑦)

D.6.5 Only one atom in formulas. This restriction of the query
language underlying PG-Schema limits the expressive power of PG-
Schema, but similar restrictions would be imposed anyway on the
Common Graph Schema Language by the limitations of SHACL and
ShEx. Some additional expressive power could be gained by allow-
ing tree-shaped conjunctions of atoms with at most 2 free variables,
but this would further complicate the formal development.

E MORE ON THE CORE
In this section we prove Proposition 1. Recall that common shapes
are defined by the grammar

𝜑 F ∃ 𝜋
�� ∃≤𝑛 𝜋1

�� ∃≥𝑛 𝜋1
�� ∃ c ∧ ∄¬𝑃

�� 𝜑 ∧ 𝜑 .

cF {}
�� {𝑘 : v}

�� c & c
�� c | c .

𝜋0 F {𝑘 : 𝑐}
�� ¬{𝑘 : 𝑐}

�� c & ⊤
�� ¬(c & ⊤)

�� 𝜋0 · 𝜋0 .

𝜋1 F 𝜋0 · 𝑝 · 𝜋0
�� 𝜋0 · 𝑝− · 𝜋0

�� 𝜋0 · 𝑘
�� 𝑘− · 𝜋0 .

𝜋 F 𝜋0
�� 𝑝 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋 .

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

where 𝑛 ∈ N, 𝑃 ⊆fin P, 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , and 𝑝 ∈ P. We will
refer to PG-path expressions defined by the nonterminal 𝜋0 in the
grammar as filters.

The following two subsections describe the translations of com-
mon schemas to SHACL and ShEx. The translations are very similar
but we include them both for the convenience of the reader.

E.1 Translation to SHACL
Lemma 1. For each open content type c there is a SHACL shape
𝜑c such that G, 𝑣 ⊨ 𝜑c iff 𝜌 (𝑣) ∈ JcK for all G = (𝐸, 𝜌) and 𝑣 ∈
Nodes(G).

Proof. For the content type ⊤ the corresponding SHACL shape
is ⊤. For a content type of the form

{𝑘1 : v1} & {𝑘2 : v2} & · · · & {𝑘𝑚 : v𝑚} & ⊤ ,

the corresponding SHACL shape is

∃𝑘1 .test(v1) ∧ ∃𝑘2 .test(v2) ∧ · · · ∧ ∃𝑘𝑚 .test(v𝑚) .
Finally, every open content type different from ⊤ can be expressed
as

(c1 | · · · | cℓ) & ⊤ ,

where each c𝑖 is a content type of the form {𝑘1 : v1} & {𝑘2 :
v2} & · · · & {𝑘𝑚 : v𝑚} for some 𝑚. The corresponding SHACL
shape is

𝜑1 ∨ · · · ∨ 𝜑ℓ ,

where 𝜑𝑖 is the SHACL shape corresponding to the content type
c𝑖 & ⊤. □

Lemma 2. For each filter 𝜋0 there is a SHACL shape 𝜑𝜋0 such that
G, 𝑣 ⊨ 𝜑𝜋0 iff (𝑣, 𝑣) ∈ J𝜋0KG for all G and 𝑣 ∈ Nodes(G).

Proof. By Lemma 1, the claim holds for 𝜋0 = c & ⊤. For {𝑘 : 𝑐}
the corresponding SHACL shape is ∃𝑘.is(𝑤). As SHACL shapes are
closed under negation, the claim holds for ¬{𝑘 : 𝑐} and ¬(c & ⊤).
Finally, concatenations of filters correspond to conjunctions of
shapes, so the claim follows because SHACL shapes are closed
under conjunction. □

Lemma 3. For each common shape of the form ∃ 𝜋 there is a SHACL
shape 𝜑∃𝜋 such that G, 𝑣 ⊨ 𝜑∃𝜋 iff G, 𝑣 ⊨ ∃ 𝜋 for all G and 𝑣 ∈
Nodes(G) ∪ Values(G).

Proof. Let us first look at common shapes of the form∃ 𝜋 where
𝜋 is a concatenation of filters and atomic path expressions of the
form 𝑝 , 𝑝− , 𝑘 , or 𝑘− . Without loss of generality we can assume
that the concatenation ends with a filter or with 𝑘 . We proceed by
induction on the length of the concatenation. The base cases are
∃𝜋0 and ∃𝑘 , which correspond to 𝜑𝜋0 (Lemma 2) and ∃𝑘.⊤. For
∃ 𝜋0 ·𝜋 we can take 𝜑𝜋0 ∧𝜑∃𝜋 . For ∃ 𝑝 ·𝜋 we can take ∃𝑝.𝜑∃𝜋 , and
similarly for ∃ 𝑝− · 𝜋 and ∃𝑘− · 𝜋 .

The general case follows because SHACL shapes are closed under
union. Indeed, because our PG-path expressions are star-free, we
can assume without loss of generality that in each common shape
of the form ∃ 𝜋 , the PG-path expression 𝜋 underlying 𝜋 is a union
of concatenations of filters and atomic path expressions of the form
𝑝 or 𝑝− . Then, for

∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′

we can take
𝜑∃𝑘− ·𝜋1 ·𝑘 ′ ∨ · · · ∨ 𝜑∃𝑘− ·𝜋𝑚 ·𝑘 .

Simiarly for ∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚), ∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′, and
∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚). □

Lemma 4. For each common shape 𝜑 there is a SHACL shape 𝜑 such
that G, 𝑣 ⊨ 𝜑 iff G, 𝑣 ⊨ 𝜑 for all G and 𝑣 ∈ Nodes(G) ∪ Values(G).

Proof. Because SHACL shapes are closed under conjunction,
it suffices to prove the claim for the atomic common shapes of the
forms ∃ 𝜋 , ∃≤𝑛𝜋1, ∃≥𝑛𝜋1, and ∃c ∧ ∄¬𝑃 . The first case follows
from Lemma 3.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Common Foundations for SHACL, ShEx, and PG-Schema The Web Conference, 28 April - 2 May 2025, Sydney, Australia

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Let us look at common shapes of the form ∃≥𝑛𝜋1. If 𝑛 = 0 we
can simply take ⊤. Suppose 𝑛 > 0. Then, for

∃≥𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

𝜑𝜋0 ∧ ∃≥𝑛𝑝.𝜑𝜋 ′
0
,

and similarly for ∃≥𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≥𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≥𝑛𝜋0 · 𝑘

(using ⊤ instead of 𝜑𝜋 ′
0
).

Next, we consider common shapes of the form ∃≤𝑛𝜋1. For

∃≤𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

¬𝜑𝜋0 ∨ ∃≤𝑛𝑝.𝜑𝜋 ′
0
,

and similarly for ∃≤𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≤𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≤𝑛𝜋0 · 𝑘

(again, using ⊤ instead of 𝜑𝜋 ′
0
).

Finally, let us consider a common shape of the form ∃ c ∧ ∄¬𝑃 .
Suppose first that

c = {} .

Then, the corresponding SHACL shape is simply

closed(𝑃) .

Next, suppose that

c = {𝑘1 : v1} & . . . & {𝑘𝑚 : v𝑚} .

Then, the corresponding SHACL shape is

∃𝑘1 .test(v1) ∧ · · · ∧ ∃𝑘𝑚 .test(v𝑚) ∧ closed
(
{𝑘1, . . . , 𝑘𝑚} ∪ 𝑃

)
.

In general, as in Lemma 1, we can assume that

c = c1 | . . . | c𝑚

where each c𝑖 is of one of the two forms considered above. The
corresponding SHACL shape is then

𝜑1 ∨ · · · ∨ 𝜑𝑚

where 𝜑𝑖 is the SHACL shape corresponding to ∃c𝑖 ∧∄¬𝑃 , obtained
as described above. □

Lemma 5. For every common schema there is an equivalent SHACL
schema.

Proof. Let S be a common schema. We obtain an equivalent
SHACL schema S′ by translating each (sel, 𝜑) ∈ S to (sel′, 𝜑′)
such that for all G and 𝑣 ∈ N ∪V ,

G, 𝑣 ⊨ sel implies G, 𝑣 ⊨ 𝜑

iff
G, 𝑣 ⊨ sel′ implies G, 𝑣 ⊨ 𝜑 ′.

Recall that sel is a common shape of one of the following forms:

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ {𝑘 : 𝑐} · 𝜋 , ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 , ∃𝑘− · 𝜋 .

For sel′ we take, respectively,

∃𝑘.⊤ , ∃ 𝑝.⊤ , ∃ 𝑝− .⊤ , ∃𝑘.⊤ , ∃𝑘.⊤ , ∃𝑘− .⊤ .

For 𝜑 ′ we take ¬𝜑sel ∨𝜑 where 𝜑sel is obtained using Lemma 3 and
𝜑 is obtained using Lemma 4. □

E.2 Translation to ShEx
Lemma 6. For each open content type c there is a ShEx shape𝜑c such
that G, 𝑣 ⊨ 𝜑c iff 𝜌 (𝑣) ∈ JcK for all G = (𝐸, 𝜌) and 𝑣 ∈ Nodes(G).

Proof. For the content type ⊤ the corresponding ShEx shape
is {⊤}.

For a content type of the form

{𝑘1 : v1} & · · · & {𝑘𝑚 : v𝑚} & ⊤ ,

the corresponding ShEx shape is

{𝑘1 .test(v1) ;⊤} ∧ · · · ∧ {𝑘𝑚 .test(v𝑚) ;⊤} .

Finally, every other open content type can be expressed as

(c1 | · · · | cℓ) & ⊤ ,

where each c𝑖 has the form {𝑘1 : v1} & · · · & {𝑘𝑚 : v𝑚} for some
𝑚. The corresponding ShEx shape is

𝜑1 ∨ · · · ∨ 𝜑ℓ ,

where 𝜑𝑖 is the ShEx shape corresponding to the content type
c𝑖 & ⊤. □

Lemma 7. For each filter 𝜋0 there is a ShEx shape 𝜑𝜋0 such that
G, 𝑣 ⊨ 𝜑𝜋0 iff (𝑣, 𝑣) ∈ J𝜋0KG for all G and 𝑣 ∈ Nodes(G).

Proof. By Lemma 6, the claim holds for 𝜋0 = c & ⊤. For {𝑘 : 𝑐}
the corresponding ShEx shape is {𝑘.is(𝑤)}. Because ShEx shapes
are closed under negation, the claim also holds for ¬{𝑘 : 𝑐} and
¬(c & ⊤). Finally, concatenations of filters correspond to conjunc-
tions of shapes, so the claim follows because ShEx shapes are closed
under conjunction. □

Lemma 8. For each common shape of the form ∃ 𝜋 there is a ShEx
shape 𝜑∃𝜋 such that G, 𝑣 ⊨ 𝜑∃𝜋 iff G, 𝑣 ⊨ ∃ 𝜋 for all G and 𝑣 ∈
Nodes(G) ∪ Values(G).

Proof. Let us first look at common shapes of the form∃ 𝜋 where
𝜋 is a concatenation of filters and atomic path expressions of the
form 𝑝 , 𝑝− , 𝑘 , or 𝑘− . Without loss of generality we can assume
that the concatenation ends with a filter or with 𝑘 . We proceed by
induction on the length of the concatenation. The base cases are
∃𝜋0 and ∃𝑘 , which correspond to 𝜑𝜋0 (Lemma 7) and {𝑘. {⊤} ;⊤},
respectively. For ∃ 𝜋0 · 𝜋 we can take 𝜑𝜋0 ∧𝜑∃𝜋 . For ∃ 𝑝 · 𝜋 we can
take {𝑝.𝜑∃𝜋 ;⊤}, and similarly for ∃ 𝑝− · 𝜋 and ∃𝑘− · 𝜋 .

The general case follows because ShEx shapes are closed under
union. Indeed, because our PG-path expressions are star-free, we
can assume without loss of generality that in each common shape
of the form ∃ 𝜋 , the PG-path expression 𝜋 underlying 𝜋 is a union
of concatenations of filters and atomic path expressions of the form
𝑝 or 𝑝− . Then, for

∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′

we can take
𝜑∃𝑘− ·𝜋1 ·𝑘 ′ ∨ · · · ∨ 𝜑∃𝑘− ·𝜋𝑚 ·𝑘 .

Simiarly for ∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚), ∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′, and
∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚). □

Lemma 9. For each common shape 𝜑 there is a ShEx shape 𝜑 such
that G, 𝑣 ⊨ 𝜑 iff G, 𝑣 ⊨ 𝜑 for all G and 𝑣 ∈ Nodes(G) ∪ Values(G).

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

The Web Conference, 28 April - 2 May 2025, Sydney, Australia Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Proof. Because ShEx shapes are closed under conjunction, it
suffices to prove the claim for the atomic common shapes of the
forms ∃ 𝜋 , ∃≤𝑛𝜋1, ∃≥𝑛𝜋1, and ∃c ∧ ∄¬𝑃 . The first case follows
from Lemma 8.

Let us look at common shapes of the form ∃≥𝑛𝜋1. If 𝑛 = 0 we
can simply take {⊤}. Suppose 𝑛 > 0. Then, for

∃≥𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

𝜑𝜋0 ∧
{(
𝑝.𝜑𝜋 ′

0

)𝑛 ;⊤
}
,

and similarly for ∃≥𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≥𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≥𝑛𝜋0 · 𝑘

(using {⊤} instead of 𝜑𝜋 ′
0
).

Next, we consider common shapes of the form ∃≤𝑛𝜋1. For

∃≤𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

¬𝜑𝜋0 ∨ ¬
{(
𝑝.𝜑𝜋 ′

0

)𝑛+1 ;⊤
}

and similarly for ∃≤𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≤𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≤𝑛𝜋0 · 𝑘

(again, using {⊤} instead of 𝜑𝜋 ′
0
).

Before we move on, let us introduce a bit of syntactic sugar.
For a set 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} ⊆ P ∪ K we write 𝑄∗ for the triple
expression

(
𝑞1 . {⊤} | 𝑞2 . {⊤} | . . . | 𝑞𝑛 . {⊤}

)∗.
We are now ready to consider a common shape of the form

∃ c ∧ ∄¬𝑃 . Suppose first that

c = {} .

Then, the corresponding ShEx shape is simply{
𝑃∗ ;

(
¬∅−

)∗}
.

Next, suppose that

c = {𝑘1 : v1} & . . . & {𝑘𝑚 : v𝑚} .

Then, the corresponding ShEx shape is

𝜑c&⊤ ∧
{
{𝑘1, . . . , 𝑘𝑚}∗ ; 𝑃∗ ;

(
¬∅−

)∗}
,

where 𝜑c&⊤ is obtained from Lemma 6. In general, as in Lemma 6,
we can assume that

c = c1 | . . . | c𝑚

where each c𝑖 is of one of the two forms considered above. The
corresponding ShEx shape is then

𝜑1 ∨ · · · ∨ 𝜑𝑚

where 𝜑𝑖 is the ShEx shape corresponding to ∃c𝑖 ∧ ∄¬𝑃 , obtained
as described above. □

Lemma 10. For every common schema there is an equivalent ShEx
schema.

Proof. Let S be a common schema. We obtain an equivalent
ShEx schema S′ by translating each (sel, 𝜑) ∈ S to (sel′, 𝜑′) such
that for all G and 𝑣 ∈ N ∪V ,

G, 𝑣 ⊨ sel implies G, 𝑣 ⊨ 𝜑

iff
G, 𝑣 ⊨ sel′ implies G, 𝑣 ⊨ 𝜑 ′.

Recall that sel is a common shape of one of the following forms:

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ {𝑘 : 𝑐} · 𝜋 , ∃
(
{𝑘 : v} &⊤

)
· 𝜋 , ∃𝑘− · 𝜋 .

If sel is of the form

∃𝑘 , ∃ {𝑘 : 𝑐} · 𝜋 , or ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 ,

for sel′ we take {𝑘.{⊤} ;⊤}. In the remaining cases, we take, re-
spectively,

{𝑝.{⊤} ;⊤} , {𝑝−.{⊤} ;⊤} , {𝑘−.{⊤} ;⊤} .
For 𝜑 ′ we take ¬𝜑sel ∨𝜑 where 𝜑sel is obtained using Lemma 8 and
𝜑 is obtained using Lemma 9. □

20

	Abstract
	1 Introduction
	2 Foundations
	2.1 A common data model
	2.2 Node contents and neighbourhoods
	2.3 Value types
	2.4 Shapes and schemas

	3 SHACL on common graphs
	4 ShEx on common graphs
	5 PG-Schema on common graphs
	6 Common Graph Schema Language
	7 Related Work
	8 Conclusions
	References
	A Distilling the common data model
	A.1 Comparison with RDF
	A.2 Comparison with property graphs
	A.3 Class information

	B Standard SHACL
	C Standard ShEx
	C.1 Standard ShEx schema and the validation problem
	C.2 Shape names and recursion
	C.3 Syntax of standard ShEx on common graphs
	C.4 Translations between ShEx and standard ShEx

	D Standard PG-Schema
	D.1 Node types
	D.2 Edge types
	D.3 Path expressions
	D.4 Graph constraints
	D.5 The relationship with PG-Schema on full Property Graphs
	D.6 The relationship with PG-Schema in the body of the paper

	E More on the core
	E.1 Translation to SHACL
	E.2 Translation to ShEx

