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ABSTRACT

Counterfactual explanations offer an intuitive way to interpret graph neural net-
works (GNNs) by identifying minimal changes that alter a model’s prediction,
thereby answering “what must differ for a different outcome?”. In this work, we
propose a novel framework, ATEX-CF that unifies adversarial attack techniques
with counterfactual explanation generation—a connection made feasible by their
shared goal of flipping a node’s prediction, yet differing in perturbation strategy:
adversarial attacks often rely on edge additions, while counterfactual methods typ-
ically use deletions. Unlike traditional approaches that treat explanation and attack
separately, our method efficiently integrates both edge additions and deletions,
grounded in theory, leveraging adversarial insights to explore impactful coun-
terfactuals. In addition, by jointly optimizing fidelity, sparsity, and plausibility
under a constrained perturbation budget, our method produces instance-level ex-
planations that are both informative and realistic. Experiments on synthetic and
real-world node classification benchmarks demonstrate that ATEX-CF generates
faithful, concise, and plausible explanations, highlighting the effectiveness of in-
tegrating adversarial insights into counterfactual reasoning for GNNs.

1 INTRODUCTION

Graph neural networks excel at node classification by recursively aggregating neighbor features
and graph topology, yet their opaque inference undermines trust in critical applications such as
healthcare, finance, and scientific discovery (Chen et al.| 2024} |[Zhong et al., [2025). This limitation
has spurred research into GNN explainability, with counterfactual methods (Yuan et al., [2022} |Qiu
et al.| [2025}; |Prado-Romero et al., 2024)) in particular aiming to determine the smallest modifications
to node features or graph structure that cause a model’s prediction to change.

Meanwhile, adversarial attacks (Zhang et al.,2024;Zhu et al.,2024;|Sun et al.| 2023) on GNNs have
become an equally important line of research, as GNNs can be undermined by minimal, strategically
crafted graph-structure perturbations, highlighting the need for robustness analysis. Consequently,
robustness against adversarial attacks has become a key priority in GNN research.

Traditional counterfactual graph generation methods, e.g., CF? (Tan et al., [20220), GCFExplainer
(Huang et al.,|2023)), primarily rely on edge deletion to identify crucial substructures that support a
particular prediction. While effective, this deletion-centric perspective overlooks the role of missing
relations in the original graph whose addition could substantially influence predictions. In paral-
lel, extensive studies in graph adversarial learning have demonstrated that adding a small (e.g., 2)
number of carefully selected edges can effectively flip the prediction of a target node (Chen et al.,
2025} Zhu et al.| 2024)). Such added edges—though absent in the input graph—often correspond to
semantically plausible and structurally coherent relations.

Despite their importance, current approaches address these two directions largely in isolation. From
a counterfactual reasoning perspective, adversarially added edges naturally serve as actionable can-
didates for counterfactual generation: They represent the minimal structural additions required to
alter the model’s decision. However, existing counterfactual methods, which predominantly rely
on edge deletion, have largely overlooked the potential of incorporating edge-addition information
derived from adversarial attack strategies.
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Motivated by these insights, we design a unified framework, ATEX—CFE] that incorporates attack se-
mantics into counterfactual generation in a controlled and interpretable manner. Extending counter-
factual generation to include edge addition has significant benefits. From a quantitative perspective,
we demonstrate that edge-addition counterfactuals can (1) increase the likelihood of flipping predic-
tions and (2) achieve this with a smaller perturbation budget. From a qualitative perspective, they
provide practical advantages: (1) Complementary explanatory coverage — while edge-deletion
counterfactual identifies which existing relations are crucial for a prediction, edge-addition candi-
dates reveal which missing relations could have altered the outcome. For example, in healthcare,
a GNN may classify a patient as low-risk for heart disease due to the lack of an edge represent-
ing “symptom—drug correlation”, while introducing an edge “patient medication record — cardiac
side effects” can flip the prediction and reveal hidden reasoning paths. (2) Uncovering model
bias and data deficiencies — adding certain edges can divulge over-reliance on specific nodes or
structural biases. For example, a paper may be misclassified as “theoretical mathematics” due to
missing citation edges to authoritative Al conferences. Introducing an edge “paper — ICLR Best
Paper Award” corrects the prediction, highlighting dataset limitations and model vulnerabilities.

Rejected Approved

Case Study. To illustrate the limitations Alice Alice
of existing counterfactual methods, consider e L
a scenario from the Loan-Decision dataset

(Ma et al,, [2025). Loan approval is granted

when both conditions are met: income > 5

and degree > 3. Applicant Alice has ooo eeo
income 6 (satisfies condition) but degree 3
(fails). The model predicts rejection. Classi-
cal deletion-based counterfactual methods fail
here-removing edges further reduces degree.
Unconstrained edge additions (e.g., linking to a billionaire) succeed but can be implausible. Our

method ATEX-CF identifies a feasible peer connection that serves as an actionable update and flips
the prediction.

Figure 1: Illustration of counterfactual limitations
in the Loan Decision dataset.

While this fusion is promising, combining adversarial attacks with counterfactual explanations is
non-trivial. Adversarial edges are optimized for misclassifications rather than interpretability, rais-
ing challenges in ensuring the qualities of a good counterfactual explanation, such as high impact,
sparsity, and plausibility (Longa et al.| 2025). Furthermore, when considering missing edge addi-
tions to the input graph, the search space of possible perturbations remains combinatorially large,
requiring principled mechanisms to balance effectiveness with efficiency.

Our contributions can be summarized as follows:

* Unified perspective. We establish, for the first time, a theoretical bridge between adversarial
attacks and counterfactual explanations in GNNs, showing that adversarial edge additions can be
repurposed as counterfactual candidates. This connection provides a principled foundation for
unifying attack and explanation.

* Hybrid counterfactual framework. We design a novel solution, ATEX-CF, that simultaneously
leverages edge deletions (traditional counterfactual explanations) and attack-informed edge addi-
tions (from adversarial strategies), thereby offering a more comprehensive and actionable coun-
terfactual than deletion-only approaches.

* Enhanced explanatory coverage. By incorporating edge-addition counterfactual, ATEX-CF un-
covers missing but semantically plausible relations, complements deletion-based explanations,
and enables proactive optimization (e.g., suggesting constructive graph modifications rather than
only indicating critical existing edges).

* Efficiency and controllability. We exploit adversarial attack logistics to form a focused candidate
space, significantly reducing the combinatorial complexity of our counterfactual search. In addi-
tion, ATEX-CF integrates sparsity and plausibility constraints to ensure interpretable and realistic
explanations.

* Empirical validation. Through experiments on benchmark datasets, we demonstrate that ATEX-
CF improves explanatory power, maintains semantic plausibility, and reduces computational bur-
den compared with state-of-the-art counterfactual generation and adversarial attack methods.

"abbreviation for Attack Explanation Counterfactual
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2 PRELIMINARIES

2.1 NODE CLASSIFICATION AND GRAPH NEURAL NETWORKS

Node Classification in a Graph. We consider the task of node classification in a graph, denoted
as G = (V, E,X), where V is a set of nodes, £ C {(v,w) | v,w € V} is a set of undirected,
unweighted edges, and X = {x¢,X1,...,Xxy_1} comprises node feature vectors with x; € R4
for each node v;. The adjacency matrix A € {0, 1}*" has entries A,,, = 1 if (v,w) € E and
0 otherwise. A subset V7, C V is labeled, forming training data; each labeled node has a class
yp € C ={1,...,c}. The goal is to predict the label of a target node v € V in a supervised manner
given A and X. Key mathematical symbols are summarized in Table [5]in the Appendix.

Graph Neural Networks. Graph Neural Networks classify nodes through a message-passing
scheme (Kipf & Welling| 2017). Each node representation is iteratively updated by aggregating
and transforming information from its neighbors. For the Graph Convolutional Network (GCN),

a prominent GNN, the hidden representation at layer [ 4+ 1 is H(+1) = U(AH(I)W(Z)) , where

HO = X, o is a nonlinear activation, Asr = A + Iy augments the adjacency with self-loops,
D, = Zj (Ageif)ij is the degree matrix, and A = D 3A. D 3. The trainable weights at
layer [ are W), The final output is obtained by applying a softmax to the last hidden layer
Z = softmax (AH(K IW (K )> , with Z € RN>¢ giving class probability distributions. Row Z,

is the distribution for node v, and the predicted class is g, = arg max Z,,.

2.2 GNN EXPLANATIONS

GNN explanation methods (Yuan et al., |2022; |Longa et al., 2025)) reveal the structural and feature-
based evidence that plays a key role in predictions. We categorize them into two paradigms:

Factual explanations identify subgraphs or features supporting the original prediction. For a target
node v, an explanation subgraph G,, C G satisfies f(G,,Xy) = f(G, X, ), where f is the GNN
model and X, denotes the features of v. The GNNEXxplainer method (Ying et al.,[2019) optimizes
G, to maximize mutual information with the prediction.

Counterfactual explanations identify minimal perturbations A A to alter target node v’s prediction
FAX,v) # f(AOAA X, v), st [[AA]p < Kk, where & is a perturbation budget.

2.3 ADVERSARIAL ATTACKS ON GNNS

Adversarial attacks deliberately perturb graphs (including edge-based and feature-based perturba-
tion) to mislead predictions. Key categories include i) evasion and ii) poisoning attacks.

Evasion attacks modify the graph during inference without retraining. For target node v, edge-
based attackers solve maxaa L(f(A © AA,X,v),y,) st [[AA]p < &, where L is the loss
function which quantifies prediction error.

Poisoning attacks corrupt the training graph to degrade retrained models. For target node
v, edge-based attackers optimize maxaa L(fo+ (A, X,v),y,) s.t. 0* = argming L(fp(A ©
AA X)), [[AA|o < k.

Table [T summarizes GNN explanations and adversarial attacks according to edge-based perturbation
methods by their core characteristics.

Key Insight. While counterfactual explanations have historically emphasized £~ to reveal model
fragility, adversarial attacks often exploit E™ by introducing new connections. More importantly,
the attack literature has developed efficient methods to select which edges to add/delete under small
perturbation budgets (e.g., k = 1,...,5), despite the combinatorially large number of possible
additions in graphs, making naive counterfactual search impractical. This potential synergy between
counterfactual reasoning and attack strategies motivates our problem formulation (§2.4) and the
unified framework we propose in (§4).
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Table 1: Comparison of GNN explanation and attack paradigms. We use £~ to denote edge dele-
tions (removing existing edges) and E™ to denote edge additions (introducing new edges).

Category Goal Primary Operation Example
Factual Expl. Explain prediction Identify key subgraph GNNExplainer (Ying et al. 12019)
Counterfactual Expl. | Alter prediction Mainly £~ (edge deletions), though | CF-GNNExplainer (Lucic et al.2022)
some recent work includes ET
Evasion Attack Misclassify node ET/E~ ininference, often E* domi- | TDGIA (zou ctal.l2021)
nant
Poisoning Attack Degrade model EY/E~ in training, often E1 domi- | Nettack (Ziigner et al.[2018)
nant

2.4 PROBLEM FORMULATION

Given a graph G = (V| E,X) with adjacency matrix A and node features X, and a pre-trained
GNN classifier f, our goal for a target node v € V is to find a small set of edge perturbations
AE = AE* U AE~, corresponding to additions (AE™T) and deletions (AE™), such that the pre-
diction for v flips while the resulting counterfactual graph remains interpretable and plausible. This
problem combines two perspectives: from the attack literature, where efficient methods have been
developed to select high-impact edge additions under small budgets, and from counterfactual expla-
nations, where minimal and semantically meaningful deletions expose decision-supporting edges.
We formalize this hybrid objective in §4}

3 A DUAL APPROACH OF EXPLANATIONS AND ATTACKS FOR GNNS

We develop a theoretical framework that links targeted structural evasion attacks on graph neural net-
works with instance-level counterfactual explanation subgraphs. The core objective is to formalize
when and why adversarial perturbations can serve as building blocks for counterfactual explanations.
To this end, we introduce a hypothesis to capture the relationship between the attack subgraph and
the counterfactual explanation of a target node. More importantly, we provide empirical support
for this hypothesis in Appendix [A.I1] To the best of our knowledge, the hypothesis and evidence
are presented for the first time to formally connect adversarial attacks and interpretability in graph
learning.

To compare explanation and attack subgraphs, we consider two forms of graph similarity: 1) struc-
tural similarity (Doan et al.,|2021): overlap in nodes or edges, measurable via graph edit distance,
and maximum common subgraph metrics. ii) semantic similarity (Bai et al.l 2020): closeness in
learned graph-level embeddings, indicating similar functional or predictive roles even if the struc-
tures differ.

Hypothesis|[I] states that the added edges in a successful evasion attack overlap with the most influ-
ential edges in a pre-attack counterfactual explanation subgraph.

Hypothesis 1. For a target node v, let AG(E™) denote the set of added edges in an evasion at-
tack that flips the prediction of f, and let CFEx(G) denote the pre-attack counterfactual expla-
nation subgraph of the graph G. Then, there exists a high graph similarity between AG(E™) and

CFEx(G). The proof is provided in the Appendix

Building on the hypothesis, in Appendix [A.T1] we also present two propositions and two corollaries
that formalize when attack-based additions outperform deletions in flipping GNN predictions. These
results characterize conditions under which deletions provably fail, yet targeted additions succeed,
focusing on the functional advantage of attack-informed counterfactuals.

4 ATEX-CF: METHODOLOGY FOR COUNTERFACTUAL GENERATION

Our objective is to design a counterfactual explainer that simultaneously incorporates edge addition
(E™) and edge deletion (E~), combining GNN adversarial attacks with counterfactual explanation
concepts. This explainer should generate high-impact perturbations while maintaining interpretabil-
ity and realism. In particular, we jointly optimize three core objectives: Impact — efficacy in
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Figure 2: An overview of the ATEX-CF framework.

altering model predictions; Sparsity — minimal edits for interpretability; Plausibility — semantic
validity of graph modifications. Figure [2|illustrates the end-to-end architecture of our ATEX-CF
framework, which unifies adversarial edge perturbations with counterfactual explanation generation
through a joint optimization of impact, sparsity, and plausibility.

To operationalize these objectives, we cast counterfactual generation as an optimization problem
over edge perturbations. Given a candidate set S of feasible edge edits, we search for AA € S that
flips the prediction of the target node while balancing sparsity and plausibility. This is achieved by
defining a composite loss with three components, corresponding to our objectives.

Loss Function. We formulate counterfactual generation as

Anjiiéls LAA) = M Lprea(AA) + AoLaist (AA) + A3 Lprau (AA), (1)

where S is the candidate search space. Here L,,.q enforces label flipping, L4;s: penalizes the
number of edge edits, and £,;,,, enforces plausibility constraints. Weights A; > 0 balance these
terms. Next, we will define each loss function.

Prediction Loss. We denote by f(A,,X,; W) the prediction for node v under the original adja-
cency A, and by g(A,,X,, W; AA) the prediction under a perturbed adjacency A, ® AA. Both
share the same weights W; the difference lies only in the perturbation AA.

To encourage prediction flips, we define the loss as

Epred(AA) = - H[f(Av7 XU; W) = f(Av © AA; XU; W)]
: ‘CNLL(f(A-Ua XU; W), g(Avv Xm W; AA)) . (2)

The indicator ensures that the loss is active only when the perturbed graph yields the same prediction
as the original. In that case, the negative log-likelihood term penalizes the perturbed prediction,
pushing it away from the original class. Once a flip occurs, the loss becomes zero. Although this
objective is non-differentiable due to the discrete nature of the indicator function, we employ the
straight-through estimator (STE) to enable gradient-based optimization, as detailed in §4.2]

Sparsity Loss. To encourage concise and interpretable modifications, we impose a sparsity penalty
on the number of structural edits. Specifically, we minimize the /o norm of the adjacency change
AA = AE1T UAE~, where AET and AE~ denote the sets of added and removed edges, respec-
tively. Laist(AA) = [[AAo.

The objective L£4;5:(AA) measures the total number of edits. By requiring ||AA|| to be small, we
keep the modified graph close to the original, curb unnecessary complexity, and reduce overfitting.

Plausibility Loss. When generating counterfactual graphs by adding/removing edges, we must con-
trol the plausibility of the produced structure. For example, in a citation graph, an old article cannot
cite a more recent article. The plausibility penalty discourages unnatural degree/motif changes:
Lpiau(AA) = C(AA) = ageg - DegAnom(AA) + amotis - MotifViol(AA). We tune ageq
and i f to enforce realism; larger avg.4 avoids implausible degree jumps, larger avy,ot;¢ avoids
implausible clustering jumps.
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|degAvi (vi) — degy,, (vi)|

DegAnom(AA) = ; 3

egAnom(AA) mgv:m 1+ degy, (v) (3)

MotifViol(AA) = Z |CAU, (v;) — CA,, (vi)]- )
v; € Vaub

DegAnom penalizes large relative changes in node degree to prevent structural anomalies, where
dega (v) and degg (v) are degrees of node v before and after modification. MotifViol penalizes
drastic changes in local motifs, measured via clustering coefficients ca,, (v) and cz (v).

4.1 CANDIDATE SELECTION

As a key aspect in ATEX-CF, we constrain the search space of possible perturbations A A to a pre-
selected candidate set S. This tractable set is constructed through a dual mechanism that incorpo-
rates both local neighborhood structures and non-local, attack-informed candidates, balancing
interpretability with the ability to discover impactful counterfactuals.

Edge Deletion Candidates (S~): We follow the principle of actionability and plausibility (Wachter
et al., 2017); counterfactual explanations should suggest meaningful changes within an entity’s
sphere of influence (e.g., local graph neighborhood), rather than involving arbitrary, distant entities.
As a result, candidate edges for removal are restricted to the existing edges within the (I + 1)-hop
neighborhood A'*1(v) of the target node v, ie., S~ = {e | e € E,e € N'H1(v)}.

Edge Addition Candidates (S*): To overcome the limitation of deletion-only approaches and
incorporate insights from adversarial attacks, our key innovation is to draw candidate edges for
addition from adversarial attack subgraphs. Specifically, we employ the latest GOTTACK method
(Alom et al., 2025) to generate a set of candidate edges A A,k for the target node v. GOTTACK
identifies influential nodes for edge addition by learning the graph orbit characteristics of nodes
that, when connected to v, maximally increase the probability of misclassification. An orbit in graph
theory represents the role of a node within its local substructure (e.g., a central node in a star graph).
The underlying Hypothesis |1| of GOttack, validated by our experiments in Table is that nodes
occupying similar structural roles (orbits) often have similar predictive influences on the target node.
Therefore, edges suggested by GOTTACK (connecting v to nodes in specific, influential orbits) are
both highly impactful and structurally coherent.

Final Candidate Set and Local Graph Formation: The complete candidate set is the union S =
S~ UST. The adjacency matrix A, for the local subgraph used in subsequent optimization (Eq.
is then formed by combining the original (¢~ 1)-hop neighborhood structure of v and the adversarial
perturbation candidates:
Av = ‘AGw + AAAanaCk (5)
—~— ——

local structure  adversarial perturbations

This formulation provides a focused and principled search space S that is crucial for the efficiency
and effectiveness of our counterfactual search algorithm. We use the (I 4+ 1)-hop neighborhood
because an [-layer GCN aggregates information from nodes up to [ hops away; including the (14 1)-
hop ensures that all nodes and edges within the target’s effective receptive field—including those
that can indirectly influence its representation—are considered as candidates.

4.2 SIGNED-MASK PERTURBATION AND FORWARD DISCRETIZATION

After candidate edges are selected, the challenge is to optimize over the discrete choices of additions
and deletions. Since direct optimization of binary graph structures is non-differentiable, we employ
a continuous signed mask relaxation. In the forward pass, the mask is discretized into {—1,0,+1}
to yield concrete perturbations, while in backpropagation, the straight-through estimator treats this
step as identity, allowing gradients to propagate through discrete edge decisions. This process is
carried out as follows.

Each candidate edge e € S (where S is the candidate set defined in §4.1)) is associated with a
continuous signed parameter M, € [—1, 1]. This parameter encodes both the directionality and the
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magnitude of the proposed modification; a signed mask variable M, encodes perturbations, with
M, > 0 denoting an edge addition (¢ € AET), M, < 0 denoting an edge deletion (¢ € AE™), and
M. =~ 0 no modification. Here, the sign of M, indicates the type of operation (addition or deletion),
while the magnitude |M,| reflects the proposed strength or importance of the perturbation. This
continuous representation facilitates gradient-based learning.

During the forward pass, we discretize these continuous parameters to obtain a binary perturbation
matrix. This process involves two steps: thresholding and sparsity enforcement. First, we apply
thresholding to convert M, into a ternary value. The discretized mask is obtained by thresholding,

M, = +1if M, > 7, M, = —1if M, < —7—, and M, = 0 otherwise.

where 71 and 77 are positive thresholds that control the sensitivity for edge addition and deletion,
respectively. Typically, we set 7+ = 7~ = 0.5 to ensure symmetry.

Next, to enforce the perturbation budget ; - -
constraint || AA||o < &, we retain only the Algorithm 1: ATEX-CF: Counterfactual Generator

+ edges with the largest magnitudes |M.| Require: Graph G = (A, X), model f, target node v,
and assign their discretized values M, € candidate set S

{=1,0,+1} to the corresponding entries  1: Initialize mask M, < 0 over S

in the adjacency matrix. The perturba-  2: for £ =11to Tipax do

tion matrix is defined as AA; ; = M, if ~ Me < THRESHOLD(M,,7%,77) >
edge (i,7) is among the top-x candidates Discretize

w

ranked by |M,|, and 0 otherwise. This en- 4 AA < Top-r(| M) > Sparsify
sures that at most x edges are modified, 5  Evaluate L(M) on A © AA .
producing sparse and interpretable coun-  ©0: M M —nVy L(M) > Update via STE
terfactuals. 7: if flipped(v) and || A A ||y stable then

. i ) 8: break
The resulting perturbed adjacency matrix 9. end if
is then computed as A = A ©® AA, 10: end for
where the operator © applies the signed 11: return PRUNE(AA, G, f,v) > See Alg.[2]

edge modifications encoded in M, €
{—1,0,+1}. To maintain differentiability through this discretization step, we employ the straight-

through gradient estimator (STE) during backpropagation g% ~ 1.

This approximation allows gradients to flow directly through the binarization operation, treating the
discretization as if it were an identity function in the backward pass (Bengio et al.l 2013). Con-
sequently, the continuous parameters M, can be updated using gradient descent, even though the
forward pass involves non-differentiable operations. This approach is widely used in training binary
neural networks and has been shown to be effective in practice.

Minimality-Aware Post-Hoc Pruning While the training loss promotes sparsity and plausibility in
expectation, the discrete relaxation can leave redundant edges active in AA. This occurs mostly
due to noisy or approximate gradient updates that over-compensate. To enforce the minimality
of counterfactual explanations, we adopt a simple yet effective greedy algorithm (Algorithm 2] in
Appendix [A.4). Edges in the candidate set are ranked by their importance score ¥, o< [OL/9M.|
(approximated gradient magnitude). The algorithm then iteratively removes the least important edge,
checking if the prediction flip persists. This continues until no more edges can be removed without
reverting the prediction, and it attains final perturbation A A*. The complete ATEX-CF framework
is given in Algorithm [T}

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate ATEX-CF on both synthetic and real-world benchmarks. Synthetic datasets
include BA-SHAPES and TREE-CYCLES (Ying et al., 2019)), widely used in GNN explainability,
and the Loan-Decision social graph (Ma et al., 2025)). For real-world evaluation, we use the Cora
citation network (Sen et al., [2008) and the large-scale ogbn-arxiv dataset from OGB (Hu et al.,
2020). Dataset statistics are summarized in Table 2]
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Table 2: Dataset statistics.

Dataset Homophily Ratio  #Nodes #Edges #Features  #Classes Type
BA-SHAPES (Ying et al.,|2019) 0.80 700 3958 - 4 Synthetic
TREE-CYCLES (Ying et al.,{2019) 0.90 871 1,940 - 2 Synthetic
Loan-Decision (Ma et al.|[2025) 0.47 1000 3950 2 2 Synthetic
Cora (Sen et al.||2008) 0.81 2,708 5,429 1,433 7 Real
Ogbn-Arxiv (Hu et al.|[2020) 0.66 169,343 1,166,243 128 40 Real

Table 3: Meta Results. Average ranks ({) across five datasets (lower is better). Ranks are computed
per metric per dataset (best=1; ties get the same rank), then averaged across datasets equally. “Wins”
counts how many times a method achieved rank one across all metric—dataset cells (5 datasets x5
metrics = 25 cells, ties allowed).

Method Misclass.  Fidelity AE  Plausibility  Time (sec) ‘ Overall Avg.  Wins
CF-GNNExplainer 3.6 4.0 2.0 2.0 6.0 3.52 0
GNNExplainer 4.0 5.0 3.6 3.6 2.6 3.76 0
PGExplainer 5.0 5.8 34 3.8 1.0 3.80 5
Nettack 2.8 22 5.0 52 3.8 3.80 2
GOttack 4.0 3.6 5.0 5.4 2.4 4.08 0
ATEX-CF (ours) 1.0 14 1.0 1.0 5.0 1.88 18

GNNs. We evaluate our approach on three standard GNN architectures: GCN (Kipf & Welling|
2017), GAT (Velickovic et al., 2018), and Graph Transformer (Shi et al.,|[2021).

Baselines: We compare our method against a comprehensive set of baseline approaches, which
we categorize into two groups. The first group comprises explanation-based baselines: CF-
GNNExplainer (Lucic et al.,|2022)), a counterfactual method that optimizes for edge deletions using
a perturbation mask; GNNExplainer (Ying et al. 2019), a factual explainer adapted for counter-
factual analysis by removing edges in descending order of importance until prediction flips; and
PGExplainer (Luo et al., [2020), another factual method adapted similarly to GNNExplainer. The
second group consists of attack-based baselines repurposed for counterfactual generation: Nettack
(Zigner et al.,[2018), a white-box adversarial attack method adapted by using its edge perturbation
capability such that the target class is different from the original prediction; and GOttack (Alom
et al.,|2025)), a recent adversarial method that leverages graph orbital theory to identify critical nodes
for edge additions, making it naturally suited for generating addition-based counterfactuals. For fair
comparison, all methods are constrained to a default perturbation budget (i.e., maximum possible
number of edge flips) of x = 5 edges. We vary « for ablation study in Figure[3] Explanation-based
methods (CF-GNNExplainer, GNNExplainer, PGExplainer) are restricted to edge deletions only,
while attack-based methods (Nettack, GOttack) and our ATEX-CF can use both edge additions and
deletions within the same budget.

In our experiments, we set the random seed (102, 103, 104) for reproducibility. For the attack
model, we employed evasion attacks using the GOttack method. For the ATEX-CF, we used a
learning rate of 0.001, trained for 200 epochs, and adopted the SGD optimizer to generate coun-
terfactual explanation with a maximal perturbed budget of 5 edges. The default loss weights were
configured as follows: Ay = 1.5, Ay = 0.5, A3 = 0.5, ageg = 1.5, and aporir = 1.0. These
hyperparameters were chosen to balance prediction flipping, sparsity, and plausibility in counterfac-
tual generation. Our code is available at https://anonymous. 4open.science/r/GNN_
graph_analysis-D90A/README.md.

Evaluation Metrics: We evaluate the performance of counterfactual explainers in misclassification
rate, fidelity, explanation size, plausibility, and time costs. Definitions are given in Appendix[A.3]

5.2 RESULTS AND ANALYSIS

We evaluate ATEX-CF against all baselines under the same budget constraints (x = {1,...,5}).
Table [3| summarizes average rankings across datasets and metrics. Our method achieves the best
overall rank (1.88 vs. 3.52 for the next best) and wins 18/25 metric—dataset combinations, far ex-
ceeding competitors. This confirms that ATEX-CF consistently finds more effective counterfactuals.
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Figure 3: Counterfactual explanations on Cora and GCN under varying perturbation budgets s

In particular, counterfactual explainers (CF-GNNExplainer, GNNExplainer, PGExplainer) are lim-
ited to edge deletions, while adversarial attack methods (Nettack, GOttack) and ATEX-CF can also
add edges. Crucially, CF-GNNExplainer explicitly seeks minimal edge deletions, and GOttack sys-
tematically manipulates graph orbits to induce errors, yet neither matches ATEX-CF on combined
effectiveness and realism. Our empirical results on individual datasets and with other GNNs
(GAT and Graph Transformer) are given in Appendix[A.6{A.7]

Figure [3] plots performance vs. perturbation budget on Cora. As the budget grows, all methods
improve: ATEX-CF quickly raises misclassification (e.g., from 0.46 at k=1 to 0.76 at x=15) far
above others, and maintains the highest fidelity and plausibility. Notably, ATEX-CF ’s edit size
increases only mildly with «, whereas attack baselines must exhaust all allowed edits (A E—5). This
trend illustrates that our objective effectively exploits additional budget to find better counterfactuals
without excessive edits.

Ablation Study. Table [I3]in Appendix [A.8] shows the effect of removing each loss. Our find-
ings demonstrate that L4, enforces concise edits, L4, preserves semantic plausibility, and their
combination in ATEX-CF achieves the best overall balance across all metrics.

Sensitivity Analysis. We next analyze key hyperparameters. Search depth (/): Figure 4|in Ap-
pendix shows that [ = 2 captures sufficient local structure surrounding the target node for ef-
fective counterfactuals. Hyperparameters (ctgeg, Qtmotif): FigureE] in Appendix demonstrates
that ATEX-CF is robust across a range of hyperparameter values (e.g., « = 0.5-1.5); while moder-
ate o maximizes fidelity and plausibility together.

Impact of Pruning Strategy. We also evaluate the impact of our candidate-edge pruning strategy
(Algorithm 2)in Appendix[A.4). As shown in Figure[f] pruning yields more concise explanations by
reducing redundant edge edits (AA = 1.71 — 1.62), but as intended, its real utility is the reduced
runtime (6.12s — 3.00s), while preserving predictive accuracy (misclass.=0.71), plausibility (0.76
vs. 0.75), making it an effective and efficient enhancement of our framework.

6 CONCLUSIONS

We presented ATEX-CF, a theoretically grounded framework that unifies adversarial attacks and
counterfactual explanations for graph neural networks. By incorporating both edge additions and
deletions under a constrained budget, ATEX-CF generates explanations that are not only faithful
but also informative. Our joint optimization of fidelity, sparsity, and plausibility ensures instance-
level counterfactuals that balance interpretability with realism. Experiments on synthetic and real-
world benchmarks confirm the effectiveness of this integration, highlighting how adversarial insights
can substantially improve the quality of counterfactual explanations, compared with state-of-the-art
counterfactual generation and adversarial attack methods.
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REPRODUCIBILITY STATEMENT

We provide the full implementation of our models and experimental setup to ensure re-
producibility. Experimental results are reported as the mean and standard deviation across
different random seeds, and the hyperparameters used are detailed in Section Our
code and data are available at https://anonymous.4open.science/r/GNN_graph_
analysis-D90A/README .md.

A APPENDIX

A.1 LIMITATION

A key limitation of this study is the assumption that edge additions and deletions are equally feasible,
which may not hold in domains where graph modifications are inherently constrained. Future work
could incorporate domain-specific constraints and node-feature perturbations to enhance the practi-
cal relevance of ATEX-CF while preserving its theoretical contributions. The central premise of our
approach is that unifying adversarial attack strategies with counterfactual reasoning strengthens both
the fidelity and plausibility of explanations. Unlike methods that treat these perspectives indepen-
dently, ATEX-CF provides a principled integration that balances model sensitivity with explanation
realism in a computationally tractable way.

A.2 RELATED WORK

GNN Explanations. Different categories of GNN explanation methods have been developed to of-
fer diverse perspectives and improve the interpretability of GNN models (Khan & Mobarakil 2023
Yuan et al., [2022). Two main categories of explanations persist: factual and counterfactual. Coun-
terfactual explanations, which are the focus of this work, provide explanations by identifying the
minimum perturbation or change to the input graph that leads to a different prediction from the
model (Bajaj et al., [2021} [Huang et al., [2023} |Tan et al., |2022b), thereby revealing the most critical
structures underlying the decision. Existing methods are predominantly based on edge deletions. For
instance, CF-GNNExplainer (Lucic et al.,[2022)), RCExplainer (Bajaj et al.,[2021), GNN-MOExp
(Dandl et al., [2020), CF? (Tan et al.l 2022b), NSEG (Cai et al., [2025), Banzhaf (Chhablani et al.
2024), and CF-GFNExplainer (He et al., [2024) all design deletion-oriented mechanisms, such as
gradient-based mask optimization, decision boundary constraints, multi-objective optimization, or
probabilistic sampling. These approaches emphasize faithfulness, sparsity, or necessity/sufficiency
guarantees, but rely mainly on removing salient substructures.

More recently, several works on node classification have extended counterfactual explanations to
include edge additions, or the joint use of both addition and deletion. INDUCE (Verma et al.,
2024) treats counterfactual search as a Markov decision process, allowing the model to learn edge
modifications (both additions and deletions) that lead to flips. C2Explainer (Ma et al., 2025) further
integrates hypergraph representations with straight-through optimization to balance reliability and
fidelity, and explicitly models the potential risks of false evidence from edge additions. In the
context of graph classification, approaches such as counterfactual graphs (Abrate & Bonchil, [2021),
CLEAR (Ma et al., [2022), GCFExplainer (Kosan et al., [2024), and density-based counterfactual
graphs (Abrate et al.,|2023) adopt generative or global search strategies that combine edge addition
and deletion to ensure causally consistent and semantically coherent explanations.

Overall, while edge-deletion-based methods dominate current counterfactual explanation research,
the emerging edge-addition or mixed approaches demonstrate that edge addition can serve as a
complementary mechanism, especially in cases where deletion-based explanations fail to capture
counterfactual reasoning. This motivates our design of hybrid counterfactual explainers that leverage
both deletion and addition. Unlike prior counterfactual methods that may include edge additions,
our approach is the first to integrate adversarial attack strategies—systematically leveraging their
capacity to identify high-impact edge additions—with traditional deletion-based reasoning, thereby
unifying two separately studied domains to generate more effective and actionable explanations.
Table ] summarizes important GNN explanation methods, including both factual and counterfactual
approaches, along with their explanation type, candidate modification, and target task.
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Table 4: Characteristics important GNN explainers including ours. “E , F, N” denote remov-
ing/adding edges, node feature modification, removing/adding nodes, respectively. GC and NC
denote graph classification and node classification, respectively.

Method Type Candidate Task
GNNExplainer (Ying et al.} 2019) factual/instance-level E, N GC/NC
PGExplainer (Luo et al.,|[2020) factual/instance-level E GC/NC
MOO (Liu et al.}[2021) counterfactual/instance-level ~ E(-), N(-) NC
CF-GNNExplainer (Lucic et al.,[2022)  counterfactual/instance-level E(-) NC
RCExplainer (Bajaj et al.,[2021) counterfactual/instance-level E(-) GC/NC
CF? (Tan et al.|[2022b) counterfactual/instance-level E(-),F GC/NC
INDUCE (Verma et al., [2024) counterfactual/instance-level E(+,-) NC
NSEG (Cai et al .} [2025) counterfactual/instance-level E(-),F GC/NC
Banzhaf (Chhablani et al.| [2024) counterfactual/instance-level E(-) NC
C2Explainer (Ma et al.| [2025) counterfactual/instance-level E(+,-), F GC/NC
ATEX-CF (ours) counterfactual/instance-level E(+,-) NC

GNN Adversarial Attacks. Graph adversarial attacks investigate structural perturbations but from
a different perspective: their objective is to reduce model performance rather than to improve inter-
pretability. These attacks can be divided into two main categories: evasion attacks and poisoning
attacks (Yuan et al., 2022; [Longa et al., [2025)). In evasion attacks, the GNN parameters are fixed
and the adversary perturbs the test graph to flip predictions without retraining. Examples include
targeted edge modifications during inference (Zou et al., [2021; |Chang et al.l [2020; Ma et al.| 2020;
Fan et al.,|2023). Poisoning attacks, in contrast, manipulate the training data by injecting adversar-
ial samples, forcing the retrained model to internalize the perturbations and degrade performance
(Alom et al., [2025;; Ziigner et al., 2018 |Li et al., [2021; |Chen et al.| 2018} |Geisler et al., [2021).

Empirical studies show that adversarial evasion attacks on GNNs — particularly those based on
strategically adding edges — exploit data biases and model weaknesses to induce misclassifications,
in stark contrast to counterfactual explanations, which predominantly rely on edge deletions. Inte-
grating these attack-inspired edge-addition perturbations into counterfactual frameworks can enrich
explanation graphs and forge a novel link between adversarial robustness and interpretability.

Fusing GNN Explanations and Robustness against Attacks. Recent efforts on robust explain-
able graph neural networks combine explainability with adversarial defense to preserve explanation
quality under worst-case perturbations. GNNEF (Li et al.l 2024)) reveals that perturbation-based
explainers (e.g., GNNExplainer, PGExplainer) are highly fragile, as minor structural changes can
drastically alter explanations without affecting predictions, and proposes loss- and deduction-based
attacks exposing this vulnerability across both graph- and node/edge-level tasks. [Fan et al. (2023))
develop GEAttack that can attack both a GNN model and its explanations by simultaneously ex-
ploiting their vulnerabilities. (Chanda et al.| (2025) exploit explainability-based strategy to devise
adversarial attacks on GNNs. Complementarily, Lukyanov et al.[(2025)) introduce a benchmark an-
alyzing the interplay between robustness and interpretability under poisoning and evasion attacks,
showing that most defenses improve interpretability but with architecture-dependent trade-offs and
limitations in existing metrics. Building on these insights, XGNNCert (Li et al., [2025) provides
the first certifiable robustness guarantee for graph-level tasks, ensuring stable explanations without
sacrificing predictive performance. At the node/edge level, k-RCW (Qiu et al., 2024) proposes ro-
bust counterfactual witnesses (RCWs) that remain factual, counterfactual, and resilient to structural
disturbances, while GNNNIDS (Gall1 et al.| 2025) introduces an evaluation framework for intrusion
detection via structural adversarial attacks, demonstrating that Integrated Gradients produces precise
yet exploitable explanations. While these works improve the robustness of explanations, to the best
of our knowledge, we are the first to unify adversarial attack techniques such as both edge additions
and deletions for better counterfactual explanation generation.

A.3 SUMMARY OF NOTATIONS USED IN THIS PAPER

Table[5|provides a concise summary of the key notations used in this paper, covering graph structure,
node features, GNN models, optimization terms, and theoretical concepts.
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Table 5: Summary of notations used in this paper

Symbol Group

Description

G, V,E

Graph Structure
Input graph, node set, edge set

N,m Number of nodes and edges (N = |V|, m = |E|)
A Ay Adjacency matrix A € {0, 1}"*", adjacency matrix with self-loops (A + I)
D, A Degree matrix, normalized adjacency matrix D 2A, fD’%)
:&, AA Perturbed adjacency matrix (A ® AA), edge modifications (€ {—1,0,1}"*™)
AET, AE™ Added/deleted edge sets
Node Features, Neighborhood, & Labels
Nt(v) I-hop neighborhood of node v
X Node feature matrix (€ R"*%)
U, Yo, Yo Target node, ground-truth label, predicted label
GNN Model
w® HO Weight matrix and hidden representations at GNN layer [
Z Output logits
FA, X, v) GNN prediction for node v
Optimization & Loss
L(e) Loss objective function
Lored, Ldist Prediction loss (flipping), sparsity loss (minimal edits)
Lpiau, C(AA)  Plausibility loss, plausibility penalty
|AAlo, s Number of changed edges, perturbation budget
M,, M, Continuous signed mask (€ [—1, 1]), discretized mask (¢ {—1,0,1})
Tt Positive/negative thresholds for discretization
Ve, S Edge importance score, candidate modification set
A1, Ao, A3 Loss trade-off weights

Qdegs Amoti f

Ui

Realism penalty weights
Learning rate

My

ge i
Ay, Dy, D,
ca(v),cx(v)

Theoretical Concepts
Prediction margin

Gradient influence: 27

DA,
Local adjacency, degree matrix, perturbed degree matrix for node v

Clustering coefficient (original/perturbed) for node v

A.4 MINIMALITY-AWARE POST-HOC PRUNING: ALGORITHM 2

Algorithm [2| removes redundant edges left after training by greedily pruning the least important
ones while preserving the prediction flip. This yields minimal perturbations AA* that enhance
conciseness without extra cost. Empirically, pruning reduces edits (1.71 — 1.62) while maintaining
fidelity, plausibility, and runtime (Figure|[6).

A.5 EVALUATION METRICS

* Misclassification Rate: It measures the fraction of predictions flipped by perturbations. Higher
values indicate stronger disruption, consistent with the attack success rate widely used in GNN
adversarial attacks, such as Nettack (Ziigner et al.,|2018) and GOttack (Alom et al., [2025).

Misclassification Rate = 4 Z I(g; ™™ # ), (6)
i=1
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Algorithm 2 Minimality Pruning

Input: Perturbation AA, graph G, model f, target node v
Output: Minimal perturbation AA*

1. Initialize: AA* + AA
2. Rank edges in AA* by importance score 1), (descending)

3. for each edge e; in ascending order of ).:
() AA’ + AA*\ {e;} (tentatively remove)
(b) if f(A©AA' v) # f(A,v):
i. AA* <+ AA’ (keep the smaller perturbation)
4. return AA*

where N is the number of evaluated target nodes, ¢; = f(A, X, v;) denotes the model-predicted

class of target node v;. 7™ = f(A, X, v;), A is the perturbed adjacency, m; is the explanation

mask (edges added/removed), ]I is the indicator function.
* Fidelity: This metric measures the prediction confidence drop on the model’s predicted class c;
(Bajaj et al.| 2021)). Formally:

N
Fidelity = + Y~ (F(A, X, v))e, — F(A, X, v3).,). )

i=1

where f(A,X,v). denotes the softmax probability assigned to class c¢. Unlike the binary Mis-
classification Rate, which captures label flips, Fidelity provides a finer-grained sensitivity analysis
by quantifying how perturbations reduce the model’s confidence in its own prediction.

» Explanation Size AE: It represents the average number of structural modifications (including
both edge additions and deletions) made per counterfactual explanation, calculated as:

E= %zn:AEi = %zn:(AEiJr-l-AEi*), 3

i=1

We report the average over successful counterfactuals n since AE; is well-defined only when a
valid counterfactual is generated, ensuring that the metric reflects the true complexity of feasible
explanations rather than being diluted by failed cases (Lucic et al., 2022; Tan et al.| [2022a). Here,
AE; represents the set of perturbed edges for node v;. Smaller values indicate more compact and
interpretable explanations.

* Plausibility: This evaluates the human-interpretable quality of counterfactual explanations by
assessing their realism and coherence with domain knowledge. The plausibility score is averaged
across n successful counterfactuals:

it — L - (@) (@) 1
Plausibility = = ; Sptwws  Splaw =2 (1 - m>’ )
where S;)l?w . € (0,1) is the plausibility score for target node v;, k is a scaling factor (default
k = 1), and L(Z) € (0, 00) encodes domain-specific constraints quantifying the realism of the

counterfactual. Higher values indicate more plausible explanations. In our experiments, Lz()l)au

instantiated using the definition in Eq[3]and EqH4]in §4] ensuring consistency with our evaluation
setup. More generally, L;l)au serves as a flexible placeholder that can incorporate task-specific
structural and semantic constraints to assess the realism of counterfactuals in diverse domains.

* Time Cost: We record the average running time required in seconds to generate a counterfactual
explanation for a single node, providing insights into the computational efficiency of different
methods.

A.6 EXPERIMENTAL RESULTS ON INDIVIDUAL DATASETS

Across all datasets, ATEX-CF flips the most target nodes while using very few edits. On Cora
(Table[6), ATEX-CF achieves a misclassification rate of 0.72 with only 1.63 average edge changes,
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Table 6: Performance of counterfactual explanations on Cora and GCN.

Method Base GNN Misclass. 1 Fidelity 1 AE(EJr JET) L Plausibility T  Time (sec) |
CF-GNNExplainer GCN 0.49+0.013 0.10601-0.0034 1.704-0.08 (0.00, 1.70) 0.6410.008 10.2142.88
GNNExplainer GCN 0.224+0.016 0.01974+0.0150 2.5840.13 (0.00, 2.58) 0.5310.021 0.4440.52
PGExplainer GCN 0.14+0.009  -0.0010+0.0017  2.3840.03 (0.00, 2.38) 0.5340.005 0.041-0.02

Attack Models
Nettack GCN 0.53£0.005 0.14844-0.0057 5.004-0.00 (3.86, 1.14) 0.1310.005 3.3610.85
GOttack GCN 0.531+0.005 0.146610.0043 5.004-0.00 (4.70, 0.30) 0.1010.000 2.2440.81

ATEX-CF (Ours) GCN 0.721+0.008 0.23361-0.0003 1.63+0.01 (0.90, 0.73) 0.751+0.008 7.2642.5

Table 7: Performance of counterfactual explanations on BA-SHAPES and GCN.

Method Base GNN Misclass. T Fidelity 1 AE(E+, E7)l Plausibility 1 Time (sec) |
Explainers
CF-GNNExplainer GCN 0.64+0.017  0.338340.0079 1.3340.20 (0.00, 1.33) 0.57+0.012 11.3043.72
GNNEXxplainer GCN 0.65+0.022  0.305540.0019 1.8340.15 (0.00, 1.83) 0.34+0.009 0.811+1.03
PGExplainer GCN 0.73+0.031 0.367240.0015 1.4540.05 (0.00, 1.45) 0.41+0.075 0.031+0.01
Attack Models
Nettack GCN 0.64+0.005  0.352640.0063  5.004-0.00 (4.08, 0.92) 0.224+0.0036 0.8940.38
GOttack GCN 0.63+0.012  0.339940.0081 5.0040.00 (4.30, 0.70) 0.3240.008 0.73+0.22
ATEX-CF (Ours) GCN 0.83+0.009  0.42374+0.0118  1.2440.02 (1.21, 0.03) 0.71+0.000 8.9640.43

compared to only 0.53 for both Nettack and GOttack (each being forced to flip 5 edges). Our
fidelity (0.2336) and plausibility (0.75) are also the highest. In contrast, PGExplainer is extremely
fast (0.04s) but flips almost no nodes, and attack methods (Nettack/GOttack) flip all 5 edges but
yield very low plausibility (= 0.1-0.13). A similar pattern holds on BA-Shapes (Table 7)) and Tree-
Cycles (Table [8), which are motif-based synthetic graphs. On BA-Shapes, ATEX-CF attains 0.83
misclassification with A EF=1.24 and plausibility 0.71, clearly outperforming others; on Tree-Cycles,
it achieves 0.58 misclassification vs. 0.58 for Nettack, but with far higher plausibility (0.64 vs. 0.27)
and much smaller edits (A E=1.29 vs. 5.00). These synthetic benchmarks have no node features and
explicit motif structures, and ATEX-CF reliably discovers the minimal motif changes needed.

On the Loan-Decision social graph (Table [9), ATEX-CF again dominates: 0.68 misclassification
(vs. < 0.35 for others) and highest fidelity (0.3658) with only A E=1.27. Finally, on the large real
ogbn-arxiv network (Table , ATEX-CF flips 0.90 fraction of nodes vs. 0.85-0.86 for attacks,
yet uses just AE=1.20 edges (attacks use 5) and achieves plausibility 0.73 (vs. 0.58-0.66). The
ogbn-arxiv dataset is a citation graph of CS papers with 128-dimensional features and 40 classes,
confirming ATEX-CF scales to large, feature-rich graphs. In summary, our method consistently
finds compact counterfactual edits that flip more predictions than baselines, yielding higher fidelity
while preserving realistic graph structure.

A.7 EXPERIMENTAL RESULTS WITH GRAPH TRANSFORMER AND GAT

Tables |1 1] and [12| further demonstrate that ATEX-CF remains consistently superior on both Graph
Transformer (Shi et al.l [2021) and GAT (Velickovic et al., 2018) backbones. On Graph Trans-
former (Table [[1), our method achieves the highest misclassification rate (0.44) and plausibility
(0.50), while also maintaining competitive edit compactness (AE = 1.66). On GAT (Table [T2)),
ATEX-CF shows an even clearer margin, boosting misclassification to 0.47 and plausibility to 0.65,
outperforming all baselines by a large gap. These results confirm that our mask optimization gen-
eralizes beyond GCNs, remaining stable and effective across different architectures, including both
attention-based and transformer-based GNNs.

Moreover, Tables [T1]and [I2]show that applying CF-GNNExplainer to attention-based models such
as GAT and Graph Transformer often results in unstable mask optimization. This instability arises
because, unlike GCN where the normalized adjacency enters linearly into the convolution allowing
effective gradient flow from the loss to the mask, attention-based architectures compute edge atten-
tion coefficients via nonlinear transformations (LeakyReLU, softmax). Any mask applied to edge
weights is absorbed and scaled by «;;(1 — a;;) < 1, leading to vanishing gradient signals and
preventing the identification of meaningful counterfactual edges.

In CF-GNNEXxplainer, the adjacency mask P is treated as a continuous parameter (after a sigmoid),
which scales the edge weight or serves as an edge attribute. In attention-based models, these edge
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Table 8: Performance of counterfactual explanations on TREE-CYCLES and GCN.

Method Base GNN Misclass. 1 Fidelity 1 AE(E’L7 ET)] Plausibility T  Time (sec)
Explainers
CF-GNNExplainer GCN 0.49+0.054  0.343740.0422  1.9540.03 (0.00, 1.95) 0.344+0.005 6.161+2.09
GNNExplainer GCN 0.53+0.085  0.3608+0.0637  2.5740.31 (0.00, 2.57) 0.2640.041 0.70+0.93
PGExplainer GCN 0.41+0.033  0.273340.0288  2.5240.12 (0.00, 2.52) 0.31+0.022 0.0110.00
Attack Models
Nettack GCN 0.58+0.022  0.4508+0.0217  5.004-0.00 (4.34, 0.66) 0.274+0.099 0.58+0.17
GOttack GCN 0.18+£0.005  0.1083+0.0033  5.00+0.00 (4.91, 0.09) 0.21£0.016 0.41£0.09
ATEX-CF (Ours) GCN 0.58+0.009  0.4052+0.0221  1.29+0.07 (0.69, 0.60) 0.64+0.009 2.98+1.41

Table 9: Performance of counterfactual explanations on Loan-Decision and GCN.

Method Base GNN Misclass. T Fidelity 1 AE(E+ LET) L Plausibility 1 Time (sec) |
Explainers
CF-GNNExplainer GCN 0.4540.092  0.25204-0.0490 1.3540.20 (0.00, 1.35) 0.5310.038 56.0047.04
GNNExplainer GCN 0.16+0.048  0.043840.0497  2.5640.29 (0.00, 2.56) 0.4240.017 3.3344.36
PGExplainer GCN 0.10+0.008  0.028140.0105  2.8040.34 (0.00, 2.80) 0.2140.024 0.321-0.04
Attack Models
Nettack GCN 0.3440.005  0.168540.0075  5.00£0.00 (3.01, 1.99) 0.2440.017 1.164:0.43
GOttack GCN 0.354+0.005  0.174240.0053  5.0040.00 (4.25, 0.75) 0.1540.005 0.5240.16
ATEX-CF (Ours) GCN 0.68+0.024  0.3658+0.0171 1.2740.02 (0.38, 0.89) 0.671+0.026 20.32740.58

attributes enter the computation of attention logits z;;:
zij = sij +b-eiy,  eij =0(Py), (10)

where s;; is a feature-derived score, b is a scalar, and o is the sigmoid. The normalized attention
coefficient is

s — exp(zij) (11
Zke]\/(i) exp(zix)
The gradient of the loss L with respect to P;; is then
8[/ 8L 3041-]- ) 8Zij ) 86”- (12)

8Pi i - 8@1‘]‘ . (92”‘ 861‘47‘ 8P” '
N—— P
aij(1—aij) b o/(Piyj)
The critical term is the Jacobian of the softmax:

80[1‘]‘

azij

= (1 — o).

When the degree of node 7 is N and neighbors are similar, o;; ~ 1/N, thus o (1—a;) = O(1/N).
This means that the mask gradient is strongly diluted by 1/N, which is further multiplied by the
sigmoid derivative o’(P;;). As a result, the gradient magnitude quickly vanishes, especially for
high-degree nodes. This explains why CF-GNNExplainer struggles to optimize adjacency masks
in attention-based models.

In contrast, ATEX-CF uses a signed, discrete mask M,; € {—1,0,+1} combined with a straight-
through estimator (STE) for backpropagation:

0L OL

A __ Adiscret cont t ~
Ay = AT+ (MiJQH —sg(M;3" ) Wg}m ~ @

d , (13)
where A, is the perturbed adjacency entry for edge (i, ), A is the discrete (binary) adjacency
entry, MZ»CJ‘»’“t is the continuous mask, sg(-) denotes the stop-gradient operator that blocks gradients,
and L is the model loss. This allows gradients to capture the finite-difference effect of adding or
deleting an edge on the loss, without attenuation from softmax or nonlinearities. As a result, the
signed mask optimization remains stable and effective across both GCNs and attention-based mod-
els, enabling reliable counterfactual explanations.
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Table 10: Performance of counterfactual explanations on ogbn-arxiv and GCN.

Method Base GNN Misclass. 1 Fidelity 1 AE(E’L7 ET)] Plausibility T  Time (sec)
Explainers
CF-GNNExplainer GCN 0.45+0.033  0.079140.0072  1.56=40.06 (0.00, 1.56) 0.66+0.005 7.16+1.71
GNNExplainer GCN 0.334£0.014  0.0136+0.0040  2.2240.07 (0.00, 2.22) 0.6340.008 0.10+0.01
PGExplainer GCN 0.26+0.012  0.020640.0056  2.2540.13 (0.00, 2.25) 0.59+0.022 0.101+0.05
Attack Models
Nettack GCN 0.86+0.009  0.33661+0.0059  5.004-0.00 (4.38, 0.62) 0.58+0.029 2.1440.69
GOttack GCN 0.85+£0.022  0.32514+0.0107  5.0040.00 (5.00, 0.00) 0.6240.012 0.63+0.08
ATEX-CF (Ours) GCN 0.90+0.012  0.3251+0.0023  1.20+0.05 (0.92, 0.28) 0.73+0.017 3.354+0.17

Table 11: Performance of counterfactual explanations on Loan-Decision and Graph Transformer.

Method Base GNN Misclass. 1 Fidelity 1 AE(E+ LET) L Plausibility 1 Time (sec) |
CF-GNNExplainer ~ Graph Trans. - - - - -
GNNE«xplainer Graph Trans. ~ 0.30£0.039  0.245240.0513  2.994-0.27 (0.00, 2.00) 0.361+0.012 4.77+3.45
PGExplainer Graph Trans.  0.39+0.007  0.3187+0.0141 1.6640.27 (0.00, 1.66) 0.4540.031 0.051-0.03
Nettack Graph Trans.  0.324£0.004  0.2509+0.0101 5.004-0.00 (4.03, 0.97) 0.2240.016 1.0340.48
GOttack Graph Trans. ~ 0.31£0.006  0.24204+0.0072  5.004-0.00 (4.81, 0.19) 0.3010.005 0.6610.21

ATEX-CF (Ours) Graph Trans.  0.4440.035  0.3563£0.0120  1.66-£0.01 (0.85, 0.81) 0.50-£0.024 8.07+2.41

A.8 ABLATION STUDY

Table[I3]shows the effect of removing each loss on Cora. Removing L;; reduces misclassification
slightly (0.71 — 0.70), leading to larger edit sets (1.62 — 1.66) and lower plausibility (0.75 —
0.71), indicating that edit minimality is compromised. Omitting the plausibility loss (Lpiq.) yields
the smallest edit size (1.57), but severely hurts misclassification, dropping the rate to 0.68, as edits no
longer respect semantic structure. Removing both losses reduces misclassification and plausibility.
These findings demonstrate that £4;s; enforces concise edits, £,4., preserves semantic plausibility,
and their combination in ATEX-CF achieves the best overall balance across all metrics.

A.9 SENSITIVITY ANALYSIS

We analyze the key hyperparameters using Cora. Search depth (): Varying the number of hops for
local structure surrounding the target node shows diminishing returns beyond local context. Figure
depicts that going from | = 2 to [ = 3 yields only marginal improvements in fidelity, edits, and
plausibility (e.g., +0.06 fidelity, -0.38 AE, +0.03 plausibility), while increasing computation time
and dropping misclassification. This indicates that depth-2 captures sufficient structure for effective
counterfactuals. Hyperparameters (cvgeg, motif): We vary the weights of degree-anomaly and
motif-anomaly terms in plausibility loss. Figure [5| demonstrates that ATEX-CF is robust across a
range of values (e.g. a = 0.5—1.5); misclassification and fidelity remain high. Very low o removes
the corresponding regularizer and slightly degrades plausibility, while very high « yields negligible
gains but more aggressive edits. In practice, moderate v maximizes fidelity and plausibility together.

A.10 IMPACT OF PRUNING STRATEGY

We also evaluate the impact of our candidate-edge pruning on GCN with the Cora dataset. As
shown in Figure [] pruning yields more concise explanations by reducing redundant edits (AA =
1.71 — 1.62), while maintaining nearly identical predictive accuracy (misclassification = 0.71)
and plausibility (0.76 vs. 0.75). Runtime is significantly reduced (6.12s vs. 3.00s), confirming that
pruning improves explanatory minimality and efficiency without sacrificing fidelity or plausibility.

A.11 PROOF AND EVIDENCE FOR THE HYPOTHESES

Throughout this section, let v be the target node under analysis. We use s (v) to denote the logit of
the target class for v, f(v) for the predicted label of v, and m,, for the margin between the logit of
v’s true class and the highest competing class.

By definition, C F Ex(G) is an inclusion-minimal set of edge modifications (additions or deletions)
such that applying them flips f’s prediction for node v. Minimal means that no proper subset of
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Table 12: Performance of counterfactual explanations on Loan-Decision and GAT.

Method Base GNN Misclass. 1 Fidelity 1 AE(E+, ET)] Plausibility T  Time (sec) |
CF-GNNEXxplainer GAT - - - - -
GNNE«xplainer GAT 0.0140.005 0.000240.0315 3.004£0.00 (0.00, 3.00) 0.3440.015 3.4041.67
PGExplainer GAT 0.0840.032 0.005740.0012 3.3940.00 (0.00, 3.39) 0.4640.092 0.06+0.01
Nettack GAT 0.4140.006 0.078140.0078 5.00£0.12 (3.93, 1.07) 0.20+0.014 1.01£0.51
GOttack GAT 0.3240.007 0.068910.0043 5.0040.04 (4.80, 0.20) 0.1840.005 0.60+0.18
ATEX-CF (Ours) GAT 0.4710.021 0.089210.0193 1.5840.03 (0.67, 0.91) 0.65+0.019 4.32+1.95
Table 13: Ablation Study on Cora and GCN.

Method Base GNN  Misclass. T  Fidelity 1 AE(EJr ,E7) 1 Plausibility T  Time (sec) |

w/o Laist GCN 0.70 0.2360 1.66 (0.76, 0.90) 0.71 7.42

Wio Lptau GCN 0.68 0.2225 1.57 (0.72, 0.85) 0.71 6.82

w/o Laise and Lpjau GCN 0.69 0.2469 1.60 (0.59, 1.01) 0.68 6.22

ATEX-CF (Ours) GCN 0.71 0.2336 1.62 (0.92, 0.70) 0.75 3.80

those modifications is sufficient to flip the prediction. Let us denote this modification set by F' :=

CFEz(G).

faar(v) # fa(v),
but for any strict subset I/ C F,

fear (v) = fa(v).
We assume that the influence function of f over edge sets is submodular, so the marginal effect of
adding or removing an edge diminishes as more modifications are applied (influence functions on
graphs are often modeled as submodular (Krause & Guestrinl 2007; |[Borgs et al.,|[2014))). This sub-
modularity assumption implies that the minimal counterfactual explanation set F' is unique, which
ensures that alignment between the attack-selected edges and the explanation subgraph is well de-
fined, i.e., the top-k edges chosen by the attack coincide with the uniquely defined set F’ rather than
an arbitrary minimal set.

When multiple such minimal sets exist, we fix a canonical choice by breaking ties, for example,
by selecting the lexicographically smallest edge set. Intuitively, [’ captures the single most crucial
evidence subgraph in G supporting the original prediction.

For any edge e and set of edges S, define the conditioned marginal effect as A, f(G U S; v) :=
fausuge (v) = faus(v).

A.11.1 HYPOTHESIS H1: EDGE GRADIENT ATTACK ALIGNMENT

Hypothesis 1 (Restated). Let G = (A, X) be an input graph and f a pre-trained GNN classifier.
For a target node v, let AG(E™) denote the set of added edges in an evasion attack that flips the
prediction of f, and let CFEx(G) denote the counterfactual explanation graph of the graph G.
Then, the graph similarity between AG(E™1) and CFExz(G):

Sim(AG(ET),CFEx(Q)) =~ c,

where Sim(-, ) denotes a graph similarity measure by graph edit distance, maximum common sub-
graph, and graph embedding vectors, and c is a positive score, indicating non-trivial overlap be-
tween the attack edges and the explanation graph.

0<<e<,

Proof Sketch: Edges with the largest gradient influence on the target node’s logit margin are the
most potent for adversarial attacks. Formally, for a target node v with margin m,,(A) and edge
gradients g. = Om,/0A., suppose e; and ey are two candidate edges (with e; either currently
present or absent depending on the attack type, and similarly for es). If |ge, | > |ge, |, then flipping
ey (adding it if g, < O or removing it if g., > 0) yields a larger drop in m, than flipping es.
In particular, a Projected Gradient Descent (PGD) attack will primarily select edges from among
those with the highest |g.|, aligning adversarial modifications with the gradient-based explanation
subgraph. Intuitively, the gradient g. indicates how sensitively the margin m,, changes with respect
to edge e. A large-magnitude gradient |g.| means that a small change in A, has a big effect on m,,.
In a 2-layer GCN with ReL U, the model is piecewise linear, so locally m, changes approximately
linearly with A.. Thus, the edge with the largest |g.| produces the steepest change in m, when

20



Under review as a conference paper at ICLR 2026

2 : T6.71
1.62 115
1.5}
1.24 o
12 Q
2 J10 &
5 ! g
p= 0.63%7L AL g
05} 3.8 {5 ®
0.29 03
0 0

Misclass.t  Fidelityt AE |  Plausibilityt Time(sec))

. 0 3-layer GCN . (] 2-layer GCN

Figure 4: Performance of counterfactual explanations vs. the number of GNN layers: The results
demonstrate sensitivity w.r.t. the number of hops for the local structure surrounding the target node.
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Figure 5: Sensitivity w.r.t. Hyperparameters avgeg and oot f-

perturbed. A PGD adversarial attack, which follows the gradient of the loss (or negative margin),
will therefore choose the edge with the most negative gradient (for additions) or the most positive
gradient (for deletions) to maximally decrease the margin. In essence, explanation methods pick out
these high-|g.| edges as important, and the attacker targets the very same edges to flip the prediction.

Proof. Consider the target node v with true class y, and margin m,(A) = 2z, (4,v) —
maXey, 2c(A,v). Let g = g’zv be the gradient influence of edge e on the margin. We analyze
edge addition, and show that larger |g.| implies a greater reduction in margin when e is perturbed:

Edge addition (E+ attack). Suppose ¢ = (4, j) is a non-existent edge (4. = 0). If g. < 0, then e
is a detrimental or counterfactual edge for the current prediction: increasing A, (adding this edge)
will lower the margin m,. In a small continuous relaxation of A., m, would decrease by about
|ge| - AA,. For the actual discrete addition (A, : 0 — 1), the change m,(A4e) — m,(A) will be
approximately g. (since g. is negative, this is a drop in margin). Because our GCN is piecewise
linear (ReLU activation), adding e causes a margin change on the order of g.. If |ge,| > |ge,| for
two absent edges with negative gradients, adding e; produces a larger margin drop than adding es.
Thus, an adversary performing PGD will add the edge with the most negative gradient first, which
is precisely the top edge identified by a counterfactual explanation method.

The attacker’s choice of edge corresponds to the edge with the largest |g.| that reduces the mar-
gin (negative g. for addition). By repeating this argument iteratively (considering the next most
influential edge after the first, and so on), one can see that an attack adding/removing k edges will
choose the k edges with highest gradient magnitudes that contribute to lowering m,,. Therefore, the
set of edges targeted by the PGD attack aligns with the gradient-based counterfactual explanation
subgraph (which consists of edges with the largest |g.|). This establishes that ranking edges by |g|
is equivalent to ranking them by adversarial effectiveness, proving the hypothesis. O

Empirical Evidence for Hypothesis 1]

21



Under review as a conference paper at ICLR 2026

2
6.12

AALTL 4
15} -
©
a Q@
£ 15
3 1 g
S 0.710.71 0.76 0.75 g
0.5 12 ®

0. 240 23
0 0
Misclass.T FldehtyT Plausibility? Time(sec)l

0 0 ATEX-CF(No Pruning) §  ATEX-CF(With Pruning)

Figure 6: Effectiveness of Post-Hoc Pruning.

Table 14: Attacks and Counterfactuals. The structural similarity between evasion attack edges
AG (mainly additions AE* from GOttack) and instance-level factual explanations Ez(G’) from
GNNExplainer on post-attack graph G’. 280 target nodes are correctly classified in the original
graph G. Budget = 5. GCN (2-layer), Cora dataset.

Metric All (280) Attack Success (225) Attack Fail (55)

GED| 0.38 0.37 0.41
MCS?T 0.31 0.33 0.24
GEV?1 0.72 0.80 0.39

The results in Table [T4] support Hypothesis [T} which posits a high structural overlap between the
attacker’s perturbation AG and the counterfactual explanation CF Ex(G) produced by pre-attack
explanation methods. Notice that here we consider the instance-level factual explanations Ex(G’)
from GNNExplainer (Ying et al.,2019) on the post-attack graph G’ as a proxy for the counterfactual
explanation CF Ex(G) produced by pre-attack explanation methods. This is because the state-of-
the-art counterfactual explainers generally do not support edge addition.

In both correctly and incorrectly predicted instances, the Graph Edit Distance (GED) remains mod-
erate (= 0.38), and the Maximum Common Subgraph (MCS) similarity is non-negligible, particu-
larly for successful attacks. Notably, Graph Embedding Vector (GEV) similarity reaches 0.88 for
misclassified nodes and 0.80 for successful attacks on correctly predicted nodes, indicating substan-
tial alignment in the embedded subgraph structure. In other words, Table [I4] shows that similarity
between attack perturbations AG and counterfactual explanations C'F'Ex(G) depends strongly on
attack outcome. For successful attacks, distances such as GED are lower (lower is better) and sim-
ilarities such as MCS and GEV are higher (higher is better), while for failed attacks, the opposite
holds. In other words, when the attack succeeds, the perturbations align closely with counterfactual
explanations, whereas in failed cases the overlap weakens. This pattern offers evidence that effective
adversarial edits not only cause misclassification but also resemble the explanatory structures that
counterfactual methods would identify.

A.11.2 PROPOSITIONS ON COUNTERFACTUAL COMPLETENESS VIA ATTACK-INFORMED
ADDITIONS

In principle, for the completeness of our hypothesis, one would like to prove that edge additions
“always” yield a successful counterfactual attack, which would strengthen our claim that unifying
attacks and counterfactuals is universally beneficial, even when counterfactuals alone fail. Unfor-
tunately, this cannot be guaranteed, since the data may lack any node whose connection to the
target would flip its label. Instead, we establish a next-best guarantee: When sufficiently informa-
tive opposite-class nodes exist, additions can flip the label while deletions cannot. State-of-the-art
counterfactual explanations may overlook such opportunities, but attack algorithms are designed to
exploit them.
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Let f be a GNN classifier and let v € V be a target node with fg(v) = y. Throughout, s¢(v)
denotes a real valued class y score for v, fo(v) denotes the predicted label, and m, denotes the
margin for class y at v. w,,, is the weight assigned by the model to the contribution of neighbor «
when aggregating into the score of node v. Fix a one versus rest view for class y and use the decision
rule fo(v) = y if and only if sg(v) > 0. Assume an additive, degree-independent neighborhood
model

SG(U) = bias, + Z Wy Tu,y
ueN (v)

with w,, > 0, where r,, is the contribution aligned with class y. This additive influence model
abstracts away normalization and attention redistribution, but shows the monotonic nature of ho-
mophilic neighborhoods. While GNNs are more complex, we observe empirically that their behav-
ior is consistent with the model’s prediction: deletion of a few homophilic neighbors rarely flips
predictions, whereas a small number of targeted additions frequently does (as evidenced in the ad-
dition attacks of Gottack |Alom et al.|(2025) and Nettack Ziigner et al.| (2018)).

We assume homophily in the immediate neighborhood so that fi(u) = y for all u € M (v), hence
r,, > 0 for all incident neighbors. No term in sg(v) is rescaled by [N (v)].

In this setting, deletion and addition have asymmetric effects. Deleting any number of incident
edges can only remove nonnegative summands, while adding edges to informative opposite class
nodes can introduce negative summands. The next two propositions formalize this.

Proposition A.1 (Deletion Infeasibility). Let G' = G \ S for some strict subset S C
(v,u) :u e N(v). If

bias, + min wy, Ty > 0
v uEN(v) vu ' u b

where bias, is a bias term for node v’s own features, r, is the contribution from neighbor u’s
features, aligned with class y, and w.,, > 0 is the scalar weight that measures how strongly neighbor
w influences v’s score. Then fo: (v) = y. Inwords, as long as at least one incident neighbor remains,
the score stays positive, and the label does not change.

Argument. The smallest possible post-deletion score over all strict subsets occurs when only the
least contributing neighbor of v remains. This score equals b, + min, w,,,r,, which is positive by
assumption, hence fo/(v) = y.

Proposition A.2 (Addition Sufficiency). Suppose there exists a set of candidate nodes C with
fa(u) # y such that for each v € C, adding the edge (v,u) decreases the score by at least a
fixed amount v > 0:

$Gu{(w} (V) < sa(v) — 7.

Let m, = sg(v) > 0. Then there exists a set ET C (v,u) : u € C with

[EY] < [mu/7]
such that fqup+ (v) # y. Thus, a small number of informative additions flips the prediction.

Argument. Each addition reduces the score by at least v. After k = [m, /| additions, the score is
nonpositive, which changes the predicted label.

Corollary A.3 (Budgeted reachability and strict advantage of additions). Let Rgei(k) = {G\ S :
S C{(v,u):ueNw)},|S| <k}and Raqa(k) = {GUET : ET C{(v,u) :u e C}, |ET| <
k}. Under the assumptions above, if

bias, + min wy,r, > 0,
u€eN (v)

then for every k < |N(v)| there is no graph in Rqe (k) that flips v’s label. If, in addition, there exists
~v > 0 such that each (v,u) with uw € C decreases sg(v) by at least ~, then with k1 = [m, /7]
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Table 15: Failure rate of deletion-based counterfactual explanations for correctly predicted target
nodes (Cora, 2-layer GCN).

Method Total Nodes Has CF Explanation No CF Explanation
CF-GNNExplainer 280 54 226

Table 16: Failure rate of deletion-based counterfactual explanations for incorrectly predicted target
nodes (Cora, 2-layer GCN).

Method Total Nodes Has CF Explanation No CF Explanation
CF-GNNExplainer 220 76 144

there exists GT € Raaa(ky) that flips v’s label. Consequently, whenever ky < |N(v)|, the set of
counterfactuals reachable by at most k. additions is nonempty while the set reachable by at most
k. deletions is empty, hence additions strictly dominate deletions under equal edit budgets.

Argument. The deletion claim follows from the deletion infeasibility proposition. The addition
claim follows from the addition sufficiency proposition with &y = [m,, /v]. If ky < |[N(v)], then
Radd (k) contains a prediction flipping graph while R 4¢1 (k4 ) does not.

Corollary A.4 (Edit cost and latent stability). Let deqiy be the edge edit distance. Any witnessing
addition set E* has deqait(G,GU E1) = |ET| < [m,/v]. If a node-level embedding map 1 (v; G)
is L-Lipschitz with respect to incident edge edits at v, then

[4(v; G) = (v;GUET) |2 < LIET| < L[my/v].
Thus the latent perturbation can be bounded linearly by the required number of additions.

Remark. The strict advantage condition k1 < |[N(v)]| is testable from estimates of m,, and per edge
gains. If k& > |N(v)], the theory is agnostic about dominance, but the separation holds whenever
the margin-to-gain ratio is small relative to the neighborhood size.

Empirical Evidence for the Counterfactual Completeness

Tables and show how often CF-GNNExplainer (Lucic et al., 2022) fails to generate
deletion-only counterfactual explanations under two conditions.

In Table [T3] (correctly predicted target nodes), out of 280 test nodes, only the “HAS CF EXPLA-
NATION” column reports 54 nodes (~ 19%) for which a deletion-based counterfactual exists; the
remaining 226 nodes (=~ 81%) are in the “No CF EXPLANATION” column. Similarly, in Table [16]
(misclassified nodes), 76 out of 220 nodes (= 35%) have a deletion-only counterfactual, while 144
nodes (=~ 65%) do not.

These high failure rates support our theoretical propositions and corollaries: namely, that there are
many nodes for which deletion-based counterfactuals are infeasible. These empirical gaps justify the
necessity of incorporating attack-informed edge additions to recover explanations for those nodes.

24



	Introduction
	Preliminaries
	Node Classification and Graph Neural Networks
	GNN Explanations
	Adversarial Attacks on GNNs
	Problem Formulation

	A Dual Approach of Explanations and Attacks for GNNs
	ATEX-CF: Methodology for Counterfactual Generation
	Candidate Selection
	Signed-Mask Perturbation and Forward Discretization

	Experiments
	Experimental Setup
	Results and Analysis

	Conclusions
	Appendix
	Limitation
	Related Work
	Summary of notations used in this paper
	Minimality-Aware Post-Hoc Pruning: Algorithm 2
	Evaluation Metrics
	Experimental Results on Individual Datasets
	Experimental results with Graph Transformer and GAT
	Ablation Study
	Sensitivity Analysis
	Impact of Pruning Strategy
	Proof and Evidence for the Hypotheses
	Hypothesis H1: Edge Gradient Attack Alignment
	Propositions on Counterfactual Completeness via Attack-Informed Additions



