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ABSTRACT

This paper studies the problem of distributed multi-agent Bayesian optimiza-
tion with both coupled black-box constraints and known affine constraints. A
primal-dual distributed algorithm is proposed that achieves similar regret/violation
bounds as those in the single-agent case for the black-box objective and constraint
functions. Additionally, the algorithm guarantees an O(N

√
T ) bound on the cu-

mulative violation for the known affine constraints, where N is the number of
agents. Hence, it is ensured that the average of the samples satisfies the affine
constraints up to the error O(N/

√
T). Furthermore, we characterize certain condi-

tions under which our algorithm can bound a stronger metric of cumulative vio-
lation and provide best-iterate convergence without affine constraint. The method
is then applied to both sampled instances from Gaussian processes and a real-
world optimal power allocation problem for wireless communication; the results
show that our method simultaneously provides close-to-optimal performance and
maintains minor violations on average, corroborating our theoretical analysis.

1 INTRODUCTION

Bayesian optimization (BO), as a sample-efficient black-box optimization method (Frazier, 2018),
has found wide application in tuning hyperparameters of machine learning models (Snoek et al.,
2012), discovering new drugs (Negoescu et al., 2011), and optimizing the performance of energy
systems (Xu et al., 2023b), etc.. It is particularly useful when the objective function is expensive to
evaluate and potentially multi-modal.

Bayesian optimization is based on surrogate modeling of the unknown black-box objective function.
Specifically, the black-box function is assumed to be sampled from a Gaussian process. The Gaus-
sian process posterior is updated as a new function evaluation is obtained. To decide the next sample
point, an acquisition function, such as expected improvement (Jones et al., 1998), or upper confi-
dence bound (Srinivas et al., 2012), is optimized. One then samples the optimizer of the acquisition
function in the hope of identifying the global optimum within as few samples as possible.

One challenge of Bayesian optimization is the existence of black-box constraints present in many
physical systems. For example, when tuning the parameters of a chemical reactor, one needs to keep
the residue fractions of some chemical components below predefined thresholds while maximizing
the economic profit (del Rio Chanona et al., 2021). Many algorithms have been proposed to deal
with constraints, including CEI (Gardner et al., 2014; Gelbart et al., 2014), SafeOPT (Sui et al.,
2015), ADMMBO (Ariafar et al., 2019), penalty methods (Xu et al., 2022b; Lu & Paulson, 2022;
Guo et al., 2023), primal-dual method (Zhou & Ji, 2022) and the recent CONFIG (Xu et al., 2023a).

Despite the popularity and success of (constrained) Bayesian optimization in numerous science and
engineering applications (Shahriari et al., 2015), the current development of BO mostly focuses on
the case of one single agent. However, many real-world black-box optimization problems involve
multiple agents. The objective and constraints of those agents can be coupled in an additive way. For
example, for some demand response formulations (Vardakas et al., 2014) in a smart grid, multiple
consumers adapt their local electricity consumption habits to maximize their individual utilities
while a global total energy consumption constraint over those consumers is imposed.

Compared to the conventional single-agent scenario, the multi-agent setting introduces several new
challenges. First, the black-box function evaluations need to be done locally. In practice, these
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evaluations may correspond to real-world physical experiments with local facilities. For example, in
building control for demand response (Chen et al., 2018), black-box function evaluations correspond
to measuring the occupants’ utilities (e.g., thermal comfort) and energy consumption in a building.
Due to privacy issues or limited communication bandwidth, the agents may not want to share the
exact local evaluation data with other agents. Secondly, the acquisition step needs to be distributed.
Agnostic application of the conventional Bayesian optimization method in a centralized way may
suffer from a severe curse of dimensionality, since the number of agents can be large. Thirdly, there
may be known affine constraints, which capture the consensus or coordination among the agents, in
addition to the black-box constraints in BO (Gelbart et al., 2014; Gardner et al., 2014). For example,
when tuning the optimal speed for vehicle platooning (Xu et al., 2022a), all the vehicles’ speeds need
to be the same. In another example of power allocation for wireless communication, the summation
of allocated power needs to be equal to a total power budget (Tse, 1997).

Existing works on multi-agent Bayesian optimization are mostly heuristic. An ADMM-based multi-
agent Bayesian optimization algorithm is proposed in (Krishnamoorthy & Paulson, 2023) without
any guarantees on regret or violations. In addition, there are also existing works that only consider
a single objective but distribute the black-box function evaluations over multiple agents (Wu & Fra-
zier, 2016; Kandasamy et al., 2018; Daulton et al., 2021; Ma et al., 2023). Additive structure is also
exploited to boost the sample efficiency of Bayesian optimization (Kandasamy et al., 2015; Gardner
et al., 2017; Rolland et al., 2018). Another line of works on federated Bayesian optimization (Dai
et al., 2020; 2021) and federated kernelized bandits (Li et al., 2022; Salgia et al., 2022) consider the
setting where a group of agents aim to accelerate their local black-box optimization algorithms by
leveraging the information from other agents. However, these three lines of research do not consider
coupled constraints caused by multiple agents. In addition to the literature on Bayesian optimization,
the general problem of distributed optimization in multi-agent systems has also gained wide interest.
The readers are referred to the surveys (Nedić & Liu, 2018; Yang et al., 2019) and references therein.
The works most relevant to this paper are on zero-order distributed non-convex optimization (Tang
et al., 2020). However, these gradient estimation based methods can only guarantee convergence to
a local optimum and may suffer from severe regret as compared to the global optimum. In contrast,
we aim to develop a distributed algorithm with certain global optimality properties in this paper.

This paper proposes a distributed multi-agent Bayesian optimization algorithm with both additive
coupled black-box and known affine constraints. Specifically, our contributions include:

• We propose a primal-dual distributed algorithm to solve the multi-agent Bayesian optimization
problem with additive objective/constraints. Our algorithm achieves similar regret and violation
(of black-box constraint) bounds as those in the single-agent case (Zhou & Ji, 2022), up to a
multiplicative term depending on the number of agents. As far as we know, our algorithm is the
first distributed multi-agent BO algorithm that enjoys theoretical regret/violation bounds.

• In addition, the cumulative violation of the affine constraints can be upper bounded by O(N
√
T ),

where N is the number of agents and T is the running horizon length.
• Furthermore, we characterize certain conditions under which our algorithm can provide sublin-

ear bounds on cumulative strong violation (accumulation of the violated part) for the black-box
constraint and best-iterate convergence.

• We conduct numerical experiments on both sampled instances from the Gaussian process and a
real-world optimal power allocation problem. The results corroborate our theoretical analysis.

Essentially, we leverage the recent constrained kernelized multi-armed bandits algorithm (Zhou &
Ji, 2022) to develop a distributed algorithm for multi-agent Bayesian optimization. As compared
to (Zhou & Ji, 2022), we introduce additional known coupled affine constraints, which is common in
the multi-agent setting. This brings a new coordination challenge in addition to the regret/violation
tradeoff and requires a new set of analysis techniques. Furthermore, the conditional bounds on strong
violations and best-iterate convergence complement the empirical observations that the primal-dual
method can also achieve good performance with respect to these stronger metrics (Zhou & Ji, 2022).

2 PROBLEM FORMULATION

We consider a set of agents [N ] := {1, 2, · · · , N}. Each agent has a local decision variable
xi ∈ X i ⊂ Rni and aims to minimize its local black-box objective function fi : X i → R.
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At the same time, the agent i measures the black-box constraint value gi(xi) with local decision
xi, where gi : X i → Rm and m is the number of black-box constraints. The global constraints∑N

i=1 gi(xi) ≤ 0 are imposed on the agents. In addition, the agents need to follow a set of affine
constraints

∑N
i=1 Aixi = b, which captures the consensus or decision coordination constraints (e.g.,

resource allocation under budget constraint). Our problem can be formulated as,

min
xi∈X i,i∈[N ]

N∑
i=1

fi(xi), subject to:
N∑
i=1

gi(xi) ≤ 0, and
N∑
i=1

Aixi = b, (1)

where fi, gi, i ∈ [N ] are all local black-box functions, the inequality is interpreted elementwise,
Ai ∈ Rl×ni , i ∈ [N ] are known matrices, and b ∈ Rl is a known vector. The multi-agent black-box
optimization problem formulated in Eq. (1) widely appears in many applications, where gi(·) may
represent certain types of resources (subtracting some thresholds) with global constraints. Examples
include matching vehicles and passengers in ride-sharing (Lin et al., 2019), resource allocation in
cloud computing (Gao et al., 2020), and demand response in a smart grid (Davarzani et al., 2019).

We aim to solve the problem (1) in a distributed and online fashion. Specifically, in each round t, the
agent i can only locally decide the variable xt

i and locally sample the black-box objective function fi
and the constraint function gi by conducting software simulation or hardware experiment. Then, the
agents can communicate useful information following a scheme before deciding on the next local
sample point. We aim to jointly design the local acquisition policy and the communication scheme
so that the agents cooperatively solve the problem (1) in a distributed and online fashion.

Remark 1 (Constraint Formulation) The black-box constraint in (1) considers the generic form
of taking summation over all the agents. The case of summing over a subset of agents (even only
one agent) can be covered by setting the other agents’ corresponding constraints to zero functions,
with all the following algorithm design and theoretical analysis still holding.

We make some regularity assumptions regarding the elements in problem (1).

Assumption 1 (Compact Set and Feasibility) ∀i ∈ [N ], X i is compact. Furthermore, problem (1)
is feasible and its optimal solution x⋆ := (x⋆

1, · · · , x⋆
N ) exists.

Assumption 1 is common in practice. For example, we can usually restrict the set X i to a hyper-box
when tuning the hyperparameters of a machine learning model. Feasibility is a common assumption
in the safe or constrained Bayesian optimization literature (Sui et al., 2015; Xu et al., 2023a).

Assumption 2 (Regularity) fi ∈ Hi,0, gi,j ∈ Hi,j ,∀i ∈ [N ],∀j ∈ [m], where gi,j is the j-th
element of gi, Hi,j , i ∈ [N ], j ∈ {0} ∪ [m] is a reproducing kernel Hilbert space (RKHS) equipped
with the kernel function ki,j(·, ·) : Rni × Rni → R (See (Schölkopf et al., 2001)). Furthermore,
∥fi∥ ≤ Ci,0, ∥gi,j∥ ≤ Ci,j ,∀i ∈ [N ], j ∈ [m], where ∥ · ∥ is the norm induced by the inner product
of the corresponding RKHS without further notice. Furthermore, we assume there is a uniform
upper bound C̄ for Ci,j ,∀i ∈ [N ], j ∈ {0} ∪ [m], which is independent of the number of agents N .

Intuitively, Assumption 2 means that the black-box functions are regular in the sense of having
bounded norms in some RKHSs. It means the black-box functions have a certain ‘smoothness’
property, at least to a certain degree (see (Schölkopf et al., 2001)). Having a bounded norm in an
RKHS is a common assumption in existing Bayesian optimization or kernelized multi-armed bandit
literature (e.g., (Srinivas et al., 2012; Chowdhury & Gopalan, 2017a; Zhou & Ji, 2022)).

Assumption 3 (Observation Model) Each agent i, i ∈ [N ] has access to a noisy zero-order oracle,
which means each round of query xt

i, i ∈ [N ] returns the noisy function evaluations,

yti,0 = fi(x
t
i) + νti,0 , yti,j = gi,j(x

t
i) + νti,j , j ∈ [m] (2)

where νti,j , i ∈ [N ], j ∈ {0} ∪ [m] is independent and identically distributed σ-sub-Gaussian noise.

In practice, the zero-order oracle in Assumption 3 may correspond to real-world physical experi-
ments or software simulations, which can only be accessed by each agent locally.
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Notations Throughout this paper, we use the notation Xt := (x1, x2, · · · , xt) to define the sequence
of sampled points up to step t, where xτ := (xτ

i )
N
i=1. Therefore, the historical evaluations are Dt :=

{(xτ , yτ )}tτ=1, where yτ := (yτi,j)i∈[N ],j∈{0}∪[m]. We use x to denote the vertical concatenation of
xi, i ∈ [N ], X to denote

∏N
i=1 X i and n to denote

∑N
i=1 ni. The notations f(x) :=

∑N
i=1 fi(xi),

g(x) :=
∑N

i=1 gi(xi), and Cj :=
∑N

i=1 Ci,j , j ∈ {0} ∪ [m] are also used. We use A ∈ Rl×n to
denote [A1 A2 · · · AN ]. Hence, the affine constraint can also be written as Ax = b. For simplicity,
[·]+ is used to represent the function max{0, ·}. When applied to a vector, ∥ · ∥ is by default the
Euclidean norm. ∥ · ∥p is the standard p-norm.

Assumption 4 (Normalized Kernel) The kernel functions are all normalized, such that,
ki,j(xi, xi) ≤ 1,∀xi ∈ X i, i ∈ [N ], j ∈ {0} ∪ [m].

Most commonly used kernel functions (including the squared exponential kernel and the Matérn
kernel) can be normalized in a compact set X i and thus satisfy this assumption.

Assumption 5 (Slackness) There exists ξ > 0 and a joint probability distribution π̄ supported over
X , such that,

Eπ̄ [g(x)] ≤ −ξe, and Eπ̄ [Ax] = b, (3)
where e ∈ Rm is the vector with all 1s and the inequality is interpreted elementwise.

Assumption 5 is a very mild slackness assumption on the distributions over the compact set X . We
further make some regularity assumptions regarding X and A.

Assumption 6 The matrix A is full row rank and there exists x̃ and ρ̃ > 0, such that Ax̃ = b and
Bn
ρ̃ [x̃] ⊂ X , where Bn

ρ̃ [x̃] := {x ∈ Rn|∥x− x̃∥ ≤ ρ̃}. Furthermore, ∀x ∈ Bn
ρ̃ [x̃], g(x) ≤ 0.

Assumption 6 is also mild. Full row rank assumption is mild since if A is not full row rank, we can
always remove the redundant rows (Ax = b has a solution as assumed). Besides, it only requires
the existence of a feasible solution in the interior of X with a neighborhood that is feasible for the
black-box constraints. Consequently, we have the following lemma to guarantee that the image of
the affine function can cover an infinity-norm ball, which will be useful for proving the main result.

Lemma 1 There exists ρ > 0, such that Bl,∞
ρ [0] ⊂ ABn

ρ̃ [x̃]− b, where

Bl,∞
ρ [0] := {y ∈ Rl|∥y∥∞ ≤ ρ}, and ABn

ρ̃ [x̃]− b := {Ax− b|x ∈ Bn
ρ̃ [x̃]}.

Without further notice, the proofs of all theoretical results in this paper are deferred to the appendix.

3 PRELIMINARIES

Before we present our solution, some preliminaries are introduced for further discussion.

3.1 PERFORMANCE METRIC

The sample sequences are compared to the constrained optimal solution x⋆ of problem (1). Similar
to (Yu et al., 2017; Zhou & Ji, 2022; Ghosh et al., 2022), we are interested in three metrics,

RT =

T∑
t=1

(
f(xt)− f(x⋆)

)
,VT =

∥∥∥∥∥∥
[

T∑
t=1

g(xt)

]+∥∥∥∥∥∥ , and ST =

∥∥∥∥∥
T∑

t=1

(
Axt − b

)∥∥∥∥∥ , (4)

which are the cumulative regret compared to the constrained optimal solutions, the cumulative black-
box constraint violations, and the cumulative violation of the affine constraints

∑N
i=1 Aixi = b,

termed as the cumulative shift of
∑N

i=1 Aix
t
i compared to the desired b. The form of VT is

the violation of cumulative constraint value. VT /T gives the violation of the average constraint
value, which is common in practice when the constraint function gi represents some resource
or cost that is additive over the time horizon. For example, when g represents some economic
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cost such as monetary expenses or energy consumption, it is usually of more interest to bound
the cumulative or average constraint value during a period rather than the violation accumulated

(that is,
∥∥∥∥∑T

t=1

[∑N
i=1 gi(x

t
i)
]+∥∥∥∥). The same rationale also applies to the cumulative shift term

ST . For example, in the optimal power allocation problem for wireless communication (Tse,
1997), where we assign power pi to each communication channel i from fixed power budget P ,∑T

t=1

(∑N
i=1 pi − P

)
measures the energy consumption deviation from a predefined budget, since

the summation of power represents energy consumption.

3.2 GAUSSIAN PROCESS REGRESSION

As common in the existing Bayesian optimization methods, we use Gaussian process surrogates to
learn the black-box functions. Same as in (Chowdhury & Gopalan, 2017a), we artificially introduce
a set of Gaussian processes GP(0, ki,0(·, ·)), i ∈ [N ] for the surrogate modeling of the unknown
black-box objective function fi, i ∈ [N ]. We also adopt an i.i.d Gaussian zero-mean noise model
with noise variance λ > 0, which can be chosen by the algorithm. We use the following notations,

ki,0(x
1:t
i , xi) :=[ki,0(x

1
i , xi), ki,0(x

2
i , xi), · · · , ki,0(xt

i, xi)]
⊤,

Kt
i,0 :=(ki,0(x

τ1
i , xτ2

i ))τ1∈[t],τ2∈[t], and y1:ti,0 := [y1i,0, y
2
i,0, · · · , yti,0]⊤.

We introduce the following functions of (xi, x
′
i),

µt
i,0(xi) = ki,0(x

1:t
i , xi)

⊤ (Kt
i,0 + λI

)−1
y1:ti,0 , (5a)

kti,0 (xi, x
′
i) = ki,0 (xi, x

′
i)− ki,0(x

1:t
i , xi)

⊤ (Kt
i,0 + λI

)−1
ki,0

(
x1:t
i , x′

i

)
, (5b)

and
(
σt
i,0(xi)

)2
= kti,0(xi, xi). Similarly, we can get µt

i,j(·), kti,j(·, ·), σt
i,j(·), ∀i ∈ [N ],∀j ∈

[m] for the constraint function gi,j . To characterize the complexity of the Gaussian processes and
the corresponding RKHSs, we further introduce the maximum information gain for learning the
objective fi as in (Srinivas et al., 2012),

γt
i,0 := max

A⊂X i;|A|=t

1

2
log
∣∣I + λ−1KA

i,0

∣∣ , (6)

where KA
i,0 = (ki,0(xi, x

′
i))xi,x′

i∈A. Similarly, we introduce γt
i,j ,∀i ∈ [N ], j ∈ [m] for gi,j .

Remark 1 Note that the Gaussian process model here is only used to derive the posterior mean
functions, the covariance functions, and the maximum information gain for the purpose of algorithm
description and theoretical analysis. It does not change our set-up that all the black-box functions
considered are deterministic functions and that the observation noise only needs to be sub-Gaussian.

Based on the aforementioned preliminaries of Gaussian process regression, we then derive the lower
confidence and upper confidence bound functions. Without further notice, all the following results
are conditioned on the event in Lem. 2 happening.

Lemma 2 Let Assumptions 1 and 2 hold. With probability at least 1− δ, ∀δ ∈ (0, 1), the following
holds for all xi ∈ X i, ∀t ≥ 1, and ∀i ∈ [N ],

fi(xi) ∈ [f t

i
(xi), f̄

t
i (xi)], and gi,j(xi) ∈ [gt

i,j
(xi), ḡ

t
i,j(xi)], ∀j ∈ [m], (7)

where for all i ∈ [N ], j ∈ [m],

f t

i
(xi) := max{µt−1

i,0 (xi)− βt
i,0σ

t−1
i,0 (xi),−Ci,0}, f̄ t

i (xi) := min{µt−1
i,0 (xi) + βt

i,0σ
t−1
i,0 (xi), Ci,0},

gt
i,j
(xi) := max{µt−1

i,j (xi)− βt
i,jσ

t−1
i,j (xi),−Ci,j}, ḡti,j(xi) := min{µt−1

i,j (xi) + βt
i,jσ

t−1
i,j (xi), Ci,j},

with βt
i,j := Ci,j + σ

√
2
(
γt−1
i,j + 1 + ln(N(m+ 1)/δ)

)
.

4 ALGORITHM AND THEORETICAL GUARANTEES

The design of our algorithm combines the celebrated ideas of GP-UCB (Srinivas et al., 2012)(lower
confidence bound in our case) and dual decomposition (Boyd et al., 2007). The key idea here is
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relaxing both the black-box and affine constraints, which gives the Lagrangian,

L(x, λ, µ) =
N∑
i=1

fi(xi) + ηλ⊤

(
N∑
i=1

gi(xi)

)
+ ηµ⊤

(
N∑
i=1

Aixi − b

)
, (9)

where η is a scaling constant. Rearranging the Eq. (9) gives,

L(x, λ, µ) =
N∑
i=1

(
fi(xi) + ηλ⊤gi(xi) + ηµ⊤Aixi

)
− ηµ⊤b. (10)

Then the coupled optimization problem in (1) is decomposed into local problem for each agent.

min
x∈X

L(x, λ, µ) =
N∑
i=1

min
xi∈X i

(
fi(xi) + ηλ⊤gi(xi) + ηµ⊤Aixi

)
− ηµ⊤b. (11)

However, since fi and gi are both black-box functions, the local optimization problem
minxi∈X i

(
fi(xi) + ηλ⊤gi(xi) + ηµ⊤Aixi

)
can not be solved directly. Instead, we adopt the opti-

mistic idea and propose to solve the local optimistic problem for agent i at time step t,

min
xi∈X i

(
f t

i
(xi) + ηλ⊤gt

i
(xi) + ηµ⊤Aixi

)
, (12)

where gt
i
(xi) := (gt

i,j
(xi))

m
j=1. For the dual update, we adopt the classical dual ascent method (e.g.,

in (Luo & Tseng, 1993)). Our primal-dual algorithm is shown in Alg. 1, where η > 0 is to be set,
0 < ϵ ≤ ξ

2 is a slackness parameter, and [·]+ := max{·, 0} is interpreted element-wise.

Algorithm 1 Distributed Multi-Agent Bayesian Optimization with Constraints (DMABO).
1: for t ∈ [T ] do
2: Local Primal update:

xt
i ∈ arg min

xi∈X i

{
f t

i
(xi) + ηλ⊤

t g
t
i
(xi) + ηµ⊤

t Aixi

}
,∀i ∈ [N ]. (13)

3: Global Dual update:
λt+1 = [λt +

N∑
i=1

gt
i
(xt

i) + ϵe]+, and µt+1 = µt +

N∑
i=1

Aix
t
i − b. (14)

4: For each agent i, evaluate fi and gi,j , j ∈ [m] at xt
i with noise in a distributed way.

5: Update (µt
i,j , σ

t
i,j), i ∈ [N ], j ∈ {0} ∪ [m] with the new data.

6: end for

Intuitively, the larger η is, the more emphasis is given to the constraints. η can also be interpreted as
equivalent to stepsize for dual ascent. For the convenience of algorithm description and theoretical
analysis, η is set to be the same for all the constraints. Nevertheless, all the results still hold as long
as ηs for different constraints are of the same order (Θ(1/

√
T) as will be seen in Thm. 1.).

Remark 2 (Communication Scheme for Dual Update) In line 3 of the Alg. 1, the dual update is
done by a central coordinator that collects (Aix

t
i, g

t
i
(xt

i)) information globally. However, this is for
the generic setting in which the coupled black-box constraint takes summation over all the agents. If
the black-box constraint only takes sum over a small subset of agents, then only communication over
this subset of agents is needed. The same argument applies to the affine constraints. In practice,
the affine constraints usually represent the consensus among the agents, and the corresponding dual
variables only need to be updated in a local neighborhood.

Remark 3 (Dual Interpretations) In Alg. 1, λt and µt are not exactly the dual variables, but the
dual variables scaled by 1

η . Indeed, λt can be interpreted as virtual queue length (Zhou & Ji, 2022).
The intuition of ϵ is to introduce a constant pessimistic drift to control the cumulative violation.

4.1 BOUNDING CUMULATIVE REGRET/VIOLATION/SHIFT.

We now give the theoretical guarantees on the cumulative regret/violation/shift bounds in Thm. 1.
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Theorem 1 Let the Assumptions 1–6 hold. We further assume limT→∞
∑N

i=1

∑m
j=0 γT

i,j/
√
T = 0. We

set η = 1/
√
T

1, λ1 =
√

H1/me, µ1 = 0 and set H1 := 1/2
(
4C0/(ηξ) + (4∥C∥2+2B2)/ξ

)2
, H2 :=

4C2
0/(ρ2η2) (1 +

√
m)

2
+ (1+

√
m)2/ρ2

(
2∥C∥2 +B2

)2
, C := (C1, · · · , Cm), B := maxx∈X ∥Ax−

b∥, βT
i := (βT

i,1, · · · , βT
i,m), and γT

i := (γT
i,1, · · · , γT

i,m). We have,

1. If we set ϵ = ϵ1 :=
(√

2(H1+H2+
2C0
η +2∥C∥2+B2)+8

∑N
i=1 ∥βT

i ∥
√

T∥γT
i ∥

)
/T , and let T be large

enough such that ϵ = O
(∑N

i=1

∑m
j=0 γ

T
i,j/

√
T
)
≤ min

{
ξ/2,minj∈[m] Cj

}
. We have

RT = Õ

N

N∑
i=1

m∑
j=0

γT
i,j

√
T +N2

√
T

 , ST = O(N
√
T ) and VT=0,

where Õ(·) hides logarithmic factor with respect to N and T .

2. Alternatively, if we set ϵ = ϵ2 :=
√

2(H1+H2+
2C0
η +2∥C∥2+B2)/T , and let T be large enough such

that ϵ = O
(
N/

√
T
)
≤ min

{
ξ/2,minj∈[m] Cj

}
. Then,

RT = Õ

(
N∑
i=1

γT
i,0

√
T +N2

√
T

)
, ST = O(N

√
T ) and VT=Õ

 N∑
i=1

m∑
j=0

γT
i,j

√
T

 .

With the assumption limT→∞
∑N

i=1

∑m
j=0 γT

i,j/
√
T = 0, Thm. 1 shows sublinear bounds in T for cu-

mulative regret, cumulative violations, and cumulative shift for affine constraints. Thus, we have as
T → ∞, RT/T → 0, ST/T → 0, and VT/T → 0. That is, our algorithm simultaneously achieves the
three goals of no-regret, no-violation, and no-shift asymptotically. Another interesting observation
is that while the bound on RT has a quadratic dependency on N , the bound on ST only has a linear
dependency on N . Thm. 1 also shows that with smaller ϵ, we can trade violation for smaller regret.
As compared to (Zhou & Ji, 2022), Thm. (1) explicitly expresses the dependency on N and bounds
the shift ST . We discuss more detailed differentiations and significance of Thm. 1 in Appendix A.
Specifically, when all the black-box objective and constraint functions come from RKHS with the
same type of kernel functions, we observe that RT = Õ(N2mγT

√
T +N2

√
T ) with ϵ = ϵ1. If we

reduce ϵ to ϵ2 < ϵ1, the cumulative regret bound is decreased to Õ(NγT
√
T + N2

√
T ) while the

cumulative violation is increased to Õ(NmγT
√
T ) from 0.

Remark 4 In Thm. 1, we make one additional assumption that limT→∞
∑N

i=1

∑m
j=0 γT

i,j/
√
T = 0.

Intuitively, it limits the complexity of the corresponding RKHS so that the maximum information
gain grows slower than

√
T . It holds for most popular kernels, including Squared Exponential

kernel and Mátern kernel (under the condition that the smoothness parameter ν > d/2, where d is
the input dimension. ) (Srinivas et al., 2012; Vakili et al., 2021).

4.2 CONDITIONAL STRONG VIOLATION BOUNDS AND BEST-ITERATE CONVERGENCE

Similar to (Zhou & Ji, 2022), VT only captures the violation of the cumulative constraint value, and
the Thm. 1 does not necessarily imply convergence to the static optimal solution. Hence, we further

introduce the strong violation metric, V+
T =

∑T
t=1

[∑N
i=1 gi(x

t)
]+

. For general instances, it is

possible that the sample sequence of the Alg. 1 oscillates and V+
T = Θ(T ) (See a simple example in

the Appendix B.). This section focuses on the case with only one black-box constraint and no affine
constraint, which is common in many resource allocation problems, to show conditions under which
we can further bound the strong violation and guarantee the best-iterate convergence. We fix ϵ = ϵ1.
The results can easily be extended to the case with multiple black-box constraints and ϵ = ϵ2.

Condition 1 There exists α > 0 and r̄ > 0, such that ∀π ∈ Π(X ), ∀0 < r ≤ r̄ satisfying
Eπ [f(x)] ≤ f(x⋆) + r and Eπ [g(x)] ≤ r, we have Eπ [|g(x)|] ≤ αr.

1In Thm. 1, the choice of η assumes the knowledge of T . We can apply the doubling trick (Besson &
Kaufmann, 2018) to get the bounds without knowing T beforehand (similar for ϵ).

7
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Condition 1 captures the case where g(x⋆) = 0 is active, and the constraint contradicts the objec-
tive (e.g., in optimal power allocation for wireless communication). To achieve r-optimal solution,
the constraint is expected to be close to tight and not oscillating too much (analogous to dissipativ-
ity (Müller, 2021), where oscillation causes loss/dissipation to the objective function f ).

Condition 2 There exists ζ > 0, such that ∀x ∈ X satisfying g(x) > 0, we have f(x) > f(x⋆)+ ζ.

Condition 2 captures the case where the constraint g(x⋆) < 0 is inactive and infeasible points have
strictly worse objectives than the optimal feasible solution. If f and g are sampled from independent
and symmetric Gaussian processes, it holds with probability 1/2 from a Bayesian point of view. The
bounds on the strong violation and the best-iterate convergence are then given in Thm. 2. It high-
lights that under not uncommon conditions, our algorithm also performs well in terms of managing
the strong violations and finding the static constrained optimal solution.

Theorem 2 Let the same assumptions as in Thm. 1 hold. We further assume m = 1, ϵ = ϵ1 and no
affine constraint exists. We have,
1. Under Condition 1, V+

T =Õ
(
N
∑N

i=1

∑m
j=0 γ

T
i,j

√
T +N2

√
T
)
.

2. Under Condition 2, V+
T =Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j

√
T +N3

√
T
)
. Furthermore, there exists

T0 > 0, such that ∀T ≥ T0, there exists x̃T ∈ {x1, · · · , xT }, which satisfies,
N∑
i=1

(
fi(x̃

T
i )− fi(x

⋆
i )
)
= Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j +N3

√
T

)
, and

N∑
i=1

gi(x̃
T
i ) ≤ 0.

5 EXPERIMENTS

Two sets of experiments are conducted to demonstrate the performance of the DMABO algorithm. In
the first set, we use the objective and constraint functions sampled from Gaussian processes without
affine constraints. In the second set, we consider a more realistic optimal power allocation problem
for wireless communication (Tse, 1997). We compare our method to the distributed simultaneous
version of the CEI (Gelbart et al., 2014; Gardner et al., 2014) algorithm, where in each step, each
agent maximizes the constrained expected improvement conditioned on the decisions of other agents
fixed as in the last step. We also compare our method to the heuristic multi-agent Bayesian opti-
mization method (Krishnamoorthy & Paulson, 2023), where a global coordinator assigns a penalty
to the local acquisition step. We refer the readers to our appendix and the attached code for more
details (choice of (hyper-)parameters, computational time and performance metrics, etc.).

5.1 SAMPLED INSTANCES FROM GAUSSIAN PROCESSES

We first consider the scenario without affine constraint. Such a setting arises widely in a variety of
real-world applications. For example, in demand response for a smart grid (Chen et al., 2018), one
may want to maximize the total utilities for multiple consumers while controlling their total energy
consumption below some threshold. We set N = 3, m = 2, and X i = [−1, 1] ⊂ R,∀i ∈ [3].
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Figure 1: Cumulative regret Rt and violation Vt averaged over 100 random instances. The shaded
area represents ±0.2 standard deviation for regret and ±0.1 standard deviation for violation.
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The black-box functions are sampled from Gaussian processes with the squared exponential kernel.
Fig. 1 shows the cumulative regret and violation result. It can be seen that our DMABO algorithm
clearly achieves a sublinear growth rate for most of the cases, and for many cases, our DMABO
algorithm even achieves better performance than the static optimal solution (that is, regret ≤ 0) while
controlling the cumulative violation well. Note that the decrease in cumulative violation is due to the
‘compensation’ effect. In contrast, the oblivious distributed extension of the CEI algorithm (DCEI)
suffers from linear regret growth with growing violations. For DMABO, the strong violation V+

clearly grows slower and slower, while DCEI suffers from linear growth.

5.2 OPTIMAL POWER ALLOCATION FOR WIRELESS COMMUNICATION

In this part, we consider the classic optimal power allocation problem (Tse, 1997) for wireless
communication. Mathematically, we aim to solve the following optimization problem,

min
pi∈[pmin

i ,pmax
i ]

−
N∑
i=1

Ui(pi), subject to:
N∑
i=1

pi = P, (15)

where Ui : R → R is the utility function (that measures, e.g., quality of service, or communica-
tion rate) of the agent i. Here, the dual variable µ corresponding to the constraint

∑N
i=1 pi = P

can be interpreted as the power price. We compare our DMABO algorithm to the heuristic algo-
rithm (Krishnamoorthy & Paulson, 2023). Specifically, in each step, we penalize the EI acquisition
function (Jones et al., 1998) by a quadratic penalty function of the difference with respect to the co-
ordinated power computed with an ADMM type method (Krishnamoorthy & Paulson, 2023). Fig. 2
shows the average utility and cumulative power deviation from the power budget. Our DMABO
algorithm achieves 8.4% higher average utility with 78.1% less cumulative power deviation as com-
pared to the penalty heuristics with a penalty 5. In this example, further increasing the penalty
improves the power deviation only very slightly.
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Figure 2: The average utility and the cumulative power deviation |
∑t

τ=1(
∑N

i=1 p
τ
i − P )|, which

measures the deviation of total power compared to the budget P , of the two algorithms. ‘Penalty
Heuristics-Q’ represents the penalty method with penalty term Q.

6 CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of distributed multi-agent Bayesian optimization, with
both coupled black-box constraints and known affine constraints. We propose a primal-dual dis-
tributed algorithm with similar regret/violation bounds as those in the single-agent case for the
black-box objective and constraint functions. Furthermore, the algorithm guarantees an O(N

√
T )

bound on the cumulative violation for the known affine constraints, ensuring that the average of the
historical samples satisfies the affine constraints up to the error O(N/

√
T). We also characterize mild

conditions under which the strong violation can be bounded, and best-iterate convergence is guaran-
teed. The method is then applied to both sampled instances from Gaussian processes and real-world
experimental examples; the results show that the method simultaneously provides close-to-optimal
performance and maintains minor violations on average, corroborating our theoretical analysis. As
for future work, one direction is reducing the dependency of regret on the number of agents (N2 in
this paper).
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A APPENDIX: PROOF OF THM. 1

This appendix gives detailed proof of the Thm. 1. Without further notice, all the results are under the
same assumptions as the Thm. 1. Intuitively, the regret/violation has two sources. The first source
comes from the learning cost to reduce the uncertainties of the black-box functions, measured by the
posterior standard deviations. The second source is due to the nature of the primal-dual algorithm.

Our proof is mainly inspired by (Zhou & Ji, 2022). However, as compared to (Zhou & Ji, 2022), we
have additional affine constraints to deal with. How to incorporate and bound the violations for the
affine constraints makes our analysis more challenging and different from (Zhou & Ji, 2022). As
will be seen, we construct a similar potential function in the dual variables corresponding to both
the black-box constraints and the affine constraints. However, we can not use the same technique
to bound the potential function as in (Zhou & Ji, 2022). Instead, we will separately bound the two
parts in the potential function, which then leads to one bound on the sum of the two parts.

As a reminder, throughout the appendix, we will use the following notations,

f(x) :=

N∑
i=1

fi(xi), f
t(x) :=

N∑
i=1

f t

i
(xi), (16a)

g(x) :=

N∑
i=1

gi(xi), g
t(x) :=

N∑
i=1

gt
i
(xi). (16b)

Before we prove the main theorem, we prove several useful lemmas. We first give the proof of
Lem. 1.

Lemma 1 There exists ρ > 0, such that Bl,∞
ρ [0] ⊂ ABn

ρ̃ [x̃]− b, where

Bl,∞
ρ [0] := {y ∈ Rl|∥y∥∞ ≤ ρ}, and ABn

ρ̃ [x̃]− b := {Ax− b|x ∈ Bn
ρ̃ [x̃]}.

Proof: Since A is full row rank by Assump. 6, there exists l columns of A that forms an invertible
submatrix. Without loss of generality, we assume the first l columns of A forms an invertible matrix.
We use Al to denote the submatrix formed by the first l columns of A. We set ρ = ρ̃/∥A−1

l ∥∞,2, where
∥A−1

l ∥∞,2 := max∥y∥∞≤1 ∥A−1
l y∥ > 0. For any y ∈ Bl,∞

ρ [0], we have,

A
(
x̃+ [A−1

l y; 0n−l]
)
− b = Ax̃− b+A[A−1

l y; 0l] = y,

where [A−1
l y; 0n−l] represents the vertical concatenation of the vector A−1

l y and the vertical vector
0n−l consisting of n− l 0s. We also have,

∥[A−1
l y; 0n−l]∥ = ∥A−1

l y∥ ≤ ∥A−1
l ∥∞,2∥y∥∞ ≤ ∥A−1

l ∥∞,2ρ = ρ̃.

Therefore, y = A
(
x̃+ [A−1

l y; 0n−l]
)
− b ∈ ABn

ρ̃ [x̃]− b. □

We then give the proof of Lem. 2.

Lemma 2 Let Assumptions 1 and 2 hold. With probability at least 1− δ, ∀δ ∈ (0, 1), the following
holds for all xi ∈ X i, ∀t ≥ 1, and ∀i ∈ [N ],

fi(xi) ∈ [f t

i
(xi), f̄

t
i (xi)], and gi,j(xi) ∈ [gt

i,j
(xi), ḡ

t
i,j(xi)], ∀j ∈ [m], (7)

where for all i ∈ [N ], j ∈ [m],

f t

i
(xi) := max{µt−1

i,0 (xi)− βt
i,0σ

t−1
i,0 (xi),−Ci,0}, f̄ t

i (xi) := min{µt−1
i,0 (xi) + βt

i,0σ
t−1
i,0 (xi), Ci,0},

gt
i,j
(xi) := max{µt−1

i,j (xi)− βt
i,jσ

t−1
i,j (xi),−Ci,j}, ḡti,j(xi) := min{µt−1

i,j (xi) + βt
i,jσ

t−1
i,j (xi), Ci,j},

with βt
i,j := Ci,j + σ

√
2
(
γt−1
i,j + 1 + ln(N(m+ 1)/δ)

)
.

Proof: By Corollary 2.6, (Xu et al., 2023a), with probability at least 1 − δ, ∀δ ∈ (0, 1), for all
xi ∈ X i and t ≥ 1,

µt−1
i,j (xi)− βt

i,jσ
t−1
i,j (xi) ≤ gi,j(xi) ≤ µt−1

i,j (xi) + βt
i,jσ

t−1
i,j (xi).
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Furthermore, |gi,j(xi)| = |⟨gi,j , ki,j(xi, ·)⟩| ≤ ∥gi,j∥∥ki,j(xi, ·)∥ = ∥gi,j∥ki,j(xi, xi) ≤ Ci,j ,∀i ∈
[N ], j ∈ [m]. Therefore, gi,j(xi) ∈ [gt

i,j
(xi), ḡ

t
i,j(xi)]. Similarly, fi(xi) ∈ [f t

i
(xi), f̄

t
i (xi)],∀i ∈

[N ]. □

We then restate a useful lemma that bounds the cumulative standard deviations along the sample
trajectory.

Lemma 3 (Lemma 4, (Chowdhury & Gopalan, 2017b)) Given a sequence of points
x1, x2, · · · , xT from X , we have,

T∑
t=1

σt−1
i,j

(
xt
i

)
≤
√

4(T + 2)γT
i,j ,∀i ∈ [N ], j ∈ {0} ∪ [m]. (17)

To characterize how optimality can be traded for more feasibility, we introduce the perturbed prob-
lem,

min
π∈Π(X )

Eπ [f(x)] , (18a)

subject to: Eπ [g(x)] + ϵe ≤ 0, (18b)
Eπ [Ax] = b, (18c)

where the feasible set is relaxed to the set of all distributions over the set X . Such a relaxation results
in a linear programming problem in distribution, which is easier for sensitivity analysis. We use π∗

ϵ
to denote the optimal solution to the above problem. We then have the following lemma.

Lemma 4
T∑

t=1

Eπ∗
ϵ
[f(x)]−

T∑
t=1

Eπ⋆ [f(x)] ≤ 2C0Tϵ

ξ
, (19)

where π⋆ is the optimal distribution for Problem (18) with ϵ = 0.

Proof: Let πϵ = (1− ϵ
ξ )π

⋆ + ϵ
ξ π̄, where Eπ̄ [g(x)] ≤ −ξe (Recall the Assump. 5). We also have

Eπ⋆ [g(x)] ≤ 0. Then

Eπϵ
[g(x)] =

(
1− ϵ

ξ

)
Eπ⋆ [g(x)] +

ϵ

ξ
Eπ̄ [g(x)]

≤ −ϵe.

Furthermore, by linearity,

Eπϵ
[Ax] =

(
1− ϵ

ξ

)
Eπ⋆ [Ax] +

ϵ

ξ
Eπ̄ [Ax]

= b.

Hence, πϵ is a feasible solution to the slightly perturbed problem. So, we have,
T∑

t=1

Eπ⋆
ϵ
[f(x)]−

T∑
t=1

Eπ⋆ [f(x)]

≤
T∑

t=1

Eπϵ
[f(x)]−

T∑
t=1

Eπ⋆ [f(x)]

=
ϵ

ξ

T∑
t=1

(Eπ̄ [f(x)]− Eπ⋆ [f(x)])

≤2C0Tϵ

ξ
,

14
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where the first inequality follows by the optimality of π∗
ϵ , the equality follows by the definition of

πϵ and the last inequality follows by Assumption 2, which implies that

|f(x)| = |
N∑
i=1

⟨fi, ki,0(xi, ·)⟩| ≤
N∑
i=1

|⟨fi, ki,0(xi, ·)⟩| ≤
N∑
i=1

∥fi∥∥ki,0(xi, ·)∥ ≤
N∑
i=1

∥fi∥ ≤ C0.

□

It will be seen that ϵ plays a key role in trading some regret for strict time-average feasibility.

To connect the change of the dual variables and the primal values, we introduce a potential function
in the dual space,

V (λt, µt) =
1

2
∥λt∥2 +

1

2
∥µt∥2. (20)

We consider,
∆t :=V (λt+1, µt+1)− V (λt, µt) (21a)

=
1

2

(
∥[λt + gt(xt) + ϵe]+∥2 − ∥λt∥2

)
+

1

2
∥Axt − b∥2 + µ⊤

t (Axt − b) (21b)

≤1

2

(
∥λt + gt(xt) + ϵe∥2 − ∥λt∥2

)
+

1

2
∥Axt − b∥2 + µ⊤

t (Axt − b) (21c)

=λ⊤
t (g

t(xt) + ϵe) + µ⊤
t (Axt − b) +

1

2
∥gt(xt) + ϵe∥2 + 1

2
∥Axt − b∥2, (21d)

where the inequality follows by case discussion on the sign of λt + gt(xt) + ϵe. The inequality
in (21) will be very useful in the following proof by connecting primal and dual variables.

A.0.1 BOUND CUMULATIVE REGRET

We have the following lemma to bound f t(xt) − Eπ⋆
ϵ

[
f t(x)

]
, which approximates the single-step

instantaneous regret f(xt)− f(x⋆).

Lemma 5
f t(xt)− Eπ∗

ϵ

[
f t(x)

]
≤ 2η∥C∥2 + ηB2 − η∆t,

where ∥C∥2 =
∑m

j=1 C
2
j , f t(x) =

∑N
i=1 f

t

i
(xi), and ϵ is set to be small enough such that ϵ ≤

Cj ,∀j ∈ [m].

Proof:
∆t = V (λt+1, µt+1)− V (λt, µt) (22a)

≤ λ⊤
t (g

t(xt) + ϵe) + µ⊤
t (Axt − b) +

1

2
∥gt(xt) + ϵe∥2 + 1

2
∥Axt − b∥2 (22b)

≤ λ⊤
t g

t(xt) +
1

η
f t(xt) + µ⊤

t (Ax
t − b) + ϵλ⊤

t e−
1

η
f t(xt) +

1

2

m∑
j=1

(Cj + ϵ)2 +
1

2
B2 (22c)

≤ λ⊤
t Eπ⋆

ϵ

[
gt(x)

]
+

1

η
Eπ⋆

ϵ

[
f t(x)

]
+ ϵλ⊤

t e−
1

η
f t(xt) + 2

m∑
j=1

C2
j +B2 (22d)

≤ λ⊤
t

(
Eπ⋆

ϵ
[g(x)] + ϵe

)
+

1

η
Eπ⋆

ϵ

[
f t(x)

]
− 1

η
f t(xt) + 2

m∑
j=1

C2
j +B2 (22e)

≤ 1

η

(
Eπ∗

ϵ

[
f t(x)

]
− f t(xt)

)
+ 2∥C∥2 +B2, (22f)

where the first inequality follows by the inequality (21), the second inequality follows by adding
and subtracting 1

ηf
t(xt) and the projection operation to [−Ci, Ci] as shown in the Eq. (8), the third

inequality follows by the optimality of xt for the primal update problem (13) and the assumption that
ϵ ≤ Cj , the fourth inequality follows by gt(x) ≤ g(x) and the feasibility of π⋆

ϵ for the problem (18),

15
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and the last inequality follows by the feasibility of π∗
ϵ for the problem (18). Rearrangement of the

above inequality gives the desired result. □

We are then ready to upper bound the cumulative regret.

Lemma 6 (Cumulative Regret Bound)

RT ≤2

N∑
i=1

βT
i,0

√
4(T + 2)γT

i,0 + 2ηT∥C∥2 + ηTB2 + ηV (λ1, µ1) +
2C0Tϵ

ξ
.

Proof: We do the relaxation and splitting,

RT ≤
T∑

t=1

(
f(xt)− Eπ⋆ [f(x)]

)
=

T∑
t=1

(
f(xt)− f t(xt)

)
+

T∑
t=1

(
f t(xt)− Eπ⋆

ϵ

[
f t(xt)

])
+

T∑
t=1

Eπ⋆
ϵ

[
f t(x)− f(x)

]
+

T∑
t=1

(
Eπ⋆

ϵ
[f(x)]− Eπ⋆ [f(x)]

)
,

where the inequality follows by that relaxed optimal value Eπ⋆ [f(x)] is smaller or equal to the
original optimal value, and the equality splits the original term into four terms. For the first term,

T∑
t=1

(
f(xt)− f t(xt)

)
=

T∑
t=1

N∑
i=1

(
fi(x

t
i)− f t

i
(xt

i)
)
≤

N∑
i=1

T∑
t=1

2βt
i,0σ

t
i,0(x

t
i)

≤ 2

N∑
i=1

βT
i,0

T∑
t=1

σt
i,0(x

t
i) ≤ 2

N∑
i=1

βT
i,0

√
4(T + 2)γT

i,0,

where the first inequality follows by Lem. 2, the second inequality follows by the monotonicity of
βt
i,0, and the last inequality follows by Lem. 3. For the second term, by Lem. 5, we have,

T∑
t=1

(
f t(xt)− Eπ⋆

ϵ

[
f t(x)

])
≤

T∑
t=1

(2η∥C∥2 + ηB2 − η∆t)

= 2ηT∥C∥2 + ηTB2 + ηV (λ1, µ1)− ηV (λT+1, µT+1)

≤ 2ηT∥C∥2 + ηTB2 + ηV (λ1, µ1).

The third term is non-positive due to Lem. 2. Combining the three bounds and the Lem. 4 gives the
desired result. □

A.0.2 BOUND CUMULATIVE VIOLATION

The dual update indicates that violations are reflected in the dual variable. So we first upper bound
the dual variable. The idea is to show that whenever the dual variable is very large, it will be
decreased. We now separate the dual potential function V (λ, µ) into two parts, V1(λ) =

1
2∥λ∥

2 and
V2(µ) =

1
2∥µ∥

2. It can thus be seen that V (λt, µt) = V1(λt) + V2(µt).

Lemma 7 If V (λt, µt) ≥ H1 +H2, we have V (λt+1, µt+1) ≤ V (λt, µt).

Proof: We prove the lemma by discussing different cases.

Case 1: V1(λt) ≥ H1 = 1
2

(
4C0

ηξ + 4∥C∥2+2B2

ξ

)2
.

By the primal updating rule,

f t(xt) + ηλ⊤
t g

t(xt) + ηµ⊤
t (Axt − b)

16
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≤ Eπ̄

[
f t(x)

]
+ ηλ⊤

t Eπ̄

[
gt(x)

]
≤ C0 + ηλ⊤

t Eπ̄ [g(x)]

≤ C0 + η(−ξ)λ⊤
t e,

where the first inequality follows by the optimality of xt for the primal update problem and the
feasibility of π̄ for the affine constraint, the second inequality follows by that both η and λt are
non-negative, and the third inequality follows by Lem. 2 and Assumption 5. On the other hand,

f
t
(xt) ≥ −C0,

by the Lem. 2. Therefore,

C0 + η(−ξ)λ⊤
t e ≥ −C0 + ηλ⊤

t g
t(xt) + ηµ⊤

t (Axt − b),

which implies

λ⊤
t g

t(xt) + µ⊤
t (Axt − b) ≤ 2C0

η
− ξλ⊤

t e.

So we can get
V (λt+1, µt+1)− V (λt, µt)

≤λ⊤
t (g

t(xt) + ϵe) + µ⊤
t (Axt − b) +

1

2
∥g

t
(xt) + ϵe∥2 + 1

2
∥Axt − b∥2

≤2C0

η
− ξ

2
λ⊤
t e+

1

2
∥gt(xt) + ϵe∥2 + 1

2
∥Axt − b∥2

≤2C0

η
− ξ

2
∥λt∥+ 2∥C∥2 +B2 ≤ 0,

where the first inequality follows by the inequality (21), the second inequality follows by that ϵ ≤ ξ
2 ,

the third inequality follows by that λt ≥ 0 and the Lem. 2, and the last inequality follows by

V1(λt) ≥ 1
2

(
4C0

ηξ + 4∥C∥2+2B2

ξ

)2
.

Case 2: V1(λt) < H1 = 1
2

(
4C0

ηξ + 4∥C∥2+2B2

ξ

)2
. By Lem. 1, there exists x(µt) ∈ Bn

ρ̃ [x̃], such that
Ax(µt)− b = −ρsign(µt), where ∀k ∈ [l],

(sign(µt))k =

{
1, if (µt)k ≥ 0,

−1, otherwise.
By the primal updating rule, we have

f t(xt) + ηλ⊤
t g

t(xt) + ηµ⊤
t (Axt − b)

≤f t(x(µt)) + ηλ⊤
t g

t(x(µt))− ηρµ⊤
t sign(µt)

≤C0 + ηλ⊤
t g(x(µt))− ηρ∥µt∥1

≤C0 − ηρ∥µt∥.
Meanwhile, we also have,

f t(xt) ≥ −C0. (23)

Therefore,
−C0 + ηλ⊤

t g
t(xt) + ηµ⊤

t (Axt − b) ≤ C0 − ηρ∥µt∥
Rearrangement gives,

λ⊤
t g

t(xt) + µ⊤
t (Axt − b) ≤ 2C0

η
− ρ∥µt∥.

Therefore, we can derive,
V (λt+1, µt+1)− V (λt, µt) (24)

≤λ⊤
t (g

t(xt) + ϵe) + µ⊤
t (Axt − b) +

1

2
∥gt(xt) + ϵe∥2 + 1

2
∥Axt − b∥2 (25)

17
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≤2C0

η
+

ξ
√
m

2
∥λt∥ − ρ∥µt∥+

1

2
∥gt(xt) + ϵe∥2 + 1

2
∥Axt − b∥2 (26)

≤2C0

η
+

ξ
√
m

2
∥λt∥ − ρ∥µt∥+ 2∥C∥2 +B2 (27)

≤2C0

η
+

ξ
√
m

2

(
4C0

ηξ
+

4∥C∥2 + 2B2

ξ

)
− ρ∥µt∥+ 2∥C∥2 +B2 (28)

=
2C0

η

(
1 +

√
m
)
+ (1 +

√
m)
(
2∥C∥2 +B2

)
− ρ∥µt∥. (29)

Since V1(λt) < H1, V1(λt) + V2(µt) ≥ H1 +H2, we have V2(µt) ≥ H2. Hence, the last term in
the inequality (29) can be checked to be non-positive.

Combining the two cases concludes the proof. □

Consequently, we have,

Lemma 8 Let λ1 ≤
√

H1

N , µ1 = 0, we have for any t, V (λt, µt) ≤ H1+H2+
2C0

η +2∥C∥2+B2.

Proof: We use induction. (λ1, µ1) satisfies the conclusion.

We now discuss conditioned on the value (λt, µt). If for step t, V (λt, µt) ≤ H1 + H2 + 2C0

η +

2∥C∥2 +B2 holds. Then there are two possible cases,

Case 1: V (λt, µt) ≤ H1 +H2, then

V (λt+1, µt+1) ≤ V (λt, µt) +
1

η

(
Eπ∗

ϵ

[
f t(x)

]
− f t(xt)

)
+ 2∥C∥2 +B2

≤ H1 +H2 +
2C0

η
+ 2∥C∥2 +B2

by Lem. 5.

Case 2: V (λt, µt) > H1+H2, then V (λt+1, µt+1) ≤ V (λt, µt) ≤ H1+H2+
2C0

η +2∥C∥2+B2

by Lem. 7.

By induction, the conclusion holds for any t. □

We now can upper bound the cumulative violation.

Lemma 9 (Cumulative Violation Bound)

VT ≤

∥∥∥∥∥∥
[
λT+1 + 2

N∑
i=1

βT
i

√
4(T + 2)γT

i − Tϵe

]+∥∥∥∥∥∥ ,
where βT

i = (βT
i,1, · · · , βT

i,m), γT
i = (γT

i,1, · · · , γT
i,m), i ∈ [N ] and multiplication is interpreted

elementwise.

Proof: By the dual updating rule, we have λt+1 ≥ λt + gt(xt) + ϵe. By summing up from t = 1
to T , we get,

λT+1 ≥ λ1 +

T∑
t=1

gt(xt) + Tϵe.

Rearranging the above inequality gives,
T∑

t=1

gt(xt) ≤ λT+1 − λ1 − Tϵe. (30)

We thus have,
T∑

t=1

g(xt) =

T∑
t=1

gt(xt) +

T∑
t=1

(g(xt)− gt(xt))

18
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=

T∑
t=1

gt(xt) +

T∑
t=1

N∑
i=1

(gi(x
t
i)− gt

i
(xt

i))

≤λT+1 − λ1 − Tϵe+ 2

N∑
i=1

βT
i

√
4(T + 2)γT

i ,

where the inequality follows by combining the inequality (30), the monotonicity of βT
i and Lem. 3..

Therefore,

VT =

∥∥∥∥∥∥
[

T∑
t=1

g(xt)

]+∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
[
λT+1 + 2

N∑
i=1

βT
i

√
4(T + 2)γT

i − Tϵe

]+∥∥∥∥∥∥ .
□

A.0.3 BOUND CUMULATIVE SHIFT

Lemma 10
∥∥∥∑T

t=1(Axt − b)
∥∥∥ ≤ ∥µT+1∥+ ∥µ1∥.

Proof: ∥∥∥∥∥
T∑

t=1

(Axt − b)

∥∥∥∥∥
=

∥∥∥∥∥
T∑

t=1

(µt+1 − µt)

∥∥∥∥∥
=∥µT+1 − µ1∥
≤∥µT+1∥+ ∥µ1∥.

□

A.1 MAIN PROOF OF THM. 1

Note that 1/η = O(
√
T ) and Cj =

∑N
i=1 Ci,j = O(N),∀j ∈ {0} ∪ [m]. Firstly, combining Lem. 8

and Lem. 10 gives,
ST = O

(
N
√
T
)
.

We then discuss different selections of ϵ.

1. If we set

ϵ =

√
2(H1 +H2 +

2C0

η + 2∥C∥2 +B2) + 8
∑N

i=1 ∥βT
i ∥
√

T∥γT
i ∥

T
,

and let T be large enough such that

ϵ = Õ

 N∑
i=1

m∑
j=0

γT
i,j/

√
T

 ≤ min

{
ξ/2, min

j∈[m]
Cj

}
.

We have,

λT+1 + 2

N∑
i=1

βT
i

√
4(T + 2)γT

i − Tϵe (31a)

≤

(
∥λT+1∥+ 8

N∑
i=1

∥βT
i ∥
√

T∥γT
i ∥ − Tϵ

)
e (31b)

≤

(√
2(H1 +H2 +

2C0

η
+ 2∥C∥2 +B2) + 8

N∑
i=1

∥βT
i ∥
√
T∥γT

i ∥ − Tϵ

)
e (31c)

19



Under review as a conference paper at ICLR 2024

=0, (31d)
where the first inequality follows by simple algebraic manipulation, and the second in-
equality follows by Lem. 8. Combining the above inequality and Lem. 9 gives

VT=0.

Plugging the values of η, λ1 and ϵ into the Lem. 6 gives,

RT = Õ

N

N∑
i=1

m∑
j=0

γT
i,j

√
T +N2

√
T

 .

2. If we set

ϵ =

√
2(H1 +H2 +

2C0

η + 2∥C∥2 +B2)

T
,

and let T be large enough such that

ϵ = O
(
N/

√
T
)
≤ min

{
ξ/2, min

j∈[m]
Cj

}
.

We have,

λT+1 + 2

N∑
i=1

βT
i

√
4(T + 2)γT

i − Tϵe (32a)

≤

(√
2(H1 +H2 +

2C0

η
+ 2∥C∥2 +B2)− Tϵ

)
e+ 2

N∑
i=1

βT
i

√
4(T + 2)γT

i (32b)

≤2

N∑
i=1

βT
i

√
4(T + 2)γT

i , (32c)

where the first inequality follows by Lem. 8. Combining the above inequality and Lem. 9
gives

VT=Õ

 N∑
i=1

m∑
j=0

γT
i,j

√
T

 .

Plugging the values of η, λ1 and ϵ into the Lem. 6 gives,

RT = Õ

(
N∑
i=1

γT
i,0

√
T +N2

√
T

)
.

B APPENDIX: AN ILLUSTRATIVE EXAMPLE WHERE THE SEQUENCES
GENERATED BY PRIMAL-DUAL ALGORITHM OSCILLATE

We consider one single agent and one single black-box constraint with one-dimensional input. We
set X = {−1, 0, 1} with the corresponding objective and constraint function shown as in Tab. 1.

x f(x) g(x)
−1 1 −1
0 0.5 0
1 −1 2

Table 1: Illustrative counter-example where the primal solution oscillates, and convergence is never
achieved.

Suppose there is no observation noise, and we have already successfully identified all the black-box
function values after some observation. Then, L(x, λ) = f(x) + λg(x). We observe,

min{L(−1, λ),L(1, λ)}

≤ 2

3
L(−1, λ) +

1

3
L(1, λ) = 2

3
(1− ηλ) +

1

3
(−1 + 2ηλ) =

1

3
< 0.5 = L(0, λ).
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So, the primal-dual algorithm will never sample the point x = 0, which is the optimal solution for
the constrained optimization problem. Instead, when λ ≤ 2

3η , argminx∈X L(x, λ) = {1}, and λ

will be increased. Otherwise, argminx∈X L(x, λ) = {−1}, λ will be decreased. So the sample
sequence oscillates in {−1, 1}, with about 1/3 proportion as 1 and the other −1 to stabilize λ around
2
3η . This results in Θ(T ) growth for the cumulative strong violation

∑T
t=1[g(x

t)]+.

C APPENDIX: PROOF OF THM. 2.

We will use the short-hand notation [·]− = −min{0, ·} and ET to represent the expectation over the
empirical uniform distribution over the sample set {x1, · · · , xT }. We will also use the notations,

T + = {t ∈ [T ]|g(xt) > 0}, and T − = {t ∈ [T ]|g(xt) ≤ 0}.
It can be seen that T + ∪ T − = [T ].

C.1 PROOF UNDER CONDITION 1

Firstly, by Thm. 1,

RT

T
=

T∑
t=1

1

T
f(xt)− f(x⋆) (33a)

=ET [f(x)]− f(x⋆) (33b)

=Õ

(
N
∑N

i=1

∑m
j=0 γ

T
i,j +N2

√
T

)
, (33c)

(33d)
and

T∑
t=1

g(xt) = TET [g(x)] ≤ 0. (34)

Let T be large enough such that,

ET [f(x)]− f(x⋆) = Õ

(
N
∑N

i=1

∑m
j=0 γ

T
i,j +N2

√
T

)
≤ r̄. (35)

Therefore, by Condition 1, we have,

ET [|g(x)|] ≤ α (ET [f(x)]− f(x⋆)) = α
RT

T
. (36)

Hence,
T∑

t=1

[g(xt)]+ +

T∑
t=1

[g(xt)]− ≤ αRT . (37)

Furthermore, by Eq. (34),
T∑

t=1

g(xt) =

T∑
t=1

[g(xt)]+ −
T∑

t=1

[g(xt)]− ≤ 0. (38)

Adding the Inequality (37) and the Inequality (38) gives,

V+
T =

T∑
t=1

[g(xt)]+ ≤ α

2
RT = Õ

N

N∑
i=1

m∑
j=0

γT
i,j

√
T +N2

√
T

 . (39)

C.2 PROOF UNDER CONDITION 2

We have,

RT =

T∑
t=1

(
f(xt)− f(x⋆)

)
(40a)
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=
∑
t∈T +

(
f(xt)− f(x⋆)

)
+
∑
t∈T −

(
f(xt)− f(x⋆)

)
(40b)

≥
∑
t∈T +

(
f(xt)− f(x⋆)

)
(40c)

≥ζ|T +|. (40d)

Therefore, |T +| ≤ RT/ζ. Thus,

V+
T =

T∑
t=1

[g(xt)]+ (41a)

=
∑
t∈T +

[g(xt)]+ (41b)

≤
∑
t∈T +

C1 (41c)

=|T +|C1 (41d)

≤C1

ζ
RT . (41e)

With ϵ = ϵ1, we have

RT = Õ

N

N∑
i=1

m∑
j=0

γT
i,j

√
T +N2

√
T

 , and V+
T =Õ

N2
N∑
i=1

m∑
j=0

γT
i,j

√
T +N3

√
T

 ,

by Thm 1 and the inequality (41). Therefore,
T∑

t=1

((
f(xt)− f(x⋆)

)
+ [g(xt)]+

)
(42a)

=RT + V+
T = Õ

N2
N∑
i=1

m∑
j=0

γT
i,j

√
T +N3

√
T

 . (42b)

Hence,

1

T

T∑
t=1

((
f(xt)− f(x⋆)

)
+ [g(xt)]+

)
= Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j +N3

√
T

)
. (43)

Choose T0 large enough such that ∀T ≥ T0, we have,

1

T

T∑
t=1

((
f(xt)− f(x⋆)

)
+ [g(xt)]+

)
= Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j +N3

√
T

)
< ζ. (44)

Hence, there exists x̃T ∈ {x1, · · · , xT }, such that,(
f(x̃T )− f(x⋆)

)
+ [g(x̃T )]+ (45a)

≤ 1

T

T∑
t=1

((
f(xt)− f(x⋆)

)
+ [g(xt)]+

)
(45b)

=Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j +N3

√
T

)
(45c)

<ζ. (45d)

It can be observed that g(x̃T ) ≤ 0, otherwise, by Condition 2,
(
f(x̃T )− f(x⋆)

)
+ [g(x̃T )]+ > ζ,

which contradicts the inequality (45d). Furthermore,

f(x̃T )− f(x⋆) ≤
((
f(x̃T )− f(x⋆)

)
+ [g(x̃T )]+

)
≤ Õ

(
N2
∑N

i=1

∑m
j=0 γ

T
i,j +N3

√
T

)
. (46)
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D APPENDIX: MORE DETAILS ON THE EXPERIMENT

The experiments are implemented in python, based on the package GPy (GPy, since 2012). Choice
of (Hyper-)parameters. The performance of DMABO (same as general GP-UCB/LCB algorithm)
is mainly impacted by the choice of confidence bound coefficient βt

i,j . For sampled instances from
the Gaussian process, we set βt

i,j according to the theoretical analysis. In real-world practice, βt
i,j

can usually be set as a constant. Indeed, when the kernel choices and the kernel hyperparameters fit
the black-box functions well, setting βt

i,j = 3 typically works well. In our power allocation example,
manually setting βt

i,j = 3.0 works well empirically. We also set λ = 0.022 for the Gaussian process
modeling. We use the common squared exponential kernel functions.

Computational Time. In our experiments, the local decision variables all have low-dimensional
inputs (ni ≤ 3). So we use pure grid search to solve the local primal update problem, which is
relatively cheap as compared to the evaluations of the typical ground-truth functions in practice due
to the known expressions of the lower confidence bound functions.

Performance Metrics. To measure the performance of different algorithms, we use the regret Rt

shown in Eq. (4). To measure the violations, we use the violation of the cumulative black-box con-

straint value Vt =

∥∥∥∥[∑t
τ=1

∑N
i=1 gi,j(x

τ
i )
]+∥∥∥∥ and the cumulative violations for affine constraints

St =
∥∥∥∑t

τ=1

(∑N
i=1 Aix

τ
i − b

)∥∥∥.
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