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ABSTRACT

Adversarial vulnerability persists across modern vision architectures from CNNs
to vision language models (VLMs), yet existing detection methods rely on heuris-
tics without theoretical guarantees. We address the fundamental question of when
adversarial perturbations can be provably detected from a geometric perspective.
Our key insight is that adversarial perturbations cannot simultaneously preserve
geometric structure across spaces with fundamentally different properties. Ac-
cordingly, we construct two such complementary metric spaces. First, we use
a standard CNN embedding space Z, where adversarial samples exhibit signifi-
cant displacement patterns. Second, we build a novel prime-quantized space P ,
that absorbs small perturbations through number-theoretic discretization, result-
ing in minimal displacement, while preserving discriminability. We then leverage
the geometric discrepancies across spaces Z and P to detect adversarial sam-
ples. To the best of our knowledge, we establish the first rigorous separation the-
ory for adversarial detection, proving that adversarial samples create unavoidable
geometric inconsistencies across both spaces. Our framework provides theoret-
ical guarantees including pixel-level absorption bounds, neighborhood diameter
concentration, Gromov-Wasserstein (GW) separation theorems, and practical risk
control. Extensive experiments validate our theoretical predictions and achieve
consistently strong detection performance across a wide range of attack types and
model families.

1 INTRODUCTION

Vision systems have rapidly progressed from CNNs He et al. (2016) to Vision–Language Models
(VLMs) Radford et al. (2021) and multimodal architectures OpenAI (2023), yet adversarial vulner-
ability persists across all these paradigms. As these increasingly capable models are deployed at
scale, the consequences of undetected adversarial attacks also scale, making detection a core safety
requirement.

Defenses fall into three main families. Adversarial training (Madry et al., 2018; Zhang et al., 2019;
Gowal et al., 2021) augments models with adversarial examples. While effective in restricted sce-
narios, it requires expensive retraining and often fails to generalize across diverse attacks, includ-
ing gradient-based (Goodfellow et al., 2015; Madry et al., 2018; Carlini & Wagner, 2017), physi-
cal (Brown et al., 2017), and natural corruptions (Hendrycks & Dietterich, 2019b; Engstrom et al.,
2019). Detection methods (Metzen et al., 2017; Feinman et al., 2017; Ma et al., 2018; Lee et al.,
2018; Ma et al., 2019; Meng & Chen, 2017; Mahmood et al., 2021) rely on auxiliary classifiers or
statistical tests, but remain heuristic and easily broken by adaptive adversaries (Athalye et al., 2018).
Certifiable robustness (Raghunathan et al., 2018; Cohen et al., 2019; Salman et al., 2019) provides
provable invariance regions, but targets robust classification rather than detection, and is compu-
tationally intensive. Trade-off frameworks such as TRADES (Zhang et al., 2019) deepened our
theoretical understanding, but left unanswered the key question: “Can detection itself be endowed
with guarantees, and what properties make adversarial examples inherently detectable?”

Our insight. Clean and adversarial samples leave distinct geometric traces across two complemen-
tary spaces, namely, the CNN embedding space Z and a prime-quantized space P . In Z, clean
samples form tight neighborhoods, while adversarial ones exhibit characteristic displacements that
disrupt local structure. In P , each pixel is discretized by rounding to nearby primes under a secret
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bit mask, so small perturbations are either absorbed within prime gaps or forced into discrete jumps.
This mechanism preserves overall discriminability yet creates systematic cross-space inconsisten-
cies, making adversarial inputs detectable through geometric analysis.

To the best of our knowledge, we establish the first rigorous separation theory for adversarial de-
tection, spanning four levels of guarantees: (i) pixel-level absorption bounds proving when pertur-
bations vanish in P or cross prime-gap boundaries, (ii) K-NN diameter envelopes showing clean
and adversarial neighborhoods diverge differently in Z and P , (iii) cross-space separation theorems
based on Gromov–Wasserstein (GW) distances that yield a non-vanishing gap scaling with dimen-
sion and perturbation strength, and (iv) risk control guarantees establishing that simple thresholding
achieves bounded misclassification rates. Together, these results provide a principled foundation for
adversarial detection, addressing the open question of when and why detection must succeed.

Contributions. (i) We introduce prime quantization, a cryptographically inspired discretization that
generalizes across CNN, VLM, and multimodal architectures, and could extend to other one-way
transforms. (ii) We present a unified theoretical framework proving that adversarial perturbations
necessarily induce cross-space inconsistencies, with guarantees from pixel absorption up through
GW-based separation. (iii) We empirically validate our method on a broad suite of attacks, VLM
zero-shot settings, and adaptive adversaries, demonstrating consistent and strong performance com-
pared to state-of-the-art defenses.

2 RELATED WORK

Adversarial attacks are categorized by attacker knowledge into: (i) white-box (FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2018), C&W (Carlini & Wagner, 2017)), (ii) black-box (ZOO (Chen
et al., 2017), Square (Andriushchenko et al., 2020)), and (iii) adaptive attacks that exploit defense
mechanisms (Athalye et al., 2018), often defeating methods that appear robust under non-adaptive
evaluation.

Detection methods include: (i) autoencoder-based reconstruction (MagNet (Meng & Chen, 2017),
PixelDefend (Song et al., 2018)), (ii) distributional analysis (Mahalanobis (Lee et al., 2018)), (iii)
prediction differences (Feature Squeezing (Xu et al., 2018)), and (iv) learned classifiers (MetaAd-
vDet (Ma et al., 2019)). These approaches remain heuristic and are routinely bypassed by adaptive
adversaries, with no guarantees on when detection must succeed.

Robust training and certification methods such as adversarial training (Madry et al., 2018),
TRADES (Zhang et al., 2019), and certified defenses based on randomized smoothing (Cohen et al.,
2019) or patch-based strategies (Xiang et al., 2022) aim at robust classification rather than detection,
often requiring retraining and incurring accuracy trade-offs.

In contrast, our work provides the first theoretical guarantees that adversarial perturbations create
unavoidable cross-space inconsistencies, yielding a principled basis for detection with quantifiable
confidence. Unlike most prior defenses, we further evaluate on vision–language models in zero-shot
settings, highlighting robustness beyond CNN benchmarks.

3 PRELIMINARIES

We introduce notation and the prime-quantized space used by our detector.

Let X ∈ [0, 1]N×d be N images, each xi ∈ [0, 1]d a flattened vector of d normalized pixels with
label yi ∈ Y (|Y | = C). A classifier fθ = gθ ◦ hθ (where hθ is the feature extractor and gθ the
classification head) has embedding Zi = hθ(xi) ∈ Rm, with Z = [Z1, . . . , ZN ]T . With a slight
abuse of notation, we also use Z to denote the ambient embedding space Rm equipped with the
Euclidean metric dZ(zi, zj) = ∥zi− zj∥2. Thus, each Zi is both a row of the embedding matrix and
a point in metric space (Z, dZ).

Definition 1 (Adversarial perturbation). Given xi, a perturbation η ∈ Rd yields x̃i = xi + η. It is
ϵ-bounded if ∥η∥∞ ≤ ϵ.

To defend against such perturbations, we transform images into a discrete prime space via three
steps: (i) scale to integers, (ii) round to primes, and (iii) rescale.
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Definition 2 (Scaling). For k ∈ N, let Pk = {p ≤ 10k : p prime}. Define Sk(xi,j) = ⌊xi,j10k⌋
and S−1

k (n) = n · 10−k.
Definition 3 (Prime rounding). Given secret bit bj ∈ {0, 1}, map integer n to the nearest prime in
Pk. If pℓ < n < pℓ+1, where pℓ, p+1 ∈ Pk, then R(0)

k (n) = pℓ, R
(1)
k (n) = pℓ+1.

Definition 4 (Prime quantization). The pixel transform is T (bj)
k (xi,j) = S−1

k (R
(bj)
k (Sk(xi,j))).

Extending component-wise yields T (b)
k : [0, 1]d → [0, 1]d.

Example 1. For k = 2, xi,j = 0.38 gives S2 = 38, between 37 and 41. Then T (0)
2 = 0.37,

T
(1)
2 = 0.41. A perturbation 0.385 still maps to 38, hence quantization is unchanged.

Space transformation. T (b)
k maps images into discrete P , where prime gaps and secret (b, k) yield

irregular, attacker-unpredictable rounding. Unlike uniform quantization, prime rounding introduces
structured but unpredictable discretization.

Problem statement. Given x ∈ [0, 1]d, construct a detector D(x) ∈ {clean, adv} by comparing
hθ(x) ∈ Z and T (b)

k (x) ∈ P , ensuring w.h.p. that clean inputs agree across spaces while adversarial
ones create detectable discrepancies.

4 MULTISCALE GROMOV-WASSERSTEIN (GW) ADVERSARIAL DETECTOR

Our method compares neighborhood behaviors of samples across the embedding space Z and the
prime-quantized space P , exploiting their complementary geometries.

Clean neighborhoods. In Z, clean samples cluster by class, so a sample’s local neighborhood
is dominated by its true label and its global neighborhood aligns with class centroids. In contrast,
prime quantization scatters samples uniformly in P , destroying spatial coherence, resulting in neigh-
borhoods that show nearly uniform label distributions without clustering.

Large
Jump

Small
Jump

Figure 1: Geometry in Z (clusters) vs. P
(dispersed).

Adversarial neighborhoods. In Z, adversarial
samples jump from their true cluster toward a wrong
class, shifting both local and global label distribu-
tions. In P , prime quantization often reduces the im-
pact of small perturbations, depending on the quanti-
zation gaps and perturbation strength. Therefore, ad-
versarial neighborhoods tend to resemble their clean
counterparts more closely. This creates systematic
cross-space discrepancies between Z and P .

We next formalize these ideas via neighborhood
maps and quantify their mismatches using Gromov-
Wasserstein (GW) distances.
Definition 5 (Neighborhood map and induced dis-
tributions). Let (M, dM) be a metric space. For a
query q ∈ M and integer K ≥ 1, a neighborhood
map NM

K : M → 2M returns a set of K reference points, defining local neighborhoods when K
corresponds to nearest neighbors or global neighborhoods when K corresponds to class centroids.
The corresponding spatial distribution is µM

K(q) = 1
K

∑
z∈NM

K(q) δz ∈ P(M) (i.e., the space

of probability measures over M). If c : M → {1, . . . , C} is a class-label map, the corresponding
semantic distribution is defined by the pushforward ψM

K(q) = c#µ
M
K(q) = 1

K

∑
z∈NM

K(q) δc(z) ∈
P({1, . . . , C}).

The GW distance compares probability distributions that are supported on possibly distinct metric
spaces via alignment.
Definition 6 (Gromov-Wasserstein Distance). Consider two metric measure (mm) spaces
(X, dX , µX) and (Y, dY , νX) along with a loss functionL2(x, x′, y, y′) := |dX(x, x′)−dY (y, y′)|2,
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the squared GW distance between them is

GW 2(µX , νY ) := inf
γ∈Π(µX ,νY )

∫
X×Y

∫
X×Y

L2(x, x′, y, y′)γ(dx× dy)γ(dx′ × dy′)

, where Π(µX , νY ) denotes the set of couplings between measures µX and µY . Additionally, γ(dx×
dy)γ(dx′ × dy′) represent integration w.r.t. the product coupling γ ⊗ γ.

As exact computation of GW 2 uses a quadratic assignment problem (QAP), known to be NP-
hard Abdel Nasser H. Zaied (2014), various approximate reformulations that are computationally
tractable have been proposed. We focus on the entropic GW distance proposed by Peyré et al.
(2016)

GW 2
λ(µX , νY ) := inf

γ∈Π(µX ,νY )

∫ ∫
L2(x, x′, y, y′)γ(dx× dy)γ(dx′ × dy′) + λKL(γ∥µX ⊗ νY )

, where KL(·, ·) is the Kullback-Liebler divergence between coupling γ and the product measure
µX ⊗ νY , and λ > 0 is a regularization parameter.

Choice of scales (lo, gl). The parameter lo denotes the local neighborhood size, i.e., the k in the
local k-NN graph used to enforce within-space consistency in both Z and P spaces. The parameter
gl denotes the number of k-means centroids used to construct the global support for the cross-
space GW coupling. This two-scale local/global structure follows the standard decomposition in
GW geometry.

Algorithm. Our detector takes an image x, extracts its CNN embedding z = hθ(x) ∈ Z and prime-
quantized version p = T

(b)
k (x) ∈ P , and compares neighborhoods at two scales (s ∈ {lo, gl}).

For each scale, we compute (i) spatial distributions µZs , µ
P
s , (ii) semantic distributions ψZs , ψ

P
s , and

derive g1 = GW2
λ(µ

Z
s , µ

P
s ), g2 = GW2

λ(ψ
Z
s , ψ

P
s ), and entropy h = ENTROPY(ψZs , ψ

P
s ). The

resulting six-dimensional feature vector f(x) = [g1,lo, g2,lo, hlo, g1,gl, g2,gl, hgl] encodes cross-space
discrepancies, which are classified by an SVM. Full pseudocode is provided in Algorithm 1 in
Appendix K.1.

5 GEOMETRIC FOUNDATIONS AND THEORETICAL GUARANTEES

We begin by analyzing the stability of the prime quantization map T (b)
k , which is central to our cross-

space detector. The key question is, ”when does a perturbation vanish into quantization noise, and
when does it inevitably alter the output?” Our results formalize two complementary phenomena:
pixel-level local stability and image-level injectivity. Prime quantization related proofs are deferred
to Appendix C. All our formal results are stated for local neighborhoods. While the framework
naturally extends to global neighborhoods, we leave the full theoretical treatment of that case to
future work.

5.1 PIXEL-LEVEL ABSORPTION

The absorption radius (Definition 7) captures the largest perturbation at a pixel that leaves its quan-
tized value unchanged.
Definition 7 (Absorption radius). For xj ∈ [0, 1] with Sk(xj) = n ∈ (pℓ, pℓ+1), the absorption
radius is rabs(xj , k) =

min{n−pℓ, pℓ+1−n}
10k

.

Proposition 1 (Absorption guarantee). If |ηj | ≤ rabs(xj , k), then T (bj)
k (xj + ηj) = T

(bj)
k (xj) for

all bits bj .

Lemma 1 (Absorption bounds). For any xj ∈ [0, 1], 1
2·10k ≤ rabs(xj , k) ≤

1
2 .

Remarks. These results formalize pixel-level stability: perturbations smaller than rabs vanish
under prime quantization, while larger ones necessarily cause a quantization change. Although
Lemma 1 permits rabs ≤ 1/2, practical values are tiny (e.g., ≤ 1.8 × 10−3 for k = 4). Since ad-
versarial budgets in vision (ϵ ≥ 1/255 ≈ 3.9 × 10−3) typically exceed these radii, most attacks
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cross prime boundaries and induce detectable discrepancies between Z and P . Even when pertur-
bations lie near or below rabs, clean and adversarial samples seldom quantize identically. Because
prime gaps are irregular, even a 1/255 change can cross a prime-interval midpoint under the same
bit-vector b, yielding different prime assignments. And when some coordinates do round identically,
the Z-space embedding remains sensitive while P stays piecewise constant, producing a measurable
Z–P mismatch. Larger prime resolution k further shrinks rabs and increases the likelihood of such
discrepancies.

5.2 IMAGE-LEVEL INJECTIVITY

While prime quantization is many-to-one per pixel, we must ensure it does not collapse distinct
images globally. Lemma 2 shows that such collisions are exponentially unlikely.

Lemma 2 (Collision probability). Fix k ≥ 2 and let N := 10k. Let x, x′ ∈ [0, 1]d be two inde-
pendent random images with i.i.d. pixel marginals whose densities are bounded by Λ on [0, 1] (in
particular, Λ = 1 for the uniform distribution). For a fixed secret bit vector b ∈ {0, 1}d, let T (b)

k
be the prime–quantization transform (Definition 4). Assume the prime–gap envelope Gk from As-

sumption 1. Then, Pr
[
T

(b)
k (x) = T

(b)
k (x′)

]
≤
(
Λ2 Gk

N

)d
. In particular, for Λ = 1, the collision

probability decays as
(
Gk/10

k
)d

in the number of pixels.

Remarks. Lemma 2 establishes that global collisions are vanishingly rare. Even with pixel-level
absorption, distinct images remain separable: e.g., for CIFAR-10 (d = 3072) and k = 4, (Gk/10k)d
is effectively zero. Thus, quantization is locally many-to-one but globally almost injective, ensuring
discriminability while dampening small perturbations.

5.3 BRIDGE TO GW SEPARATION

Pixel-level absorption (Def. 7, Prop. 1) and image-level injectivity (Lemma 2) set the boundary
conditions: if ϵ ≤ rabs, perturbations vanish in P while Z still moves; if ϵ > rabs, quantization
shifts and P changes—so in both regimes Z and P neighborhoods diverge. To formalize these
divergences, we embed samples into spatial–semantic product spaces C = (Z × Y, dC) and K =

(P×Y, dK), representing each image as (hθ(x), y) and (T
(b)
k (x), y). By Theorem 5 and Corollary 2,

the ℓ∞ product is the tightest among admissible component metrics, so any discrepancy in geometry
or label mass yields separation in C and K. This construction underlies the GW envelope and gap
theorems that follow.

5.4 DIAMETER ENVELOPES IN C AND K

We now summarize the behavior of k-nearest neighbor diameters in the two product spaces C (CNN-
based) and K (prime-quantized). For clean samples, diameters concentrate tightly around a median
distance; for adversarially perturbed samples, explicit additive expansion terms appear. The full
technical statements and proofs are deferred to Appendix E.

Lemma 3 (Unified local diameter envelopes in C and K). For any confidence δ ∈ (0, 1) and local
neighborhood size Klo ≥ 2, and under the variance proxy (Assumption 2) and prime-gap sensitivity
(Assumption 3) conditions (see Appendix E), the following bounds hold for clean queries q and
adversarial queries q̃ = q + η:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Geometric inconsistency detection and gap theorem validation. 1st panel: clean neigh-
borhoods; 2nd panel: adversarial separation (γC = 3.567); 3rd panel: gap theorem across ε ∈
{2/255, 4/255, 6/255, 8/255}; 4th panel: risk control thresholding (left:clean; right:adversarial).

diam
(
N C
Klo

(q)
)
≤ 2µC

(
1 +

√
2 logKlo

d +

√
2 log(2/δ)

d

)
︸ ︷︷ ︸

=:UC
clean

, (1)

diam
(
N C
Klo

(q̃)
)
≤ UC

clean + 2
√
d σ√
δ
∥η∥∞︸ ︷︷ ︸

Jacobian drift

+ 21{y ̸=ŷ}, (2)

diam
(
NK
Klo

(q)
)
≤ 2µmax

K (q)
(
1 + Ck

µmax
K (q)

√
2 logKlo

d + Ck

µmax
K (q)

√
2 log(2/δ)

d

)
︸ ︷︷ ︸

=:UK
clean

, (3)

diam
(
NK
Klo

(q̃)
)
≤ UK

clean + Ck
√
d
(√

2 logKlo +
√

2 log(2/δ)
)

︸ ︷︷ ︸
key sensitivity

+ 2
√
d σ√
δ
∥η∥∞ + 21{y ̸=ŷ}.

(4)

Here µC is the clean median pairwise distance in C, µmax
K (q) is the maximum key-annealed median

distance in K, σ is the variance proxy from Assumption 2, Ck = 2Gk is the prime-gap sensitivity
constant from Assumption 3, and η is the adversarial perturbation.

Geometric Insight. In C, clean neighborhood diameters concentrate around a median distance
(App. Lemma 6), while adversarial perturbations add a Jacobian-driven drift and a possible label-
flip penalty (App. Thm. 7; cf. equation 1–equation 2). In K, clean neighborhoods are stabilized by
prime-gap sensitivity (App. Thm. 8), whereas adversarial perturbations add terms from key sensi-
tivity, perturbation norms, and label flips (App. Thm. 9; cf. equation 3–equation 4). Together these
define the diameter envelopes that underlie the cross-space GW theorems. Fig. 2 (1st–2nd panels)
empirically confirms this: clean samples form compact clusters consistent with Thms. 6, 8, while
adversarial queries induce the predicted separation gap γC = 3.567 (App. Thm. 2).

5.5 GROMOV–WASSERSTEIN BOUNDS: CLEAN VS. ADVERSARIAL

We now move from local geometry (K-NN diameter bounds in C and K, Lemma 3) to a distribu-
tional geometry comparison across spaces. The Gromov–Wasserstein (GW) distance aligns pairwise
distance structures, allowing us to bound: (i) in the clean case, similarity of C and K, and (ii) in the
adversarial case, a provable increase when perturbations inflate diameters differently across spaces.
This separation underlies our detection framework.

Theorem 1 (Clean cross–space GW upper bound via K-NN star radii). Fix a clean query x and
consider its local neighborhoods N C

K(x) ⊂ C and NK
K (x) ⊂ K, each endowed with the uniform

probability measure on K points.
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Let RC and RK denote the corresponding K-NN radii (the K-th star distances from x) in C and
K respectively. Then, for any confidence levels δC , δK ∈ (0, 1), the following high-probability
envelopes hold:

RC ≤ µC

(
1 +

√
2 logK
d +

√
2 log(2/δC)

d

)
with probability ≥ 1− δC , (5)

RK ≤ µK

(
1 + Ck

µK

√
d
(√

2 logK +
√
2 log(2/δK)

))
with probability ≥ 1− δK. (6)

Consequently, with probability at least 1− (δC + δK),

GW2
(
N C
K(x), NK

K (x)
)
≤ 4

(
1− 1

K

) (
RC +RK

)2
. (7)

Full proof and derivation of radius envelopes equation 5–equation 6 are given in Appendix G.

Notation (adversarial queries, radii, and gap). For a clean input x and perturbation η, the ad-
versarial query in M ∈ {C,K} is q̃M = zM(x + η). Its K nearest neighbors form ÑM

K (x + η) =
{zM1 , . . . , zMK} with radii rMi = dM(z

M
i , q̃M) and maximum Radv

M = maxi r
M
i . We partition the K

neighbors into an inner set L of size (1− θ)K and outer set H of size θK, and define the separation
gap as γM = mini∈H r

M
i −maxj∈L r

M
j .

Theorem 2 (Adversarial cross–space GW lower bound). Fix a query x and perturbation η, and
consider the adversarial neighborhoods Ñ C

K(x + η) and ÑK
K (x + η), each with uniform measure

on K points. Let γC be the separation gap and let Radv
K denote the adversarial K–NN radius in K,

bounded as in Theorem 8. Then, with probability at least 1−δenvK , GW2
(
Ñ C
K(x+η), ÑK

K (x+η)
)
≥

2 θ2
(
γC − 2Radv

K

)2
+

.

Full proof is provided in Appendix G.

Mirror results. For brevity, we omit the symmetric (i) clean lower bounds and (ii) adversarial up-
per bounds on GW, but detailed proofs are provided in Theorem 10 and Theorem 11 in Appendix G.

Remarks. Together with Theorem 1, these results establish a clear separation: GW distance is
tightly bounded for clean neighborhoods but grows under adversarial perturbations whenever γC
dominatesRadv

K . Empirical results in Fig. 2 (panel 3) confirm this gap theorem: the cross-space GW
discrepancy increases monotonically with perturbation strength ε. The growth matches the theoret-
ical scaling Ω(d2σ2ε2)−O( logKd ) derived by combining our adversarial lower bound (Theorem 2)
with clean concentration envelopes (Lemma 3; see Appendix G). This demonstrates that stronger
perturbations amplify cross-space inconsistencies, making detection increasingly reliable.

5.6 GW GAP AND RISK CONTROL

Theorem 3 (Cross–space GW gap). With probability at least 1 − (δC + δK + δenvK + δaux), the
clean and adversarial GW discrepancies satisfy |GW2

adv−GW2
clean| ≥ τ := max{τadv, τclean, 0},

where τadv = Ladv − Uclean and τclean = Lclean − Uadv. Under Assumption 2, for fixed K and
perturbation ∥η∥∞ = ε, we obtain τ = Ω(d2σ2ε2)−O( logKd ).

Lemma 4 (Risk control via GW margin). If the gap event holds with margin τ > 0 and an estimator

ĜW2
λ satisfies Pr

(
|ĜW2

λ − GW2| ≤ τ/3
)
≥ 1 − δest, then thresholding ĜW2

λ at the midpoint
between clean and adversarial envelopes makes no error on this event. Thus Pr(misclassification) ≤
Pr(Ecgap) + δest.

From GW to entropic GW. All bounds above were stated for quadratic GW2. For entropic
GW GW2

λ with λ > 0, the lower bounds remain unchanged, while the upper bounds incur only
an additive 2λ logK (Corollaries 7–8). Hence, the clean/adversarial separation guarantees extend
seamlessly to the entropic case used in practice.

7
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Remarks. Theorem 3 certifies a provable margin: clean neighborhoods in C,K contract to
O( logKd ), while adversarial perturbations inflate by Ω(d2σ2ε2). Lemma 4 translates this into a

statistical guarantee: once ĜW2
λ concentrates within τ/3, thresholding achieves negligible error.

Empirical evidence (Fig. 2, panel 4) confirms the theory: clean and adversarial discrepancy dis-
tributions separate cleanly, validating the predicted risk bound. Proofs and full derivations are in
App. G.

6 EMPIRICAL ANALYSIS

6.1 EXPERIMENTAL SETUP

Adversarial Attacks. We evaluate a broad suite spanning gradient-based, optimization, spatial, and
perceptual perturbations: Auto-Attack (AA) (Croce & Hein, 2020), Carlini–Wagner (CW) (Carlini
& Wagner, 2017), Patch (PT) (Brown et al., 2017), Projected Gradient Descent (PGD) (Madry et al.,
2018), Spatial (SA) (Engstrom et al., 2019), Square (SQ) (Andriushchenko et al., 2020), Universal
Perturbations (UP) (Moosavi-Dezfooli et al., 2017), Auto-PGD (AP) (Croce & Hein, 2020), Fast
Gradient Sign (FG) (Goodfellow et al., 2015), Frequency (FA) (Yin et al., 2019), Gaussian Blur
(GB) (Zhang et al., 2022), Pixel Flip (PF) (Su et al., 2019), Semantic Rotation (SR) (Hosseini &
Poovendran, 2018), AdvAD (AAD) (Li et al., 2024), Penalizing Gradient Norm (PGN) (Ge et al.,
2023), and Block Shuffle and Rotation (BSR) (Wang et al., 2024). We use these boldface abbre-
viations throughout tables and figures for brevity. Refer to Table 6 in Appendix H.5 for attack
hyperparameter settings and defaults.

Baseline Defenses. We benchmark against representative detection methods: Mahalanobis Detec-
tor (MD) (Lee et al., 2018), Feature Squeezing (FS) (Xu et al., 2018), Meta-Adversarial-Detect
(MAD) (Ma et al., 2019), MagNet (MN) (Meng & Chen, 2017), Multiple Perturbation Detector
(EA) (Zhang et al., 2023), and Be Your Own Neighborhood (BY) (He et al., 2022).

Evaluation Metrics. We report the following complementary metrics. (1) Binary detection accu-
racy: overall accuracy of classifying inputs as clean or adversarial. (2) True Positive Rate (TPR):
fraction of adversarial samples correctly flagged as adversarial, i.e., TPR = detected adversarial

all adversarial . (3) End-
to-End accuracy: proportion of clean samples correctly classified and passed by the detector, plus
adversarial samples correctly blocked; this reflects system-level robustness under attack. (4) Pre-
cision: fraction of samples flagged as adversarial that are truly adversarial. (5) Recall: identical to
TPR—the fraction of adversarial samples correctly detected. (6) F1-score: harmonic mean of preci-
sion and recall, summarizing detection quality under imbalance. (7) AUC-ROC: area under the ROC
curve, measuring threshold-independent separability between clean and adversarial distributions.

6.2 ADVERSARIAL DETECTION ACCURACY

Attack Ours MD FS MAD MN

AA 97.9 68.9 82.7 52.0 74.1
CW 97.0 73.6 86.0 51.4 56.7
PT 98.0 86.4 67.8 50.7 57.3
PGD 97.8 91.3 74.4 51.1 81.0
SA 96.8 78.1 74.4 41.1 54.9
SQ 97.6 89.2 88.5 51.0 44.4
UP 97.8 66.4 53.7 50.7 47.9
AP 97.6 68.3 81.4 50.2 73.6
FG 98.0 73.8 60.9 49.6 44.7
FA 95.1 49.9 50.0 49.7 49.8
GB 85.7 49.8 51.7 48.2 48.6
PF 97.0 51.7 51.4 49.5 49.4
SR 95.9 50.3 52.7 50.1 49.1

Table 1: Binary detection accuracy (%). Best re-
sults are in bold and second best are underlined.

Setup. We evaluate detection on the datasets
CIFAR-10 Krizhevsky (2009), FMNIST Xiao
et al. (2017), KMNIST Clanuwat et al. (2018),
and ImageNet Deng et al. (2009) using models
ResNet18 He et al. (2016) and ViT Dosovitskiy
(2020), with adversarial datasets generated from
the attack suite in Sec. 6.1. Detector/classifier hy-
perparameters and attack configurations appear in
Appendix I and Appendix H.5, respectively. We
note that ResNet18 on CIFAR-10 is employed as
our default configuration.

Results and analysis.

Table 1 shows that our detector achieves ≥ 95%
binary detection on 12 of 13 attacks, with Gaus-
sian blur (85.7%) as the only exception. Accu-
racy remains consistently high across attack fam-
ilies: (i) Gradient/optimization (AA, CW, PGD, AP): 96–98%, with margins of +10–20 points, since
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Attack Model Ours MD FS MAD MN EA BY

PGD ResNet-18 0.97 0.91 0.71 0.25 0.78 0.96 0.70
ViT 0.95 0.65 0.75 0.57 0.01 0.95 0.80

SQ ResNet-18 0.96 0.89 0.85 0.24 0.01 0.90 0.57
ViT 0.95 0.66 0.86 0.56 0.02 0.89 0.61

PT ResNet-18 0.98 0.86 0.54 0.26 0.03 0.89 0.80
ViT 0.95 0.66 0.67 0.54 0.01 0.89 0.81

AAD ResNet-18 0.95 0.31 0.46 0.52 0.13 0.91 0.59
ViT 0.93 0.67 0.57 0.64 0.01 0.92 0.82

PGN ResNet-18 0.95 0.63 0.62 0.24 0.01 0.90 0.77
ViT 0.96 0.67 0.62 0.64 0.02 0.93 0.77

BSR ResNet-18 0.95 0.67 0.52 0.23 0.40 0.92 0.81
ViT 0.98 0.67 0.56 0.64 0.02 0.92 0.78

Table 2: F1-score comparison on CIFAR-10 across multiple attacks using ResNet-18 and ViT. Best
results are in bold, second best are underlined.

small-norm shifts in Z are often absorbed in P , producing sharp cross-space mismatches; (ii) Spa-
tial/patch (SA, PT): 97–98%, where local structural changes disrupt geometry differently in each
space; (iii) Transfer/decision-based (SQ, UP): 97–98%, where transfer-induced distortions misalign
Z and P far more than gradient-based attacks, yielding especially large gains (+31 points on UP);
and (iv) Perceptual/frequency (FA, PF, SR): 95–97%, where frequency and semantic shifts perturb
P ’s discrete neighborhoods and Z’s embeddings in complementary ways, creating highly detectable
discrepancies. Gaussian blur is the hardest case because it averages neighboring pixels, suppress-
ing edges and textures, inducing similar distortions in both Z and P . This reduces the cross-space
discrepancy that our detector exploits. Nevertheless, uneven quantization in P ensures residual sep-
aration, and we still outperform all baselines on blur. Full per-dataset results and additional metrics,
including TPR/FPR heatmaps and end-to-end-accuracy, are reported in Table 13(Appendix L) and
Appendix M respectively. Across all six attacks and both architectures (ResNet-18 and ViT), our
method consistently achieves the highest F1-scores, typically exceeding 0.95. EA generally emerges
as the strongest baseline yet remains noticeably weaker than our detector, especially under patch-
based and structure-altering attacks such as SQ and PT. Modern attacks such as AAD, PGN, and
BSR also show the same trend: while EA or BY occasionally achieve strong second-best perfor-
mance, our approach maintains a clear advantage across architectures. These results highlight the
robustness and model-agnostic behavior of the proposed Z–P discrepancy framework.

6.3 ADAPTIVE ATTACK RESISTANCE AND ABLATION

Adaptive attacks. We test two white-box adaptive formulations: (i) cross-space (Ccross) and (ii)
multi-scale (Cms), where the adversary knows the architecture but not the secret bit vector b⋆. The
complete formulation of the adversary’s objective, the prior distribution over unknown secret bits,
the consistency penalties, and the optimization procedure are provided in Appendix J. As shown
in Table 3a, our method maintains strong detection (84–90%) across CIFAR-10, FMNIST, and
KMNIST, demonstrating robustness even when defenses are explicitly targeted. This accuracy drop
relative to non-adaptive attacks arises because the adversary now explicitly optimizes to minimize
cross-space discrepancies (CNN vs. crypto features). By enforcing feature consistency under a prior
over b, they can partially reduce the mismatches our detector relies on.

Ablation study. To quantify feature contributions, we compare detectors using only local GW
features, only global GW features, or both. Table 3b shows that while local or global features alone
yield moderate performance (65–83%), combining them achieves 97–98% across all attacks. This
confirms that local fine-grained cues and global structural signals are complementary.

6.4 ZERO-SHOT SETTING

Adversarial robustness in large-scale Vision–Language Models (VLMs) remains relatively under-
explored, especially in the zero-shot regime where models are accessed only through APIs and

9
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Dataset Ccross Cms

CIFAR-10 86.7 84.5
FMNIST 89.6 87.9
KMNIST 88.2 86.8

(a) Adaptive attack detection (%).

Features AA CW PT PGD FG

Local only 67.7 76.2 73.2 62.5 79.1
Global only 83.5 66.5 75.6 65.0 71.3
Both 97.9 97.0 98.0 97.8 98.0

(b) Ablation on CIFAR-10 (%).

Table 3: Adaptive robustness and feature ablation. (a) Our method resists adaptive white-box
attacks despite defense-aware optimization. (b) Combining local and global GW features yields the
strongest detection across attacks.

Attack Dataset
Detection Accuracy / AUC Precision / Recall / F1

LLaVA-1.5 Qwen-2.7B-VL LLaVA-1.5 Qwen-2.7B-VL

APGD
CalTech-101 89.50 / 0.99 89.63 / 0.99 0.89 / 0.89 / 0.89 0.89 / 0.89 / 0.89
Food-101 90.44 / 0.99 87.72 / 0.99 0.90 / 0.90 / 0.90 0.87 / 0.87 / 0.87
CalTech-256 88.60 / 0.95 87.83 / 0.99 0.88 / 0.88 / 0.88 0.87 / 0.87 / 0.87

PGD
CalTech-101 89.50 / 0.99 87.13 / 0.99 0.89 / 0.89 / 0.89 0.87 / 0.87 / 0.86
Food-101 87.13 / 0.99 88.42 / 0.99 0.87 / 0.87 / 0.87 0.88 / 0.88 / 0.88
CalTech-256 83.00 / 0.91 88.76 / 0.99 0.83 / 0.83 / 0.82 0.88 / 0.88 / 0.88

FGSM
CalTech-101 90.80 / 0.99 89.20 / 0.99 0.90 / 0.90 / 0.90 0.89 / 0.89 / 0.89
Food-101 87.08 / 0.94 90.74 / 0.99 0.84 / 0.81 / 0.81 0.90 / 0.90 / 0.90
CalTech-256 85.50 / 0.92 88.07 / 0.99 0.85 / 0.85 / 0.85 0.88 / 0.88 / 0.88

Table 4: Zero-shot adversarial detection performance on LLaVA-1.5 and Qwen-2.7B-VL across
multiple datasets and attacks.

adversaries rely on transfer attacks. This provides a natural testbed for evaluating cross-model gen-
eralization, since neither gradients nor model parameters are available.

We evaluate the zero-shot transferability of our detector across two recent VLMs—LLaVA-1.5-
7B (Liu et al., 2023) and Qwen-2.7B-VL qwe (2024)—on three diverse datasets: CalTech-101 Fei-
Fei et al. (2004), Food-101 Bossard et al. (2014), and CalTech-256 Griffin et al. (2007). Adversarial
examples are generated using PGD, APGD, and FGSM following (Cui et al., 2024), and CLIP (Rad-
ford et al., 2021) embeddings define the Z-space. Table 4 reports detection accuracy, AUROC, and
precision/recall/F1 metrics for all model–dataset combinations.

Across all attacks and datasets, the detector achieves strong zero-shot transferability: detection ac-
curacies are consistently ≥ 83%, AUROC values ≥ 0.94 (often ≥ 0.99), and precision/recall/F1
scores typically remain ≥ 0.87. These results indicate robust generalization across VLM architec-
tures without requiring access to model internals.

The robustness stems from adversarial perturbations disrupting semantic alignment in Z while being
unevenly absorbed in P , yielding a persistent cross-space discrepancy detectable even under trans-
fer. Additional robustness and generalization results—including TPR/FPR heatmaps, cross-attack
transfer, and cross-model generalization—are provided in Appendix L.

7 CONCLUSION

We introduced a principled framework for adversarial detection based on geometric inconsistencies
between the embedding space Z and a prime-quantized space P . Our theory shows that adversarial
perturbations inevitably create detectable cross-space discrepancies, providing the first guarantees
for when detection must succeed. Experiments confirm consistently high detection accuracy across
diverse attacks, strong generalization to zero-shot VLMs, and robustness to adaptive adversaries.
These results demonstrate that geometric reasoning offers a solid foundation for adversarial robust-
ness. An immediate direction is to adapt our framework to multimodal models, where both adver-
sarial pressure and generalization demands are higher. Extending our theoretical guarantess from
local to global neighborhoods also forms an interesting direction for future work.
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8 REPRODUCIBILITY STATEMENT

In accordance with the guidelines, we present all assumptions, definitions, and proofs underlying the
theoretical results in Appendix C–G. Implementation details, training setups, and hyperparameters
of our method are provided in Appendix K and Appendix I, enabling independent reproduction of
results. Due to institutional clearance requirements, we cannot release source code at submission
time, but the algorithmic descriptions and parameter specifications are sufficient to reimplement our
method. We will make code available once internal review permits.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Qwen2 technical report. 2024.

Laila Abd El-fatah Shawky Abdel Nasser H. Zaied. A survey of quadratic assignment problems.
International Journal of Computer Applications, 2014.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European conference
on computer vision, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization. Princeton
University Press, Princeton, NJ, 2009.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In European Conference on Computer Vision, 2014.
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APPENDIX

A LLM USAGE

In this work, we employed large language models (LLMs) as auxiliary tools for: (1) polishing
and refining text, (2) assisting in literature search and related work, (3) formatting tables, and (4)
providing coding support (e.g., debugging and boilerplate generation).

B NOTATION

For ease of reference, we summarize in Table 5 the main symbols and spaces used throughout the
paper. Unless otherwise noted, all notation is consistent across sections.
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Symbol Meaning

Data & embeddings
X = {xi}Ni=1, xi ∈
[0, 1]d

Dataset of N images (dimension d).

Y = {1, . . . , C}, yi ∈
Y

Label set and label of xi.

hθ : [0, 1]d→Rm CNN feature extractor.
zi = hθ(xi) ∈ Rm Embedding of xi.
T

(b)
k Prime quantization map with key b and resolution k.

Qk,b(x) Prime–quantized embedding of x.
P Prime–quantized space (Euclidean metric).

Product spaces & metrics
C = (Z × Y, dC) CNN–label product space;

dC((z, y), (z
′, y′)) = max{∥z − z′∥2,1[y ̸= y′]}.

K = (P × Y, dK) Prime–label product space (analogous metric).

Neighborhoods & radii
NM

K (q) K–nearest neighbors of q in M ∈ {C,K}.
RM, R

adv
M Clean / adversarial K–NN radii in M.

rMi Distance of i-th neighbor to q in M.
γM Separation gap between outer and inner neighbor groups.

GW quantities & envelopes
GW2, GW2

λ Quadratic and entropic GW discrepancies.
DM Distance matrix in space M.
π Coupling (transport plan) in GW.
U·, L· GW upper / lower envelopes.
τ Two–sided GW margin.

Perturbations & constants
η, ∥η∥∞ ≤ ϵ Adversarial perturbation and budget.
µC Median pairwise distance in C.
µkey
K , µmax

K Key–annealed median; maximum over dataset.
σ Variance proxy (Assumption A1).
Gk, Ck = 2Gk Prime gap bound (Dusart) and sensitivity constant.
δ Confidence parameters (clean/env/grad/est/gap).
d, m, C, N, K Input dim, embedding dim, #classes, #samples, #neighbors.
b ∈ {0, 1}d, k Secret key bits; quantization resolution.

Table 5: Notation summary used throughout the paper.

C PROOFS FOR PRIME QUANTIZATION RESULTS

Proof Roadmap. The auxiliary results in this section establish the robustness of the prime quan-
tization transform under bounded perturbations. We begin with Lemma 5, which shows how a
perturbation of size ϵ translates into an integer drift in the scaled domain. This feeds directly into
Theorem 4, which proves that whenever the perturbation budget exceeds the distance to a prime
boundary, one can construct a feasible perturbation that crosses the gap, thereby changing the quan-
tized value. To complement this, we define the absorption radius (Definition 7), derive the guarantee
that perturbations below this radius are absorbed (Proposition 1), and bound the possible size of
this radius in Lemma 1. Finally, Corollary 1 ties these ingredients together, yielding a crisp detec-
tion condition: perturbations below the absorption radius leave quantization unchanged, while those
above it necessarily induce a detectable change.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 5 (Perturbation budget constraint on scaled pixel values). Let x ∈ [0, 1]d be an image and
xj ∈ [0, 1] its j-th pixel. Consider a perturbation vector η ∈ Rd with ∥η∥∞ ≤ ϵ. Then for each
pixel xj , ∣∣Sk(xj + ηj)− Sk(xj)

∣∣ ≤ ⌊ϵ · 10k⌋+ 1.

Proof. We have Sk(xj + ηj) = ⌊(xj + ηj) · 10k⌋ = ⌊xj · 10k + ηj · 10k⌋ and Sk(xj) = ⌊xj · 10k⌋.
Since ∥η∥∞ ≤ ϵ, it follows that |ηj | ≤ ϵ and hence |ηj · 10k| ≤ ϵ · 10k. By the floor inequality
|⌊a+ b⌋ − ⌊a⌋| ≤ ⌈|b|⌉, it follows that,∣∣Sk(xj + ηj)− Sk(xj)

∣∣ = ∣∣⌊xj · 10k + ηj · 10k⌋ − ⌊xj · 10k⌋
∣∣

≤ |ηj · 10k|+ 1

≤ ⌊ϵ · 10k⌋+ 1.

Theorem 4 (ϵ-Dependent Gap-Crossing Detection). Let xj ∈ [0, 1] be the j-th pixel of an image,
with Sk(xj) = n ∈ (pl, pl+1), and let ϵ > 0 be a perturbation budget such that

ϵ · 10k > min{n− pl, pl+1 − n }.

Then there exists a perturbation ηj with |ηj | ≤ ϵ such that Sk(xj) and Sk(xj + ηj) lie in different
prime gap intervals, and hence

T
(bj)
k (xj + ηj) ̸= T

(bj)
k (xj)

for any secret bit bj ∈ {0, 1}.

Proof. From Lemma 5, any perturbation |ηj | ≤ ϵ induces an integer drift in the scaled domain of at
most ⌊ϵ ·10k⌋+1. Thus, whenever ϵ ·10k exceeds the distance from n to the nearest prime boundary,
some perturbation ηj exists that pushes Sk(xj) across that boundary.

Since Sk(xj) = n ∈ (pl, pl+1), two cases arise:

(i) Closer to pl. If n − pl ≤ pl+1 − n and ϵ · 10k > n − pl, choose ηj < 0 with −ϵ ≤ ηj <

−(n− pl)/10k. Then Sk(xj + ηj) ≤ ⌊n+ ηj · 10k⌋ < pl, placing the perturbed value in (pj−1, pl).

(ii) Closer to pl+1. If pl+1−n < n−pl and ϵ·10k > pl+1−n, choose ηj > 0 with (pl+1−n)/10k <
ηj ≤ ϵ. Then Sk(xj + ηj) ≥ ⌊n+ ηj · 10k⌋ > pl+1, placing the perturbed value in (pl+1, pj+2).

In both cases, Sk(xj + ηj) and Sk(xj) lie in different prime-gap intervals. Since R(bj)
k rounds each

integer to one of the two primes bracketing its interval, the images

R
(bj)
k (Sk(xj)) ∈ {pl, pl+1}, R

(bj)
k (Sk(xj + ηj)) ∈ {pℓ, pℓ+1}, ℓ ̸= j

must map to disjoint prime sets. Hence

T
(bj)
k (xj) = S−1

k (R
(bj)
k (n)) ̸= S−1

k (R
(bj)
k (m)) = T

(bj)
k (xj + ηj).

Therefore, if ϵ · 10k > min{n− pl, pl+1 − n}, some perturbation |ηj | ≤ ϵ necessarily changes the
prime quantization output, regardless of the secret bit bj .

Remark 1. The condition in Theorem 4 is sufficient: it ensures that some perturbation of size ≤ ϵ
crosses a prime boundary, though not every direction must. This simplification is enough for our
later GW separation results.

Definition 7 (Absorption radius). For xj ∈ [0, 1] with Sk(xj) = n ∈ (pℓ, pℓ+1), the absorption
radius is rabs(xj , k) =

min{n−pℓ, pℓ+1−n}
10k

.

Proposition 1 (Absorption guarantee). If |ηj | ≤ rabs(xj , k), then T (bj)
k (xj + ηj) = T

(bj)
k (xj) for

all bits bj .
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Proof. By Definition 7 of absorption radius rabs(xj , k), we have Sk(xj), Sk(xj + ηj) ∈ (pℓ, pℓ+1)
for the same prime gap interval. Since both Sk(xj) and Sk(xj + ηj) lie in the same prime gap
(pℓ, pℓ+1), the prime rounding operator R(bj)

k maps both to the same prime: R(bj)
k (Sk(xj + ηj)) =

R
(bj)
k (Sk(xj)).

Applying S−1
k to both sides:

T
(bj)
k (xj + ηj) = S−1

k (R
(bj)
k (Sk(xj + ηj))) = S−1

k (R
(bj)
k (Sk(xj))) = T

(bj)
k (xj).

Lemma 6 (Elementary Prime Gap Bound Hardy & Wright (2008)). For any two consecutive primes
pl < pl+1, we have the prime gap as pl+1 − pl ≤ pl.
Assumption 1 (Prime-gap envelope for all k ≥ 2). Let N = 10k. There exists an absolute constant
C0 > 0 covering N < x0 = 396,738 such that

Gk := C0 +
N

25 (lnN)2

satisfies pℓ+1 − pℓ ≤ Gk for all consecutive primes pℓ < pℓ+1 ≤ N . This is a direct consequence
of Proposition 6.8 in Dusart Dusart (2010).

Lemma 1 (Absorption bounds). For any xj ∈ [0, 1], 1
2·10k ≤ rabs(xj , k) ≤

1
2 .

Proof. By Definition 7, for the j-th pixel xj ∈ [0, 1] with Sk(xj) = n ∈ (pℓ, pℓ+1), the absorption
radius is

rabs(xj , k) =
min{n− pℓ, pℓ+1 − n }

10k
.

We will now proceed to prove each bound separately.

(i) Lower bound. The minimum prime gap is 1 (between 2 and 3). Hence for any n ∈ (pℓ, pℓ+1), at
least one of (n − pℓ) or (pℓ+1 − n) is at least 1/2. Thus, min{n − pℓ, pℓ+1 − n } ≥ 1

2 , which
implies rabs(xj , k) ≥ 1

2·10k .

(ii) Upper bound. The maximum of min{n − pℓ, pℓ+1 − n } occurs when n is at the midpoint of
the prime gap, i.e., min{n − pℓ, pℓ+1 − n } ≤ pℓ+1−pℓ

2 . Since pℓ+1 ≤ 10k by construction, it

follows that rabs(xj , k) ≤ 10k/2
10k

= 1
2 . Hence, we obtain 1

2·10k ≤ rabs(xj , k) ≤ 1
2 , which

completes the proof.

Corollary 1 (Absorption vs. Gap-Crossing Condition). Let xj ∈ [0, 1] be a pixel and ϵ > 0 a
perturbation budget. Then:

(i) Absorption. If ϵ ≤ rabs(xj , k), every |ηj | ≤ ϵ is absorbed, i.e. T (bj)
k (xj + ηj) = T

(bj)
k (xj).

(i) Gap crossing. If ϵ > rabs(xj , k), there exists some |ηj | ≤ ϵ for which T (bj)
k (xj+ηj) ̸= T

(bj)
k (xj).

Proof. Part (i) is an immediate consequence of Proposition 1. For part (ii), Theorem 4 ensures
that whenever ϵ · 10k > min{n − pℓ, pℓ+1 − n}, equivalently ϵ > rabs(xj , k), one can construct
a perturbation ηj that shifts Sk(xj) into a different prime-gap interval, thereby altering the prime
quantization output.

Lemma 2 (Collision probability). Fix k ≥ 2 and let N := 10k. Let x, x′ ∈ [0, 1]d be two inde-
pendent random images with i.i.d. pixel marginals whose densities are bounded by Λ on [0, 1] (in
particular, Λ = 1 for the uniform distribution). For a fixed secret bit vector b ∈ {0, 1}d, let T (b)

k
be the prime–quantization transform (Definition 4). Assume the prime–gap envelope Gk from As-

sumption 1. Then, Pr
[
T

(b)
k (x) = T

(b)
k (x′)

]
≤
(
Λ2 Gk

N

)d
. In particular, for Λ = 1, the collision

probability decays as
(
Gk/10

k
)d

in the number of pixels.
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Proof. Fix two independent images x, x′ ∈ [0, 1]d with i.i.d. pixel marginals of density at most Λ
on [0, 1]. Let N = 10k, and for each pixel index i ∈ {1, . . . , d} define the scaled integers

Ui := Sk(xi) = ⌊Nxi⌋, U ′
i := Sk(x

′
i) = ⌊Nx′i⌋.

Partition {0, 1, . . . , N − 1} into prime-gap intervals Ij = (pj , pj+1)∩ {0, . . . , N − 1} with lengths
gj = |Ij |. Since each pixel marginal has density ≤ Λ, the probability of landing in any integer bin
is ≤ Λ/N . Therefore, for any gap Ij ,

Pr[Ui ∈ Ij ] ≤
∑
u∈Ij

Λ

N
= Λ

gj
N
, Pr[U ′

i ∈ Ij ] ≤ Λ
gj
N
.

For a fixed secret bit bi, collision occurs at pixel i if both Ui and U ′
i fall in the same gap Ij , since

then R(bi)
k maps both to the same prime. By independence of Ui and U ′

i ,

Pr[collision at pixel i] =
∑
j

Pr[Ui ∈ Ij ] Pr[U ′
i ∈ Ij ] ≤

∑
j

(
Λ
gj
N

)2
.

Pixels are i.i.d. across i, so collisions at all d coordinates occur with probability

Pr
[
T

(b)
k (x) = T

(b)
k (x′)

]
≤
(
Λ2
∑
j

(gj/N)2
)d
.

Finally, note that
∑
j(gj/N)2 ≤ (maxj gj/N) ·

∑
j gj/N ≤ Gk/N , where Gk is the prime-gap

envelope from Assumption 1. Hence, Pr
[
T

(b)
k (x) = T

(b)
k (x′)

]
≤
(
Λ2Gk

N

)d
, yielding the stated

bound.

Remark 2 (Numerics and scope). For k = 3 (N = 103) with empirical maximum gap Gk =
36, the per-pixel factor is 36/1000 = 0.036, so for CIFAR-10 (d = 3072) the bound is at most
(0.036)3072 ≈ 10−4.4×103 . For k = 4 (N = 104, Gk = 36), the per-pixel factor is 3.6 × 10−3

and the overall bound is even smaller. This result is distributional, i.e., it certifies that collisions are
exponentially unlikely for two independent draws with bounded pixel densities. It does not claim
that T (b)

k is injective on [0, 1]d (the map is many-to-one by construction). Rather, it quantifies that
image-level collisions are negligible under natural sampling.

D PROOFS FOR BOUNDS IN ℓp PRODUCT METRIC SPACES

Roadmap. In Section 5, we introduced the spatial–semantic product spaces C and K, both en-
dowed with the ℓ∞ metric. The purpose of this appendix is to justify that choice. We first establish
in Theorem 5 that upper bounds in an ℓp product space always imply corresponding bounds in the
component spaces. We then prove in Corollary 2 that among all ℓp metrics, ℓ∞ achieves the tightest
possible uniform upper bound. Together these results explain why ℓ∞ is the natural metric for C and
K, ensuring that perturbations in either spatial geometry or class distribution immediately translate
into separation in the product space.

Let (X, dX) and (Y, dY ) be metric spaces. We consider their product space W = X × Y endowed
with a standard ℓp product metric. For p ∈ [1,∞), this metric is defined by

dW,p((x1, y1), (x2, y2)) :=
(
dX(x1, x2)

p + dY (y1, y2)
p
)1/p

, (8)

and for p =∞ by

dW,∞((x1, y1), (x2, y2)) := max
{
dX(x1, x2), dY (y1, y2)

}
. (9)

We now establish a general theorem relating upper bounds in the product space W to upper bounds
in the component spaces X and Y .
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Theorem 5 (Component-wise Upper Bounds from ℓp Product Metrics). Let (X, dX) and (Y, dY )
be metric spaces, and let W = X × Y with the ℓp metric dW,p for some p ∈ [1,∞]. Suppose there
exists a constant M ≥ 0 such that

dW,p((x1, y1), (x2, y2)) ≤M, ∀(x1, y1), (x2, y2) ∈W. (10)
Then the following component-wise bounds hold:

dX(x1, x2) ≤M, dY (y1, y2) ≤M, ∀x1, x2 ∈ X, y1, y2 ∈ Y. (11)

Proof. We consider two cases:

(i) 1 ≤ p <∞. By definition, for any (x1, y1), (x2, y2) ∈W ,

dW,p((x1, y1), (x2, y2)) =
(
dX(x1, x2)

p + dY (y1, y2)
p
)1/p

.

Since dX(x1, x2)
p ≥ 0 and dY (y1, y2)p ≥ 0, it immediately follows that

dX(x1, x2)
p ≤ dX(x1, x2)

p + dY (y1, y2)
p = dW,p((x1, y1), (x2, y2))

p.

Taking the p-th root on both sides gives dX(x1, x2) ≤ dW,p((x1, y1), (x2, y2)) ≤ M . An identical
argument applies to dY (y1, y2).

(ii) p =∞. By definition,

dW,∞((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.
Hence, by properties of the maximum function,
dX(x1, x2) ≤ dW,∞((x1, y1), (x2, y2)) ≤M, dY (y1, y2) ≤ dW,∞((x1, y1), (x2, y2)) ≤M.

Combining the two cases, the theorem follows.

Corollary 2 (Tightest Upper Bound in ℓp Product Spaces). Let (X, dX) and (Y, dY ) have known
upper bounds MX and MY respectively, i.e.,

dX(x1, x2) ≤MX , dY (y1, y2) ≤MY , ∀x1, x2 ∈ X, y1, y2 ∈ Y.
Then the corresponding upper bound for the product space (W,dW,p) is

dW,p((x1, y1), (x2, y2)) ≤
{
(Mp

X +Mp
Y )

1/p, 1 ≤ p <∞,
max{MX ,MY }, p =∞.

Moreover, among all ℓp product metrics, the ℓ∞ metric achieves the tightest upper bound, i.e.,

max{MX ,MY } ≤ (Mp
X +Mp

Y )
1/p, ∀p ∈ [1,∞),

and is therefore optimal when minimizing the guaranteed upper bound in the product space.

Proof. The bound for 1 ≤ p <∞ follows directly from the monotonicity of the ℓp norm:

dW,p((x1, y1), (x2, y2)) ≤ (Mp
X +Mp

Y )
1/p.

For p =∞, by definition dW,∞ = max{dX , dY } ≤ max{MX ,MY }. To see that ℓ∞ is the tightest,
observe that for any p < ∞, (Mp

X +Mp
Y )

1/p ≥ max{MX ,MY }. Equality occurs only if one of
MX or MY is zero. Hence, ℓ∞ gives the smallest guaranteed upper bound over all ℓp norms.

Definition 8 (Spatial, semantic, and product metric spaces). Let X ⊂ [0, 1]d be the image space
and Y = {1, . . . , C} the label set. For a representation map f : X → Rm, define the spatial metric
space (MX , dX) with MX = {f(x) : x ∈ X} and dX(x1, x2) = ∥x1−x2∥2. The semantic metric
space is (MY , dY ) with MY = Y and dY (y1, y2) = 1[y1 ̸= y2].

Their ℓ∞ product is the metric space
MXY = (MX ×MY , dXY ), dXY

(
(x1, y1), (x2, y2)

)
= max{dX(x1, x2), dY (y1, y2)}.

Each image x ∈ X embeds as (f(x), y) where y ∈ Y is its class label. Projections are defined by
ΠX(x, y) = x and ΠY (x, y) = y. Instantiating f = hθ yields the space C with spatial component
Z, and instantiating f = T

(b)
k yields K with spatial component P .

Instantiating f(x) = hθ(x) or f(x) = T
(b)
k (x) yields the product spaces C and K, respectively.

These will serve as the foundation for the GW bounds in Section 5.
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E PROOFS FOR DIAMETER BOUNDS IN C AND K

Proposition 2 (Concentration in ℓ∞ product spaces). Let {(Xi, di)}ni=1 be metric spaces
and let W =

∏n
i=1Xi be endowed with the ℓ∞ product metric d∞

(
(xi)

n
i=1, (yi)

n
i=1

)
:=

max1≤i≤n di(xi, yi). Let X = (X1, . . . , Xn) be a random element of W and fix reference points
mi ∈ Xi (e.g., means or Fréchet means), writing m = (m1, . . . ,mn).

Assume that each coordinate concentrates around its reference point, i.e., there exist tail functions
ψi : (0,∞)→ [0, 1] such that for all t > 0,

Pr
{
di(Xi,mi) ≥ t

}
≤ ψi(t) (i = 1, . . . , n).

Then the product random element concentrates around m in (W,d∞): for all t > 0,

Pr
{
d∞
(
X,m

)
≥ t
}

= Pr
{

max
1≤i≤n

di(Xi,mi) ≥ t
}
≤

n∑
i=1

ψi(t).

Proof. The event {d∞(X,m) ≥ t} equals {maxi di(Xi,mi) ≥ t}, which is contained in the union⋃
i{di(Xi,mi) ≥ t}. Apply the union bound and the assumed coordinate-wise tail bounds.

Corollary 3. (1) For n = 2 and real-valued coordinates with di(x,m) = |x − m|, letting M =
max{X,Y } and m = max{EX,EY } gives

Pr{|M −m| ≥ t} ≤ Pr{|X − EX| ≥ t}+ Pr{|Y − EY | ≥ t}.

Theorem 6 (CNN Product Space Clean Diameter Bounds). Let C = (Z×Y, dC) be the CNN product
space. For clean images, the K-nearest neighbor diameter satisfies, for any δ ∈ (0, 1),

P
[
diam

(
N C
k (xclean)

)
≤ 2µC

(
1 +

√
2 logK
d +

√
2 log(2/δ)

d

)]
≥ 1− δ, (12)

where µC is the clean median pairwise distance in C and d is the spatial feature dimension of Z.

Proof. We first establish that distances between clean embeddings in the product space C satisfy sub-
Gaussian concentration properties. This will serve as the foundation for bounding K-NN diameters.
Recall the definition of a sub-Gaussian random variable.

Definition (Sub-Gaussian random variable). A real random variable X is called sub-Gaussian
with parameter σ2 if for all t ∈ R,

E[etX ] ≤ exp
(
σ2t2

2

)
.

Equivalently, its tail probabilities satisfy P[ |X − E[X]| ≥ t ] ≤ 2 exp
(
− t2

2σ2

)
.

For a random vector Z = (Z1, . . . , Zd) ∈ Rd, we say Z is sub-Gaussian if every linear functional
is sub-Gaussian:

∥Z∥ψ2
= sup

u∈Sd−1

∥⟨Z, u⟩∥ψ2
< ∞,

where for a random variable Y , the sub-Gaussian norm is ∥Y ∥ψ2
= inf{t > 0 : E[eY 2/t2 ] ≤ 2}.

Each image x maps to the product space via z = (hθ(x), y) ∈ C, where hθ(x) ∈ Z is its CNN
embedding and y ∈ Y its class label. For two clean images xi, xj , we denote their embeddings by
zi, zj and define the product space distance as Dij = dC(zi, zj).

We now analyze the spatial and semantic components of Dij .

Spatial component. The embedding ΠZ(z) ∈ Rd has sub-Gaussian coordinates due to several
architectural and statistical effects. Namely, batch normalization enforces near unit variance and
zero mean across feature activations Ioffe & Szegedy (2015); Santurkar et al. (2018). In Poole et al.
(2016); Schoenholz et al. (2017), the authors demonstrate CLT effects arise from weighted sums
of many independent activations, yielding approximately Gaussian tails. Moreover, Regularization
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techniques (e.g., weight decay Krogh & Hertz (1992), dropout Srivastava et al. (2014)) further con-
strain magnitudes, supporting sub-Gaussian tails Wager et al. (2013).

Formally, if σ2
Z is the empirical variance of a coordinate in Z, then for all t > 0,

P( |[ΠZ(z)]ℓ − E[ΠZ(z)ℓ]| ≥ t ) ≤ 2 exp
(
− t2

2σ2
Z

)
.

Thus ΠZ(z) is sub-Gaussian with ∥ΠZ(z)∥ψ2
≤ KZ , where KZ = O(σZ

√
d). By standard results

(see (Vershynin, 2018, Thm. 3.1.1)), Euclidean distances between embeddings in Z concentrate
sharply around their mean.

Semantic component. The label projection ΠY (z) contributes

dY (ΠY (zi),ΠY (zj)) = 1{yi ̸= yj},

which is bounded in {0, 1} and deterministic once class labels are fixed.

Product space concentration. Since C is equipped with the ℓ∞ product metric,

dC(zi, zj) = max{dZ(ΠZ(zi),ΠZ(zj)), dY (yi, yj)},

the concentration of the spatial component transfers to the product distance (by Proposition 2). Thus
deviations of dC(zi, zj) away from its clean median µC occur with sub-Gaussian tails: there exist
constants c, C > 0 such that

P(|dC(zi, zj)− µC | ≥ t) ≤ C exp(−c d t2). (13)

When controlling the K-th neighbor distance, we invoke equation 13, which in turn also allows us
control over the neighborhood diameter.

K-NN order statistics to diameter bound. Fix a clean query z and let Di = dC(z, zi) denote the
distance between z and the i.i.d. clean samples {zi}ni=1. Let D(1) ≤ · · · ≤ D(n) denote the order
statistics. For any threshold τ , the classical characterization of order statistics (David & Nagaraja,
2003, Eq. (2.1.3)) gives{

D(k) ≥ τ
}
⇐⇒

{
#{i : Di ≥ τ} ≥ n− k + 1

}
. (14)

The event on the right means that there are at least n−k+1 indices for whichDi ≥ τ . Equivalently,
there exists a subset S ⊆ {1, . . . , n} with |S| = n− k + 1 such that

Di ≥ τ ∀i ∈ S.

That is,
{D(k) ≥ τ} ⊆

⋃
S⊆{1,...,n}
|S|=n−k+1

⋂
i∈S
{Di ≥ τ}. (15)

Applying the union bound to equation 15 yields

P{D(k) ≥ τ} ≤
∑

S⊆{1,...,n}
|S|=n−k+1

P
( ⋂
i∈S
{Di ≥ τ}

)
. (16)

Since the Dis are i.i.d., the probability for any fixed S factors as

P
( ⋂
i∈S
{Di ≥ τ}

)
=
∏
i∈S

P(Di ≥ τ) =
(
P(Di ≥ τ)

)n−k+1
.

There are
(

n
n−k+1

)
such subsets S. Hence equation 16 simplifies to

P{D(k) ≥ τ} ≤
(

n

n− k + 1

)(
P(Di ≥ τ)

)n−k+1
. (17)

We now shift our focus to the next part, where we bound the diameter via pairwise bounds on the
K-nearest neighbor set. Let N C

k (z) = {z(1), . . . , z(k)} be the k nearest neighbors of z (ties broken
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arbitrarily) and consider their pairwise distances dC(z(i), z(j)) for 1 ≤ i < j ≤ k. By the triangle
inequality,

dC(z(i), z(j)) ≤ dC(z(i), z) + dC(z, z(j)) = D(i) +D(j).

Using equation 13 and the fact that sums of independent sub-Gaussian random variables remain
sub-Gaussian with the same d-scaling up to absolute constants Vershynin (2018), one obtains that
there exists c′ > 0 such that for all t > 0,

P
{
dC(z(i), z(j)) ≥ 2µC + t

}
≤ 2 exp

(
− c′ d t2

)
. (18)

Note that the inequality equation 18 is an upper bound that does not use any special property of
the indices beyond being distinct sample points. Indeed, selecting nearest neighbors to z can only
decrease the chance that their mutual distance is large.

Applying the union bound over the
(
k
2

)
unordered pairs inside N C

k (z) as proposed in Boucheron
et al. (2013)), we arrive at

P
{
diam

(
N C
k (z)

)
≥ 2µC + t

}
≤
(
k

2

)
· 2 exp

(
− c′ d t2

)
. (19)

Imposing a target failure probability δ ∈ (0, 1) on the right-hand side and solving for t:(
k

2

)
· 2 e−c

′dt2 ≤ δ ⇐⇒ t2 ≥
log
(
k
2

)
+ log(2/δ)

c′d
(20)

⇒ t ≥ 1√
c′d

(√
2 log k +

√
2 log(2/δ)

)
.

where we used log
(
k
2

)
≤ 2 log k and

√
a+ b ≤

√
a+
√
b.

Substituting this choice of t into equation 19 yields, with probability at least 1− δ,

diam
(
N C
k (z)

)
≤ 2µC +

1√
c′d

(√
2 log k +

√
2 log(2/δ)

)
.

Equivalently, writing the deviation addend in a multiplicative form and absorbing absolute constants
into the sub-Gaussian proxy (or normalizing units), one obtains the stated bound:

diam
(
N C
k (z)

)
≤ 2µC

(
1 +

√
2 log k
d +

√
2 log(2/δ)

d

)
.

Corollary 4 (95% confidence bound). For confidence level δ = 0.05, the K-nearest neighbor
diameter in C satisfies

diam
(
N C
K(z)

)
≤ 2µC

(
1 +

√
2 logK
d + 2.717√

d

)
,

with probability at least 95%.

Notation. We adopt the metric space setup of Definition 8. In particular, C = (Z ×Y, dC) denotes
the CNN product space and K = (P × Y, dK) the prime-quantized product space. Let µC and
µK denote the clean median pairwise distances in C and K respectively. We consider adversarial
perturbations η ∈ Rd with ∥η∥∞ ≤ ϵ, where ϵ > 0 is the fixed attack budget.

Definition 9 (Adversarial query). Let x ∈ X be a clean input with ground-truth label y ∈ Y . For
an ϵ-bounded perturbation η ∈ Rd, the adversarial query under representation map f : X → Rm is

(f(x+ η), y) ∈MXY .

Thus adversarial queries live in the same product space as clean points. Note that a classifier
may produce a prediction ŷ ̸= y, but ŷ is not part of the definition. Instantiating f = hθ yields
adversarial queries in C, and instantiating f = T

(b)
k yields adversarial queries in K.
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Assumption 2 (A1: variance-only control via Jacobian proxy). Let ∆(η, x) := ∥f(x+η)−f(x)∥2
be the feature displacement under perturbation η. For small perturbations with ∥η∥∞ ≤ ϵ, we
assume there exists a constant σ2 > 0 (a variance proxy) such that

E
[
∆(η, x)2

]
≤ d σ2 ϵ2. (21)

Interpretation. By first-order Taylor expansion, f(x+η)−f(x) ≈ J(x) η, where J(x) = ∇f(x) ∈
Rm×d is the Jacobian of f at x (with m the feature dimension). Thus,

∆(η, x)2 ≈ ∥J(x)η∥22 =

m∑
r=1

⟨Jr,·(x), η⟩2.

Assumption equation 21 requires that each row Jr,·(x) has second moment bounded by σ2, so that
the expected squared shift across m features grows at most linearly with d (via ∥η∥∞ ≤ ϵ) and
quadratically with ϵ.

By Chebyshev’s inequality, for any δgrad ∈ (0, 1),

∆(η, x) ≤
√
d σ√
δgrad

ϵ with probability at least 1− δgrad. (22)

Here δgrad acts as a tolerance parameter: it specifies the probability mass we are willing to allocate
to rare large deviations in feature shifts. Smaller values of δgrad yield higher-probability guarantees
but make the bound looser. This provides a high-probability control of adversarial feature shifts
using only variance information, without assuming Lipschitz continuity or sub-Gaussianity of the
Jacobian.
Remark 3 (Relating ℓ∞ and ℓ2 budgets). An ℓ∞ budget ϵ implies an ℓ2 budget ϵ2 ≤

√
d ϵ, and

conversely an ℓ2 budget ϵ2 implies ℓ∞ budget ≥ ϵ2/
√
d. This allows translating ℓ2–based results to

our ℓ∞ setting and vice versa.

In the adversarial setting, the k-NN neighborhood can enlarge only insofar as the query itself is
displaced relative to its clean location. Thus, bounding the query’s displacement (via Assumption 2)
allows us to extend the clean k-NN diameter bound to the adversarial case.
Theorem 7 (Adversarial K-NN diameter via Theorem 6 and A1). Fix K ≥ 2 and confidence
levels δclean, δgrad ∈ (0, 1). Let x be a clean query and x + η its adversarially perturbed version
with ε = ∥η∥∞. Assume Theorem 6 (clean diameter concentration) and Assumption 2 (variance-
only shift). Define ŷ as the classifier’s predicted label for x + η. Then, with probability at least
1− (δclean + δgrad),

diam
(
N C
K(x+ η)

)
≤ 2µC

(
1 +

√
2 logK
d +

√
2 log(2/δclean)

d

)
+

2
√
d σ√
δgrad

ε + 21{y ̸=ŷ}. (23)

The indicator term vanishes when the adversarial perturbation does not change the predicted label,
and contributes an additional 2 otherwise.

Proof. Reusing our diameter bounds in Theorem 6, for the clean query x we have, with probability
at least 1− δclean,

diam
(
N C
K(x)

)
≤ 2µC

(
1 +

√
2 logK
d +

√
2 log(2/δclean)

d

)
. (24)

By Assumption 2 and Chebyshev, with probability at least 1− δgrad,

∥f(x+ η)− f(x)∥2 ≤
√
d σ√
δgrad

ε. (25)

We now analyze how the K-NN neighborhood changes when we replace the clean query z =
(f(x), y) with its adversarially perturbed versions. Recall our notation:

z̃ := (f(x+ η), y), unsuccessful adversarial query (true label);
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ẑ := (f(x+ η), ŷ), successful adversarial query (misclassified label).

Let z(1), . . . , z(K) denote the K nearest neighbors of whichever adversarial query we use (ties arbi-
trary).

For any two distinct neighbors z(i) and z(j), the triangle inequality with respect to the chosen adver-
sarial query q ∈ {z̃, ẑ} gives

dC
(
z(i), z(j)

)
≤ dC

(
z(i), q

)
+ dC

(
q, z(j)

)
. (26)

We next control each of the two addends above by inserting the clean query z = (f(x), y) as a
reference point. For the first term we write

dC
(
z(i), q

)
≤ dC

(
z(i), z

)
+ dC

(
z, q
)
. (27)

Likewise, for the second term we have

dC
(
q, z(j)

)
≤ dC

(
z, q
)
+ dC

(
z, z(j)

)
. (28)

Thus, each path from a neighbor to the adversarial query is decomposed into a clean part (from
neighbor to z) plus a shift part (from z to q). The size of the shift depends on which adversarial
anchor q is chosen

dC(z, z̃) = ∥f(x+ η)− f(x)∥2, (29)

because the spatial features move but the label y remains unchanged. On the other hand,

dC(z, ẑ) ≤ ∥f(x+ η)− f(x)∥2 + 1{y ̸=ŷ}, (30)

since the spatial features shift as before, but in addition the semantic label may flip from y to ŷ, con-
tributing an extra unit in the product metric. Substituting equation 27–equation 30 into equation 26,
we obtain for any pair i ̸= j:

dC
(
z(i), z(j)

)
≤ dC

(
z(i), z

)
+ dC

(
z, z(j)

)
+ 2 ∥f(x+ η)− f(x)∥2, (31)

dC
(
z(i), z(j)

)
≤ dC

(
z(i), z

)
+ dC

(
z, z(j)

)
+ 2 ∥f(x+ η)− f(x)∥2 + 21{y ̸=ŷ}, (32)

corresponding to the true-label and predicted-label anchors, respectively. Finally, maximizing over
all pairs 1 ≤ i < j ≤ K yields

diam
(
N C
K(x+ η)

)
≤ diam

(
N C
K(x)

)
+ 2 ∥f(x+ η)− f(x)∥2 + 21{y ̸=ŷ}. (33)

This shows that the adversarialK-NN diameter can expand relative to the clean case by at most twice
the feature shift plus a discrete penalty of 2 if the adversarial perturbation also flips the predicted
label.

Finally, intersecting equation 24 and equation 25 and applying the union bound gives probability
≥ 1− (δclean + δgrad). On this event,

diam
(
N C
K(x+ η)

)
≤ 2µC

(
1 +

√
2 logK
d +

√
2 log(2/δclean)

d

)
+

2
√
d σ√
δgrad

ε + 21{y ̸=ŷ}.

Assumption 3 (Prime-gap sensitivity under bit flips). Fix k ≥ 2 and let Gk be the prime-gap
envelope from Assumption 1. Then, for every coordinate j ∈ {1, . . . , d}, every two images x, x′ ∈
X , and any two secret keys b, b′ ∈ {0, 1}d that differ only at bit j, we have[

T
(b)
k (x)− T (b)

k (x′)
]
j︸ ︷︷ ︸

difference
before flip

−
[
T

(b′)
k (x)− T (b′)

k (x′)
]
j︸ ︷︷ ︸

difference
after flip

≤ 2Gk. (34)

Explanation. Flipping one bit can move the j-th coordinate by at most one local prime gap ≤ Gk.
For two inputs, both coordinates may shift, so by the triangle inequality their pairwise difference
changes by at most 2Gk, regardless of the absolute difference.
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Definition 10 (Key-annealed (data-quenched) median in K). Fix a clean query x ∈ X and a fixed
clean image x′ ∈ X (or, more generally, a fixed dataset and query). Let (b, k) denote the envi-
ronment, where b ∼ Unif({0, 1}d) and k is either fixed or drawn independently from a prescribed
distribution Pk. Define

D(b,k)(x, x′) := dK
(
z(b,k)(x), z(b,k)(x′)

)
.

The key-annealed (data-quenched) median for the pair (x, x′) is

µkey
K (x, x′) := inf

{
m : P(b,k)

[
D(b,k)(x, x′) ≤ m

]
≥ 1

2

}
.

When a single symbol is used, we write µK for µkey
K with the convention that the probability is over

(b, k) only (the data are held fixed).

For brevity, we denote the maximal key-annealed median by

µmax
K (x) := max

1≤i≤n
µkey
K (x, xi).

Theorem 8 (Annealed-over-keys clean K-NN diameter inK). Assume the prime-gap envelope (As-
sumption 1) and set Ck := 2Gk. Let the key b ∼ Unif({0, 1}d) and let the granularity k be
either fixed or drawn independently from a prescribed distribution Pk. Fix a clean query x and a
fixed dataset {xi}ni=1 (data quenched). Then for any integer K ≥ 2 and any δenv ∈ (0, 1), with
probability at least 1− δenv over the draw of (b, k),

diam
(
NK
K (x; b, k)

)
≤ 2µmax

K (x)

(
1 +

Ck
µmax
K (x)

√
2 logK

d
+

Ck
µmax
K (x)

√
2 log(2/δenv)

d

)
,

where µmax
K (x) := max1≤i≤n µkey

K (x, xi) and, if k is random, one may take Ck :=
2 supk∈supp(Pk)

Gk to make the bound uniform in k.

Proof. Fix the clean dataset {xi}ni=1 and the clean query x; these are held deterministic in this
theorem. The randomness comes solely from the key b (and k if random). We will (i) establish
McDiarmid concentration for pairwise distances under random keys, (ii) apply a union bound over
the
(
K
2

)
neighbor pairs, and (iii) control the scale via a two-hop envelope anchored at 2µmax

K (x).

Fix any pair (i, j) of dataset indices. For simplicity of notations, let Qbi := T
(b)
k (xi) ∈ Rd. Define

the spatial distance under key b as

Rij(b) :=
∥∥Qbi −Qbj ∥∥2 =

( d∑
m=1

(
[Qbi ]m − [Qbj ]m

)2)1/2
. (35)

Now flip a single key bit bm 7→ b′m while keeping all other bits fixed. By Assumption 1, the m-th
coordinate difference can change by at most 2Gk (a single prime-gap shift per image, hence a 2Gk
change for a difference), while all other coordinates remain unchanged:∣∣ [Qb′i ]m− [Qb

′

j ]m −
(
[Qbi ]m− [Qbj ]m

) ∣∣ ≤ 2Gk, [Qb
′

i ]ℓ− [Qb
′

j ]ℓ = [Qbi ]ℓ− [Qbj ]ℓ (ℓ ̸= m).

From a vector viewpoint, let

v(b) := Qbi −Qbj ∈ Rd, v(b′) = v(b) + ∆ em with |∆| ≤ 2Gk,

where em is the m-th standard basis vector. Then the Euclidean norm changes by at most∣∣ ∥v(b′)∥2 − ∥v(b)∥2 ∣∣ ≤ ∥ v(b′)− v(b) ∥2 = |∆| ≤ 2Gk =: Ck. (36)

Therefore, Rij(b) is coordinate-wise Ck-Lipschitz in each bit bm.

Let b = (b1, . . . , bd) ∈ {0, 1}d be uniformly random with independent bits. McDiarmid’s inequality
states: if F (b1, . . . , bd) satisfies |F (b)− F (b(m))| ≤ cm whenever b, b(m) differ only at coordinate
m, then for any t > 0,

P( |F (b)− EF (b)| ≥ t ) ≤ 2 exp

(
− 2t2∑d

m=1 c
2
m

)
.
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Applying this to F = Rij with cm = Ck (by equation 36) yields

Pb
( ∣∣Rij(b)− Eb[Rij(b)]

∣∣ ≥ t
)
≤ 2 exp

(
− 2t2

dC2
k

)
. (37)

Write the product embedding as z(b,k)(x) :=
(
T

(b)
k (x), y

)
∈ K, where y is the class label of x

(and similarly yi for xi). Define the product distance under key b:

Dij(b) := dK
(
z(b,k)(xi), z

(b,k)(xj)
)
= max

{
Rij(b), 1

[
yi ̸= yj

] }
. (38)

Since the label indicator does not depend on b (clean case), for any t > 0,∣∣Dij(b)− Eb[Dij(b)]
∣∣ ≤ ∣∣Rij(b)− Eb[Rij(b)]

∣∣,
and therefore equation 37 implies

Pb
( ∣∣Dij(b)− Eb[Dij(b)]

∣∣ ≥ t
)
≤ 2 exp

(
− 2t2

dC2
k

)
. (39)

Let q := z(b,k)(x) be the (random-key) embedded query and NK
K (x; b, k) = {z(1), . . . , z(K)} its

K nearest neighbors in dK (ties arbitrary). Write M :=
(
K
2

)
for the number of unordered pairs

among these neighbors. For any fixed pair (u, v),equation 37 gives the one-pair tail bound, where
Ck = 2Gk and Duv(b) := dK(z(u), z(v)).

By the union bound over all M pairs, we have

Pb
(

max
1≤u<v≤K

∣∣Duv(b)− Eb[Duv(b)]
∣∣ > t

)
≤ M · 2 exp

(
− 2t2

dC2
k

)
. (40)

Given a target failure probability δenv ∈ (0, 1), we choose t such that the RHS of equation 40 equals
δenv:

M · 2 exp
(
− 2t2

dC2
k

)
= δenv ⇐⇒ t = Ck

√
d

2

√
logM + log

2

δenv
.

With this choice of t, equation 40 is equivalent to the deterministic-looking high-probability bound

Pb

(
max

1≤u<v≤K

∣∣Duv(b)− Eb[Duv(b)]
∣∣ ≤ Ck ·

√
d
2 ·

√
log

(
K

2

)
+ log(2/δenv)

)
≥ 1−δenv.

(41)
Put simply, simultaneously for all

(
K
2

)
neighbor pairs, the deviation |Duv(b) − Eb[Duv(b)]| is at

most the RHS of equation 41 with probability at least 1− δenv (over the randomness of the key b).

By definition of the K-NN diameter, diam
(
NK
K (x; b, k)

)
= maxu<vDuv(b). From equation 39,

with probability at least 1 − δenv, every pairwise distance Duv(b) is within a fixed deviation of its
expectation Eb[Duv(b)]. Therefore, simultaneously for all pairs u < v,

Duv(b) ≤ Eb[Duv(b)] + Ck

√
d
2

√
log

(
K

2

)
+ log(2/δenv).

Maximizing over all pairs, we obtain

diam
(
NK
K (x; b, k)

)
≤ ΓK + Ck

√
d
2

√
log

(
K

2

)
+ log(2/δenv), (42)

where we have set ΓK := maxu<v Eb[Duv(b)].

Let q = z(b,k)(x) be the query, and let z(1), . . . , z(K) be its K nearest neighbors in dK. By the
triangle inequality (“two-hop routing”),

Duv(b) ≤ dK(z(u), q) + dK(q, z(v)) ≤ 2D⋆
(K)(b), (43)
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where D⋆
(K)(b) is the K-th nearest-neighbor radius under key b. It is standard in k-NN theory that,

under mild density bounds on the underlying distribution Devroye et al. (1996), the scale of D⋆
(K) is

controlled by the same order as the (key-annealed, data-quenched) pairwise median distance. Hence
we may conservatively bound

ΓK := max
u<v

Eb[Duv(b)] ≤ 2µmax
K (x). (44)

Substituting equation 44 into equation 42 and using log
(
K
2

)
≤ 2 logK together with

√
a+ b ≤√

a+
√
b, we conclude that with probability at least 1− δenv,

diam
(
NK
K (x; b, k)

)
≤ 2µmax

K (x) + Ck
√
d
(√

2 logK +
√

2 log(2/δenv)
)
.

Factoring out 2µmax
K (x) yields the stated bound.

Corollary 5 (Quenched-in-key clean diameter bound). Under the assumptions of Theorem 8, there
exists a set of keys G ⊆ {0, 1}d with Pb(G) ≥ 1− δenv such that for every b ∈ G (and the given k),
the bound in Theorem 8 holds for the fixed key b and the given clean dataset and query x:

diam
(
NK
K (x; b, k)

)
≤ 2µmax

K (x) + Ck
√
d
(√

2 logK +
√
2 log(2/δenv)

)
.

Proof sketch. The set G is the (key, k)-event on which the union bound in equation 41 holds; this
event has probability ≥ 1 − δenv. On G, the derivation of Theorem 8 is deterministic, hence the
bound is valid for every b ∈ G (quenched).
Theorem 9 (AdversarialK-NN diameter inK (concise reuse)). FixK ≥ 2 and δenv, δgrad ∈ (0, 1).
Let q = (Qk,b(x), y) be the clean query and qη = (Qk,b(x+ η), ŷ) the adversarial query (predicted
label ŷ may differ from y). Assume the prime-gap sensitivity bound with Gk (Assumption 3) and let
Ck := 2Gk. Then, with probability at least 1− (δenv + δgrad) over the key b (and k, if random),

diam
(
NK
K (qη)

)
≤ 2µK + Ck

√
d
(√

2 logK+
√

2 log(2/δenv)
)
+

2
√
d σ√
δgrad

∥η∥∞ + 21{y ̸=ŷ}.

Proof. We reuse the clean-case analysis verbatim with one adversarial modification. Define
Rij(b) := ∥Qk,b(xi)−Qk,b(xj)∥2. Flipping one bit bm changes the m-th coordinate difference by
at most 2Gk (Assumption 3), so the squared norm changes by at most C2

k . Hence Rij is coordinate-
wise Ck-Lipschitz, and McDiarmid’s inequality yields

Pb
(∣∣Rij(b)− EbRij(b)

∣∣ ≥ t) ≤ 2 exp
(
− 2t2

dC2
k

)
. (⋆)

For the K neighbors of the adversarial query we union bound equation ⋆ over all pairs. Choosing

t = Ck

√
d
2

√
log

(
K

2

)
+ log(2/δenv),

we obtain, with probability ≥ 1− δenv,

max
u<v

∣∣∣Duv(b)− EbDuv(b)
∣∣∣ ≤ Ck

√
d
2

√
log

(
K

2

)
+ log(2/δenv). (‡)

As in the clean proof, the triangle inequality through the query gives maxu<v EbDuv(b) ≤
2EbDstar

(K)(b) ≲ 2µK, where µK is the key-annealed median proxy from Definition 10.

Let the K neighbors be taken w.r.t. qη . For any pair z(u), z(v),

dK(z(u), z(v)) ≤ dK(z(u), q) + dK(q, z(v))︸ ︷︷ ︸
clean star path

+ 2 dK(q, qη)︸ ︷︷ ︸
≤

√
d σ√
δgrad

∥η∥∞+1{y ̸=ŷ}

≤ dK(z(u), q) + dK(q, z(v)) +
2
√
d σ√
δgrad

∥η∥∞ + 21{y ̸=ŷ}. (45)
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Maximizing over pairs converts the clean star radius bound into the adversarial one, with an additive
2
√
d σ√

δgrad
∥η∥∞ + 21{y ̸=ŷ}.

Finally, combining the clean star envelope with the uniform deviation equation ‡ and adding the
adversarial term from equation 45. Using log

(
K
2

)
≤ 2 logK yields the stated bound.

F A BRIEF PRIMER ON METRIC MEASURE SPACES AND
GROMOV–WASSERSTEIN DISTANCES

F.1 METRIC MEASURE SPACES

A metric measure space (mm-space) is a triple (X, dX , µX) , where X is a Polish space, dX is a
metric on X , and µX is a Borel probability measure on X . Intuitively, an mm-space encodes both
the geometry (via dX ) and the distribution of mass (via µX ).

Two mm-spaces (X, dX , µX) and (Y, dY , µY ) are considered equivalent if there exists a measure-
preserving isometry φ : X → Y , i.e. dX(x, x′) = dY (φ(x), φ(x

′)) and µY = φ#µX . This
quotienting ensures that we compare spaces only up to relabeling of points.

The classical notion of distance between mm-spaces is the Gromov–Hausdorff distance, which mea-
sures how well two spaces can be embedded into a common metric space with small distortion.
However, it is highly combinatorial and not well-suited to data applications.

F.2 THE GROMOV–WASSERSTEIN DISTANCE

The Gromov–Wasserstein (GW) distance relaxes Gromov–Hausdorff by using optimal transport
ideas. For two mm-spaces (X, dX , µX) and (Y, dY , µY ), the squared GW distance is defined as

GW2
(
(X, dX , µX), (Y, dY , µY )

)
:= min

π∈Π(µX ,µY )

∫∫
|dX(x, x′)−dY (y, y′)|2 dπ(x, y) dπ(x′, y′),

(46)
where Π(µX , µY ) is the set of couplings with marginals µX , µY . Thus GW finds a soft correspon-
dence π between X and Y and penalizes discrepancies between their intra-space distances.

Properties.

• GW is a metric on the space of mm-spaces up to equivalence.

• If X = Y and dX = dY , then GW = 0 regardless of labeling.

• GW generalizes Wasserstein distance: if X = Y as sets with the same underlying metric,
then GW reduces to W2.

Statistical viewpoint. For empirical datasets X = {xi}ni=1, Y = {yj}mj=1, the metric structure is
given by pairwise distance matrices (dX(xi, xi′)) and (dY (yj , yj′)). The GW distance then becomes
a quadratic assignment problem over couplings π ∈ Rn×m with row/column marginals 1/n, 1/m.

F.3 ENTROPIC GROMOV–WASSERSTEIN DISTANCE

The GW optimization in equation 46 is computationally hard due to its quadratic objective. To
address this, Peyré et al. (2016) introduced the entropic regularized GW distance, defined as

GW2
γ(X,Y ) := min

π∈Π(µX ,µY )

{∫∫
|dX(x, x′)− dY (y, y′)|2 dπ(x, y) dπ(x′, y′) − γH(π)

}
,

(47)
where H(π) = −

∑
i,j πij log πij is the Shannon entropy and γ > 0 is the regularization parameter.

Effects of entropic regularization.
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• Computational: The problem becomes smooth and solvable by Sinkhorn-like iterations,
scaling to tens of thousands of points.

• Statistical: GWγ inherits concentration bounds and enjoys faster empirical convergence
(regularization reduces variance).

• Geometric: The optimal coupling π becomes diffuse, capturing probabilistic alignments
between X and Y .

Connections to our work. In our setting, the product spaces C (CNN) andK (Crypto) each define
mm-spaces under their product metrics and empirical measures. Our clean vs. adversarial concen-
tration bounds on k-NN diameters directly control the intra-space geometry terms in equation 46.
Thus, these results serve as building blocks for bounding clean/adversarial GW and entropic GW
distances, providing rigorous separation guarantees for detection.

G PROOFS FOR GROMOV–WASSERSTEIN BOUNDS

Definition 11 (Quadratic Gromov–Wasserstein discrepancy). Let (X , dX , µ) and (Y, dY , ν) be
metric–measure spaces. A coupling π ∈ Π(µ, ν) is a probability measure onX×Y whose marginals
are µ and ν, i.e.

π(A× Y) = µ(A), π(X ×B) = ν(B) for all measurable A ⊆ X , B ⊆ Y.
The quadratic GW discrepancy is defined as

GW2
(
(X , dX , µ), (Y, dY , ν)

)
:= inf

π∈Π(µ,ν)
E (x,y)∼π
(x′,y′)∼π

[ (
dX (x, x′)− dY(y, y′)

)2 ]
.

Remark 4 (Upper bound by identity coupling). For brevity, we write GW2(X ,Y) as the quadratic
GW discrepancy between two metric–measure spaces (X , dX , µ) and (Y, dY , ν). Let µ =
1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi , with distance matrices DX [i, j] = dX (xi, xj) and DY [i, j] =

dY(yi, yj). Consider the identity coupling π0 = 1
n

∑n
i=1 δ(xi,yi). Since GW2 is an infimum over

couplings, evaluating at any feasible π gives an upper bound:

GW2(X ,Y) ≤ 1

n2
∥∥DX −DY

∥∥2
F
.

More generally, for any permutation σ (with permutation matrix P ), the coupling πσ =
1
n

∑
i δ(xi,yσ(i)) yields

GW2(X ,Y) ≤ 1

n2
∥∥DX − P DY P

⊤∥∥2
F
.

These bounds are typically loose but serve as alignment-dependent certificates.
Proposition 3 (Cross-space stability under perturbations). Let (X , dX , µ) and (Y, dY , ν) be metric–
measure spaces with distance matrices DX , DY . Let D̃X = DX + ∆X and D̃Y = DY + ∆Y be
perturbed versions. Define the clean offset A := DX − DY and the perturbation offset E :=
∆X −∆Y . Then∣∣∣GW2(X̃ , Ỹ)−GW2(X ,Y)

∣∣∣ ≤ 2

n2
∥A∥F ∥E∥F +

1

n2
∥E∥2F .

Proof. By Remark 4, evaluating both GW objectives at the identity coupling gives

GW2(X ,Y) ≤ 1
n2 ∥A∥2F , GW2(X̃ , Ỹ) ≤ 1

n2 ∥A+ E∥2F .
Hence ∣∣∣GW2(X̃ , Ỹ)−GW2(X ,Y)

∣∣∣ ≤ 1
n2

∣∣∥A+ E∥2F − ∥A∥2F
∣∣.

Expanding and applying Cauchy–Schwarz yields,∣∣∥A+ E∥2F − ∥A∥2F
∣∣ = | 2⟨A,E⟩+ ∥E∥2F | ≤ 2∥A∥F ∥E∥F + ∥E∥2F .

Substituting this bound into the previous inequality gives∣∣∣GW2(X̃ , Ỹ)−GW2(X ,Y)
∣∣∣ ≤ 2

n2
∥A∥F ∥E∥F +

1

n2
∥E∥2F ,

which is the desired result.
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Theorem 1 (Clean cross–space GW upper bound via K-NN star radii). Fix a clean query x and
consider its local neighborhoods N C

K(x) ⊂ C and NK
K (x) ⊂ K, each endowed with the uniform

probability measure on K points.

Let RC and RK denote the corresponding K-NN radii (the K-th star distances from x) in C and
K respectively. Then, for any confidence levels δC , δK ∈ (0, 1), the following high-probability
envelopes hold:

RC ≤ µC

(
1 +

√
2 logK
d +

√
2 log(2/δC)

d

)
with probability ≥ 1− δC , (5)

RK ≤ µK

(
1 + Ck

µK

√
d
(√

2 logK +
√
2 log(2/δK)

))
with probability ≥ 1− δK. (6)

Consequently, with probability at least 1− (δC + δK),

GW2
(
N C
K(x), NK

K (x)
)
≤ 4

(
1− 1

K

) (
RC +RK

)2
. (7)

Proof. LetX := N C
K(x) = {x1, . . . , xK} and Y := NK

K (x) = {y1, . . . , yK} be theK neighbors in
C and K, respectively, both with the uniform measure K−1

∑K
i=1 δ(·). We denote their distance ma-

trices as DC [i, j] := dC(xi, xj) and DK[i, j] := dK(yi, yj), which satisfy DC [i, i] = DK[i, i] = 0.
By Remark 4, evaluating the quadratic GW objective at the identity coupling π0 = 1

K

∑K
i=1 δ(xi,yi)

yields

GW2(X,Y ) ≤ 1

K2

∥∥DC −DK
∥∥2
F
. (48)

Let qC be the clean query center in C and qK the center in K. Define the K–NN radii as RC :=
max1≤i≤K dC(xi, qC) andRK := max1≤i≤K dK(yi, qK). By the triangle inequality in each product
metric, we have

dC(xi, xj) ≤ dC(xi, qC) + dC(qC , xj) ≤ 2RC , dK(yi, yj) ≤ 2RK, (i ̸= j). (49)

Hence every off-diagonal entry of DC (resp. DK) is bounded by 2RC (resp. 2RK).

There are exactly K(K − 1) off-diagonal entries. Using equation 49 we arrive at

∥DC∥2F ≤ K(K − 1) (2RC)
2, ∥DK∥2F ≤ K(K − 1) (2RK)

2.

Therefore, by the triangle inequality for ∥ · ∥F ,

∥DC −DK∥F ≤ ∥DC∥F + ∥DK∥F
≤ 2

√
K(K − 1) (RC +RK). (50)

Substituting equation 50 into equation 48:

GW2(X,Y ) ≤ 1

K2

(
2
√
K(K − 1) (RC +RK)

)2
= 4

(
1− 1

K

)
(RC +RK)

2,

which is exactly equation 7 and completes the proof.

Notation (adversarial queries, radii, and separation gap). Let x be a clean image and η a per-
turbation. For each space M ∈ {C,K}, define the adversarial query as q̃M := zM(x + η), the
embedding of the perturbed image x + η into M. As the dataset is fixed and only the query moves,
so the K–NN neighborhood may change membership relative to the clean case. We define the ad-
versarial neighborhood as ÑM

K (x + η) := {zM1 , . . . , zMK}, which are the K nearest neighbors to q̃M
under dM. The associated adversarial radii are rMi := dM(z

M
i , q̃M), and Radv

M := max1≤i≤K r
M
i .

Adversarial shifts often produce a “cluster split” in these radii, i.e., some neighbors become unusu-
ally close to q̃M, while others remain farther away. To capture this structure, we partition ÑM

K (x+η)
into an inner group L and an outer group H of sizes (1 − θ)K and θK by thresholding {rMi }. The
adversarial separation gap in M is

γM := min
i∈H

rMi −max
j∈L

rMj ,

which is positive when the inner and outer sets are well separated.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Theorem 2 (Adversarial cross–space GW lower bound). Fix a query x and perturbation η, and
consider the adversarial neighborhoods Ñ C

K(x + η) and ÑK
K (x + η), each with uniform measure

on K points. Let γC be the separation gap and let Radv
K denote the adversarial K–NN radius in K,

bounded as in Theorem 8. Then, with probability at least 1−δenvK , GW2
(
Ñ C
K(x+η), ÑK

K (x+η)
)
≥

2 θ2
(
γC − 2Radv

K

)2
+

.

Proof. In any metric space (M, d) with center q, one has for all u, v,

| d(u, q)− d(v, q) | ≤ d(u, v) ≤ d(u, q) + d(v, q).

We apply this to the adversarial neighborhoods. For the C-space, each xi, xj ∈ Ñ C
K(x+ η) has radii

rCi = dC(xi, q̃C), while for the K-space, each ya, yb ∈ ÑK
K (x+ η) has radii rKa = dK(ya, q̃K).

Hence,
dC(xi, xj) ≥ | rCi − rCj |, dK(ya, yb) ≤ rKa + rKb ≤ 2Radv

K . (51)

We now identify which neighbor pairs give us a guaranteed discrepancy. Recall that the adversarial
neighborhood in C is partitioned into an inner set L of size (1− θ)K and an outer set H of size θK,
with separation gap γC := mini∈H r

C
i −maxj∈L r

C
j > 0.

A natural question arises, namely, Why focus on cross pairs? If both indices come from H (outer–
outer) or both from L (inner–inner), the corresponding radii may be very close, and no nontrivial
separation is guaranteed. However, whenever one index i ∈ H and the other j ∈ L, we know
rCi − rCj ≥ γC .

By the triangle inequality bound equation 51,

dC(xi, xj) ≥ | rCi − rCj | ≥ γC , dK(ya, yb) ≤ 2Radv
K .

Therefore, for any cross pair (i, j) ∈ H × L or (j, i) ∈ L×H , and for all choices of (a, b) in K,∣∣ dC(xi, xj)− dK(ya, yb) ∣∣ ≥ γC − 2Radv
K . (52)

How many such pairs exist? Define S := (H × L) ∪ (L×H) ⊂ {1, . . . ,K}2. Then

|S| = |H||L|+ |L||H| = 2|H||L| ≥ 2 θ2K2.

Thus, at least 2θ2K2 ordered pairs (i, j) enjoy the guaranteed discrepancy equation 52, which will
next drive our GW lower bound.

For any coupling π ∈ Π(µ̃, ν̃) with uniform marginals, the GW objective can be written as

GW2
(
C̃, K̃

)
= inf

π

∑
i,i′

∑
j,j′

π[i, j]π[i′, j′]
(
dC(xi, xi′)− dK(yj , yj′)

)2
.

From equation 52, we have that each summand in the inner sum (over j, j′) is bounded below by
(γC − 2Radv

K )2+. Since the coupling π has uniform marginals, the total weight assigned to the block
{i} × {i′} after summing over j, j′ is fixed:∑

j,j′

π[i, j]π[i′, j′] =
(∑

j

π[i, j]
)(∑

j′

π[i′, j′]
)
=

1

K
· 1
K

=
1

K2
.

Therefore for each (i, i′) ∈ S,
∑
j,j′ π[i, j]π[i

′, j′](· · · ) ≥ 1
K2 (γC − 2Radv

K )2+.

Summing over all (i, i′) ∈ S gives

Eπ⊗π
[(
dC(x, x

′)− dK(y, y′)
)2] ≥ |S|

K2
(γC − 2Radv

K )2+,

because contributions from pairs outside S are nonnegative and can be dropped. Finally, recalling
|S| ≥ 2θ2K2, we arrive at Eπ⊗π[· · · ] ≥ 2θ2 (γC − 2Radv

K )2+. As this bound is independent of
the choice of coupling, it continues to hold after taking the infimum over π. Finally, substituting the
high–probability envelope for Radv

K from Theorem 8 yields the explicit form of the bound, which
completes the proof.
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Remark 5 (Instantiating γC from clean geometry). The abstract separation parameter γC in Theo-
rem 2 can be linked to earlier C results. Let q and q̃ be the clean and adversarial queries, with the
clean K–NN neighborhood partitioned into inner set L and outer set H . The clean separation gap
is

∆clean := min
i∈H

dC(xi, q) − max
j∈L

dC(xj , q).

By our earlier adversarial absorption radius analysis in C, adversarial perturbations shift each star
distance by at most

√
d σ√
δgrad

ε+ 1{c̸=ĉ}. Hence the induced adversarial gap satisfies

γC ≥
(
∆clean − 2

( √
d σ√
δgrad

ε+ 1{c̸=ĉ}

))
+
.

Thus γC is not an arbitrary constant: it can be certified from clean geometry plus the perturbation
shift and possible label flip.

Corollary 6 (Explicit clean–adversarial gap across C andK). Combining Theorem 2 with Remark 5,
with probability at least 1− (δenvK + δgrad),

GW2
(
Ñ C
K(x+ η), ÑK

K (x+ η)
)
≥ 2θ2

(
∆clean︸ ︷︷ ︸
clean sep.

− 2
( √

d σ√
δgrad

ε+ 1{c̸=ĉ}

)
︸ ︷︷ ︸

adv. shift in C

−2Radv
K

)2
+
.

This bound separates the clean structure, the C–side adversarial shift, and the K–side absorption,
making the cross–space adversarial gap explicit.

G.1 MIRROR THEOREMS FOR UPPER AND LOWER BOUNDS ON GW

Theorem 10 (Clean cross–space GW lower bound). Fix a clean query x and its clean neighbor-
hoods N C

K(x) and NK
K (x), each with uniform measure on K points. Suppose the clean C–radii

around the clean center qC exhibit a separation gap

γcleanC := min
i∈H

dC(xi, qC) − max
j∈L

dC(xj , qC) > 0,

for a partition into inner L and outer H of sizes (1 − θ)K and θK. Let Rclean
K denote the clean

K–NN radius in K, bounded by the clean K envelope. Then

GW2
(
N C
K(x), NK

K (x)
)
≥ 2 θ2

(
γcleanC − 2Rclean

K

)2
+
.

Proof sketch. Identical to Theorem 2 (Steps 1–4) with “adversarial” replaced by “clean” and Radv
K

replaced by Rclean
K . The cross-pairs (H × L) ∪ (L × H) enforce an entrywise gap of at least

γcleanC − 2Rclean
K ; uniform marginals then yield the factor 2θ2 after averaging over couplings.

Theorem 11 (Adversarial cross–space GW upper bound via K-NN star radii). Fix a query x and
perturbation η, and consider the adversarial neighborhoods

Ñ C
K(x+ η), ÑK

K (x+ η),

each with uniform measure on K points. Let Radv
C and Radv

K denote the adversarial K–NN radii in
C and K, respectively (each bounded by the adversarial envelopes in those spaces). Then

GW2
(
Ñ C
K(x+ η), ÑK

K (x+ η)
)
≤ 4

(
1− 1

K

)(
Radv

C +Radv
K

)2
.

Proof sketch. Copy Theorem 1 verbatim, replacing clean radii by adversarial radii. The iden-
tity coupling and Frobenius argument give GW2 ≤ K−2∥DC − DK∥2F . Each off-diagonal en-
try is at most 2Radv by triangle inequality via the adversarial centers, so ∥DC − DK∥F ≤
2
√
K(K − 1)(Radv

C +Radv
K ), which yields the claim.
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G.2 GAP THEOREM IN GW

We now combine the clean and adversarial envelopes established in Theorems 1, 2, 10, and 11 to
show that their GW discrepancies are separated by a margin that is nonvanishing in high dimension.

Theorem 3 (Cross–space GW gap). With probability at least 1 − (δC + δK + δenvK + δaux), the
clean and adversarial GW discrepancies satisfy |GW2

adv−GW2
clean| ≥ τ := max{τadv, τclean, 0},

where τadv = Ladv − Uclean and τclean = Lclean − Uadv. Under Assumption 2, for fixed K and
perturbation ∥η∥∞ = ε, we obtain τ = Ω(d2σ2ε2)−O( logKd ).

Proof. On the joint event where all four bounds hold:

GW2
adv ≥ Ladv, GW2

clean ≤ Uclean,

which implies
GW2

adv −GW2
clean ≥ Ladv − Uclean.

Similarly,
GW2

clean ≥ Lclean, GW2
adv ≤ Uadv,

which implies
GW2

clean −GW2
adv ≥ Lclean − Uadv.

Taking the maximum of these two margins yields the result.

Discussion. Clean side. For fixed K, as d → ∞, the clean K–NN radii in both C and K concen-
trate:

RC , RK = O
(
µ+

√
logK
d

)
,

so the clean upper envelope Uclean vanishes at rate O
(√

logK
d

)
.

Adversarial side. A perturbation ∥η∥∞ = ε shifts the K–NN star distances in C by δC(ε) =

Θ
( √

d√
δgrad

σ ε
)

, which induces a separation gap γC . Meanwhile, absorption in K is controlled by

Radv
K = O(Ck

√
d). Together, this yields Ladv = Ω(d σ2ε2).

Gap scaling. As we have τ = Ω(d σ2ε2) − O
(

logK
d

)
, so the gap is asymptotically nonvanishing:

the clean side contracts while the adversarial side grows linearly in d. This proves robustness in high
dimension.

Implication for entropic solvers. Because the GW gap remains bounded away from zero asymp-
totically, entropic relaxations that preserve relative ordering inherit the same discriminative power,
justifying our detector design.

G.3 ENTROPIC GW COROLLARIES AND RISK CONTROL

Corollary 7 (Entropic relaxation preserves lower bounds). For any metric–measure spaces
(X , dX , µ) and (Y, dY , ν) and any λ > 0,

GW2
λ(X ,Y) ≥ GW2(X ,Y).

Hence the lower bounds of Theorems 2 and 10 remain valid verbatim under entropic GW.

Corollary 8 (Entropic slack in upper bounds). For uniform marginals on K points,

GW2
λ(X ,Y) ≤ GW2(X ,Y) + 2λ logK.

Thus the upper bounds of Theorems 1 and 11 hold with additive slack 2λ logK.

Corollary 9 (Quenched key version). All high–probability envelopes on the K–side radii (Theo-
rems 8, 2, 11) were stated in the annealed sense, averaging over random keys (b, k). By condi-
tioning, the same inequalities hold for any fixed (b, k) with identical probability bounds over the
randomness of image sampling and adversarial perturbations.
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Risk control The GW gap theorem (Theorem 3) ensures that, with high probability, the clean
and adversarial discrepancies GW2

clean and GW2
adv are separated by a margin τ > 0. In practice,

however, we only observe the empirical, regularized estimator ĜW2
λ, which deviates from the truth

due to (i) statistical sampling noise and (ii) entropic bias. If these deviations exceed τ , the detector
may fail. The next lemma formalizes that controlling the estimation error to τ/3 suffices.

Lemma 4 (Risk control via GW margin). If the gap event holds with margin τ > 0 and an estimator

ĜW2
λ satisfies Pr

(
|ĜW2

λ − GW2| ≤ τ/3
)
≥ 1 − δest, then thresholding ĜW2

λ at the midpoint
between clean and adversarial envelopes makes no error on this event. Thus Pr(misclassification) ≤
Pr(Ecgap) + δest.

Proof. On the event Egap, the clean and adversarial discrepancies satisfy conditions GW2
clean ≤

Uclean and GW2
adv ≥ Ladv, with Ladv − Uclean ≥ τadv, and symmetrically GW2

clean ≥ Lclean

and GW2
adv ≤ Uadv, with Lclean − Uadv ≥ τclean. By definition, τ = max{τadv, τclean} > 0, so

there exists a threshold t∗ lying strictly between the clean and adversarial ranges, with a buffer of at
least τ2 to each side.

In the case of a clean instance, on Eest we have that ĜW2
λ ≤ GW2

clean +
τ
3 ≤ Uclean +

τ
3 . Since

t∗ ≥ Uclean + τ
2 , we conclude ĜW2

λ ≤ t∗ − τ
6 < t∗, so the classifier correctly outputs “clean.”

For an adversarial instance, on Eest, we have ĜW2
λ ≥ GW2

adv − τ
3 ≥ Ladv − τ

3 . Since

t∗ ≤ Ladv − τ
2 , we similarly conclude ĜW2

λ ≥ t∗ + τ
6 > t∗, so the classifier correctly outputs

“adversarial.”

Thus, on Egap ∩Eest, the plug–in classifier is error–free. Finally, since Egap holds with probability
at least 1− δgap (from Theorem 3) and Eest with probability at least 1− δest, a union bound yields
P(misclassification) ≤ δgap + δest.

Discussion. Lemma 4 formalizes the transition from a theoretical gap to a practical detector.
Theorem 3 ensures a margin τ exists between clean and adversarial discrepancies. The lemma
shows that if the empirical entropic GW estimator concentrates within τ/3 of the truth, then a
midpoint threshold t∗ separates the two classes with zero error. The factor 1/3 is convenient: it
splits the error budget evenly, allowing statistical variance and entropic bias to each consume at
most τ/6. This provides a direct analogue to margin-based classifiers in statistical learning: once
the theoretical gap is positive, robust classification depends only on estimator concentration, not on
further geometric properties of C or K. In particular, higher dimension amplifies τ , so the limiting
risk is controlled primarily by solver accuracy and sample complexity rather than geometry itself.

H DETAILS OF ADVERSARIAL IMAGE GENERATION

We focus on the following white-box and black-box attacks in this work across the supervised and
zero-shot settings:

H.1 WHITE-BOX ATTACKS

White-box attacks assume access to the internal parameters of the target model.

• Auto Attack (Croce & Hein, 2020): A parameter-free ensemble attack combining four
complementary attacks: APGD-CE, APGD-DLR, FAB-T, and Square Attack. The ensem-
ble automatically selects optimal hyperparameters and provides reliable robustness evalua-
tion without manual tuning.

• Carlini & Wagner (C&W) Attack Carlini & Wagner (2017): An optimization-based at-
tack that formulates adversarial example generation as:

min
δ
∥δ∥p + c · f(x+ δ) (53)
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where f(x + δ) = max(max{Z(x + δ)i : i ̸= t} − Z(x + δ)t,−κ) with Z representing
logits, t the target class, and κ the confidence parameter.

• Projected Gradient Descent (PGD) Attack Madry et al. (2018): An iterative first-order
adversarial attack using projected gradient descent:

xt+1 = ΠS(xt + α · sign(∇xℓ(θ, xt, y))) (54)

where ΠS denotes projection onto the constraint set S = {x′ : ∥x′ − x∥∞ ≤ ϵ} and ℓ is
the loss function.

• Auto-PGD (APGD) Attack (Croce & Hein, 2020): An enhanced version of PGD with
automatic step size adaptation and momentum. The step size is dynamically adjusted based
on the loss trajectory:

αt = α0 · ρkt (55)
where kt counts the number of step size reductions and ρ = 0.75.

• Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015): A single-step attack that
generates adversarial examples using:

xadv = x+ ϵ · sign(∇xJ(θ, x, y)) (56)

where J is the cost function used to train the neural network, θ are the model parameters,
and ϵ controls the perturbation magnitude.

• Universal Adversarial Perturbation (Moosavi-Dezfooli et al., 2017): Generates image-
agnostic perturbations that fool classifiers across different inputs:

min
v
∥v∥p subject to Px∼µ[k̂(x+ v) ̸= k̂(x)] ≥ 1− δ (57)

where v is the universal perturbation, µ is the data distribution, and δ is the desired fooling
rate.

• Adversarial Patch Attack Brown et al. (2017): Generates printable adversarial patches
that can cause misclassification in the physical world:

p̂ = argmax
p

Ex,t,l[log Pr(ŷ|A(p, x, l, t))] (58)

where A(p, x, l, t) applies patch p to image x at location l with transformation t, and ŷ is
the target class.

H.2 BLACK-BOX ATTACKS

Black-box attacks operate without knowledge of internal model parameters.

• Frequency Attack Yin et al. (2019): Exploits the vulnerability of neural networks in the
frequency domain by applying perturbations to the Fourier transform:

F(xadv) = F(x) + δf (59)

where F denotes the Fourier transform and δf represents frequency-domain perturbations.
• Square Attack Andriushchenko et al. (2020): A query-efficient score-based black-box

attack that uses random search within ℓp balls:

xt+1 = xt + ηt · ht (60)

where ht is a random direction sampled uniformly from {−1,+1}d and ηt is the step size
adapted based on the attack success.

• Gaussian Blur Attack (Zhang et al., 2022): Applies Gaussian blur to exploit the frequency
bias of deep neural networks:

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(61)

where σ controls the blur intensity and the convolution xblur = x ∗ Gσ generates the
adversarial example.
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• Semantic Rotation Attack (Hosseini & Poovendran, 2018): Applies geometric transfor-
mations including rotations that preserve semantic content while causing misclassification:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(62)

where θ represents the rotation angle applied to the input image coordinates.
• Pixel Flip Attack (Su et al., 2019): A sparse attack that modifies only a few pixels to

cause misclassification:

min |S| subject to f(x⊕ δS) ̸= f(x) (63)

where S is the set of modified pixel locations, δS represents the pixel modifications, and ⊕
denotes the modification operation.

H.3 ADVERSARIAL IMAGE GENERATION IN THE SUPERVISED SETTING

In the supervised setting, adversarial examples are generated against traditional classification models
trained on labeled datasets. The model produces logits through a standard forward pass:

z = fθ(x), (64)

where fθ(x) denotes the neural network with parameters θ, x ∈ RH×W×C is the input image, and
z ∈ RK are the raw logits for K classes.

The final classification layer is typically a linear transformation:

z =WTh+ b, (65)

where h is the penultimate layer representation, W ∈ Rd×K is the weight matrix, and b ∈ RK is
the bias vector.

The predicted class probabilities are obtained via the softmax function:

P (y = c | x) = exp(zc)∑K
j=1 exp(zj)

, (66)

where zc is the logit for class c.

During adversarial attack generation, the commonly used loss function is the cross-entropy loss:

L(x, y) = − logP (y | x) = −zy + log

 K∑
j=1

exp(zj)

 . (67)

H.4 ADVERSARIAL IMAGE GENERATION IN THE ZERO-SHOT SETTING

In the zero-shot setting, adversarial examples are generated against Vision-Language Models
(VLMs) using its image encoder model (in our case CLIP Radford et al. (2021)), which do not
require training on the target classes. The model consists of separate image and text encoders that
project inputs into a shared embedding space.

Given an input image x ∈ RH×W×C and a set of K class names {c1, c2, . . . , cK}, the zero-shot
classification process proceeds as follows:

Image Encoding: The image encoder EI : RH×W×C → Rd maps the input image to an ℓ2-
normalized embedding in the shared representation space:

vI =
EI(x)

∥EI(x)∥2
, (68)

where vI ∈ Rd represents the normalized image embedding with unit norm.

Text Encoding: For each class ci, a text prompt is constructed using the template “A photo of ci”.
The text encoder ET : V∗ → Rd maps each prompt to a normalized embedding in the same shared
space:

vT,i =
ET (“A photo of ci”)
∥ET (“A photo of ci”)∥2

, (69)
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where V∗ denotes the vocabulary space and vT,i ∈ Rd is the normalized text embedding for class
ci.

Logit Computation: The logits are computed as the temperature-scaled cosine similarities between
the image embedding and each text embedding:

zi = τ · vTI vT,i = τ · cos(vI , vT,i), (70)

where τ > 0 is a temperature parameter that controls the sharpness of the similarity distribution.
The complete logit vector is:

z = τ ·
[
vTI vT,1, vTI vT,2, . . . , vTI vT,K

]T ∈ RK . (71)

Classification Decision: The predicted class is obtained by selecting the class with the maximum
logit value:

ŷ = arg max
i∈{1,...,K}

zi = arg max
i∈{1,...,K}

vTI vT,i. (72)

The class posterior probabilities are obtained through softmax normalization:

P (y = ci | x) =
exp

(
τ · vTI vT,i

)∑K
j=1 exp

(
τ · vTI vT,j

) . (73)

H.5 ADVERSARIAL ATTACK HYPERPARAMETER SELECTION

In this section, we provide the detailed configuration of adversarial attack methods used in our ex-
periments (Section 6). Table 6 summarizes the set of hyperparameters chosen for each attack. These
values are selected following common practice in the adversarial robustness literature to ensure a
fair comparison across methods.

We consider a diverse set of attack strategies, including optimization-based, gradient-based, score-
based, and patch-based approaches. For gradient-based methods such as PGD, Auto-PGD, FGSM,
and Square Attack, we evaluate under multiple perturbation budgets with ϵ ∈ {4/255, 8/255}.
Universal Perturbation is evaluated with a wider range of perturbation strengths, namely ϵ ∈
{4/255, 8/255, 12/255}.
For optimization-based attacks, the Carlini & Wagner (CW) attack is configured with confidence pa-
rameter κ = 0.0, following the default setting to generate minimally perturbed adversarial examples.
AutoAttack is evaluated under ϵ ∈ {4/255, 8/255}, consistent with its standardized benchmark pro-
tocol.

Patch-based and spatial transformations are included to account for more physically realizable ad-
versarial scenarios. The Patch Attack is tested with square patches of shape (3, 8, 8) and (3, 16, 16),
while the Spatial Attack allows for up to 30◦ rotation and translations of up to 10% of the image
dimensions.

In addition to the attacks described above, we also include several specialized perturbations and
image corruptions to probe robustness across different perturbation modalities: a Frequency Attack
with noise strength noise strength = 0.05, Gaussian Blur with σ = 1.0 (blur type set to “uniform”),
Pixel Flip with num pixel = 5 and attack mode set to “random”, and a Semantic Rotation with
angle = 8◦. These parameter choices are summarized in Table 6 and were chosen to reflect common
settings used in prior work while providing a broad coverage of perturbation types.

These configurations ensure that the evaluation captures a broad spectrum of attack types, ranging
from small-norm pixel perturbations to structured and geometric transformations. See Table 6 for
an overview of the attack methods and the full set of parameter values used in our experiments.
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Attack Method Parameter Values
AutoAttack (AA) ϵ = 4/225, 8/225
C&W (CW) κ = 0.0
Patch Attack (PT) patch shape = (3,8,8), (3, 16, 16)
PGD ϵ = 4/255, 8/255
Spatial Attack (SA) max rotation: 30◦, max translation: 10% of the image size
Square Attack (SQ) ϵ = 4/255, 8/255
Universal Perturbation (UP) ϵ = 4/255, 8/255, 12/255
Auto-PGD (AP) ϵ = 4/255, 8/255
FGSM (FG) ϵ = 4/255, 8/255
Frequency Attack (FA) noise strength = 0.05
Gaussian Blur (GB) σ = 1.0, blur type = uniform
Pixel Flip (PF) num pixel = 5, attack mode = random
Semantic Rotation (SR) angle = 8

Table 6: Overview of adversarial attack methods and their parameter settings. Parameter value
written with bold represents the default value of the corresponding attack among its parameter
configurations.

H.6 EXAMPLES OF ADVERSARIAL IMAGES SUPERVISED SETTING

H.6.1 GAUSSIAN BLUR ATTACK

Original image
label: car

Perturbed image
Predicted label: truck Perturbation

Figure 3: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
Original Image with True Label car, Center: Adversarial Image with Predicted Label truck and
Right: Perturbation

Original image
label: plane

Perturbed image
Predicted label: bird Perturbation

Figure 4: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
Original Image with True Label plane, Center: Adversarial Image with Predicted Label bird and
Right: Perturbation
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H.6.2 PATCH ATTACK

Original image
label: car

Perturbed image
Predicted label: truck Perturbation

Figure 5: Comparison between Original and Perturbed Images using Patch attack. Left: Original
Image with True Label car, Center: Adversarial Image with Predicted Label truck and Right: Per-
turbation

Original image
label: plane

Perturbed image
Predicted label: bird Perturbation

Figure 6: Comparison between Original and Perturbed Images using Patch attack. Left: Original
Image with True Label plane, Center: Adversarial Image with Predicted Label bird and Right:
Perturbation

H.7 EXAMPLES OF ADVERSARIAL IMAGES ZERO SHOT SETTING

H.7.1 APGD ATTACK

True
Dolphin

Predicted
Camera Perturbation

Figure 7: Comparison between Original and Perturbed Images using APGD attack. Left: Original
Image with True Label Dolphin, Center: Adversarial Image with Predicted Label Camera and Right:
Perturbation
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H.7.2 PGD ATTACK

True
Trilobite

Predicted
Helicopter Perturbation

Figure 8: Comparison between Original and Perturbed Images using APGD attack. Left: Original
Image with True Label Trilobite, Center: Adversarial Image with Predicted Label Helicopter and
Right: Perturbation

I DETECTION METHODS CONFIGURATION

This section provides detailed descriptions of the adversarial detection methods evaluated in our
experiments, with configurations specified in Table 7. Further, we also mention the hyperparameter
settings used in our defense approach.

I.1 MAHALANOBIS DETECTOR

The Mahalanobis detector (Lee et al., 2018) leverages the Mahalanobis distance to measure distri-
butional deviations of test samples from training data in the neural network’s feature space. For a
given sample x and its feature representation f(x) at layer l, the method computes class-conditional
Gaussian distributions N (µ

(l)
c ,Σ(l)) from clean training data. The Mahalanobis distance is defined

as:
M (l)
c (x) = (f (l)(x)− µ(l)

c )T (Σ(l))−1(f (l)(x)− µ(l)
c )

The minimum distance across all classes serves as the confidence score for adversarial detection,
exploiting the property that adversarial perturbations typically push samples away from the natural
data manifold.

I.2 FEATURE SQUEEZING

Feature Squeezing (Xu et al., 2018) reduces the degrees of freedom available to adversarial pertur-
bations by applying input transformations that compress the feature space. Our implementation uses
median smoothing with a 2 × 2 kernel and L1 distance metric for comparing predictions. For an
input x and its squeezed version x′, the detection score is computed as:

score(x) = ∥p(x)− p(x′)∥1
where p(·) represents the model’s prediction probabilities. A threshold is determined using the
training false positive rate (FPR) of 0.2, assuming legitimate inputs remain robust to minor spatial
transformations while adversarial examples exhibit significant prediction changes.

I.3 METADETECT

MetaDetect (Ma et al., 2019) formulates adversarial detection as a few-shot learning problem using
meta-learning principles. The method employs episodic training with support sets S = {(xi, yi)}Ns

i=1

and query sets Q = {(xj , yj)}
Nq

j=1, where yi ∈ {0, 1} indicates clean (0) or adversarial (1) sam-
ples. Our configuration uses Ns = 1 support example and Nq = 15 query examples with a conv3
architecture. The meta-detector learns a function fθ that maps from support-query episode pairs to
detection decisions, optimizing over episode distributions to generalize across different attack types.
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I.4 MAGNET

MagNet (Meng & Chen, 2017) combines detection and defense mechanisms using autoencoder-
based reconstruction and probability estimation. The method trains an autoencoder Eϕ : Rd → Rd
on clean data to approximate the natural data manifold. For detection, it computes the reconstruction
error:

Lrec(x) = ∥x− Eϕ(x)∥21
Additionally, MagNet estimates the probability density using the Jensen-Shannon divergence be-
tween the original and reconstructed inputs’ predicted distributions. The underlying assumption is
that adversarial examples, lying off the natural manifold, will exhibit higher reconstruction errors
and lower probability estimates compared to legitimate inputs.

Detection Method Parameters
Mahalanobis Detector train fpr = 0.15
Feature Squeezing distance metric: L1, squeezer: median smoothing (2×2), train fpr=0.2
MetaDetect num support = 1, num query = 15, arch = conv3
MagNet l1 norm reconstruction error, train fpr = 0.15

Table 7: Parameters and configurations for different adversarial detection methods. Methods refer-
enced: Mahalanobis (Lee et al., 2018), Feature Squeezing (Xu et al., 2018), MetaDetect (Ma et al.,
2019), and MagNet (Meng & Chen, 2017).

I.5 HYPER PARAMETER CONFIGURATION FOR THE PROPOSED METHOD

Hyperparameter Candidate Values Optimal Value Description
klocal {8, 10, 12, 15} 8 Local Gromov-Wasserstein features
kglobal {3, 5, 7} 3 Global Gromov-Wasserstein features
ϵgw {0.2, 0.5, 0.8} 0.5 Entropic regularization strength

Table 8: Hyperparameter search for GW features: We performed a grid search over the candidate
values of each hyperparameter and chose the values that achieved the best trade-off between robust-
ness and model usability. Based on this search, we selected the optimal parameters as klocal = 8,
kglobal = 3, and ϵgw = 0.5.

Hyperparameter Candidate Values Optimal Value Description
Kernel {linear, rbf, poly} rbf Choice of kernel function
C {0.1, 1, 10, 100} 1 Regularization parameter
γ {scale, auto, 0.01, 0.001} scale Kernel Coeff. for RBF

Table 9: Hyperparameter search for SVM: We performed a grid search over the candidate values
of each hyperparameter and selected the optimal configuration based on validation accuracy. The
chosen parameters are Kernel = rbf, C = 1, γ = scale.

J ADAPTIVE ATTACK FORMULATION

Evaluating the robustness of a defense mechanism against an adaptive adversary is crucial. We
consider an adversary who possesses complete knowledge of the defense’s architecture, including
the classifier fθ(x), the CNN feature extractor ϕcnn(x), and the crypto feature extractor ϕ(b)cr (x)
with its associated transform Tb. However, the adversary is unaware of the defender’s specific, fixed
secret bit vector b⋆ ∈ {0, 1}D used in deployment. This section formalizes the adversary’s objective
and optimization strategy to generate adversarial examples under this realistic uncertainty, focusing
on two distinct consistency-based attacks. This approach is typical for evaluating defenses against
strong, adaptive attackers Athalye et al. (2018).
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J.1 ATTACKER’S PRIOR OVER SECRET BITS

To account for the unknown secret b⋆, the adversary models it as a random variable b drawn from a
prior distribution p(b). This prior is constructed as a mixture model over a set of plausible Bernoulli
distributions,M, reflecting the adversary’s uncertainty about the specific statistical properties of b⋆:

p(b) =
1

|M|
∑
m∈M

D∏
j=1

Bernoulli(bj ; pm),

where pm corresponds to the individual Bernoulli success probability for each distribution type in
M (e.g., pm = 0.5 for uniform or Gaussian-threshold components, and specific probabilities like
0.3, 0.7 for biased Bernoulli components). This mixture prior allows the adversary to account for
various possibilities of how the defender might have generated b⋆. Modeling unknown parameters
in this manner is a standard robust optimization technique Ben-Tal et al. (2009).

J.2 ATTACKER’S OBJECTIVE FUNCTION

The adversary’s goal is to craft an adversarial example x from a benign input x0 that achieves
misclassification by fθ(x) while simultaneously maintaining a high degree of feature consistency
with x0. The latter ensures the adversarial example does not trip the defense’s detection mechanisms,
particularly those relying on the crypto features. Since the specific b⋆ is unknown, the adversary
targets an average consistency, minimizing the expected penalty under their prior p(b).

The general adversarial objective is:
max
x∈X
L(x;x0, y) = ℓ(fθ(x), y) − λEb∼p(b)[C(x, x0; b) ] ,

where ℓ(fθ(x), y) is the cross-entropy loss for the true label y, which the adversary seeks to max-
imize; λ > 0 is a weighting factor that balances the misclassification objective against the consis-
tency penalty — a formulation commonly used in adversarial attacks to trade off attack success and
imperceptibility or stealth Carlini & Wagner (2017); C(x, x0; b) quantifies the discrepancy between
features of x and x0 for a given b, with lower values of C implying better stealth against consistency
checks; and X defines the allowed perturbation space, typically restricted to a range [a, b]H×W×C

for pixel values.

J.3 CONSISTENCY PENALTIES (C(x, x0; b))

We define the consistency penalty C(x, x0; b) using an OT-like discrepancy metric, DOT(·, ·). This
metric compares feature vectors (L2 distance if dimensions match) or their statistical summaries
(L2 distance between mean, std, min, max, skewness, kurtosis if dimensions differ or comparison of
statistics is explicitly requested).

For this study, we consider two specific attack formulations based on distinct consistency penalties:

J.3.1 CROSS-SPACE CONSISTENCY ATTACK (Ccross)

This attack targets the defense by imposing consistency across both the standard CNN feature space
and the specialized crypto feature space. The adversary aims to ensure that the features extracted
from the adversarial example x remain similar to those from the clean input x0 in both domains.
The penalty term is defined as the sum of discrepancies in each feature space:

Ccross(x, x0; b) = DOT

(
ϕcnn(x), ϕcnn(x0)

)
+ DOT

(
ϕ(b)cr (x), ϕ

(b)
cr (x0)

)
.

By minimizing this penalty, the adversarial example is constrained to modify the input in a way that,
on average over b, preserves the inherent characteristics captured by both ϕcnn and ϕ(b)cr .

J.3.2 MULTI-SCALE CONSISTENCY ATTACK (Cms)

This attack extends the cross-space consistency by introducing an additional constraint on global
CNN feature similarity. This reflects a defense that might perform multi-scale or global consistency
checks specifically on CNN features. The Cms penalty is structured as:

Cms(x, x0; b) = Clocal(x, x0; b) + Cglobal(x, x0),
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where:

• Clocal(x, x0; b) = Ccross(x, x0; b) represents the local, cross-space consistency across
CNN and crypto features.

• Cglobal(x, x0) = DOT

(
ϕcnn(x), ϕcnn(x0)

)
ensures global consistency focusing solely on

CNN features. Note that Cglobal does not depend on b, as the global consistency check is
assumed to be deterministic based on CNN features, which are not secrets-dependent.

The combined penalty

Cms(x, x0; b) = 2 ·DOT

(
ϕcnn(x), ϕcnn(x0)

)
+ DOT

(
ϕ(b)cr (x), ϕ

(b)
cr (x0)

)
effectively doubles the weight on CNN feature consistency, making the adversarial example poten-
tially harder to detect by defenses performing aggregated checks on CNN features.

To optimize the objective function, the adversary utilizes an iterative PGD Madry et al. (2018)
is used. Since the objective involves an expectation over the unknown b, a Monte Carlo (MC)
approximation is employed Rubinstein & Kroese (2016).

K IMPLEMENTATION DETAILS

K.1 PSEUDOCODE FOR CROSS-SPACE DETECTOR

Algorithm 1 Multi-Scale Cross-Space GW Detector

Require: Image x; z ← hθ(x); p← T
(b)
k (x)

1: for all s ∈ {lo, gl} do
2: Build NZ

s (z),NP
s (p); compute µZs , µ

P
s , ψ

Z
s , ψ

P
s

3: g1 ← GW2
λ(µ

Z
s , µ

P
s ); g2 ← GW2

λ(ψ
Z
s , ψ

P
s )

4: h← ENTROPY(ψZs , ψ
P
s ); f ← f ∥ [g1, g2, h]

5: end for
6: return SVM(f) ∈ {clean, adv} =0

We provide the hyperparmeter selection details for GW features in Table 8 and for SVM classifier
in Table 9.

L ADDITIONAL EXPERIMENTS

L.1 ADDITIONAL BASELINE DEFENCES AND ATTACKS

To evaluate performance against imperceptible and optimization-free attacks, we extend our ex-
periments to three recent low-magnitude adversarial methods, i.e., AdvAD, PGN, and BSR, which
explicitly target the small-perturbation regime. These attacks probe the limits of pixel-level stability
and serve as stringent tests for detectors relying on fine-grained geometric discrepancies.

In addition to our default ResNet-18 backbone, we generate all attacks using a Vision Transformer
(ViT) to assess robustness across fundamentally different architectural families. Table 10 reports
binary detection accuracy for all attacks and defenses. Table 11 reports corresponding AUROC
values.

Across all attack types—including classical gradient-based attacks (PGD, SQ, PT) and mod-
ern diffusion-based or non-parametric attacks (AdvAD, PGN, BSR)—our detector achieves the
strongest performance on both ResNet-18 and ViT. Competing baselines degrade substantially under
stronger or low-magnitude attacks, whereas our Z–P discrepancy remains highly separable across
architectures, perturbation magnitudes, and attack mechanisms.
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Attack Model Ours MD FS MAD MN EA BY

PGD ResNet-18 97.8 91.7 74.4 46.3 81.9 97.5 69.5
ViT 95.7 49.8 70.3 57.5 49.4 93.2 77.5

SQ ResNet-18 97.6 89.1 88.5 45.8 91.9 91.9 59.5
ViT 96.2 51.0 87.3 56.3 49.7 90.5 62.5

PT ResNet-18 98.0 86.4 67.3 46.5 50.1 90.1 78.0
ViT 95.4 51.3 71.2 54.9 49.3 89.5 78.5

AAD ResNet-18 96.4 54.4 41.3 49.6 53.2 94.6 61.0
ViT 93.7 52.6 52.7 53.6 50.1 92.7 80.0

PGN ResNet-18 96.5 70.8 61.0 45.6 49.6 94.9 75.0
ViT 96.9 52.2 65.8 53.7 49.9 94.9 75.5

BSR ResNet-18 95.0 73.0 42.4 45.5 62.1 92.9 78.5
ViT 98.7 51.9 53.9 53.7 50.0 93.2 76.0

Table 10: Detection accuracy (%) on CIFAR-10 for a range of classical and low-magnitude attacks,
evaluated using ResNet-18 and ViT. Best results are in bold; second best are underlined.

Attack Model Ours MD FS MAD MN EA BY

PGD ResNet-18 0.99 0.81 0.69 0.49 0.51 0.99 0.72
ViT 0.99 0.72 0.72 0.57 0.49 0.96 0.89

SQ ResNet-18 0.99 0.55 0.87 0.48 0.49 0.95 0.54
ViT 0.99 0.40 0.88 0.56 0.50 0.95 0.60

PT ResNet-18 0.99 0.93 0.52 0.50 0.54 0.95 0.89
ViT 0.99 0.47 0.63 0.54 0.52 0.94 0.90

AAD ResNet-18 0.99 0.61 0.56 0.49 0.51 0.97 0.55
ViT 0.98 0.88 0.55 0.53 0.53 0.97 0.94

PGN ResNet-18 0.99 0.79 0.59 0.48 0.50 0.98 0.80
ViT 0.97 0.54 0.61 0.55 0.51 0.98 0.81

BSR ResNet-18 0.99 0.64 0.53 0.48 0.51 0.95 0.87
ViT 0.99 0.59 0.58 0.55 0.54 0.96 0.84

Table 11: AUROC comparison on CIFAR-10 for various attacks generated using ResNet-18 and
ViT. Best results are in bold; second best are underlined.

L.2 EXPERIMENTAL EVALUATIONS WITH ADDITIONAL METRICS

Attacks Model Ours MD FS MAD MN EA BY

PGD ResNet-18 0.97/0.98 0.89/0.95 0.71/0.72 0.17/0.54 0.97/0.65 0.98/0.95 0.67/0.74
ViT 1.00/0.90 0.49/0.95 0.73/0.78 0.57/0.57 0.25/0.01 0.98/0.93 0.72/0.90

SQ ResNet-18 0.96/0.97 0.88/0.89 0.83/0.88 0.16/0.52 0.22/0.01 0.89/0.92 0.60/0.54
ViT 0.95/0.94 0.50/0.98 0.93/0.80 0.56/0.57 0.40/0.01 0.88/0.90 0.63/0.60

PT ResNet-18 0.97/0.98 0.87/0.84 0.62/0.49 0.17/0.57 0.55/0.01 0.91/0.88 0.72/0.91
ViT 0.99/0.93 0.50/0.98 0.75/0.61 0.53/0.56 0.25/0.01 0.89/0.87 0.72/0.92

AAD ResNet-18 0.98/0.93 0.63/0.21 0.55/0.41 0.49/0.54 0.87/0.07 0.89/0.93 0.61/0.57
ViT 0.93/0.92 0.51/1.00 0.55/0.61 0.82/0.53 0.41/0.01 0.89/0.95 0.73/0.95

PGN ResNet-18 0.97/0.93 0.83/0.51 0.67/0.59 0.15/0.51 0.34/0.01 0.90/0.91 0.70/0.85
ViT 0.98/0.95 0.51/0.99 0.67/0.58 0.82/0.53 0.44/0.01 0.92/0.94 0.71/0.86

BSR ResNet-18 0.99/0.91 0.84/0.55 0.45/0.62 0.15/0.51 0.94/0.25 0.96/0.88 0.72/0.92
ViT 0.99/0.98 0.50/0.98 0.51/0.64 0.82/0.53 0.42/0.01 0.93/0.91 0.71/0.87

Table 12: Precision / Recall comparison of adversarial detection on CIFAR-10 under various attacks
generated using ResNet-18 and ViT, with best results in bold and second best underlined.

Table 12 reports the precision and recall of different adversarial detection methods across six at-
tack types using both ResNet-18 and ViT. Across nearly all attacks and architectures, our method
achieves the highest precision and recall values (highlighted in bold), often reaching near-perfect
scores close to 1.00, demonstrating its strong ability to accurately detect adversarial inputs. In con-
trast, EA generally appears as the second-best performer, but still lags behind our approach, par-
ticularly on challenging attacks such as AAD, PGN, and BSR. Overall, these results show that our
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detector is highly robust and consistent, maintaining superior numerical performance across all
attack families and both model architectures.
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Figure 9: PR curves for our method on attacks generated via ResNet-18 model on CIFAR10 dataset.
The small inset box displays a zoomed-in view of the upper-right corner of the PR curves.

In Figure 9, the Precision–Recall (PR) curves show that our detector maintains consistently high
precision and recall across all six attack types. All curves remain close to the top-right region,
indicating strong overall detection performance. The zoomed inset further illustrates that even at
high recall values (close to 1.0), the precision for each attack remains above 0.95 with only minimal
degradation. The high Average Precision (AP) scores (0.987–0.998) confirm the robustness of our
method, demonstrating reliable performance even against stronger modern attacks such as AdvAD,
PGN, and BSR. Overall, the PR curves highlight that our approach is highly accurate, stable, and
generalizes well across diverse adversarial attacks.

Ours MD FS MAD MN
AA 94.9 67.2 82.0 48.3 71.6
CW 93.8 72.1 85.3 48.9 54.2
PT 94.4 84.9 67.1 49.5 54.8
PGD 94.8 90.0 73.7 49.0 78.5
SA 93.4 76.7 73.7 39.2 52.5
SQ 93.4 87.7 87.8 48.5 41.9
UP 94.4 65.0 52.9 49.0 45.4
AP 93.8 66.9 80.7 48.6 71.1
FG 94.3 72.3 60.2 49.1 42.2
FA 94.6 48.5 49.3 48.7 47.3
GB 73.2 48.5 50.9 48.1 46.1
PF 93.3 50.3 50.7 48.5 46.9
SR 93.1 48.9 52.0 48.9 46.8

Table 13: End-to-end accuracy (%). Best results are in bold and second best are underlined.

Table 13 shows that our method consistently achieves the highest end-to-end detection accuracy
across all evaluated attacks. For every attack type, our detector outperforms all competing defenses,
often by margins of 10–40%. FS and MD occasionally achieve the second-best performance, but
they remain substantially weaker overall, while MAD and MN lag far behind on most attacks. These
results demonstrate that our approach generalizes robustly across a broad spectrum of adversarial
perturbations and maintains reliable detection performance even against diverse and challenging
attack strategies.
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Attacks Model Ours MD FS MAD MN EA BY
PGD ResNet-18 95.6 50.00 68.9 45.8 91.00 94.9 –
SQ ResNet-18 96.7 50.00 84.2 45.5 49.00 89.6 –
PT ResNet-18 96.2 50.00 73.7 45.0 50.50 88.2 –
AAD ResNet-18 97.6 50.00 55.9 49.6 59.38 95.4 –
PGN ResNet-18 96.3 50.00 63.2 46.3 49.06 93.2 –
BSR ResNet-18 97.8 50.00 59.4 46.35 50.31 93.6 –

Table 14: Detection accuracy (%) comparison on ImageNet + ResNet-18 with best (bold) and second
best (underlined).

Attacks Model Ours MD FS MAD MN EA BY
PGD ResNet-18 0.98 0.53 0.73 0.503 0.68 0.98 –
SQ ResNet-18 0.97 0.55 0.79 0.489 0.49 0.94 –
PT ResNet-18 0.99 0.52 0.71 0.45 0.50 0.95 –
AAD ResNet-18 0.99 0.49 0.55 0.495 0.45 0.96 –
PGN ResNet-18 0.98 0.50 0.66 0.488 0.44 0.95 –
BSR ResNet-18 0.99 0.50 0.62 0.488 0.43 0.95 –

Table 15: AUC comparison on ImageNet with best (bold) and second best (underlined).

L.3 EVALUATION ON THE IMAGENET DATASET ON DEFAULT RESNET-18 MODEL

In this section, we additionally evaluate our method on the large-scale ImageNet Deng et al. (2009)
dataset using the default ResNet-18 backbone. This allows us to verify that the detector remains
effective when applied to high-resolution images and a significantly more challenging data distribu-
tion.

Note: The BY He et al. (2022) baseline does not provide a publicly available codebase, so we
reproduce the method following the details reported in the original paper. Running BY requires a
self-supervised model trained on the target dataset; while we trained such a model for CIFAR-10,
training an equivalent backbone for ImageNet is computationally prohibitive. Consequently, we
omit BY from the ImageNet experiments due to the intractable training cost and scale of the dataset.

Tables 14, 15, and 16 jointly show that our detector achieves the strongest overall performance on
ImageNet across all six adversarial attacks. In terms of detection accuracy and AUC, our method
consistently reaches top performance—typically in the 0.98–0.99 range—while the next-best base-
line, EA, trails by 1− 5% depending on the attack. The precision and recall results further reinforce
this trend: our detector attains the best or second-best PR scores in nearly all settings, maintaining
high recall even for challenging attacks such as AdvAD, PGN, and BSR. Competing defenses such
as MD, FS, MAD, and MN perform substantially worse across all metrics. Together, these results
confirm that our approach scales robustly to high-resolution ImageNet data and preserves strong
discriminative ability under a wide range of adversarial perturbations.

L.4 SENSITIVITY TO THE PRIME-RESOLUTION PARAMETER k

Figure 10 shows how detection accuracy varies as the prime-resolution parameter k is changed.
Across the entire tested range (k = 3 to k = 8), the mean detection accuracy remains extremely
stable, fluctuating only within a narrow interval of approximately 0.954–0.957. The shaded region
captures variability across repeated runs and likewise remains tightly concentrated.

These results indicate that the detector is not sensitive to the specific choice of k. Even when
k is varied over a relatively broad range, the performance remains effectively unchanged. This

Attacks Model Ours MD FS MAD MN EA BY
PGD ResNet-18 1/0.93 0.50/1.00 0.65/0.82 0.05/0.55 0.92/1.00 0.98/0.97 –
SQ ResNet-18 0.98/0.96 0.50/1.00 0.84/0.76 0.05/0.52 0.42/0.06 0.89/0.91 –
PT ResNet-18 0.96/0.95 0.50/1.00 0.82/0.65 0.04/0.45 0.52/0.09 0.87/0.89 –
AAD ResNet-18 0.99/0.96 0.50/1.00 0.51/0.55 0.49/0.54 0.87/0.21 0.93/0.96 –
PGN ResNet-18 0.94/0.97 0.50/1.00 0.61/0.68 0.16/0.52 0.28/0.01 0.95/0.92 –
BSR ResNet-18 0.97/0.96 0.50/1.00 0.50/0.73 0.16/0.52 0.54/0.03 0.96/0.91 –

Table 16: Precision / Recall comparison on ImageNet under various attacks, with best values in bold
and second best underlined.
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Attacks Model Ours MD FS MAD MN EA BY
PGD ResNet-18 0.96 0.66 0.72 0.10 0.96 0.97 -
SQ ResNet-18 0.96 0.66 0.79 0.09 0.10 0.90 -
PT ResNet-18 0.95 0.66 0.72 0.08 0.15 0.88 -
AAD ResNet-18 0.97 0.66 0.52 0.51 0.35 0.95 -
PGN ResNet-18 0.95 0.66 0.64 0.24 0.02 0.93 -
BSR ResNet-18 0.96 0.66 0.59 0.24 0.07 0.93 -

Table 17: F1 score comparison on ImageNet under various adversarial attacks. Best results are
shown in bold, second best underlined.
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Figure 10: Sensitivity of the detector to the prime-resolution parameter k.

robustness reflects an intrinsic property of our method, i.e., once the prime gaps are sufficiently
fine to induce stable absorption and injectivity behavior, further refinement provides little additional
benefit. In practice, this means that k does not require fine-tuning to achieve strong performance,
simplifying deployment across different datasets and architectures.

L.5 COMPARISON WITH ALTERNATIVE QUANTIZATION SCHEMES

To assess whether the advantages of our quantization scheme can be replicated by other non-uniform
discretization strategies, we compare it against three alternatives: Fibonacci quantization, logarith-
mic quantization, and standard uniform quantization. All approaches are evaluated under the same
experimental setup and across five random seeds (1, 3, 5, 21, 42). Table 18 reports detection accuracy
for each seed, together with the mean and standard deviation.

Quantization Seed Mean ± Std
1 3 5 21 42

Ours 0.94 0.92 0.95 0.94 0.96 0.94 ± 0.01
Fibonacci 0.62 0.61 0.55 0.60 0.68 0.61 ± 0.04
Logarithmic 0.70 0.61 0.61 0.56 0.58 0.62 ± 0.05
Uniform 0.65 0.65 0.60 0.56 0.65 0.62 ± 0.03

Table 18: Detection accuracy of different quantization schemes across five random seeds. Values
reported using a ResNet backbone and CIFAR-10 under mixed attacks (PGD, FGSM, APGD).

Across all seeds, our method achieves the highest mean accuracy and the lowest variance, demon-
strating both improved performance and greater stability compared to all alternative discretization
schemes. Notably, replacing our scheme with Fibonacci or logarithmic quantization does not yield
comparable results, despite also introducing non-uniform discretization. Uniform quantization per-
forms similarly poorly. These results suggest that the structural properties of our secret prime quan-
tization strategy are essential for producing a reliable Z–P discrepancy signal, and that generic dis-
cretization methods do not replicate this behavior in practice.
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L.6 SENSITIVITY ANALYSIS OF kLOCAL AND kGLOBAL

klocal Accuracy

8 97.90
10 86.15
12 92.57
15 93.24

kglobal Accuracy

3 97.90
5 95.60
7 83.45
10 85.35

Table 19: Detection accuracy as a function of the local neighborhood size klocal (left) and the global
neighborhood size kglobal (right).

We evaluate the sensitivity of our detector to the neighborhood parameters klocal and kglobal, which
govern the local consistency scale and the global support for GW coupling, respectively.

For the local neighborhood size, we test klocal ∈ {8, 10, 12, 15}. Accuracy remains consistently high
across all settings, with the best performance (97.9%) obtained at klocal = 8. While performance
dips for klocal = 10, it recovers for larger values (12 and 15), indicating that the method is broadly
robust to the choice of local scale.

For the global neighborhood size, we test kglobal ∈ {3, 5, 7, 10}. Smaller global neighborhoods
yield the best performance, with kglobal = 3 achieving 97.9%. Larger values gradually degrade
performance, suggesting that excessively large global supports may introduce noise or dilute the
structural alignment captured during cross-space GW coupling.

Overall, the detector displays stable performance across a wide range of neighborhood sizes, with
optimal performance achieved at smaller values. Based on this analysis, we adopt klocal = 8 and
kglobal = 3 for all main experiments.

L.7 ROBUSTNESS AGAINST COMMON CORRUPTIONS

To assess whether the detector responds specifically to adversarial perturbations, rather than
generic input noise, we evaluate its behaviour under benign corruptions using the CIFAR-C bench-
mark Hendrycks & Dietterich (2019a). CIFAR-C includes a diverse set of naturally occurring degra-
dation types, such as Gaussian, shot, and impulse noise; blur corruptions (defocus, frosted glass,
motion, zoom); weather effects (snow, frost, fog); brightness and contrast shifts; elastic distortions;
pixelation; and JPEG compression.

Table 20 reports results for the Gaussian noise corruption. The detector maintains high accuracy
and AUROC, indicating that benign perturbations do not trigger the characteristic Z–P discrepancies
associated with adversarial attacks. This supports our claim that the method does not misclassify
natural corruptions as adversarial.

Corruption Type Detection Accuracy AUROC Precision / Recall / F1

Gaussian Noise 96.43% 0.99 0.97 / 0.96 / 0.96

Table 20: Performance of our detector under Gaussian noise (CIFAR-C).

L.8 RUNTIME AND MEMORY EFFICIENCY

Table 21 compares inference-time and memory footprint across several recent adversarial detection
baselines. Our detector achieves a competitive runtime of 0.12 seconds per sample while maintain-
ing a moderate CPU and GPU memory footprint. Methods such as BY He et al. (2022) require
substantially larger memory because they process multiple transformed copies of each input, result-
ing in expanded intermediate activations. In contrast, our detector relies on a single forward pass
through a ResNet backbone, leading to a modest GPU footprint.

Lightweight approaches such as FS Xu et al. (2018) and MN Meng & Chen (2017) offer faster
runtimes but exhibit either higher memory usage or weaker robustness. Overall, our method strikes
an effective balance among runtime efficiency, memory consumption, and detection performance.
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Method Runtime (s) CPU (GB) GPU (GB)

BY 0.152 2.00 0.60
EA 0.115 0.20 11.80
MD 0.141 0.68 0.10
FS 0.005 0.25 0.17
MAD 0.105 3.30 0.00
MN 0.012 0.78 0.10
Ours 0.120 0.62 2.04

Table 21: Runtime and memory usage of different adversarial detection methods on CIFAR-10. Best
values in bold, second-best underlined.

L.9 ROBUSTNESS AND GENERALIZATION CAPABILITIES

L.9.1 RELIABILITY ANALYSIS

We study detector reliability across a range of perturbation levels using TPR/FPR heatmaps
(Fig. 11). With dataset and backbone fixed, only adversarial conditions vary, revealing how con-
sistently detectors identify adversarial inputs while avoiding false positives on clean samples.
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Figure 11: Reliability via TPR/FPR heatmaps. X-axis: attack types with perturbation levels, Y-
axis: defenses. Thresholds are calibrated only on clean samples, so baselines yield constant FPR
across attacks.

L.9.2 CROSS-ATTACK GENERALIZATION

To evaluate generalization to unseen attacks, we train on ResNet18 adversarial samples from FG and
PGD, then test on CW, SQ, SA, and PT. Results (Table 22) report accuracy, adversarial recall, and
adversarial precision. Our method consistently outperforms baselines, demonstrating robustness to
unseen attack families.

Attack Ours MD FS MAD MN

CW 97.5/100/95 71/51/86 90/90/90 49.5/69/46.6 60/45/63
SQ 93.5/98/89 88/85/91 94.5/99/90.8 48.5/63/47 45/15/46
SP 95.5/99/92 86/80/90 92.5/95/90.5 49/67/49 48/21/46
PT 95/100/90 91/90/91 89.5/89/89.9 49/67/49 45/15/37

Table 22: Cross-Attack Generalization. Accuracy / Recalladv / Precisionadv (%).
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L.9.3 CROSS-MODEL GENERALIZATION

We also test transfer robustness by training on ResNet18 attacks and evaluating on FourierNet (FNet)
adversarial samples. Table 23 reports detection accuracy, recall, and precision. Our method again
outperforms baselines, showing resilience to model transfer attacks.

Attack Ours MD FS MAD MN

CW 95/97/94 54/17/68 73.5/91/67.4 50/69/50 50/25/52
SQ 87/93/83 51/10/55 77.0/98/69.0 49/67/49 52/29/54
SP 94/93/95 64/37/82 74/92/67.6 49/67/49 53/31/56
PT 96/95/97 57/22/73 72.5/89/66.9 47/64/48 49/22/47
FG 93/99/89 55/18/69 70.0/84/65.6 46/61/47 50/25/50
PGD 98/99/99 56/21/72 74.5/93/67.9 50/69/50 50/26/52

Table 23: Cross-Model Generalization. Accuracy / Recalladv / Precisionadv (%).

L.10 TRUE POSITIVE RATE (TPR) ANALYSIS

Table 24 reports the true positive rate (TPR) across adversarial attack types, i.e., the fraction of
adversarial inputs correctly detected as adversarial. The formula is, TPR = detected adversarial

all adversarial . Bold
entries denote the best-performing method, and underlined entries denote the second best. Our
method consistently achieves the highest TPR in 12 out of 13 attacks, showing large margins es-
pecially for transfer-based (UP) and perceptual/frequency attacks (FA, PF, SR). The only exception
is Gaussian blur (GB), where all detectors struggle, but our method still provides a clear advantage
over baselines. These results highlight that our cross-space framework is particularly effective in
reliably flagging adversarial samples, even under challenging attack families.

Attack / Method Ours MD FS MAD MN
AA 97.40± 1.07 50.60± 1.99 86.50± 1.24 57.96± 3.10 74.09± 1.26
CW 96.33± 0.57 59.90± 0.65 93.20± 0.14 56.82± 1.52 39.30± 1.60
PT 97.73± 0.34 85.50± 0.85 56.70± 2.49 55.33± 3.92 40.50± 1.66
PGD 97.20± 1.07 95.30± 0.62 69.90± 2.68 56.22± 1.18 87.90± 0.29
SA 96.67± 0.23 69.00± 1.91 69.90± 0.17 36.20± 0.62 35.80± 2.86
SQ 96.67± 0.90 91.20± 0.77 98.20± 1.12 55.90± 3.34 14.80± 1.12
UP 97.00± 1.14 45.60± 3.06 28.50± 2.52 55.80± 2.12 21.70± 1.17
AP 96.22± 1.11 49.30± 1.65 83.90± 1.44 54.28± 1.59 73.10± 1.51
FG 96.87± 1.57 60.30± 2.64 42.90± 3.26 53.09± 0.72 15.30± 1.57
FA 94.33± 1.23 12.50± 0.88 21.10± 1.23 53.34± 3.08 25.50± 1.78
GB 73.00± 10.27 12.40± 1.92 24.50± 0.53 50.42± 2.38 23.10± 2.06
PF 96.33± 0.57 16.10± 1.20 24.00± 0.46 53.01± 3.65 24.70± 1.21
SR 95.33± 1.07 13.30± 0.19 26.60± 1.24 54.20± 2.37 24.40± 2.29

Table 24: True positive rate (%) on adversarial samples: This table shows the results of TPR
measured on adversarial samples.

L.11 EXPERIMENTS ON FMNIST AND KMNIST

Table 25 and Table 26 show the result of the detection accuracy on FMNIST and KMNIST re-
spectively. Regarding the performance of MD on FMNIST and KMNIST, we observed that the
distributions of Mahalanobis scores for clean and adversarial samples did not show significant dif-
ference. This is because clean and adversarial features for FMNIST and KMNIST are fairly similar
in the feature space of ResNet18, making it difficult for MD to distinguish between clean and adver-
sarial samples. The similar feature representations in these datasets limit the separability of the two
distributions of Mahalanobis scores. A similar phenomenon regarding the distributions of clean and
adversarial features used for detection was observed in MN.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Attack Ours MD MN
AA4 97.60 ± 0.22 50.00 ± 0.56 49.90 ± 1.59
AA8 96.43 ± 0.59 50.40 ± 0.86 50.10 ± 1.75
CW 96.10 ± 1.63 51.60 ± 0.67 54.05 ± 1.43
PT7 98.63 ± 0.17 89.45 ± 0.45 90.20 ± 0.32
PT14 94.10 ± 0.49 90.20 ± 0.43 90.09 ± 0.32
PGD 97.63 ± 0.53 49.80 ± 0.67 49.90 ± 1.80
PGD8 95.33 ± 0.97 51.45 ± 0.69 50.30 ± 1.82
SA 97.21 ± 1.36 80.80 ± 2.01 53.10 ± 0.15
SQ 97.20 ± 0.57 50.05 ± 0.55 50.00 ± 0.18
SQ8 96.47 ± 4.01 52.20 ± 0.67 50.73 ± 0.52
UP 99.87 ± 0.05 50.05 ± 0.71 50.23 ± 1.85
UP8 98.30 ± 1.27 51.15 ± 0.55 50.65 ± 1.50
UP12 99.23 ± 0.68 54.75 ± 1.37 51.80 ± 1.23
AP 98.63 ± 0.34 49.70 ± 0.65 49.49 ± 1.74
AP8 99.50 ± 0.36 50.05 ± 0.99 50.20 ± 1.83
FG 97.27 ± 3.44 59.95 ± 0.67 49.95 ± 1.66
FG8 95.53 ± 0.62 51.85 ± 0.81 50.78 ± 1.73
FA 97.65 ± 0.78 68.90 ± 0.30 45.65 ± 0.90
GB 87.27 ± 0.32 68.12 ± 0.49 41.60 ± 0.10
PF 92.22 ± 0.45 69.68 ± 0.42 48.85 ± 1.17
SR 97.65 ± 0.76 70.30 ± 0.77 41.99 ± 1.43

Table 25: The results of binary accuracy on FMNIST using ResNet18.

Attack Ours MD MN
AA 97.33 ± 0.33 50.10 ± 1.91 50.00 ± 1.00
AA8 98.08 ± 0.26 50.30 ± 1.84 50.00 ± 0.98
PT7 96.87 ± 0.35 53.35 ± 0.86 75.8 ± 0.72
PT14 97.63 ± 0.46 52.20 ± 0.31 86.27 ± 0.27
PGD 98.10 ± 0.45 50.95 ± 1.72 49.45 ± 0.68
PGD8 98.60 ± 0.36 51.80 ± 1.47 49.25 ± 0.69
SA 98.10 ± 1.85 50.45 ± 0.98 56.50 ± 0.39
SQ 98.77 ± 0.05 51.15 ± 1.49 48.85 ± 0.96
SQ8 95.32 ± 3.51 52.25 ± 1.48 48.85 ± 0.85
UP 99.87 ± 0.05 51.15 ± 0.61 49.60 ± 0.67
UP8 98.30 ± 1.27 52.05 ± 1.41 49.90 ± 0.10
UP12 99.41 ± 0.05 53.10 ± 1.47 50.05 ± 0.70
AP 98.63 ± 0.34 50.60 ± 1.78 49.65 ± 0.68
AP8 99.50 ± 0.36 51.35 ± 1.36 49.25 ± 0.69
FG 97.57 ± 1.54 51.15 ± 1.54 49.65 ± 0.68
FG8 99.47 ± 0.25 52.05 ± 1.71 48.70 ± 0.10
FA 98.16 ± 1.76 50.00 ± 1.85 49.95 ± 0.91
GB 93.86 ± 0.34 38.85 ± 1.56 41.15 ± 1.04
PF 96.87 ± 0.65 49.00 ± 1.96 52.20 ± 0.74
SR 98.10 ± 1.85 48.95 ± 1.53 52.12 ± 0.66

Table 26: The results of binary accuracy on KMNIST using ResNet18.
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M COMPARISON OF OUR PROPOSED DEFENCE AGAINST BASELINE
DEFENCES ON CIFAR-10 DATASET

M.1 BINARY ACCURACY COMPARISON

In this section we present the binary accuracy results for detecting adversarial attacks on CIFAR-
10. This metric measures how well each defense method can correctly classify samples as either
adversarial or clean. Our proposed method consistently outperforms all baselines across all attack
types, achieving accuracy rates between 96.97% and 97.83%. The Mahalanobis Detector (MD)
shows the second-best performance for most attacks, while Feature Squeezing (FS) performs well
on specific attack types like CW and PGD4. The MAD and MN methods show poor performance
with accuracies around 50%, essentially equivalent to random guessing. The standard deviations for
our method are consistently low (0.22% to 0.65%), indicating stable and reliable performance.

Attack / Metric Ours MD FS MAD MN
AA8 97.73± 0.47 90.40± 1.4 79.35± 0.84 50.85± 0.20 79.04± 1.03
CW 96.97± 0.61 73.55± 2.13 86.00± 0.56 51.43± 2.16 56.65± 1.71
PT8 97.30± 0.22 52.80± 1.91 52.00± 0.55 43.43± 2.32 51.09± 0.95
PGD 97.57± 0.54 71.25± 1.60 81.10± 1.07 48.91± 1.33 76.05± 0.83
SQ 97.30± 0.65 86.85± 1.81 84.70± 1.23 49.11± 1.32 44.45± 1.48
UP 97.83± 0.50 66.40± 2.40 53.65± 1.23 50.92± 1.86 47.85± 1.83
AP8 97.50± 0.22 90.0± 2.17 79.20± 1.49 50.87± 1.3 79.30± 0.41
FG8 97.73± 0.42 85.85± 1.34 63.35± 2.18 50.68± 2.07 44.40± 1.54

Table 27: Comparison of detection performance (%) under different adversarial attacks: Bold
values indicate the best performance, and underlined values denote the second-best.

M.2 TPR ON ADVERSARIAL SAMPLES COMPARISON

Attack / Metric Ours MD FS MAD MN
AA8 96.60± 0.86 93.56± 1.51 79.90± 1.72 55.67± 2.49 84.10± 1.03
CW 96.33± 0.57 59.90± 0.65 93.20± 0.14 56.82± 1.52 39.30± 1.60
PT8 96.07± 0.5 18.40± 1.80 25.20± 0.39 40.83± 1.90 28.20± 1.03
PGD 97.07± 1.34 55.30± 1.12 83.40± 2.22 51.79± 1.78 78.10± 0.30
SQ 96.00± 0.75 86.50± 2.76 90.60± 1.48 52.19± 1.56 14.90± 1.23
UP 97.00± 1.14 45.60± 3.06 28.50± 2.52 55.80± 2.12 21.70± 1.17
AP8 96.73± 1.09 92.60± 0.96 79.60± 3.50 55.69± 2.17 84.60± 2.73
FG8 96.87± 0.96 84.50± 2.19 47.90± 3.63 55.32± 1.27 14.80± 1.49

Table 28: The results of TPR measured on 1k adversarial samples. TPR := (the number of adv
correctly detected) / (the number of adv) ×100 (%). The best results are written in bold, and the
second-best results are written with underlines.

In this section we focus on True Positive Rate (TPR), which specifically measures how well each
method detects adversarial samples (the percentage of adversarial samples correctly identified as
adversarial). Our method maintains excellent TPR performance (96.00% to 97.07%) across all
attack types. Feature Squeezing (FS) shows strong TPR for CW and SQ4 attacks (93.20% and
90.60% respectively) but performs poorly on P8 and UP4 attacks. The Mahalanobis Detector (MD)
demonstrates good TPR for AA8 and AP8 attacks (92.3% and 91.4%) but fails significantly on
P8 attack (16.8%). The MAD method shows moderate TPR (40.83% to 56.82%) but with high
variance, while MagNet (MN) fails with low TPR for most attacks, indicating it cannot effectively
detect adversarial samples.

M.3 END TO END ACCURACY COMPARISON

In this section we present the end-to-end accuracy, which is a comprehensive metric that considers
both correct detection of adversarial samples by the detector and correct detection of clean samples
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and correct classification of clean samples. Our method achieves excellent end-to-end accuracy
(93.9% to 94.8%) across all attack types, demonstrating consistent and robust performance. The
Mahalanobis Detector (MD) shows moderate performance (51.0% to 89.0%) with good results on
AA8 and AP8 attacks but struggling with P8 attack. Feature Squeezing (FS) shows reasonable
performance (51.30% to 85.30%) but with significant variation across different attacks, performing
well on CW and SQ4 attacks but struggling with P8 and UP4 attacks. The MAD method shows
poor performance (42.03% to 49.18%) with accuracies around random guessing level. MagNet
(MN) performs with low accuracies for most attacks, indicating it cannot provide effective end-
to-end protection. The consistency of our method across different attack types demonstrates its
robustness and reliability in maintaining both detection accuracy and classification performance
under adversarial conditions.

Attack / Metric Ours MD FS MAD MN
AA8 94.1 89.0 78.64 49.18 76.60
CW 94.8 72.0 85.30 48.92 54.20
PT8 94.4 51.0 51.30 42.03 48.65
PGD 94.4 70.0 80.40 48.72 73.60
SQ 93.9 86.0 84.00 47.99 42.00
UP 94.4 65.0 52.94 48.99 45.40
AP8 94.6 89.0 78.50 48.58 76.85
FG8 94.5 84.0 62.64 49.04 41.95

Table 29: The results of end-to-end accuracy: ((the number of correctly detected adversarial samples by the detector)+
(the number of correctly detected clean samples and correctly classified samples))/(1000 + 1000).
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