

000 001 002 003 004 005 PROVABLE ADVERSARIAL DETECTION: PRIME QUAN- 006 TIZATION MEETS GROMOV–WASSERSTEIN 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030
031 Adversarial vulnerability persists across modern vision architectures from CNNs
032 to vision language models (VLMs), yet existing detection methods rely on heuris-
033 tics without theoretical guarantees. We address the fundamental question of when
034 adversarial perturbations can be provably detected from a geometric perspective.
035 Our key insight is that adversarial perturbations cannot simultaneously preserve
036 geometric structure across spaces with fundamentally different properties. Ac-
037 cordingly, we construct two such complementary metric spaces. First, we use
038 a standard CNN embedding space Z , where adversarial samples exhibit signif-
039 icant displacement patterns. Second, we build a novel prime-quantized space P ,
040 that absorbs small perturbations through number-theoretic discretization, result-
041 ing in minimal displacement, while preserving discriminability. We then leverage
042 the geometric discrepancies across spaces Z and P to detect adversarial sam-
043 ples. To the best of our knowledge, we establish the first rigorous separation the-
044 ory for adversarial detection, proving that adversarial samples create unavoidable
045 geometric inconsistencies across both spaces. Our framework provides theoreti-
046 cal guarantees including pixel-level absorption bounds, neighborhood diameter
047 concentration, Gromov–Wasserstein (GW) separation theorems, and practical risk
048 control. Extensive experiments validate our theoretical predictions and achieve
049 consistently strong detection performance across a wide range of attack types and
050 model families.

1 INTRODUCTION

051 Vision systems have rapidly progressed from CNNs He et al. (2016) to Vision–Language Models
052 (VLMs) Radford et al. (2021) and multimodal architectures OpenAI (2023), yet adversarial vul-
053 nerability persists across all these paradigms. As these increasingly capable models are deployed at
054 scale, the consequences of undetected adversarial attacks also scale, making *detection* a core safety
055 requirement.

056 Defenses fall into three main families. *Adversarial training* (Madry et al., 2018; Zhang et al., 2019;
057 Gowal et al., 2021) augments models with adversarial examples. While effective in restricted sce-
058 narios, it requires expensive retraining and often fails to generalize across diverse attacks, includ-
059 ing gradient-based (Goodfellow et al., 2015; Madry et al., 2018; Carlini & Wagner, 2017), physi-
060 cal (Brown et al., 2017), and natural corruptions (Hendrycks & Dietterich, 2019b; Engstrom et al.,
061 2019). *Detection methods* (Metzen et al., 2017; Feinman et al., 2017; Ma et al., 2018; Lee et al.,
062 2018; Ma et al., 2019; Meng & Chen, 2017; Mahmood et al., 2021) rely on auxiliary classifiers or
063 statistical tests, but remain heuristic and easily broken by adaptive adversaries (Athalye et al., 2018).
064 *Certifiable robustness* (Raghunathan et al., 2018; Cohen et al., 2019; Salman et al., 2019) provides
065 provable invariance regions, but targets robust classification rather than detection, and is compu-
066 tationally intensive. Trade-off frameworks such as TRADES (Zhang et al., 2019) deepened our
067 theoretical understanding, but left unanswered the key question: “*Can detection itself be endowed*
068 *with guarantees, and what properties make adversarial examples inherently detectable?*”

069 **Our insight.** Clean and adversarial samples leave distinct geometric traces across two complemen-
070 tary spaces, namely, the CNN embedding space Z and a prime-quantized space P . In Z , clean
071 samples form tight neighborhoods, while adversarial ones exhibit characteristic displacements that
072 disrupt local structure. In P , each pixel is discretized by rounding to nearby primes under a secret

054 bit mask, so small perturbations are either absorbed within prime gaps or forced into discrete jumps.
 055 This mechanism preserves overall discriminability yet creates systematic cross-space inconsis-
 056 tencies, making adversarial inputs detectable through geometric analysis.

057 To the best of our knowledge, we establish the first rigorous *separation theory for adversarial de-*
 058 *tection*, spanning four levels of guarantees: (i) pixel-level absorption bounds proving when per-
 059 turbations vanish in P or cross prime-gap boundaries, (ii) K -NN diameter envelopes showing clean
 060 and adversarial neighborhoods diverge differently in Z and P , (iii) cross-space separation theorems
 061 based on Gromov–Wasserstein (GW) distances that yield a *non-vanishing gap* scaling with dimen-
 062 sion and perturbation strength, and (iv) risk control guarantees establishing that simple thresholding
 063 achieves bounded misclassification rates. Together, these results provide a principled foundation for
 064 adversarial detection, addressing the open question of when and why detection must succeed.

065 **Contributions.** (i) We introduce *prime quantization*, a cryptographically inspired discretization that
 066 generalizes across CNN, VLM, and multimodal architectures, and could extend to other one-way
 067 transforms. (ii) We present a unified theoretical framework proving that adversarial perturbations
 068 necessarily induce cross-space inconsistencies, with guarantees from pixel absorption up through
 069 GW-based separation. (iii) We empirically validate our method on a broad suite of attacks, VLM
 070 zero-shot settings, and adaptive adversaries, demonstrating consistent and strong performance com-
 071 pared to state-of-the-art defenses.

073 2 RELATED WORK

074 **Adversarial attacks** are categorized by attacker knowledge into: (i) *white-box* (FGSM (Goodfellow
 075 et al., 2015), PGD (Madry et al., 2018), C&W (Carlini & Wagner, 2017)), (ii) *black-box* (ZOO (Chen
 076 et al., 2017), Square (Andriushchenko et al., 2020)), and (iii) *adaptive attacks* that exploit defense
 077 mechanisms (Athalye et al., 2018), often defeating methods that appear robust under non-adaptive
 078 evaluation.

079 **Detection methods** include: (i) *autoencoder-based reconstruction* (MagNet (Meng & Chen, 2017),
 080 PixelDefend (Song et al., 2018)), (ii) *distributional analysis* (Mahalanobis (Lee et al., 2018)), (iii)
 081 *prediction differences* (Feature Squeezing (Xu et al., 2018)), and (iv) *learned classifiers* (MetaAd-
 082 vDet (Ma et al., 2019)). These approaches remain heuristic and are routinely bypassed by adaptive
 083 adversaries, with no guarantees on when detection must succeed.

084 **Robust training and certification** methods such as adversarial training (Madry et al., 2018),
 085 TRADES (Zhang et al., 2019), and certified defenses based on randomized smoothing (Cohen et al.,
 086 2019) or patch-based strategies (Xiang et al., 2022) aim at robust classification rather than detection,
 087 often requiring retraining and incurring accuracy trade-offs.

088 *In contrast, our work provides the first theoretical guarantees that adversarial perturbations create
 089 unavoidable cross-space inconsistencies, yielding a principled basis for detection with quantifiable
 090 confidence. Unlike most prior defenses, we further evaluate on vision–language models in zero-shot
 091 settings, highlighting robustness beyond CNN benchmarks.*

092 3 PRELIMINARIES

093 We introduce notation and the prime-quantized space used by our detector.

094 Let $X \in [0, 1]^{N \times d}$ be N images, each $x_i \in [0, 1]^d$ a flattened vector of d normalized pixels with
 095 label $y_i \in Y$ ($|Y| = C$). A classifier $f_\theta = g_\theta \circ h_\theta$ (where h_θ is the *feature extractor* and g_θ the
 096 *classification head*) has embedding $Z_i = h_\theta(x_i) \in \mathbb{R}^m$, with $Z = [Z_1, \dots, Z_N]^T$. With a slight
 097 abuse of notation, we also use Z to denote the ambient embedding space \mathbb{R}^m equipped with the
 098 Euclidean metric $d_Z(z_i, z_j) = \|z_i - z_j\|_2$. Thus, each Z_i is both a row of the embedding matrix and
 099 a point in metric space (Z, d_Z) .

100 **Definition 1** (Adversarial perturbation). *Given x_i , a perturbation $\eta \in \mathbb{R}^d$ yields $\tilde{x}_i = x_i + \eta$. It is
 101 ϵ -bounded if $\|\eta\|_\infty \leq \epsilon$.*

102 To defend against such perturbations, we transform images into a discrete prime space via three
 103 steps: (i) scale to integers, (ii) round to primes, and (iii) rescale.

108
109
110 **Definition 2** (Scaling). For $k \in \mathbb{N}$, let $\mathbb{P}_k = \{p \leq 10^k : p \text{ prime}\}$. Define $S_k(x_{i,j}) = \lfloor x_{i,j} 10^k \rfloor$ and $S_k^{-1}(n) = n \cdot 10^{-k}$.

111
112 **Definition 3** (Prime rounding). Given secret bit $b_j \in \{0, 1\}$, map integer n to the nearest prime in \mathbb{P}_k . If $p_\ell < n < p_{\ell+1}$, where $p_\ell, p_{\ell+1} \in \mathbb{P}_k$, then $R_k^{(0)}(n) = p_\ell$, $R_k^{(1)}(n) = p_{\ell+1}$.

113
114 **Definition 4** (Prime quantization). The pixel transform is $T_k^{(b_j)}(x_{i,j}) = S_k^{-1}(R_k^{(b_j)}(S_k(x_{i,j})))$. Extending component-wise yields $T_k^{(b)} : [0, 1]^d \rightarrow [0, 1]^d$.

115
116 **Example 1.** For $k = 2$, $x_{i,j} = 0.38$ gives $S_2 = 38$, between 37 and 41. Then $T_2^{(0)} = 0.37$,
117 $T_2^{(1)} = 0.41$. A perturbation 0.385 still maps to 38, hence quantization is unchanged.

118
119 **Space transformation.** $T_k^{(b)}$ maps images into discrete P , where prime gaps and secret (b, k) yield
120 irregular, attacker-unpredictable rounding. Unlike uniform quantization, prime rounding introduces
121 structured but unpredictable discretization.

122
123 **Problem statement.** Given $x \in [0, 1]^d$, construct a detector $D(x) \in \{\text{clean, adv}\}$ by comparing
124 $h_\theta(x) \in Z$ and $T_k^{(b)}(x) \in P$, ensuring w.h.p. that clean inputs agree across spaces while adversarial
125 ones create detectable discrepancies.

127 4 MULTISCALE GROMOV-WASSERSTEIN (GW) ADVERSARIAL DETECTOR

128 Our method compares neighborhood behaviors of samples across the embedding space Z and the
129 prime-quantized space P , exploiting their complementary geometries.

130 **Clean neighborhoods.** In Z , clean samples cluster by class, so a sample's local neighborhood
131 is dominated by its true label and its global neighborhood aligns with class centroids. In contrast,
132 prime quantization scatters samples uniformly in P , destroying spatial coherence, resulting in neighbor-
133 hoodes that show nearly uniform label distributions without clustering.

134 **Adversarial neighborhoods.** In Z , adversarial samples *jump* from their true cluster toward a wrong
135 class, shifting both local and global label distributions. In P , prime quantization often reduces the
136 impact of small perturbations, depending on the quantization gaps and perturbation strength. Therefore, ad-
137 versarial neighborhoods tend to resemble their clean counterparts more closely. This creates systematic
138 cross-space discrepancies between Z and P .

139 We next formalize these ideas via *neighborhood maps* and quantify their mismatches using *Gromov-
140 Wasserstein (GW) distances*.

141 **Definition 5** (Neighborhood map and induced dis-
142 tributions). Let (M, d_M) be a metric space. For a
143 query $q \in M$ and integer $K \geq 1$, a neighborhood
144 map $\mathcal{N}_K^M : M \rightarrow 2^M$ returns a set of K reference points, defining local neighborhoods when K
145 corresponds to nearest neighbors or global neighborhoods when K corresponds to class centroids.
146 The corresponding spatial distribution is $\mu_K^M(q) = \frac{1}{K} \sum_{z \in \mathcal{N}_K^M(q)} \delta_z \in \mathcal{P}(M)$ (i.e., the space
147 of probability measures over M). If $c : M \rightarrow \{1, \dots, C\}$ is a class-label map, the corresponding
148 semantic distribution is defined by the pushforward $\psi_K^M(q) = c \# \mu_K^M(q) = \frac{1}{K} \sum_{z \in \mathcal{N}_K^M(q)} \delta_{c(z)} \in$
149 $\mathcal{P}(\{1, \dots, C\})$.

150 The GW distance compares probability distributions that are supported on possibly distinct metric
151 spaces via alignment.

152 **Definition 6** (Gromov-Wasserstein Distance). Consider two metric measure (mm) spaces
153 (X, d_X, μ_X) and (Y, d_Y, ν_Y) along with a loss function $L^2(x, x', y, y') := |d_X(x, x') - d_Y(y, y')|^2$,

154 Figure 1: Geometry in Z (clusters) vs. P
155 (dispersed).

162 the squared GW distance between them is
 163

$$164 \quad GW^2(\mu_X, \nu_Y) := \inf_{\gamma \in \Pi(\mu_X, \nu_Y)} \int_{X \times Y} \int_{X \times Y} L^2(x, x', y, y') \gamma(dx \times dy) \gamma(dx' \times dy')$$

166 , where $\Pi(\mu_X, \nu_Y)$ denotes the set of couplings between measures μ_X and μ_Y . Additionally, $\gamma(dx \times$
 167 $dy) \gamma(dx' \times dy')$ represent integration w.r.t. the product coupling $\gamma \otimes \gamma$.
 168

169 As exact computation of GW^2 uses a *quadratic assignment problem* (QAP), known to be NP-
 170 hard Abdel Nasser H. Zai (2014), various approximate reformulations that are computationally
 171 tractable have been proposed. We focus on the *entropic GW* distance proposed by Peyré et al.
 172 (2016)

$$173 \quad GW_\lambda^2(\mu_X, \nu_Y) := \inf_{\gamma \in \Pi(\mu_X, \nu_Y)} \int \int L^2(x, x', y, y') \gamma(dx \times dy) \gamma(dx' \times dy') + \lambda KL(\gamma \parallel \mu_X \otimes \nu_Y)$$

174 , where $KL(\cdot, \cdot)$ is the Kullback-Liebler divergence between coupling γ and the product measure
 175 $\mu_X \otimes \nu_Y$, and $\lambda > 0$ is a regularization parameter.
 176

177 **Choice of scales (lo, gl).** The parameter lo denotes the local neighborhood size, i.e., the k in the
 178 local k -NN graph used to enforce within-space consistency in both Z and P spaces. The parameter
 179 gl denotes the number of k -means centroids used to construct the global support for the cross-
 180 space GW coupling. This two-scale local/global structure follows the standard decomposition in
 181 GW geometry.
 182

183 **Algorithm.** Our detector takes an image x , extracts its CNN embedding $z = h_\theta(x) \in Z$ and prime-
 184 quantized version $p = T_k^{(b)}(x) \in P$, and compares neighborhoods at two scales ($s \in \{lo, gl\}$).
 185 For each scale, we compute (i) spatial distributions μ_s^Z, μ_s^P , (ii) semantic distributions ψ_s^Z, ψ_s^P , and
 186 derive $g_1 = GW_\lambda^2(\mu_s^Z, \mu_s^P)$, $g_2 = GW_\lambda^2(\psi_s^Z, \psi_s^P)$, and entropy $h = \text{ENTROPY}(\psi_s^Z, \psi_s^P)$. The
 187 resulting six-dimensional feature vector $\mathbf{f}(x) = [g_{1,lo}, g_{2,lo}, h_{lo}, g_{1,gl}, g_{2,gl}, h_{gl}]$ encodes cross-space
 188 discrepancies, which are classified by an SVM. Full pseudocode is provided in Algorithm 1 in
 189 Appendix K.1.
 190

191 5 GEOMETRIC FOUNDATIONS AND THEORETICAL GUARANTEES

192 We begin by analyzing the stability of the prime quantization map $T_k^{(b)}$, which is central to our cross-
 193 space detector. The key question is, "when does a perturbation vanish into quantization noise, and
 194 when does it inevitably alter the output?" Our results formalize two complementary phenomena:
 195 *pixel-level local stability* and *image-level injectivity*. Prime quantization related proofs are deferred
 196 to Appendix C. All our formal results are stated for *local neighborhoods*. While the framework
 197 naturally extends to global neighborhoods, we leave the full theoretical treatment of that case to
 198 future work.
 199

200 5.1 PIXEL-LEVEL ABSORPTION

201 The *absorption radius* (Definition 7) captures the largest perturbation at a pixel that leaves its quan-
 202 tized value unchanged.

203 **Definition 7** (Absorption radius). *For $x_j \in [0, 1]$ with $S_k(x_j) = n \in (p_\ell, p_{\ell+1})$, the absorption
 204 radius is $r_{\text{abs}}(x_j, k) = \frac{\min\{n-p_\ell, p_{\ell+1}-n\}}{10^k}$.*
 205

206 **Proposition 1** (Absorption guarantee). *If $|\eta_j| \leq r_{\text{abs}}(x_j, k)$, then $T_k^{(b_j)}(x_j + \eta_j) = T_k^{(b_j)}(x_j)$ for
 207 all bits b_j .*
 208

209 **Lemma 1** (Absorption bounds). *For any $x_j \in [0, 1]$, $\frac{1}{2 \cdot 10^k} \leq r_{\text{abs}}(x_j, k) \leq \frac{1}{2}$.*
 210

211 **Remarks.** These results formalize *pixel-level stability*: perturbations smaller than r_{abs} vanish
 212 under prime quantization, while larger ones necessarily cause a quantization change. Although
 213 Lemma 1 permits $r_{\text{abs}} \leq 1/2$, practical values are tiny (e.g., $\leq 1.8 \times 10^{-3}$ for $k = 4$). Since ad-
 214 versarial budgets in vision ($\epsilon \geq 1/255 \approx 3.9 \times 10^{-3}$) typically exceed these radii, most attacks
 215

216 cross prime boundaries and induce detectable discrepancies between Z and P . Even when pertur-
 217 bations lie near or below r_{abs} , clean and adversarial samples seldom quantize identically. Because
 218 prime gaps are irregular, even a $1/255$ change can cross a prime-interval midpoint under the same
 219 bit-vector b , yielding different prime assignments. And when some coordinates do round identically,
 220 the Z -space embedding remains sensitive while P stays piecewise constant, producing a measurable
 221 Z - P mismatch. Larger prime resolution k further shrinks r_{abs} and increases the likelihood of such
 222 discrepancies.

223

224

225

5.2 IMAGE-LEVEL INJECTIVITY

226

227 While prime quantization is many-to-one *per pixel*, we must ensure it does not collapse distinct
 228 images globally. Lemma 2 shows that such collisions are exponentially unlikely.

229

230 **Lemma 2** (Collision probability). *Fix $k \geq 2$ and let $N := 10^k$. Let $x, x' \in [0, 1]^d$ be two inde-
 231 pendent random images with i.i.d. pixel marginals whose densities are bounded by Λ on $[0, 1]$ (in
 232 particular, $\Lambda = 1$ for the uniform distribution). For a fixed secret bit vector $b \in \{0, 1\}^d$, let $T_k^{(b)}$
 233 be the prime-quantization transform (Definition 4). Assume the prime-gap envelope G_k from As-
 234 sumption 1. Then, $\Pr[T_k^{(b)}(x) = T_k^{(b)}(x')] \leq \left(\Lambda^2 \frac{G_k}{N}\right)^d$. In particular, for $\Lambda = 1$, the collision
 235 probability decays as $(G_k/10^k)^d$ in the number of pixels.*

236

237

238

239

240

241 **Remarks.** Lemma 2 establishes that global collisions are vanishingly rare. Even with pixel-level
 242 absorption, distinct images remain separable: e.g., for CIFAR-10 ($d = 3072$) and $k = 4$, $(G_k/10^k)^d$
 243 is effectively zero. Thus, quantization is locally many-to-one but globally almost injective, ensuring
 244 discriminability while dampening small perturbations.

245

246

247

5.3 BRIDGE TO GW SEPARATION

248

249

250 Pixel-level absorption (Def. 7, Prop. 1) and image-level injectivity (Lemma 2) set the boundary
 251 conditions: if $\epsilon \leq r_{\text{abs}}$, perturbations vanish in P while Z still moves; if $\epsilon > r_{\text{abs}}$, quantization
 252 shifts and P changes—so in both regimes Z and P neighborhoods diverge. To formalize these
 253 divergences, we embed samples into spatial–semantic product spaces $\mathcal{C} = (Z \times Y, d_{\mathcal{C}})$ and $\mathcal{K} =$
 254 $(P \times Y, d_{\mathcal{K}})$, representing each image as $(h_{\theta}(x), y)$ and $(T_k^{(b)}(x), y)$. By Theorem 5 and Corollary 2,
 255 the ℓ_{∞} product is the tightest among admissible component metrics, so any discrepancy in geometry
 256 or label mass yields separation in \mathcal{C} and \mathcal{K} . This construction underlies the GW envelope and gap
 257 theorems that follow.

258

259

260

261

5.4 DIAMETER ENVELOPES IN \mathcal{C} AND \mathcal{K}

262

263

264

265

266 We now summarize the behavior of k -nearest neighbor diameters in the two product spaces \mathcal{C} (CNN-
 267 based) and \mathcal{K} (prime-quantized). For clean samples, diameters concentrate tightly around a median
 268 distance; for adversarially perturbed samples, explicit additive expansion terms appear. The full
 269 technical statements and proofs are deferred to Appendix E.

270

271

272

273

274 **Lemma 3** (Unified local diameter envelopes in \mathcal{C} and \mathcal{K}). *For any confidence $\delta \in (0, 1)$ and local
 275 neighborhood size $K_{10} \geq 2$, and under the variance proxy (Assumption 2) and prime-gap sensitivity
 276 (Assumption 3) conditions (see Appendix E), the following bounds hold for clean queries q and
 277 adversarial queries $\tilde{q} = q + \eta$:*

5

Figure 2: Geometric inconsistency detection and gap theorem validation. 1st panel: clean neighborhoods; 2nd panel: adversarial separation ($\gamma_C = 3.567$); 3rd panel: gap theorem across $\varepsilon \in \{2/255, 4/255, 6/255, 8/255\}$; 4th panel: risk control thresholding (left:clean; right:adversarial).

$$\text{diam}(\mathcal{N}_{K_{10}}^{\mathcal{C}}(q)) \leq \underbrace{2\mu_{\mathcal{C}} \left(1 + \sqrt{\frac{2 \log K_{10}}{d}} + \sqrt{\frac{2 \log(2/\delta)}{d}}\right)}_{=: U_{\text{clean}}^{\mathcal{C}}}, \quad (1)$$

$$\text{diam}(\mathcal{N}_{K_{10}}^{\mathcal{C}}(\tilde{q})) \leq U_{\text{clean}}^{\mathcal{C}} + \underbrace{\frac{2\sqrt{d}\sigma}{\sqrt{\delta}} \|\eta\|_{\infty}}_{\text{Jacobian drift}} + 2\mathbf{1}_{\{y \neq \hat{y}\}}, \quad (2)$$

$$\text{diam}(\mathcal{N}_{K_{10}}^{\mathcal{K}}(q)) \leq \underbrace{2\mu_{\mathcal{K}}^{\max}(q) \left(1 + \frac{C_k}{\mu_{\mathcal{K}}^{\max}(q)} \sqrt{\frac{2 \log K_{10}}{d}} + \frac{C_k}{\mu_{\mathcal{K}}^{\max}(q)} \sqrt{\frac{2 \log(2/\delta)}{d}}\right)}_{=: U_{\text{clean}}^{\mathcal{K}}}, \quad (3)$$

$$\text{diam}(\mathcal{N}_{K_{10}}^{\mathcal{K}}(\tilde{q})) \leq U_{\text{clean}}^{\mathcal{K}} + \underbrace{C_k \sqrt{d} \left(\sqrt{2 \log K_{10}} + \sqrt{2 \log(2/\delta)}\right)}_{\text{key sensitivity}} + \frac{2\sqrt{d}\sigma}{\sqrt{\delta}} \|\eta\|_{\infty} + 2\mathbf{1}_{\{y \neq \hat{y}\}}. \quad (4)$$

Here $\mu_{\mathcal{C}}$ is the clean median pairwise distance in \mathcal{C} , $\mu_{\mathcal{K}}^{\max}(q)$ is the maximum key-annealed median distance in \mathcal{K} , σ is the variance proxy from Assumption 2, $C_k = 2G_k$ is the prime-gap sensitivity constant from Assumption 3, and η is the adversarial perturbation.

Geometric Insight. In \mathcal{C} , clean neighborhood diameters concentrate around a median distance (App. Lemma 6), while adversarial perturbations add a Jacobian-driven drift and a possible label-flip penalty (App. Thm. 7; cf. equation 1–equation 2). In \mathcal{K} , clean neighborhoods are stabilized by prime-gap sensitivity (App. Thm. 8), whereas adversarial perturbations add terms from key sensitivity, perturbation norms, and label flips (App. Thm. 9; cf. equation 3–equation 4). Together these define the *diameter envelopes* that underlie the cross-space GW theorems. Fig. 2 (1st–2nd panels) empirically confirms this: clean samples form compact clusters consistent with Thms. 6, 8, while adversarial queries induce the predicted separation gap $\gamma_C = 3.567$ (App. Thm. 2).

5.5 GROMOV–WASSERSTEIN BOUNDS: CLEAN VS. ADVERSARIAL

We now move from *local geometry* (K -NN diameter bounds in \mathcal{C} and \mathcal{K} , Lemma 3) to a *distributional geometry* comparison across spaces. The Gromov–Wasserstein (GW) distance aligns pairwise distance structures, allowing us to bound: (i) in the *clean case*, similarity of \mathcal{C} and \mathcal{K} , and (ii) in the *adversarial case*, a provable increase when perturbations inflate diameters differently across spaces. This separation underlies our detection framework.

Theorem 1 (Clean cross–space GW upper bound via K -NN star radii). *Fix a clean query x and consider its local neighborhoods $\mathcal{N}_K^{\mathcal{C}}(x) \subset \mathcal{C}$ and $\mathcal{N}_K^{\mathcal{K}}(x) \subset \mathcal{K}$, each endowed with the uniform probability measure on K points.*

324 Let R_C and R_K denote the corresponding K -NN radii (the K -th star distances from x) in \mathcal{C} and
 325 \mathcal{K} respectively. Then, for any confidence levels $\delta_C, \delta_K \in (0, 1)$, the following high-probability
 326 envelopes hold:

$$328 \quad R_C \leq \mu_C \left(1 + \sqrt{\frac{2 \log K}{d}} + \sqrt{\frac{2 \log(2/\delta_C)}{d}} \right) \quad \text{with probability} \geq 1 - \delta_C, \quad (5)$$

$$330 \quad R_K \leq \mu_K \left(1 + \frac{C_K}{\mu_K} \sqrt{d} \left(\sqrt{2 \log K} + \sqrt{2 \log(2/\delta_K)} \right) \right) \quad \text{with probability} \geq 1 - \delta_K. \quad (6)$$

332 Consequently, with probability at least $1 - (\delta_C + \delta_K)$,

$$334 \quad \text{GW}^2 \left(\mathcal{N}_K^{\mathcal{C}}(x), \mathcal{N}_K^{\mathcal{K}}(x) \right) \leq 4 \left(1 - \frac{1}{K} \right) (R_C + R_K)^2. \quad (7)$$

337 Full proof and derivation of radius envelopes equation 5–equation 6 are given in Appendix G.

339 **Notation (adversarial queries, radii, and gap).** For a clean input x and perturbation η , the ad-
 340 versarial query in $\mathcal{M} \in \{\mathcal{C}, \mathcal{K}\}$ is $\tilde{q}_{\mathcal{M}} = z^{\mathcal{M}}(x + \eta)$. Its K nearest neighbors form $\tilde{\mathcal{N}}_K^{\mathcal{M}}(x + \eta) =$
 341 $\{z_1^{\mathcal{M}}, \dots, z_K^{\mathcal{M}}\}$ with radii $r_i^{\mathcal{M}} = d_{\mathcal{M}}(z_i^{\mathcal{M}}, \tilde{q}_{\mathcal{M}})$ and maximum $R_{\mathcal{M}}^{\text{adv}} = \max_i r_i^{\mathcal{M}}$. We partition the K
 342 neighbors into an inner set L of size $(1 - \theta)K$ and outer set H of size θK , and define the separation
 343 gap as $\gamma_{\mathcal{M}} = \min_{i \in H} r_i^{\mathcal{M}} - \max_{j \in L} r_j^{\mathcal{M}}$.

344 **Theorem 2** (Adversarial cross–space GW lower bound). *Fix a query x and perturbation η , and
 345 consider the adversarial neighborhoods $\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta)$ and $\tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)$, each with uniform measure
 346 on K points. Let γ_C be the separation gap and let R_K^{adv} denote the adversarial K -NN radius in \mathcal{K} ,
 347 bounded as in Theorem 8. Then, with probability at least $1 - \delta_K^{\text{env}}$, $\text{GW}^2 \left(\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta), \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta) \right) \geq$
 348 $2 \theta^2 \left(\gamma_C - 2R_K^{\text{adv}} \right)_+^2$.*

351 Full proof is provided in Appendix G.

353 **Mirror results.** For brevity, we omit the symmetric (i) *clean lower bounds* and (ii) *adversarial up-
 354 per bounds* on GW, but detailed proofs are provided in Theorem 10 and Theorem 11 in Appendix G.

355 **Remarks.** Together with Theorem 1, these results establish a clear separation: GW distance is
 356 tightly bounded for clean neighborhoods but grows under adversarial perturbations whenever γ_C
 357 dominates R_K^{adv} . Empirical results in Fig. 2 (panel 3) confirm this gap theorem: the cross-space GW
 358 discrepancy increases monotonically with perturbation strength ε . The growth matches the theoretical
 359 scaling $\Omega(d^2 \sigma^2 \varepsilon^2) - O(\frac{\log K}{d})$ derived by combining our adversarial lower bound (Theorem 2)
 360 with clean concentration envelopes (Lemma 3; see Appendix G). This demonstrates that stronger
 361 perturbations amplify cross-space inconsistencies, making detection increasingly reliable.

363 5.6 GW GAP AND RISK CONTROL

365 **Theorem 3** (Cross–space GW gap). *With probability at least $1 - (\delta_C + \delta_K + \delta_K^{\text{env}} + \delta_{\text{aux}})$, the
 366 clean and adversarial GW discrepancies satisfy $|\text{GW}_{\text{adv}}^2 - \text{GW}_{\text{clean}}^2| \geq \tau := \max\{\tau_{\text{adv}}, \tau_{\text{clean}}, 0\}$,
 367 where $\tau_{\text{adv}} = L_{\text{adv}} - U_{\text{clean}}$ and $\tau_{\text{clean}} = L_{\text{clean}} - U_{\text{adv}}$. Under Assumption 2, for fixed K and
 368 perturbation $\|\eta\|_{\infty} = \varepsilon$, we obtain $\tau = \Omega(d^2 \sigma^2 \varepsilon^2) - O(\frac{\log K}{d})$.*

369 **Lemma 4** (Risk control via GW margin). *If the gap event holds with margin $\tau > 0$ and an estimator
 370 $\widehat{\text{GW}}_{\lambda}^2$ satisfies $\Pr(|\widehat{\text{GW}}_{\lambda}^2 - \text{GW}^2| \leq \tau/3) \geq 1 - \delta_{\text{est}}$, then thresholding $\widehat{\text{GW}}_{\lambda}^2$ at the midpoint
 371 between clean and adversarial envelopes makes no error on this event. Thus $\Pr(\text{misclassification}) \leq$
 372 $\Pr(E_{\text{gap}}^c) + \delta_{\text{est}}$.*

375 **From GW to entropic GW.** All bounds above were stated for quadratic GW^2 . For entropic
 376 GW_{λ}^2 with $\lambda > 0$, the lower bounds remain unchanged, while the upper bounds incur only
 377 an additive $2\lambda \log K$ (Corollaries 7–8). Hence, the clean/adversarial separation guarantees extend
 378 seamlessly to the entropic case used in practice.

378 **Remarks.** Theorem 3 certifies a provable margin: clean neighborhoods in \mathcal{C}, \mathcal{K} contract to
 379 $O(\frac{\log K}{d})$, while adversarial perturbations inflate by $\Omega(d^2\sigma^2\varepsilon^2)$. Lemma 4 translates this into a
 380 statistical guarantee: once $\widehat{GW_\lambda^2}$ concentrates within $\tau/3$, thresholding achieves negligible error.
 381 Empirical evidence (Fig. 2, panel 4) confirms the theory: clean and adversarial discrepancy dis-
 382 tributions separate cleanly, validating the predicted risk bound. Proofs and full derivations are in
 383 App. G.
 384

386 6 EMPIRICAL ANALYSIS

388 6.1 EXPERIMENTAL SETUP

390 **Adversarial Attacks.** We evaluate a broad suite spanning gradient-based, optimization, spatial, and
 391 perceptual perturbations: Auto-Attack (**AA**) (Croce & Hein, 2020), Carlini–Wagner (**CW**) (Carlini
 392 & Wagner, 2017), Patch (**PT**) (Brown et al., 2017), Projected Gradient Descent (**PGD**) (Madry et al.,
 393 2018), Spatial (**SA**) (Engstrom et al., 2019), Square (**SQ**) (Andriushchenko et al., 2020), Universal
 394 Perturbations (**UP**) (Moosavi-Dezfooli et al., 2017), Auto-PGD (**AP**) (Croce & Hein, 2020), Fast
 395 Gradient Sign (**FG**) (Goodfellow et al., 2015), Frequency (**FA**) (Yin et al., 2019), Gaussian Blur
 396 (**GB**) (Zhang et al., 2022), Pixel Flip (**PF**) (Su et al., 2019), Semantic Rotation (**SR**) (Hosseini &
 397 Poovendran, 2018), **AdvAD (AAD)** (Li et al., 2024), **Penalizing Gradient Norm (PGN)** (Ge et al.,
 398 2023), and **Block Shuffle and Rotation (BSR)** (Wang et al., 2024). We use these boldface abbrevi-
 399 ations throughout tables and figures for brevity. Refer to Table 6 in Appendix H.5 for attack
 400 hyperparameter settings and defaults.

401 **Baseline Defenses.** We benchmark against representative detection methods: Mahalanobis Detec-
 402 tor (**MD**) (Lee et al., 2018), Feature Squeezing (**FS**) (Xu et al., 2018), Meta-Adversarial-Detect
 403 (**MAD**) (Ma et al., 2019), MagNet (**MN**) (Meng & Chen, 2017), **Multiple Perturbation Detector**
 404 (**EA**) (Zhang et al., 2023), and **Be Your Own Neighborhood (BY)** (He et al., 2022).

405 **Evaluation Metrics.** We report the following complementary metrics. (1) *Binary detection accu-
 406 racy*: overall accuracy of classifying inputs as clean or adversarial. (2) *True Positive Rate (TPR)*:
 407 fraction of adversarial samples correctly flagged as adversarial, i.e., $TPR = \frac{\text{detected adversarial}}{\text{all adversarial}}$. (3) *End-
 408 to-End accuracy*: proportion of clean samples correctly classified and passed by the detector, plus
 409 adversarial samples correctly blocked; this reflects system-level robustness under attack. (4) *Precision*:
 410 fraction of samples flagged as adversarial that are truly adversarial. (5) *Recall*: identical to
 411 TPR—the fraction of adversarial samples correctly detected. (6) *F1-score*: harmonic mean of pre-
 412 cision and recall, summarizing detection quality under imbalance. (7) *AUC-ROC*: area under the ROC
 413 curve, measuring threshold-independent separability between clean and adversarial distributions.

414 6.2 ADVERSARIAL DETECTION ACCURACY

416 **Setup.** We evaluate detection on the datasets
 417 CIFAR-10 Krizhevsky (2009), FMNIST Xiao
 418 et al. (2017), KMNIST Clauwut et al. (2018),
 419 and **ImageNet** Deng et al. (2009) using models
 420 ResNet18 He et al. (2016) and **ViT Dosovitskiy**
 421 (2020), with adversarial datasets generated from
 422 the attack suite in Sec. 6.1. Detector/classifier hy-
 423 perparameters and attack configurations appear in
 424 Appendix I and Appendix H.5, respectively. **We**
 425 note that ResNet18 on CIFAR-10 is employed as
 426 our default configuration.

427 Results and analysis.

428 Table 1 shows that our detector **achieves $\geq 95\%$**
 429 **binary detection on 12 of 13 attacks**, with Gaus-
 430 sian blur (85.7%) as the only exception. Accu-
 431 racy remains consistently high across attack fam-
 432 ilies: (i) *Gradient/optimization* (AA, CW, PGD, AP): **96–98%**, with margins of **+10–20** points, since

Attack	Ours	MD	FS	MAD	MN
AA	97.9	68.9	<u>82.7</u>	52.0	74.1
CW	97.0	73.6	<u>86.0</u>	51.4	56.7
PT	98.0	<u>86.4</u>	67.8	50.7	57.3
PGD	97.8	91.3	74.4	51.1	81.0
SA	96.8	<u>78.1</u>	74.4	41.1	54.9
SQ	97.6	89.2	88.5	51.0	44.4
UP	97.8	<u>66.4</u>	53.7	50.7	47.9
AP	97.6	68.3	<u>81.4</u>	50.2	73.6
FG	98.0	<u>73.8</u>	60.9	49.6	44.7
FA	95.1	49.9	<u>50.0</u>	49.7	49.8
GB	85.7	49.8	<u>51.7</u>	48.2	48.6
PF	97.0	<u>51.7</u>	51.4	49.5	49.4
SR	95.9	50.3	<u>52.7</u>	50.1	49.1

Table 1: Binary detection accuracy (%). Best re-
 sults are in **bold** and second best are underlined.

Attack	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	0.97	0.91	0.71	0.25	0.78	<u>0.96</u>	0.70
	ViT	0.95	0.65	0.75	0.57	0.01	0.95	<u>0.80</u>
SQ	ResNet-18	0.96	<u>0.89</u>	0.85	0.24	0.01	<u>0.90</u>	0.57
	ViT	0.95	0.66	0.86	0.56	0.02	<u>0.89</u>	0.61
PT	ResNet-18	0.98	0.86	0.54	0.26	0.03	<u>0.89</u>	0.80
	ViT	0.95	0.66	0.67	0.54	0.01	<u>0.89</u>	0.81
AAD	ResNet-18	0.95	0.31	0.46	0.52	0.13	<u>0.91</u>	0.59
	ViT	0.93	0.67	0.57	0.64	0.01	<u>0.92</u>	0.82
PGN	ResNet-18	0.95	0.63	0.62	0.24	0.01	<u>0.90</u>	0.77
	ViT	0.96	0.67	0.62	0.64	0.02	<u>0.93</u>	0.77
BSR	ResNet-18	0.95	0.67	0.52	0.23	0.40	<u>0.92</u>	0.81
	ViT	0.98	0.67	0.56	0.64	0.02	<u>0.92</u>	0.78

Table 2: F1-score comparison on CIFAR-10 across multiple attacks using ResNet-18 and ViT. Best results are in **bold**, second best are underlined.

small-norm shifts in Z are often absorbed in P , producing sharp cross-space mismatches; (ii) *Spatial/patch* (SA, PT): **97–98%**, where local structural changes disrupt geometry differently in each space; (iii) *Transfer/decision-based* (SQ, UP): **97–98%**, where transfer-induced distortions misalign Z and P far more than gradient-based attacks, yielding especially large gains (**+31 points** on UP); and (iv) *Perceptual/frequency* (FA, PF, SR): **95–97%**, where frequency and semantic shifts perturb P ’s discrete neighborhoods and Z ’s embeddings in complementary ways, creating highly detectable discrepancies. Gaussian blur is the hardest case because it averages neighboring pixels, suppressing edges and textures, inducing similar distortions in both Z and P . This reduces the cross-space discrepancy that our detector exploits. Nevertheless, uneven quantization in P ensures residual separation, and we still outperform all baselines on blur. Full per-dataset results and additional metrics, including TPR/FPR heatmaps and end-to-end-accuracy, are reported in Table 13(Appendix L) and Appendix M respectively. Across all six attacks and both architectures (ResNet-18 and ViT), our method consistently achieves the highest F1-scores, typically exceeding **0.95**. EA generally emerges as the strongest baseline yet remains noticeably weaker than our detector, especially under patch-based and structure-altering attacks such as SQ and PT. Modern attacks such as AAD, PGN, and BSR also show the same trend: while EA or BY occasionally achieve strong second-best performance, our approach maintains a clear advantage across architectures. These results highlight the robustness and model-agnostic behavior of the proposed Z–P discrepancy framework.

6.3 ADAPTIVE ATTACK RESISTANCE AND ABLATION

Adaptive attacks. We test two white-box adaptive formulations: (i) cross-space (C_{cross}) and (ii) multi-scale (C_{ms}), where the adversary knows the architecture but not the secret bit vector b^* . The complete formulation of the adversary’s objective, the prior distribution over unknown secret bits, the consistency penalties, and the optimization procedure are provided in Appendix J. As shown in Table 3a, our method maintains strong detection (**84–90%**) across CIFAR-10, FMNIST, and KMNIST, demonstrating robustness even when defenses are explicitly targeted. This accuracy drop relative to non-adaptive attacks arises because the adversary now explicitly optimizes to *minimize cross-space discrepancies* (CNN vs. crypto features). By enforcing feature consistency under a prior over b , they can partially reduce the mismatches our detector relies on.

Ablation study. To quantify feature contributions, we compare detectors using only local GW features, only global GW features, or both. Table 3b shows that while local or global features alone yield moderate performance (**65–83%**), combining them achieves **97–98%** across all attacks. This confirms that local fine-grained cues and global structural signals are complementary.

6.4 ZERO-SHOT SETTING

Adversarial robustness in large-scale Vision–Language Models (VLMs) remains relatively under-explored, especially in the *zero-shot* regime where models are accessed only through APIs and

486	Dataset	C_{cross}	C_{ms}	Features	AA	CW	PT	PGD	FG	
487	CIFAR-10	86.7	84.5	Local only	67.7	<u>76.2</u>	73.2	62.5	<u>79.1</u>	
488	FMNIST	89.6	87.9	Global only	<u>83.5</u>	66.5	<u>75.6</u>	<u>65.0</u>	71.3	
489	KMNIST	88.2	86.8	Both	97.9	97.0	98.0	97.8	98.0	
490	(a) Adaptive attack detection (%).					(b) Ablation on CIFAR-10 (%).				
491										

492
493 Table 3: **Adaptive robustness and feature ablation.** (a) Our method resists adaptive white-box
494 attacks despite defense-aware optimization. (b) Combining local and global GW features yields the
495 strongest detection across attacks.

497	Attack	Dataset	Detection Accuracy / AUC		Precision / Recall / F1	
			LLaVA-1.5	Qwen-2.7B-VL	LLaVA-1.5	Qwen-2.7B-VL
500	APGD	CalTech-101	89.50 / 0.99	89.63 / 0.99	0.89 / 0.89 / 0.89	0.89 / 0.89 / 0.89
		Food-101	90.44 / 0.99	87.72 / 0.99	0.90 / 0.90 / 0.90	0.87 / 0.87 / 0.87
		CalTech-256	88.60 / 0.95	87.83 / 0.99	0.88 / 0.88 / 0.88	0.87 / 0.87 / 0.87
505	PGD	CalTech-101	89.50 / 0.99	87.13 / 0.99	0.89 / 0.89 / 0.89	0.87 / 0.87 / 0.86
		Food-101	87.13 / 0.99	88.42 / 0.99	0.87 / 0.87 / 0.87	0.88 / 0.88 / 0.88
		CalTech-256	83.00 / 0.91	88.76 / 0.99	0.83 / 0.83 / 0.82	0.88 / 0.88 / 0.88
510	FGSM	CalTech-101	90.80 / 0.99	89.20 / 0.99	0.90 / 0.90 / 0.90	0.89 / 0.89 / 0.89
		Food-101	87.08 / 0.94	90.74 / 0.99	0.84 / 0.81 / 0.81	0.90 / 0.90 / 0.90
		CalTech-256	85.50 / 0.92	88.07 / 0.99	0.85 / 0.85 / 0.85	0.88 / 0.88 / 0.88

508 Table 4: Zero-shot adversarial detection performance on LLaVA-1.5 and Qwen-2.7B-VL across
509 multiple datasets and attacks.

511
512 adversaries rely on transfer attacks. This provides a natural testbed for evaluating cross-model gen-
513 eralization, since neither gradients nor model parameters are available.

514
515 We evaluate the zero-shot transferability of our detector across two recent VLMs—LLaVA-1.5-
516 7B (Liu et al., 2023) and Qwen-2.7B-VL (qwe (2024)—on three diverse datasets: **CalTech-101** Fei-
517 Fei et al. (2004), **Food-101** Bossard et al. (2014), and **CalTech-256** Griffin et al. (2007). Adversarial
518 examples are generated using PGD, APGD, and FGSM following (Cui et al., 2024), and CLIP (Rad-
519 ford et al., 2021) embeddings define the Z -space. Table 4 reports detection accuracy, AUROC, and
520 precision/recall/F1 metrics for all model–dataset combinations.

521
522 Across all attacks and datasets, the detector achieves strong zero-shot transferability: detection ac-
523 curacies are consistently $\geq 83\%$, AUROC values ≥ 0.94 (often ≥ 0.99), and precision/recall/F1
524 scores typically remain ≥ 0.87 . These results indicate robust generalization across VLM architec-
525 tures without requiring access to model internals.

526
527 The robustness stems from adversarial perturbations disrupting semantic alignment in Z while being
528 unevenly absorbed in P , yielding a persistent cross-space discrepancy detectable even under trans-
529 fer. Additional robustness and generalization results—including TPR/FPR heatmaps, cross-attack
530 transfer, and cross-model generalization—are provided in Appendix L.

531 7 CONCLUSION

532
533 We introduced a principled framework for adversarial detection based on geometric inconsistencies
534 between the embedding space Z and a prime-quantized space P . Our theory shows that adversarial
535 perturbations inevitably create detectable cross-space discrepancies, providing the first guarantees
536 for when detection must succeed. Experiments confirm consistently high detection accuracy across
537 diverse attacks, strong generalization to zero-shot VLMs, and robustness to adaptive adversaries.
538 These results demonstrate that geometric reasoning offers a solid foundation for adversarial robust-
539 ness. An immediate direction is to adapt our framework to multimodal models, where both adver-
540 sarial pressure and generalization demands are higher. Extending our theoretical guarantees from
541 local to global neighborhoods also forms an interesting direction for future work.

540 8 REPRODUCIBILITY STATEMENT
541542 In accordance with the guidelines, we present all assumptions, definitions, and proofs underlying the
543 theoretical results in Appendix C–G. Implementation details, training setups, and hyperparameters
544 of our method are provided in Appendix K and Appendix I, enabling independent reproduction of
545 results. Due to institutional clearance requirements, we cannot release source code at submission
546 time, but the algorithmic descriptions and parameter specifications are sufficient to reimplement our
547 method. We will make code available once internal review permits.
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Qwen2 technical report. 2024.

597 Laila Abd El-fatah Shawky Abdel Nasser H. Zaied. A survey of quadratic assignment problems.
598 *International Journal of Computer Applications*, 2014.599 Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
600 tack: a query-efficient black-box adversarial attack via random search. In *European conference*
601 *on computer vision*, 2020.602 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
603 curity: Circumventing defenses to adversarial examples. In *International conference on machine*
604 *learning*, pp. 274–283. PMLR, 2018.605 Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. *Robust Optimization*. Princeton
606 University Press, Princeton, NJ, 2009.607 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
608 ponents with random forests. In *European Conference on Computer Vision*, 2014.609 Sébastien Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration Inequalities: A Nonasym-
610 totic Theory of Independence*. Oxford University Press, 2013.611 Tom B Brown et al. Adversarial patch. In *NeurIPS Workshops*, 2017.612 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *IEEE*
613 *Symposium on Security and Privacy (S&P)*, 2017.614 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
615 mization based black-box attacks to deep neural networks without training substitute models. In
616 *Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security*, AISec ’17, 2017.617 Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
618 Ha. Deep learning for classical Japanese literature. *arXiv preprint arXiv:1812.01718*, 2018.619 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
620 smoothing. In *International Conference on Machine Learning (ICML)*, 2019.621 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
622 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
623 2216. PMLR, 2020.624 Xuanming Cui, Alejandro Aparcado, Young Kyun Jang, and Ser-Nam Lim. On the robustness of
625 large multimodal models against image adversarial attacks. In *2024 IEEE/CVF Conference on*
626 *Computer Vision and Pattern Recognition (CVPR)*, 2024.627 Herbert A. David and H. N. Nagaraja. *Order Statistics*. Wiley-Interscience, 3rd edition, 2003.628 Jia Deng, Weijie Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
629 scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern*
630 *Recognition*, pp. 248–255. IEEE, 2009. doi: 10.1109/CVPR.2009.5206848.631 Luc Devroye, László Györfi, and Gábor Lugosi. *A Probabilistic Theory of Pattern Recognition*,
632 volume 31 of *Applications of Mathematics*. Springer, New York, 1996. ISBN 978-0-387-94548-
633 8. doi: 10.1007/978-1-4612-0757-1.634 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
635 *arXiv preprint arXiv:2010.11929*, 2020.636 Pierre Dusart. Estimates of some functions over primes without r.h., 2010. URL <https://arxiv.org/abs/1002.0442>.637 Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a
638 translation suffice: Fooling CNNs with simple transformations. In *ICLR*, 2019.

648 Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training exam-
 649 ples: An incremental bayesian approach tested on 101 object categories. In *2004 Conference on*
 650 *Computer Vision and Pattern Recognition Workshop*, 2004.

651

652 Reuben Feinman, Ryan Curtin, Saurabh Shintre, and Andrew Gardner. Detecting adversarial sam-
 653 ples from artifacts. In *International Conference on Machine Learning (ICML)*, 2017.

654

655 Zhijin Ge, Hongying Liu, Wang Xiaosen, Fanhua Shang, and Yuanyuan Liu. Boosting adversar-
 656 ial transferability by achieving flat local maxima. *Advances in Neural Information Processing*
 657 *Systems*, 36:70141–70161, 2023.

658

659 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 660 examples. In *International Conference on Learning Representations (ICLR)*, 2015.

661

662 Sven Gowal et al. Improving robustness using generated data. In *NeurIPS*, 2021.

663

664 Greg Griffin, Alex Holub, and Pietro Perona. The caltech 256 object category dataset. Technical
 665 Report CNS-TR-2007-001, California Institute of Technology, 2007. URL http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

666

667 Godfrey Harold Hardy and Edward Maitland Wright. *An Introduction to the Theory of Numbers*.
 668 Oxford University Press, 6 edition, 2008. Theorem 418.

669

670 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 671 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 672 770–778, 2016.

673

674 Zhiyuan He, Yijun Yang, Pin-Yu Chen, Qiang Xu, and Tsung-Yi Ho. Be your own neighborhood:
 675 Detecting adversarial example by the neighborhood relations built on self-supervised learning.
 676 *arXiv preprint arXiv:2209.00005*, 2022.

677

678 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 679 ruptions and perturbations. In *International Conference on Learning Representations*, 2019a.

680

681 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 682 ruptions and perturbations. In *International Conference on Learning Representations (ICLR)*,
 683 2019b.

684

685 Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In *Proceedings of the*
 686 *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2018.

687

688 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 689 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 690 PMLR, 2015.

691

692 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

693

694 Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In *Advances*
 695 *in neural information processing systems*, pp. 950–957, 1992.

696

697 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 698 out-of-distribution samples and adversarial attacks. In *NeurIPS*, 2018.

699

700 Jin Li, Ziqiang He, Anwei Luo, Jian-Fang Hu, Z Jane Wang, and Xiangui Kang. Advad: Exploring
 701 non-parametric diffusion for imperceptible adversarial attacks. *Advances in Neural Information*
 702 *Processing Systems*, 37:52323–52353, 2024.

703

704 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

705

706 Chen Ma, Chenxu Zhao, Hailin Shi, Li Chen, Junhai Yong, and Dan Zeng. Metaadvdet: Towards
 707 robust detection of evolving adversarial attacks. In *Proceedings of the 27th ACM international*
 708 *conference on multimedia*, pp. 692–701, 2019.

702 Xingjun Ma, Bo Li, Yisen Wang, Sarah Erfani, Sam Wijewickrema, Grant Schoenebeck, Dawn
 703 Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local
 704 intrinsic dimensionality. In *International Conference on Learning Representations (ICLR)*, 2018.
 705

706 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 707 Towards deep learning models resistant to adversarial attacks. In *International Conference on
 708 Learning Representations (ICLR)*, 2018.

709 Kamil Mahmood, Jérôme Rony, Ismail Ben Ayed, and Patrick Gallinari. Datafresheild: Adversarial
 710 defense using data-free knowledge distillation. In *AAAI*, 2021.
 711

712 Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
 713 *ACM CCS*, 2017.

714 Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
 715 perturbations. In *International Conference on Learning Representations (ICLR)*, 2017.
 716

717 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
 718 adversarial perturbations. In *Proceedings of the IEEE conference on computer vision and pattern
 719 recognition*, pp. 1765–1773, 2017.

720 OpenAI. Gpt-4v(ision) system card. *arXiv preprint arXiv:2310.12103*, 2023.
 721

722 Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
 723 distance matrices. In *Proceedings of The 33rd International Conference on Machine Learning*,
 724 2016.
 725

726 Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
 727 tial expressivity in deep neural networks through transient chaos. In *Advances in neural informa-
 728 tion processing systems*, pp. 3360–3368, 2016.

729 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 730 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 731 representations with language supervision. In *International conference on machine learning*, pp.
 732 8748–8763. PMLR, 2021.
 733

734 Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Certified defenses against adversarial
 735 examples. In *International Conference on Learning Representations (ICLR)*, 2018.
 736

737 Reuven Y Rubinstein and Dirk P Kroese. *Simulation and the Monte Carlo method*. John Wiley &
 738 Sons, 2016.
 739

740 Hadi Salman, Greg Yang, Hongyi Zhang, Cho-Jui Hsieh, Pengchuan Zhang, Dina Katabi, and Alek-
 741 sander Madry. Provably robust deep learning via adversarially trained smoothed classifiers. In
 741 *NeurIPS*, 2019.

742 Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
 743 ization help optimization? *Advances in neural information processing systems*, 31, 2018.
 744

745 Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
 746 propagation. In *International Conference on Learning Representations*, 2017.
 747

748 Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
 749 Leveraging generative models to understand and defend against adversarial examples. In *Inter-
 750 national Conference on Learning Representations*, 2018.

751 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 752 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine
 753 learning research*, 15(1):1929–1958, 2014.
 754

755 Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
 neural networks. *IEEE Transactions on Evolutionary Computation*, 23(5):828–841, 2019.

756 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Sci-
757 ence*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
758 2018.

759

760 Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In
761 *Advances in neural information processing systems*, pp. 351–359, 2013.

762

763 Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen Wang. Boosting adversarial transferability
764 by block shuffle and rotation. In *Proceedings of the IEEE/CVF conference on computer vision
765 and pattern recognition*, pp. 24336–24346, 2024.

766

767 Chong Xiang, Saeed Mahloujifar, and Prateek Mittal. {PatchCleanser}: Certifiably robust defense
768 against adversarial patches for any image classifier. In *31st USENIX security symposium (USENIX
769 Security 22)*, 2022.

770

771 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
772 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

773

774 Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
775 neural networks. In *Proceedings 2018 Network and Distributed System Security Symposium,
776 NDSS 2018*. Internet Society, 2018.

777

778 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
779 perspective on model robustness in computer vision. *Advances in Neural Information Processing
780 Systems*, 32, 2019.

781

782

783 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael I Jordan.
784 Theoretically principled trade-off between robustness and accuracy. In *International Conference
785 on Machine Learning (ICML)*, 2019.

786

787 Shuhai Zhang, Feng Liu, Jiahao Yang, Yifan Yang, Changsheng Li, Bo Han, and Mingkui Tan.
788 Detecting adversarial data by probing multiple perturbations using expected perturbation score.
789 In *International conference on machine learning*, pp. 41429–41451. PMLR, 2023.

790

791

792 Yaoyuan Zhang, Yu-an Tan, Mingfeng Lu, Tian Chen, Yuanzhang Li, and Quanxin Zhang. Boosting
793 cross-task adversarial attack with random blur. *International journal of intelligent systems*, 37
794 (10):8139–8154, 2022.

795

796

797 **APPENDIX**

798

799 **A LLM USAGE**

800

801 In this work, we employed large language models (LLMs) as auxiliary tools for: (1) polishing
802 and refining text, (2) assisting in literature search and related work, (3) formatting tables, and (4)
803 providing coding support (e.g., debugging and boilerplate generation).

804

805 **B NOTATION**

806

807 For ease of reference, we summarize in Table 5 the main symbols and spaces used throughout the
808 paper. Unless otherwise noted, all notation is consistent across sections.

809

810	Symbol	Meaning
811		
812	Data & embeddings	
813	$X = \{x_i\}_{i=1}^N, x_i \in$	Dataset of N images (dimension d).
814	$[0, 1]^d$	
815	$Y = \{1, \dots, C\}, y_i \in$	Label set and label of x_i .
816	Y	
817	$h_\theta : [0, 1]^d \rightarrow \mathbb{R}^m$	CNN feature extractor.
818	$z_i = h_\theta(x_i) \in \mathbb{R}^m$	Embedding of x_i .
819	$T_k^{(b)}$	Prime quantization map with key b and resolution k .
820	$Q^{k,b}(x)$	Prime-quantized embedding of x .
821	P	Prime-quantized space (Euclidean metric).
822		
823	Product spaces & metrics	
824	$\mathcal{C} = (Z \times Y, d_{\mathcal{C}})$	CNN-label product space;
825		$d_{\mathcal{C}}((z, y), (z', y')) = \max\{\ z - z'\ _2, \mathbf{1}[y \neq y']\}$.
826	$\mathcal{K} = (P \times Y, d_{\mathcal{K}})$	Prime-label product space (analogous metric).
827		
828	Neighborhoods & radii	
829	$\mathcal{N}_K^M(q)$	K -nearest neighbors of q in $M \in \{\mathcal{C}, \mathcal{K}\}$.
830	R_M, R_M^{adv}	Clean / adversarial K -NN radii in M .
831	r_i^M	Distance of i -th neighbor to q in M .
832	γ_M	Separation gap between outer and inner neighbor groups.
833		
834	GW quantities & envelopes	
835	GW^2, GW_λ^2	Quadratic and entropic GW discrepancies.
836	D_M	Distance matrix in space M .
837	π	Coupling (transport plan) in GW.
838	U, L	GW upper / lower envelopes.
839	τ	Two-sided GW margin.
840		
841	Perturbations & constants	
842	$\eta, \ \eta\ _\infty \leq \epsilon$	Adversarial perturbation and budget.
843	$\mu_{\mathcal{C}}$	Median pairwise distance in \mathcal{C} .
844	$\mu_{\mathcal{K}}^{\text{key}}, \mu_{\mathcal{K}}^{\text{max}}$	Key-annealed median; maximum over dataset.
845	σ	Variance proxy (Assumption A1).
846	$G_k, C_k = 2G_k$	Prime gap bound (Dusart) and sensitivity constant.
847	δ	Confidence parameters (clean/env/grad/est/gap).
848	d, m, C, N, K	Input dim, embedding dim, #classes, #samples, #neighbors.
849	$b \in \{0, 1\}^d, k$	Secret key bits; quantization resolution.

Table 5: Notation summary used throughout the paper.

C PROOFS FOR PRIME QUANTIZATION RESULTS

Proof Roadmap. The auxiliary results in this section establish the robustness of the prime quantization transform under bounded perturbations. We begin with Lemma 5, which shows how a perturbation of size ϵ translates into an integer drift in the scaled domain. This feeds directly into Theorem 4, which proves that whenever the perturbation budget exceeds the distance to a prime boundary, one can construct a feasible perturbation that crosses the gap, thereby changing the quantized value. To complement this, we define the absorption radius (Definition 7), derive the guarantee that perturbations below this radius are absorbed (Proposition 1), and bound the possible size of this radius in Lemma 1. Finally, Corollary 1 ties these ingredients together, yielding a crisp detection condition: perturbations below the absorption radius leave quantization unchanged, while those above it necessarily induce a detectable change.

864 **Lemma 5** (Perturbation budget constraint on scaled pixel values). *Let $x \in [0, 1]^d$ be an image and*
 865 *$x_j \in [0, 1]$ its j -th pixel. Consider a perturbation vector $\eta \in \mathbb{R}^d$ with $\|\eta\|_\infty \leq \epsilon$. Then for each*
 866 *pixel x_j ,*

$$867 \quad |S_k(x_j + \eta_j) - S_k(x_j)| \leq \lfloor \epsilon \cdot 10^k \rfloor + 1.$$

868
 869 *Proof.* We have $S_k(x_j + \eta_j) = \lfloor (x_j + \eta_j) \cdot 10^k \rfloor = \lfloor x_j \cdot 10^k + \eta_j \cdot 10^k \rfloor$ and $S_k(x_j) = \lfloor x_j \cdot 10^k \rfloor$.
 870 Since $\|\eta\|_\infty \leq \epsilon$, it follows that $|\eta_j| \leq \epsilon$ and hence $|\eta_j \cdot 10^k| \leq \epsilon \cdot 10^k$. By the floor inequality
 871 $|\lfloor a + b \rfloor - \lfloor a \rfloor| \leq \lceil |b| \rceil$, it follows that,
 872

$$873 \quad |S_k(x_j + \eta_j) - S_k(x_j)| = |\lfloor x_j \cdot 10^k + \eta_j \cdot 10^k \rfloor - \lfloor x_j \cdot 10^k \rfloor| \\ 874 \quad \leq |\eta_j \cdot 10^k| + 1 \\ 875 \quad \leq \lfloor \epsilon \cdot 10^k \rfloor + 1.$$

□

876
 877 **Theorem 4** (ϵ -Dependent Gap-Crossing Detection). *Let $x_j \in [0, 1]$ be the j -th pixel of an image,*
 878 *with $S_k(x_j) = n \in (p_l, p_{l+1})$, and let $\epsilon > 0$ be a perturbation budget such that*

$$879 \quad \epsilon \cdot 10^k > \min\{n - p_l, p_{l+1} - n\}.$$

880
 881 *Then there exists a perturbation η_j with $|\eta_j| \leq \epsilon$ such that $S_k(x_j)$ and $S_k(x_j + \eta_j)$ lie in different*
 882 *prime gap intervals, and hence*

$$883 \quad T_k^{(b_j)}(x_j + \eta_j) \neq T_k^{(b_j)}(x_j)$$

884
 885 *for any secret bit $b_j \in \{0, 1\}$.*

886
 887 *Proof.* From Lemma 5, any perturbation $|\eta_j| \leq \epsilon$ induces an integer drift in the scaled domain of at
 888 most $\lfloor \epsilon \cdot 10^k \rfloor + 1$. Thus, whenever $\epsilon \cdot 10^k$ exceeds the distance from n to the nearest prime boundary,
 889 some perturbation η_j exists that pushes $S_k(x_j)$ across that boundary.
 890

891 Since $S_k(x_j) = n \in (p_l, p_{l+1})$, two cases arise:
 892

893 (i) Closer to p_l . If $n - p_l \leq p_{l+1} - n$ and $\epsilon \cdot 10^k > n - p_l$, choose $\eta_j < 0$ with $-\epsilon \leq \eta_j < -(n - p_l)/10^k$. Then $S_k(x_j + \eta_j) \leq \lfloor n + \eta_j \cdot 10^k \rfloor < p_l$, placing the perturbed value in (p_{j-1}, p_l) .
 894 (ii) Closer to p_{l+1} . If $p_{l+1} - n < n - p_l$ and $\epsilon \cdot 10^k > p_{l+1} - n$, choose $\eta_j > 0$ with $(p_{l+1} - n)/10^k < \eta_j \leq \epsilon$. Then $S_k(x_j + \eta_j) \geq \lfloor n + \eta_j \cdot 10^k \rfloor > p_{l+1}$, placing the perturbed value in (p_{l+1}, p_{l+2}) .
 895

896 In both cases, $S_k(x_j + \eta_j)$ and $S_k(x_j)$ lie in different prime-gap intervals. Since $R_k^{(b_j)}$ rounds each
 897 integer to one of the two primes bracketing its interval, the images
 898

$$899 \quad R_k^{(b_j)}(S_k(x_j)) \in \{p_l, p_{l+1}\}, \quad R_k^{(b_j)}(S_k(x_j + \eta_j)) \in \{p_\ell, p_{\ell+1}\}, \ell \neq j$$

900
 901 must map to disjoint prime sets. Hence
 902

$$903 \quad T_k^{(b_j)}(x_j) = S_k^{-1}(R_k^{(b_j)}(n)) \neq S_k^{-1}(R_k^{(b_j)}(m)) = T_k^{(b_j)}(x_j + \eta_j).$$

904 Therefore, if $\epsilon \cdot 10^k > \min\{n - p_l, p_{l+1} - n\}$, some perturbation $|\eta_j| \leq \epsilon$ necessarily changes the
 905 prime quantization output, regardless of the secret bit b_j . □
 906

907 **Remark 1.** *The condition in Theorem 4 is sufficient: it ensures that some perturbation of size $\leq \epsilon$*
 908 *crosses a prime boundary, though not every direction must. This simplification is enough for our*
 909 *later GW separation results.*

910 **Definition 7** (Absorption radius). *For $x_j \in [0, 1]$ with $S_k(x_j) = n \in (p_\ell, p_{\ell+1})$, the absorption*
 911 *radius is $r_{\text{abs}}(x_j, k) = \frac{\min\{n - p_\ell, p_{\ell+1} - n\}}{10^k}$.*

912
 913 **Proposition 1** (Absorption guarantee). *If $|\eta_j| \leq r_{\text{abs}}(x_j, k)$, then $T_k^{(b_j)}(x_j + \eta_j) = T_k^{(b_j)}(x_j)$ for*
 914 *all bits b_j .*

918 *Proof.* By Definition 7 of absorption radius $r_{\text{abs}}(x_j, k)$, we have $S_k(x_j), S_k(x_j + \eta_j) \in (p_\ell, p_{\ell+1})$
 919 for the same prime gap interval. Since both $S_k(x_j)$ and $S_k(x_j + \eta_j)$ lie in the same prime gap
 920 $(p_\ell, p_{\ell+1})$, the prime rounding operator $R_k^{(b_j)}$ maps both to the same prime: $R_k^{(b_j)}(S_k(x_j + \eta_j)) =$
 921 $R_k^{(b_j)}(S_k(x_j))$.
 922

923 Applying S_k^{-1} to both sides:

$$925 \quad T_k^{(b_j)}(x_j + \eta_j) = S_k^{-1}(R_k^{(b_j)}(S_k(x_j + \eta_j))) = S_k^{-1}(R_k^{(b_j)}(S_k(x_j))) = T_k^{(b_j)}(x_j).$$

□

928 **Lemma 6** (Elementary Prime Gap Bound Hardy & Wright (2008)). *For any two consecutive primes
 929 $p_l < p_{l+1}$, we have the prime gap as $p_{l+1} - p_l \leq p_l$.*

931 **Assumption 1** (Prime-gap envelope for all $k \geq 2$). *Let $N = 10^k$. There exists an absolute constant
 932 $C_0 > 0$ covering $N < x_0 = 396,738$ such that*

$$933 \quad G_k := C_0 + \frac{N}{25(\ln N)^2}$$

936 *satisfies $p_{\ell+1} - p_\ell \leq G_k$ for all consecutive primes $p_\ell < p_{\ell+1} \leq N$. This is a direct consequence
 937 of Proposition 6.8 in Dusart Dusart (2010).*

938 **Lemma 1** (Absorption bounds). *For any $x_j \in [0, 1]$, $\frac{1}{2 \cdot 10^k} \leq r_{\text{abs}}(x_j, k) \leq \frac{1}{2}$.*

940 *Proof.* By Definition 7, for the j -th pixel $x_j \in [0, 1]$ with $S_k(x_j) = n \in (p_\ell, p_{\ell+1})$, the absorption
 941 radius is

$$942 \quad r_{\text{abs}}(x_j, k) = \frac{\min\{n - p_\ell, p_{\ell+1} - n\}}{10^k}.$$

944 We will now proceed to prove each bound separately.

946 *(i) Lower bound.* The minimum prime gap is 1 (between 2 and 3). Hence for any $n \in (p_\ell, p_{\ell+1})$, at
 947 least one of $(n - p_\ell)$ or $(p_{\ell+1} - n)$ is at least $1/2$. Thus, $\min\{n - p_\ell, p_{\ell+1} - n\} \geq \frac{1}{2}$, which
 948 implies $r_{\text{abs}}(x_j, k) \geq \frac{1}{2 \cdot 10^k}$.

949 *(ii) Upper bound.* The maximum of $\min\{n - p_\ell, p_{\ell+1} - n\}$ occurs when n is at the midpoint of
 950 the prime gap, i.e., $\min\{n - p_\ell, p_{\ell+1} - n\} \leq \frac{p_{\ell+1} - p_\ell}{2}$. Since $p_{\ell+1} \leq 10^k$ by construction, it
 952 follows that $r_{\text{abs}}(x_j, k) \leq \frac{10^k/2}{10^k} = \frac{1}{2}$. Hence, we obtain $\frac{1}{2 \cdot 10^k} \leq r_{\text{abs}}(x_j, k) \leq \frac{1}{2}$, which
 953 completes the proof. □

954 **Corollary 1** (Absorption vs. Gap-Crossing Condition). *Let $x_j \in [0, 1]$ be a pixel and $\epsilon > 0$ a
 955 perturbation budget. Then:*

957 *(i) Absorption.* *If $\epsilon \leq r_{\text{abs}}(x_j, k)$, every $|\eta_j| \leq \epsilon$ is absorbed, i.e. $T_k^{(b_j)}(x_j + \eta_j) = T_k^{(b_j)}(x_j)$.*

959 *(i) Gap crossing.* *If $\epsilon > r_{\text{abs}}(x_j, k)$, there exists some $|\eta_j| \leq \epsilon$ for which $T_k^{(b_j)}(x_j + \eta_j) \neq T_k^{(b_j)}(x_j)$.*

961 *Proof.* Part (i) is an immediate consequence of Proposition 1. For part (ii), Theorem 4 ensures
 962 that whenever $\epsilon \cdot 10^k > \min\{n - p_\ell, p_{\ell+1} - n\}$, equivalently $\epsilon > r_{\text{abs}}(x_j, k)$, one can construct
 963 a perturbation η_j that shifts $S_k(x_j)$ into a different prime-gap interval, thereby altering the prime
 964 quantization output. □

966 **Lemma 2** (Collision probability). *Fix $k \geq 2$ and let $N := 10^k$. Let $x, x' \in [0, 1]^d$ be two inde-
 967 pendent random images with i.i.d. pixel marginals whose densities are bounded by Λ on $[0, 1]$ (in
 968 particular, $\Lambda = 1$ for the uniform distribution). For a fixed secret bit vector $b \in \{0, 1\}^d$, let $T_k^{(b)}$
 969 be the prime-quantization transform (Definition 4). Assume the prime-gap envelope G_k from As-
 970 sumption 1. Then, $\Pr[T_k^{(b)}(x) = T_k^{(b)}(x')] \leq \left(\Lambda^2 \frac{G_k}{N}\right)^d$. In particular, for $\Lambda = 1$, the collision
 971 probability decays as $(G_k/10^k)^d$ in the number of pixels.*

972 *Proof.* Fix two independent images $x, x' \in [0, 1]^d$ with i.i.d. pixel marginals of density at most Λ
 973 on $[0, 1]$. Let $N = 10^k$, and for each pixel index $i \in \{1, \dots, d\}$ define the scaled integers
 974

$$975 \quad U_i := S_k(x_i) = \lfloor Nx_i \rfloor, \quad U'_i := S_k(x'_i) = \lfloor Nx'_i \rfloor.$$

977 Partition $\{0, 1, \dots, N-1\}$ into prime-gap intervals $I_j = (p_j, p_{j+1}) \cap \{0, \dots, N-1\}$ with lengths
 978 $g_j = |I_j|$. Since each pixel marginal has density $\leq \Lambda$, the probability of landing in any integer bin
 979 is $\leq \Lambda/N$. Therefore, for any gap I_j ,

$$980 \quad \Pr[U_i \in I_j] \leq \sum_{u \in I_j} \frac{\Lambda}{N} = \Lambda \frac{g_j}{N}, \quad \Pr[U'_i \in I_j] \leq \Lambda \frac{g_j}{N}.$$

984 For a fixed secret bit b_i , collision occurs at pixel i if both U_i and U'_i fall in the same gap I_j , since
 985 then $R_k^{(b_i)}$ maps both to the same prime. By independence of U_i and U'_i ,

$$987 \quad \Pr[\text{collision at pixel } i] = \sum_j \Pr[U_i \in I_j] \Pr[U'_i \in I_j] \leq \sum_j \left(\Lambda \frac{g_j}{N} \right)^2.$$

990 Pixels are i.i.d. across i , so collisions at all d coordinates occur with probability

$$992 \quad \Pr[T_k^{(b)}(x) = T_k^{(b)}(x')] \leq \left(\Lambda^2 \sum_j (g_j/N)^2 \right)^d.$$

995 Finally, note that $\sum_j (g_j/N)^2 \leq (\max_j g_j/N) \cdot \sum_j g_j/N \leq G_k/N$, where G_k is the prime-gap
 996 envelope from Assumption 1. Hence, $\Pr[T_k^{(b)}(x) = T_k^{(b)}(x')] \leq \left(\Lambda^2 \frac{G_k}{N} \right)^d$, yielding the stated
 997 bound. \square

999 **Remark 2** (Numerics and scope). For $k = 3$ ($N = 10^3$) with empirical maximum gap $G_k =$
 1000 36, the per-pixel factor is $36/1000 = 0.036$, so for CIFAR-10 ($d = 3072$) the bound is at most
 1001 $(0.036)^{3072} \approx 10^{-4.4 \times 10^3}$. For $k = 4$ ($N = 10^4$, $G_k = 36$), the per-pixel factor is 3.6×10^{-3}
 1002 and the overall bound is even smaller. This result is distributional, i.e., it certifies that collisions are
 1003 exponentially unlikely for two independent draws with bounded pixel densities. It does not claim
 1004 that $T_k^{(b)}$ is injective on $[0, 1]^d$ (the map is many-to-one by construction). Rather, it quantifies that
 1005 image-level collisions are negligible under natural sampling.

1008 D PROOFS FOR BOUNDS IN ℓ_p PRODUCT METRIC SPACES

1010 **Roadmap.** In Section 5, we introduced the spatial–semantic product spaces \mathcal{C} and \mathcal{K} , both en-
 1011 dowed with the ℓ_∞ metric. The purpose of this appendix is to justify that choice. We first establish
 1012 in Theorem 5 that upper bounds in an ℓ_p product space always imply corresponding bounds in the
 1013 component spaces. We then prove in Corollary 2 that among all ℓ_p metrics, ℓ_∞ achieves the tightest
 1014 possible uniform upper bound. Together these results explain why ℓ_∞ is the natural metric for \mathcal{C} and
 1015 \mathcal{K} , ensuring that perturbations in either spatial geometry or class distribution immediately translate
 1016 into separation in the product space.

1017 Let (X, d_X) and (Y, d_Y) be metric spaces. We consider their product space $W = X \times Y$ endowed
 1018 with a standard ℓ_p product metric. For $p \in [1, \infty)$, this metric is defined by

$$1019 \quad d_{W,p}((x_1, y_1), (x_2, y_2)) := (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{1/p}, \quad (8)$$

1021 and for $p = \infty$ by

$$1023 \quad d_{W,\infty}((x_1, y_1), (x_2, y_2)) := \max \{d_X(x_1, x_2), d_Y(y_1, y_2)\}. \quad (9)$$

1024 We now establish a general theorem relating upper bounds in the product space W to upper bounds
 1025 in the component spaces X and Y .

1026 **Theorem 5** (Component-wise Upper Bounds from ℓ_p Product Metrics). *Let (X, d_X) and (Y, d_Y) be metric spaces, and let $W = X \times Y$ with the ℓ_p metric $d_{W,p}$ for some $p \in [1, \infty]$. Suppose there exists a constant $M \geq 0$ such that*

$$1029 \quad d_{W,p}((x_1, y_1), (x_2, y_2)) \leq M, \quad \forall (x_1, y_1), (x_2, y_2) \in W. \quad (10)$$

1030 *Then the following component-wise bounds hold:*

$$1032 \quad d_X(x_1, x_2) \leq M, \quad d_Y(y_1, y_2) \leq M, \quad \forall x_1, x_2 \in X, y_1, y_2 \in Y. \quad (11)$$

1033 *Proof.* We consider two cases:

1035 *(i) $1 \leq p < \infty$.* By definition, for any $(x_1, y_1), (x_2, y_2) \in W$,

$$1037 \quad d_{W,p}((x_1, y_1), (x_2, y_2)) = (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{1/p}.$$

1038 Since $d_X(x_1, x_2)^p \geq 0$ and $d_Y(y_1, y_2)^p \geq 0$, it immediately follows that

$$1040 \quad d_X(x_1, x_2)^p \leq d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p = d_{W,p}((x_1, y_1), (x_2, y_2))^p.$$

1041 Taking the p -th root on both sides gives $d_X(x_1, x_2) \leq d_{W,p}((x_1, y_1), (x_2, y_2)) \leq M$. An identical argument applies to $d_Y(y_1, y_2)$.

1043 *(ii) $p = \infty$.* By definition,

$$1045 \quad d_{W,\infty}((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$$

1046 Hence, by properties of the maximum function,

$$1047 \quad d_X(x_1, x_2) \leq d_{W,\infty}((x_1, y_1), (x_2, y_2)) \leq M, \quad d_Y(y_1, y_2) \leq d_{W,\infty}((x_1, y_1), (x_2, y_2)) \leq M.$$

1048 Combining the two cases, the theorem follows. \square

1050 **Corollary 2** (Tightest Upper Bound in ℓ_p Product Spaces). *Let (X, d_X) and (Y, d_Y) have known upper bounds M_X and M_Y respectively, i.e.,*

$$1052 \quad d_X(x_1, x_2) \leq M_X, \quad d_Y(y_1, y_2) \leq M_Y, \quad \forall x_1, x_2 \in X, y_1, y_2 \in Y.$$

1053 *Then the corresponding upper bound for the product space $(W, d_{W,p})$ is*

$$1055 \quad d_{W,p}((x_1, y_1), (x_2, y_2)) \leq \begin{cases} (M_X^p + M_Y^p)^{1/p}, & 1 \leq p < \infty, \\ \max\{M_X, M_Y\}, & p = \infty. \end{cases}$$

1057 *Moreover, among all ℓ_p product metrics, the ℓ_∞ metric achieves the tightest upper bound, i.e.,*

$$1058 \quad \max\{M_X, M_Y\} \leq (M_X^p + M_Y^p)^{1/p}, \quad \forall p \in [1, \infty),$$

1059 *and is therefore optimal when minimizing the guaranteed upper bound in the product space.*

1061 *Proof.* The bound for $1 \leq p < \infty$ follows directly from the monotonicity of the ℓ_p norm:

$$1063 \quad d_{W,p}((x_1, y_1), (x_2, y_2)) \leq (M_X^p + M_Y^p)^{1/p}.$$

1064 For $p = \infty$, by definition $d_{W,\infty} = \max\{d_X, d_Y\} \leq \max\{M_X, M_Y\}$. To see that ℓ_∞ is the tightest, observe that for any $p < \infty$, $(M_X^p + M_Y^p)^{1/p} \geq \max\{M_X, M_Y\}$. Equality occurs only if one of M_X or M_Y is zero. Hence, ℓ_∞ gives the smallest guaranteed upper bound over all ℓ_p norms. \square

1068 **Definition 8** (Spatial, semantic, and product metric spaces). *Let $X \subset [0, 1]^d$ be the image space and $Y = \{1, \dots, C\}$ the label set. For a representation map $f : X \rightarrow \mathbb{R}^m$, define the spatial metric space (M^X, d_X) with $M^X = \{f(x) : x \in X\}$ and $d_X(x_1, x_2) = \|x_1 - x_2\|_2$. The semantic metric space is (M^Y, d_Y) with $M^Y = Y$ and $d_Y(y_1, y_2) = \mathbf{1}[y_1 \neq y_2]$.*

1072 *Their ℓ_∞ product is the metric space*

$$1073 \quad M^{XY} = (M^X \times M^Y, d_{XY}), \quad d_{XY}((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$$

1075 *Each image $x \in X$ embeds as $(f(x), y)$ where $y \in Y$ is its class label. Projections are defined by $\Pi_X(x, y) = x$ and $\Pi_Y(x, y) = y$. Instantiating $f = h_\theta$ yields the space \mathcal{C} with spatial component Z , and instantiating $f = T_k^{(b)}$ yields \mathcal{K} with spatial component P .*

1078 Instantiating $f(x) = h_\theta(x)$ or $f(x) = T_k^{(b)}(x)$ yields the product spaces \mathcal{C} and \mathcal{K} , respectively. These will serve as the foundation for the GW bounds in Section 5.

1080 E PROOFS FOR DIAMETER BOUNDS IN \mathcal{C} AND \mathcal{K}
1081

1082 **Proposition 2** (Concentration in ℓ_∞ product spaces). *Let $\{(X_i, d_i)\}_{i=1}^n$ be metric spaces
1083 and let $W = \prod_{i=1}^n X_i$ be endowed with the ℓ_∞ product metric $d_\infty((x_i)_{i=1}^n, (y_i)_{i=1}^n) :=$
1084 $\max_{1 \leq i \leq n} d_i(x_i, y_i)$. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random element of W and fix reference points
1085 $m_i \in X_i$ (e.g., means or Fréchet means), writing $\mathbf{m} = (m_1, \dots, m_n)$.*

1086 *Assume that each coordinate concentrates around its reference point, i.e., there exist tail functions
1087 $\psi_i : (0, \infty) \rightarrow [0, 1]$ such that for all $t > 0$,*

$$1089 \Pr\{d_i(X_i, m_i) \geq t\} \leq \psi_i(t) \quad (i = 1, \dots, n).$$

1090 *Then the product random element concentrates around \mathbf{m} in (W, d_∞) : for all $t > 0$,*

$$1093 \Pr\{d_\infty(\mathbf{X}, \mathbf{m}) \geq t\} = \Pr\left\{\max_{1 \leq i \leq n} d_i(X_i, m_i) \geq t\right\} \leq \sum_{i=1}^n \psi_i(t).$$

1096 *Proof.* The event $\{d_\infty(\mathbf{X}, \mathbf{m}) \geq t\}$ equals $\{\max_i d_i(X_i, m_i) \geq t\}$, which is contained in the union
1097 $\bigcup_i \{d_i(X_i, m_i) \geq t\}$. Apply the union bound and the assumed coordinate-wise tail bounds. \square

1098 **Corollary 3.** (1) For $n = 2$ and real-valued coordinates with $d_i(x, m) = |x - m|$, letting $M =$
1099 $\max\{X, Y\}$ and $m = \max\{\mathbb{E}X, \mathbb{E}Y\}$ gives

$$1101 \Pr\{|M - m| \geq t\} \leq \Pr\{|X - \mathbb{E}X| \geq t\} + \Pr\{|Y - \mathbb{E}Y| \geq t\}.$$

1102 **Theorem 6** (CNN Product Space Clean Diameter Bounds). *Let $\mathcal{C} = (Z \times Y, d_{\mathcal{C}})$ be the CNN product
1103 space. For clean images, the K -nearest neighbor diameter satisfies, for any $\delta \in (0, 1)$,*

$$1105 \mathbb{P}\left[\text{diam}(\mathcal{N}_k^{\mathcal{C}}(x_{\text{clean}})) \leq 2\mu_{\mathcal{C}}\left(1 + \sqrt{\frac{2\log K}{d}} + \sqrt{\frac{2\log(2/\delta)}{d}}\right)\right] \geq 1 - \delta, \quad (12)$$

1108 where $\mu_{\mathcal{C}}$ is the clean median pairwise distance in \mathcal{C} and d is the spatial feature dimension of Z .

1109 *Proof.* We first establish that distances between clean embeddings in the product space \mathcal{C} satisfy sub-
1110 Gaussian concentration properties. This will serve as the foundation for bounding K -NN diameters.
1111 Recall the definition of a sub-Gaussian random variable.

1113 **Definition (Sub-Gaussian random variable).** A real random variable X is called *sub-Gaussian*
1114 with parameter σ^2 if for all $t \in \mathbb{R}$,

$$1116 \mathbb{E}[e^{tX}] \leq \exp\left(\frac{\sigma^2 t^2}{2}\right).$$

1118 Equivalently, its tail probabilities satisfy $\mathbb{P}[|X - \mathbb{E}[X]| \geq t] \leq 2\exp\left(-\frac{t^2}{2\sigma^2}\right)$.

1120 For a random vector $Z = (Z_1, \dots, Z_d) \in \mathbb{R}^d$, we say Z is sub-Gaussian if every linear functional
1121 is sub-Gaussian:

$$1122 \|Z\|_{\psi_2} = \sup_{u \in S^{d-1}} \|\langle Z, u \rangle\|_{\psi_2} < \infty,$$

1124 where for a random variable Y , the sub-Gaussian norm is $\|Y\|_{\psi_2} = \inf\{t > 0 : \mathbb{E}[e^{Y^2/t^2}] \leq 2\}$.

1125 Each image x maps to the product space via $z = (h_\theta(x), y) \in \mathcal{C}$, where $h_\theta(x) \in Z$ is its CNN
1126 embedding and $y \in Y$ its class label. For two clean images x_i, x_j , we denote their embeddings by
1127 z_i, z_j and define the product space distance as $D_{ij} = d_{\mathcal{C}}(z_i, z_j)$.

1128 We now analyze the *spatial* and *semantic* components of D_{ij} .

1130 **Spatial component.** The embedding $\Pi_Z(z) \in \mathbb{R}^d$ has sub-Gaussian coordinates due to several
1131 architectural and statistical effects. Namely, batch normalization enforces near unit variance and
1132 zero mean across feature activations Ioffe & Szegedy (2015); Santurkar et al. (2018). In Poole et al.
1133 (2016); Schoenholz et al. (2017), the authors demonstrate CLT effects arise from weighted sums
of many independent activations, yielding approximately Gaussian tails. Moreover, Regularization

techniques (e.g., weight decay Krogh & Hertz (1992), dropout Srivastava et al. (2014)) further constrain magnitudes, supporting sub-Gaussian tails Wager et al. (2013).

Formally, if σ_Z^2 is the empirical variance of a coordinate in Z , then for all $t > 0$,

$$\mathbb{P}(|[\Pi_Z(z)]_\ell - \mathbb{E}[\Pi_Z(z)]_\ell| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma_Z^2}\right).$$

Thus $\Pi_Z(z)$ is sub-Gaussian with $\|\Pi_Z(z)\|_{\psi_2} \leq K_Z$, where $K_Z = O(\sigma_Z \sqrt{d})$. By standard results (see (Vershynin, 2018, Thm. 3.1.1)), Euclidean distances between embeddings in Z concentrate sharply around their mean.

Semantic component. The label projection $\Pi_Y(z)$ contributes

$$d_Y(\Pi_Y(z_i), \Pi_Y(z_j)) = \mathbf{1}\{y_i \neq y_j\},$$

which is bounded in $\{0, 1\}$ and deterministic once class labels are fixed.

Product space concentration. Since \mathcal{C} is equipped with the ℓ_∞ product metric,

$$d_{\mathcal{C}}(z_i, z_j) = \max\{d_Z(\Pi_Z(z_i), \Pi_Z(z_j)), d_Y(y_i, y_j)\},$$

the concentration of the spatial component transfers to the product distance (by Proposition 2). Thus deviations of $d_{\mathcal{C}}(z_i, z_j)$ away from its clean median $\mu_{\mathcal{C}}$ occur with sub-Gaussian tails: there exist constants $c, C > 0$ such that

$$\mathbb{P}(|d_{\mathcal{C}}(z_i, z_j) - \mu_{\mathcal{C}}| \geq t) \leq C \exp(-c d t^2). \quad (13)$$

When controlling the K -th neighbor distance, we invoke equation 13, which in turn also allows us control over the neighborhood diameter.

K-NN order statistics to diameter bound. Fix a clean query z and let $D_i = d_{\mathcal{C}}(z, z_i)$ denote the distance between z and the i.i.d. clean samples $\{z_i\}_{i=1}^n$. Let $D_{(1)} \leq \dots \leq D_{(n)}$ denote the *order statistics*. For any threshold τ , the classical characterization of order statistics (David & Nagaraja, 2003, Eq. (2.1.3)) gives

$$\{D_{(k)} \geq \tau\} \iff \{\#\{i : D_i \geq \tau\} \geq n - k + 1\}. \quad (14)$$

The event on the right means that there are at least $n - k + 1$ indices for which $D_i \geq \tau$. Equivalently, there exists a subset $S \subseteq \{1, \dots, n\}$ with $|S| = n - k + 1$ such that

$$D_i \geq \tau \quad \forall i \in S.$$

That is,

$$\{D_{(k)} \geq \tau\} \subseteq \bigcup_{\substack{S \subseteq \{1, \dots, n\} \\ |S| = n - k + 1}} \bigcap_{i \in S} \{D_i \geq \tau\}. \quad (15)$$

Applying the union bound to equation 15 yields

$$\mathbb{P}\{D_{(k)} \geq \tau\} \leq \sum_{\substack{S \subseteq \{1, \dots, n\} \\ |S| = n - k + 1}} \mathbb{P}\left(\bigcap_{i \in S} \{D_i \geq \tau\}\right). \quad (16)$$

Since the D_i s are i.i.d., the probability for any fixed S factors as

$$\mathbb{P}\left(\bigcap_{i \in S} \{D_i \geq \tau\}\right) = \prod_{i \in S} \mathbb{P}(D_i \geq \tau) = (\mathbb{P}(D_i \geq \tau))^{n - k + 1}.$$

There are $\binom{n}{n - k + 1}$ such subsets S . Hence equation 16 simplifies to

$$\mathbb{P}\{D_{(k)} \geq \tau\} \leq \binom{n}{n - k + 1} (\mathbb{P}(D_i \geq \tau))^{n - k + 1}. \quad (17)$$

We now shift our focus to the next part, where we bound the diameter via pairwise bounds on the K -nearest neighbor set. Let $\mathcal{N}_k^{\mathcal{C}}(z) = \{z_{(1)}, \dots, z_{(k)}\}$ be the k nearest neighbors of z (ties broken

arbitrarily) and consider their pairwise distances $d_{\mathcal{C}}(z_{(i)}, z_{(j)})$ for $1 \leq i < j \leq k$. By the triangle inequality,

$$d_{\mathcal{C}}(z_{(i)}, z_{(j)}) \leq d_{\mathcal{C}}(z_{(i)}, z) + d_{\mathcal{C}}(z, z_{(j)}) = D_{(i)} + D_{(j)}.$$

Using equation 13 and the fact that sums of independent sub-Gaussian random variables remain sub-Gaussian with the same d -scaling up to absolute constants Vershynin (2018), one obtains that there exists $c' > 0$ such that for all $t > 0$,

$$\mathbb{P}\{d_{\mathcal{C}}(z_{(i)}, z_{(j)}) \geq 2\mu_{\mathcal{C}} + t\} \leq 2 \exp(-c' dt^2). \quad (18)$$

Note that the inequality equation 18 is an upper bound that does not use any special property of the indices beyond being distinct sample points. Indeed, selecting nearest neighbors to z can only *decrease* the chance that their mutual distance is large.

Applying the union bound over the $\binom{k}{2}$ unordered pairs inside $\mathcal{N}_k^{\mathcal{C}}(z)$ as proposed in Boucheron et al. (2013)), we arrive at

$$\mathbb{P}\{\text{diam}(\mathcal{N}_k^{\mathcal{C}}(z)) \geq 2\mu_{\mathcal{C}} + t\} \leq \binom{k}{2} \cdot 2 \exp(-c' dt^2). \quad (19)$$

Imposing a target failure probability $\delta \in (0, 1)$ on the right-hand side and solving for t :

$$\begin{aligned} \binom{k}{2} \cdot 2 e^{-c' dt^2} \leq \delta &\iff t^2 \geq \frac{\log \binom{k}{2} + \log(2/\delta)}{c' d} \\ &\Rightarrow t \geq \frac{1}{\sqrt{c' d}} \left(\sqrt{2 \log k} + \sqrt{2 \log(2/\delta)} \right). \end{aligned} \quad (20)$$

where we used $\log \binom{k}{2} \leq 2 \log k$ and $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$.

Substituting this choice of t into equation 19 yields, with probability at least $1 - \delta$,

$$\text{diam}(\mathcal{N}_k^{\mathcal{C}}(z)) \leq 2\mu_{\mathcal{C}} + \frac{1}{\sqrt{c' d}} \left(\sqrt{2 \log k} + \sqrt{2 \log(2/\delta)} \right).$$

Equivalently, writing the deviation addend in a multiplicative form and *absorbing absolute constants* into the sub-Gaussian proxy (or normalizing units), one obtains the stated bound:

$$\text{diam}(\mathcal{N}_k^{\mathcal{C}}(z)) \leq 2\mu_{\mathcal{C}} \left(1 + \sqrt{\frac{2 \log k}{d}} + \sqrt{\frac{2 \log(2/\delta)}{d}} \right)$$

□

Corollary 4 (95% confidence bound). *For confidence level $\delta = 0.05$, the K -nearest neighbor diameter in \mathcal{C} satisfies*

$$\text{diam}(\mathcal{N}_K^{\mathcal{C}}(z)) \leq 2\mu_{\mathcal{C}} \left(1 + \sqrt{\frac{2 \log K}{d}} + \frac{2.717}{\sqrt{d}} \right),$$

with probability at least 95%.

Notation. We adopt the metric space setup of Definition 8. In particular, $\mathcal{C} = (Z \times Y, d_{\mathcal{C}})$ denotes the CNN product space and $\mathcal{K} = (P \times Y, d_{\mathcal{K}})$ the prime-quantized product space. Let $\mu_{\mathcal{C}}$ and $\mu_{\mathcal{K}}$ denote the clean median pairwise distances in \mathcal{C} and \mathcal{K} respectively. We consider adversarial perturbations $\eta \in \mathbb{R}^d$ with $\|\eta\|_{\infty} \leq \epsilon$, where $\epsilon > 0$ is the fixed attack budget.

Definition 9 (Adversarial query). *Let $x \in X$ be a clean input with ground-truth label $y \in Y$. For an ϵ -bounded perturbation $\eta \in \mathbb{R}^d$, the adversarial query under representation map $f : X \rightarrow \mathbb{R}^m$ is*

$$(f(x + \eta), y) \in M^{XY}.$$

Thus adversarial queries live in the same product space as clean points. Note that a classifier may produce a prediction $\hat{y} \neq y$, but \hat{y} is not part of the definition. Instantiating $f = h_{\theta}$ yields adversarial queries in \mathcal{C} , and instantiating $f = T_k^{(b)}$ yields adversarial queries in \mathcal{K} .

1242 **Assumption 2** (A1: variance-only control via Jacobian proxy). Let $\Delta(\eta, x) := \|f(x + \eta) - f(x)\|_2$
 1243 be the feature displacement under perturbation η . For small perturbations with $\|\eta\|_\infty \leq \epsilon$, we
 1244 assume there exists a constant $\sigma^2 > 0$ (a variance proxy) such that

$$1245 \quad \mathbb{E}[\Delta(\eta, x)^2] \leq d \sigma^2 \epsilon^2. \quad (21)$$

1247 **Interpretation.** By first-order Taylor expansion, $f(x + \eta) - f(x) \approx J(x) \eta$, where $J(x) = \nabla f(x) \in$
 1248 $\mathbb{R}^{m \times d}$ is the Jacobian of f at x (with m the feature dimension). Thus,

$$1250 \quad \Delta(\eta, x)^2 \approx \|J(x)\eta\|_2^2 = \sum_{r=1}^m \langle J_{r,\cdot}(x), \eta \rangle^2.$$

1252 Assumption equation 21 requires that each row $J_{r,\cdot}(x)$ has second moment bounded by σ^2 , so that
 1253 the expected squared shift across m features grows at most linearly with d (via $\|\eta\|_\infty \leq \epsilon$) and
 1254 quadratically with ϵ .

1255 By Chebyshev's inequality, for any $\delta_{\text{grad}} \in (0, 1)$,

$$1257 \quad \Delta(\eta, x) \leq \frac{\sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \epsilon \quad \text{with probability at least } 1 - \delta_{\text{grad}}. \quad (22)$$

1260 Here δ_{grad} acts as a tolerance parameter: it specifies the probability mass we are willing to allocate
 1261 to rare large deviations in feature shifts. Smaller values of δ_{grad} yield higher-probability guarantees
 1262 but make the bound looser. This provides a high-probability control of adversarial feature shifts
 1263 using only variance information, without assuming Lipschitz continuity or sub-Gaussianity of the
 1264 Jacobian.

1265 **Remark 3** (Relating ℓ_∞ and ℓ_2 budgets). An ℓ_∞ budget ϵ implies an ℓ_2 budget $\epsilon_2 \leq \sqrt{d} \epsilon$, and
 1266 conversely an ℓ_2 budget ϵ_2 implies ℓ_∞ budget $\geq \epsilon_2/\sqrt{d}$. This allows translating ℓ_2 -based results to
 1267 our ℓ_∞ setting and vice versa.

1268 In the adversarial setting, the k -NN neighborhood can enlarge only insofar as the query itself is
 1269 displaced relative to its clean location. Thus, bounding the query's displacement (via Assumption 2)
 1270 allows us to extend the clean k -NN diameter bound to the adversarial case.

1271 **Theorem 7** (Adversarial K -NN diameter via Theorem 6 and A1). Fix $K \geq 2$ and confidence
 1272 levels $\delta_{\text{clean}}, \delta_{\text{grad}} \in (0, 1)$. Let x be a clean query and $x + \eta$ its adversarially perturbed version
 1273 with $\varepsilon = \|\eta\|_\infty$. Assume Theorem 6 (clean diameter concentration) and Assumption 2 (variance-
 1274 only shift). Define \hat{y} as the classifier's predicted label for $x + \eta$. Then, with probability at least
 1275 $1 - (\delta_{\text{clean}} + \delta_{\text{grad}})$,

$$1277 \quad \text{diam}(\mathcal{N}_K^C(x + \eta)) \leq 2 \mu_C \left(1 + \sqrt{\frac{2 \log K}{d}} + \sqrt{\frac{2 \log(2/\delta_{\text{clean}})}{d}} \right) \\ 1278 \quad + \frac{2 \sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon + 2 \mathbf{1}_{\{y \neq \hat{y}\}}. \quad (23)$$

1281 The indicator term vanishes when the adversarial perturbation does not change the predicted label,
 1282 and contributes an additional 2 otherwise.

1284 *Proof.* Reusing our diameter bounds in Theorem 6, for the *clean* query x we have, with probability
 1285 at least $1 - \delta_{\text{clean}}$,

$$1286 \quad \text{diam}(\mathcal{N}_K^C(x)) \leq 2 \mu_C \left(1 + \sqrt{\frac{2 \log K}{d}} + \sqrt{\frac{2 \log(2/\delta_{\text{clean}})}{d}} \right). \quad (24)$$

1289 By Assumption 2 and Chebyshev, with probability at least $1 - \delta_{\text{grad}}$,

$$1291 \quad \|f(x + \eta) - f(x)\|_2 \leq \frac{\sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon. \quad (25)$$

1293 We now analyze how the K -NN neighborhood changes when we replace the clean query $z =$
 1294 $(f(x), y)$ with its adversarially perturbed versions. Recall our notation:

$$1295 \quad \tilde{z} := (f(x + \eta), y), \quad \text{unsuccessful adversarial query (true label);}$$

1296 $\hat{z} := (f(x + \eta), \hat{y})$, successful adversarial query (misclassified label).
 1297

1298 Let $z_{(1)}, \dots, z_{(K)}$ denote the K nearest neighbors of whichever adversarial query we use (ties arbitrary).
 1299

1300 For any two distinct neighbors $z_{(i)}$ and $z_{(j)}$, the triangle inequality with respect to the chosen adversarial query $q \in \{\tilde{z}, \hat{z}\}$ gives
 1301

$$1302 \quad d_C(z_{(i)}, z_{(j)}) \leq d_C(z_{(i)}, q) + d_C(q, z_{(j)}). \quad (26)$$

1303 We next control each of the two addends above by inserting the clean query $z = (f(x), y)$ as a
 1304 reference point. For the first term we write
 1305

$$1306 \quad d_C(z_{(i)}, q) \leq d_C(z_{(i)}, z) + d_C(z, q). \quad (27)$$

1307 Likewise, for the second term we have
 1308

$$1309 \quad d_C(q, z_{(j)}) \leq d_C(z, q) + d_C(z, z_{(j)}). \quad (28)$$

1310 Thus, each path from a neighbor to the adversarial query is decomposed into a *clean part* (from
 1311 neighbor to z) plus a *shift part* (from z to q). The size of the shift depends on which adversarial
 1312 anchor q is chosen
 1313

$$1314 \quad d_C(z, \tilde{z}) = \|f(x + \eta) - f(x)\|_2, \quad (29)$$

1315 because the spatial features move but the label y remains unchanged. On the other hand,
 1316

$$1317 \quad d_C(z, \hat{z}) \leq \|f(x + \eta) - f(x)\|_2 + \mathbf{1}_{\{y \neq \hat{y}\}}, \quad (30)$$

1318 since the spatial features shift as before, but in addition the semantic label may flip from y to \hat{y} , contributing an extra unit in the product metric. Substituting equation 27–equation 30 into equation 26, we obtain for any pair $i \neq j$:
 1319

$$1320 \quad d_C(z_{(i)}, z_{(j)}) \leq d_C(z_{(i)}, z) + d_C(z, z_{(j)}) + 2 \|f(x + \eta) - f(x)\|_2, \quad (31)$$

$$1321 \quad d_C(z_{(i)}, z_{(j)}) \leq d_C(z_{(i)}, z) + d_C(z, z_{(j)}) + 2 \|f(x + \eta) - f(x)\|_2 + 2 \mathbf{1}_{\{y \neq \hat{y}\}}, \quad (32)$$

1322 corresponding to the true-label and predicted-label anchors, respectively. Finally, maximizing over all pairs $1 \leq i < j \leq K$ yields
 1323

$$1324 \quad \text{diam}(\mathcal{N}_K^C(x + \eta)) \leq \text{diam}(\mathcal{N}_K^C(x)) + 2 \|f(x + \eta) - f(x)\|_2 + 2 \mathbf{1}_{\{y \neq \hat{y}\}}. \quad (33)$$

1325 This shows that the adversarial K -NN diameter can expand relative to the clean case by at most twice the feature shift plus a discrete penalty of 2 if the adversarial perturbation also flips the predicted label.
 1326

1327 Finally, intersecting equation 24 and equation 25 and applying the union bound gives probability $\geq 1 - (\delta_{\text{clean}} + \delta_{\text{grad}})$. On this event,
 1328

$$1329 \quad \text{diam}(\mathcal{N}_K^C(x + \eta)) \leq 2 \mu_C \left(1 + \sqrt{\frac{2 \log K}{d}} + \sqrt{\frac{2 \log(2/\delta_{\text{clean}})}{d}} \right) + \frac{2 \sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon + 2 \mathbf{1}_{\{y \neq \hat{y}\}}.$$

1330 \square

1331 **Assumption 3** (Prime-gap sensitivity under bit flips). Fix $k \geq 2$ and let G_k be the prime-gap
 1332 envelope from Assumption 1. Then, for every coordinate $j \in \{1, \dots, d\}$, every two images $x, x' \in$
 1333 X , and any two secret keys $b, b' \in \{0, 1\}^d$ that differ only at bit j , we have
 1334

$$1335 \quad \underbrace{[T_k^{(b)}(x) - T_k^{(b)}(x')]_j}_{\substack{\text{difference} \\ \text{before flip}}} - \underbrace{[T_k^{(b')}(x) - T_k^{(b')}(x')]_j}_{\substack{\text{difference} \\ \text{after flip}}} \leq 2 G_k. \quad (34)$$

1336 **Explanation.** Flipping one bit can move the j -th coordinate by at most one local prime gap $\leq G_k$.
 1337 For two inputs, both coordinates may shift, so by the triangle inequality their pairwise difference
 1338 changes by at most $2G_k$, regardless of the absolute difference.
 1339

1350
 1351 **Definition 10** (Key-annealed (data-quenched) median in \mathcal{K}). Fix a clean query $x \in X$ and a fixed
 1352 clean image $x' \in X$ (or, more generally, a fixed dataset and query). Let (b, k) denote the envi-
 1353 ronment, where $b \sim \text{Unif}(\{0, 1\}^d)$ and k is either fixed or drawn independently from a prescribed
 1354 distribution \mathcal{P}_k . Define

$$1355 \quad D^{(b, k)}(x, x') := d_{\mathcal{K}}(z^{(b, k)}(x), z^{(b, k)}(x')).$$

1356 The key-annealed (data-quenched) median for the pair (x, x') is

$$1357 \quad \mu_{\mathcal{K}}^{\text{key}}(x, x') := \inf \left\{ m : \mathbb{P}_{(b, k)}[D^{(b, k)}(x, x') \leq m] \geq \frac{1}{2} \right\}.$$

1359 When a single symbol is used, we write $\mu_{\mathcal{K}}$ for $\mu_{\mathcal{K}}^{\text{key}}$ with the convention that the probability is over
 1360 (b, k) only (the data are held fixed).

1362 For brevity, we denote the maximal key-annealed median by

$$1363 \quad \mu_{\mathcal{K}}^{\max}(x) := \max_{1 \leq i \leq n} \mu_{\mathcal{K}}^{\text{key}}(x, x_i).$$

1365 **Theorem 8** (Annealed-over-keys clean K -NN diameter in \mathcal{K}). Assume the prime-gap envelope (As-
 1366 sumption 1) and set $C_k := 2G_k$. Let the key $b \sim \text{Unif}(\{0, 1\}^d)$ and let the granularity k be
 1367 either fixed or drawn independently from a prescribed distribution \mathcal{P}_k . Fix a clean query x and a
 1368 fixed dataset $\{x_i\}_{i=1}^n$ (data quenched). Then for any integer $K \geq 2$ and any $\delta_{\text{env}} \in (0, 1)$, with
 1369 probability at least $1 - \delta_{\text{env}}$ over the draw of (b, k) ,

$$1370 \quad \text{diam}(\mathcal{N}_K^{\mathcal{K}}(x; b, k)) \leq 2\mu_{\mathcal{K}}^{\max}(x) \left(1 + \frac{C_k}{\mu_{\mathcal{K}}^{\max}(x)} \sqrt{\frac{2 \log K}{d}} + \frac{C_k}{\mu_{\mathcal{K}}^{\max}(x)} \sqrt{\frac{2 \log(2/\delta_{\text{env}})}{d}} \right),$$

1373 where $\mu_{\mathcal{K}}^{\max}(x) := \max_{1 \leq i \leq n} \mu_{\mathcal{K}}^{\text{key}}(x, x_i)$ and, if k is random, one may take $C_k :=$
 1374 $2 \sup_{k \in \text{supp}(\mathcal{P}_k)} G_k$ to make the bound uniform in k .

1376 *Proof.* Fix the clean dataset $\{x_i\}_{i=1}^n$ and the clean query x ; these are held deterministic in this
 1377 theorem. The randomness comes solely from the key b (and k if random). We will (i) establish
 1378 McDiarmid concentration for pairwise distances under random keys, (ii) apply a union bound over
 1379 the $\binom{K}{2}$ neighbor pairs, and (iii) control the scale via a two-hop envelope anchored at $2\mu_{\mathcal{K}}^{\max}(x)$.

1380 Fix any pair (i, j) of dataset indices. For simplicity of notations, let $Q_i^b := T_k^{(b)}(x_i) \in \mathbb{R}^d$. Define
 1381 the spatial distance under key b as

$$1383 \quad R_{ij}(b) := \|Q_i^b - Q_j^b\|_2 = \left(\sum_{m=1}^d ([Q_i^b]_m - [Q_j^b]_m)^2 \right)^{1/2}. \quad (35)$$

1386 Now flip a single key bit $b_m \mapsto b'_m$ while keeping all other bits fixed. By Assumption 1, the m -th
 1387 coordinate difference can change by at most $2G_k$ (a single prime-gap shift per image, hence a $2G_k$
 1388 change for a difference), while all other coordinates remain unchanged:

$$1389 \quad |[Q_i^{b'}]_m - [Q_j^{b'}]_m - ([Q_i^b]_m - [Q_j^b]_m)| \leq 2G_k, \quad [Q_i^{b'}]_{\ell} - [Q_j^{b'}]_{\ell} = [Q_i^b]_{\ell} - [Q_j^b]_{\ell} \quad (\ell \neq m).$$

1392 From a vector viewpoint, let

$$1393 \quad v(b) := Q_i^b - Q_j^b \in \mathbb{R}^d, \quad v(b') = v(b) + \Delta e_m \quad \text{with} \quad |\Delta| \leq 2G_k,$$

1394 where e_m is the m -th standard basis vector. Then the Euclidean norm changes by at most

$$1395 \quad |\|v(b')\|_2 - \|v(b)\|_2| \leq \|v(b') - v(b)\|_2 = |\Delta| \leq 2G_k =: C_k. \quad (36)$$

1397 Therefore, $R_{ij}(b)$ is coordinate-wise C_k -Lipschitz in each bit b_m .

1399 Let $b = (b_1, \dots, b_d) \in \{0, 1\}^d$ be uniformly random with independent bits. McDiarmid's inequality
 1400 states: if $F(b_1, \dots, b_d)$ satisfies $|F(b) - F(b^{(m)})| \leq c_m$ whenever $b, b^{(m)}$ differ only at coordinate
 1401 m , then for any $t > 0$,

$$1402 \quad \mathbb{P}(|F(b) - \mathbb{E}F(b)| \geq t) \leq 2 \exp \left(- \frac{2t^2}{\sum_{m=1}^d c_m^2} \right).$$

1404 Applying this to $F = R_{ij}$ with $c_m = C_k$ (by equation 36) yields
1405

$$1406 \quad \mathbb{P}_b(|R_{ij}(b) - \mathbb{E}_b[R_{ij}(b)]| \geq t) \leq 2 \exp\left(-\frac{2t^2}{dC_k^2}\right). \quad (37)$$

1409 Write the product embedding as $z^{(b,k)}(x) := (T_k^{(b)}(x), y) \in \mathcal{K}$, where y is the class label of x
1410 (and similarly y_i for x_i). Define the *product* distance under key b :
1411

$$1412 \quad D_{ij}(b) := d_{\mathcal{K}}(z^{(b,k)}(x_i), z^{(b,k)}(x_j)) = \max \left\{ R_{ij}(b), \mathbf{1}[y_i \neq y_j] \right\}. \quad (38)$$

1414 Since the label indicator does not depend on b (clean case), for any $t > 0$,

$$1415 \quad |D_{ij}(b) - \mathbb{E}_b[D_{ij}(b)]| \leq |R_{ij}(b) - \mathbb{E}_b[R_{ij}(b)]|,$$

1417 and therefore equation 37 implies

$$1419 \quad \mathbb{P}_b(|D_{ij}(b) - \mathbb{E}_b[D_{ij}(b)]| \geq t) \leq 2 \exp\left(-\frac{2t^2}{dC_k^2}\right). \quad (39)$$

1421 Let $q := z^{(b,k)}(x)$ be the (random-key) embedded query and $\mathcal{N}_K^{\mathcal{K}}(x; b, k) = \{z_{(1)}, \dots, z_{(K)}\}$ its
1422 K nearest neighbors in $d_{\mathcal{K}}$ (ties arbitrary). Write $M := \binom{K}{2}$ for the number of unordered pairs
1423 among these neighbors. For any fixed pair (u, v) , equation 37 gives the one-pair tail bound, where
1424 $C_k = 2G_k$ and $D_{uv}(b) := d_{\mathcal{K}}(z_{(u)}, z_{(v)})$.

1426 By the union bound over all M pairs, we have

$$1428 \quad \mathbb{P}_b\left(\max_{1 \leq u < v \leq K} |D_{uv}(b) - \mathbb{E}_b[D_{uv}(b)]| > t\right) \leq M \cdot 2 \exp\left(-\frac{2t^2}{dC_k^2}\right). \quad (40)$$

1430 Given a target failure probability $\delta_{\text{env}} \in (0, 1)$, we choose t such that the RHS of equation 40 equals
1431 δ_{env} :

$$1433 \quad M \cdot 2 \exp\left(-\frac{2t^2}{dC_k^2}\right) = \delta_{\text{env}} \iff t = C_k \sqrt{\frac{d}{2} \sqrt{\log M + \log \frac{2}{\delta_{\text{env}}}}}.$$

1435 With this choice of t , equation 40 is equivalent to the deterministic-looking high-probability bound

$$1437 \quad \mathbb{P}_b\left(\max_{1 \leq u < v \leq K} |D_{uv}(b) - \mathbb{E}_b[D_{uv}(b)]| \leq C_k \cdot \sqrt{\frac{d}{2} \cdot \sqrt{\log \binom{K}{2} + \log(2/\delta_{\text{env}})}}\right) \geq 1 - \delta_{\text{env}}. \quad (41)$$

1440 Put simply, simultaneously for all $\binom{K}{2}$ neighbor pairs, the deviation $|D_{uv}(b) - \mathbb{E}_b[D_{uv}(b)]|$ is at
1441 most the RHS of equation 41 with probability at least $1 - \delta_{\text{env}}$ (over the randomness of the key b).

1442 By definition of the K -NN diameter, $\text{diam}(\mathcal{N}_K^{\mathcal{K}}(x; b, k)) = \max_{u < v} D_{uv}(b)$. From equation 39,
1443 with probability at least $1 - \delta_{\text{env}}$, every pairwise distance $D_{uv}(b)$ is within a fixed deviation of its
1444 expectation $\mathbb{E}_b[D_{uv}(b)]$. Therefore, simultaneously for all pairs $u < v$,

$$1446 \quad D_{uv}(b) \leq \mathbb{E}_b[D_{uv}(b)] + C_k \sqrt{\frac{d}{2} \cdot \sqrt{\log \binom{K}{2} + \log(2/\delta_{\text{env}})}}.$$

1449 Maximizing over all pairs, we obtain

$$1451 \quad \text{diam}(\mathcal{N}_K^{\mathcal{K}}(x; b, k)) \leq \Gamma_K + C_k \sqrt{\frac{d}{2} \cdot \sqrt{\log \binom{K}{2} + \log(2/\delta_{\text{env}})}}, \quad (42)$$

1453 where we have set $\Gamma_K := \max_{u < v} \mathbb{E}_b[D_{uv}(b)]$.

1455 Let $q = z^{(b,k)}(x)$ be the query, and let $z_{(1)}, \dots, z_{(K)}$ be its K nearest neighbors in $d_{\mathcal{K}}$. By the
1456 triangle inequality (“two-hop routing”),

$$1457 \quad D_{uv}(b) \leq d_{\mathcal{K}}(z_{(u)}, q) + d_{\mathcal{K}}(q, z_{(v)}) \leq 2 D_{(K)}^{\star}(b), \quad (43)$$

1458 where $D_{(K)}^*(b)$ is the K -th nearest-neighbor radius under key b . It is standard in k -NN theory that,
 1459 under mild density bounds on the underlying distribution Devroye et al. (1996), the scale of $D_{(K)}^*$ is
 1460 controlled by the same order as the (key-annealed, data-quenched) pairwise median distance. Hence
 1461 we may conservatively bound
 1462

$$\Gamma_K := \max_{u < v} \mathbb{E}_b[D_{uv}(b)] \leq 2 \mu_{\mathcal{K}}^{\max}(x). \quad (44)$$

1463
 1464 Substituting equation 44 into equation 42 and using $\log \binom{K}{2} \leq 2 \log K$ together with $\sqrt{a+b} \leq$
 1465 $\sqrt{a} + \sqrt{b}$, we conclude that with probability at least $1 - \delta_{\text{env}}$,

$$\text{diam}(\mathcal{N}_K^{\mathcal{K}}(x; b, k)) \leq 2 \mu_{\mathcal{K}}^{\max}(x) + C_k \sqrt{d} \left(\sqrt{2 \log K} + \sqrt{2 \log(2/\delta_{\text{env}})} \right).$$

1466 Factoring out $2 \mu_{\mathcal{K}}^{\max}(x)$ yields the stated bound. \square
 1467

1468 **Corollary 5** (Quenched-in-key clean diameter bound). *Under the assumptions of Theorem 8, there
 1469 exists a set of keys $\mathcal{G} \subseteq \{0, 1\}^d$ with $\mathbb{P}_b(\mathcal{G}) \geq 1 - \delta_{\text{env}}$ such that for every $b \in \mathcal{G}$ (and the given k),
 1470 the bound in Theorem 8 holds for the fixed key b and the given clean dataset and query x :*

$$\text{diam}(\mathcal{N}_K^{\mathcal{K}}(x; b, k)) \leq 2 \mu_{\mathcal{K}}^{\max}(x) + C_k \sqrt{d} \left(\sqrt{2 \log K} + \sqrt{2 \log(2/\delta_{\text{env}})} \right).$$

1471 Proof sketch. The set \mathcal{G} is the (key, k)-event on which the union bound in equation 41 holds; this
 1472 event has probability $\geq 1 - \delta_{\text{env}}$. On \mathcal{G} , the derivation of Theorem 8 is deterministic, hence the
 1473 bound is valid for every $b \in \mathcal{G}$ (quenched).

1474 **Theorem 9** (Adversarial K -NN diameter in \mathcal{K} (concise reuse)). *Fix $K \geq 2$ and $\delta_{\text{env}}, \delta_{\text{grad}} \in (0, 1)$.
 1475 Let $q = (Q^{k,b}(x), y)$ be the clean query and $q_{\eta} = (Q^{k,b}(x + \eta), \hat{y})$ the adversarial query (predicted
 1476 label \hat{y} may differ from y). Assume the prime-gap sensitivity bound with G_k (Assumption 3) and let
 1477 $C_k := 2G_k$. Then, with probability at least $1 - (\delta_{\text{env}} + \delta_{\text{grad}})$ over the key b (and k , if random),*

$$\text{diam}(\mathcal{N}_K^{\mathcal{K}}(q_{\eta})) \leq 2 \mu_{\mathcal{K}} + C_k \sqrt{d} \left(\sqrt{2 \log K} + \sqrt{2 \log(2/\delta_{\text{env}})} \right) + \frac{2 \sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \|\eta\|_{\infty} + 2 \mathbf{1}_{\{y \neq \hat{y}\}}.$$

1478 *Proof.* We reuse the clean-case analysis verbatim with one adversarial modification. Define
 1479 $R_{ij}(b) := \|Q^{k,b}(x_i) - Q^{k,b}(x_j)\|_2$. Flipping one bit b_m changes the m -th coordinate difference by
 1480 at most $2G_k$ (Assumption 3), so the squared norm changes by at most C_k^2 . Hence R_{ij} is coordinate-
 1481 wise C_k -Lipschitz, and McDiarmid's inequality yields
 1482

$$\mathbb{P}_b(|R_{ij}(b) - \mathbb{E}_b R_{ij}(b)| \geq t) \leq 2 \exp\left(-\frac{2t^2}{d C_k^2}\right). \quad (\star)$$

1483 For the K neighbors of the adversarial query we union bound equation \star over all pairs. Choosing
 1484

$$t = C_k \sqrt{\frac{d}{2}} \sqrt{\log \binom{K}{2} + \log(2/\delta_{\text{env}})},$$

1485 we obtain, with probability $\geq 1 - \delta_{\text{env}}$,

$$\max_{u < v} |D_{uv}(b) - \mathbb{E}_b D_{uv}(b)| \leq C_k \sqrt{\frac{d}{2}} \sqrt{\log \binom{K}{2} + \log(2/\delta_{\text{env}})}. \quad (\ddagger)$$

1486 As in the clean proof, the triangle inequality through the query gives $\max_{u < v} \mathbb{E}_b D_{uv}(b) \leq$
 1487 $2 \mathbb{E}_b D_{(K)}^*(b) \lesssim 2 \mu_{\mathcal{K}}$, where $\mu_{\mathcal{K}}$ is the key-annealed median proxy from Definition 10.

1488 Let the K neighbors be taken w.r.t. q_{η} . For any pair $z_{(u)}, z_{(v)}$,

$$\begin{aligned} d_{\mathcal{K}}(z_{(u)}, z_{(v)}) &\leq \underbrace{d_{\mathcal{K}}(z_{(u)}, q) + d_{\mathcal{K}}(q, z_{(v)})}_{\text{clean star path}} + 2 \underbrace{d_{\mathcal{K}}(q, q_{\eta})}_{\frac{\sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \|\eta\|_{\infty} + 2 \mathbf{1}_{\{y \neq \hat{y}\}} \|\eta\|_{\infty}} \\ &\leq d_{\mathcal{K}}(z_{(u)}, q) + d_{\mathcal{K}}(q, z_{(v)}) + \frac{2 \sqrt{d} \sigma}{\sqrt{\delta_{\text{grad}}}} \|\eta\|_{\infty} + 2 \mathbf{1}_{\{y \neq \hat{y}\}}. \end{aligned} \quad (45)$$

1512 Maximizing over pairs converts the clean star radius bound into the adversarial one, with an additive
 1513 $\frac{2\sqrt{d}\sigma}{\sqrt{\delta_{\text{grad}}}} \|\eta\|_\infty + 2\mathbf{1}_{\{y \neq \hat{y}\}}.$
 1514

1515 Finally, combining the clean star envelope with the uniform deviation equation \ddagger and adding the
 1516 adversarial term from equation 45. Using $\log \binom{K}{2} \leq 2 \log K$ yields the stated bound. \square
 1517

1518 **F A BRIEF PRIMER ON METRIC MEASURE SPACES AND**
 1519 **GROMOV–WASSERSTEIN DISTANCES**

1522 **F.1 METRIC MEASURE SPACES**

1524 A *metric measure space* (mm-space) is a triple (X, d_X, μ_X) , where X is a Polish space, d_X is a
 1525 metric on X , and μ_X is a Borel probability measure on X . Intuitively, an mm-space encodes both
 1526 the *geometry* (via d_X) and the *distribution of mass* (via μ_X).

1527 Two mm-spaces (X, d_X, μ_X) and (Y, d_Y, μ_Y) are considered *equivalent* if there exists a measure-
 1528 preserving isometry $\varphi : X \rightarrow Y$, i.e. $d_X(x, x') = d_Y(\varphi(x), \varphi(x'))$ and $\mu_Y = \varphi_\# \mu_X$. This
 1529 quotienting ensures that we compare spaces only up to relabeling of points.

1530 The classical notion of distance between mm-spaces is the *Gromov–Hausdorff* distance, which mea-
 1531 sures how well two spaces can be embedded into a common metric space with small distortion.
 1532 However, it is highly combinatorial and not well-suited to data applications.
 1533

1534 **F.2 THE GROMOV–WASSERSTEIN DISTANCE**

1536 The *Gromov–Wasserstein (GW) distance* relaxes Gromov–Hausdorff by using optimal transport
 1537 ideas. For two mm-spaces (X, d_X, μ_X) and (Y, d_Y, μ_Y) , the squared GW distance is defined as

$$1539 \text{GW}^2((X, d_X, \mu_X), (Y, d_Y, \mu_Y)) := \min_{\pi \in \Pi(\mu_X, \mu_Y)} \iint |d_X(x, x') - d_Y(y, y')|^2 d\pi(x, y) d\pi(x', y'), \quad (46)$$

1541 where $\Pi(\mu_X, \mu_Y)$ is the set of couplings with marginals μ_X, μ_Y . Thus GW finds a soft corre-
 1542 spondence π between X and Y and penalizes discrepancies between their intra-space distances.
 1543

1544 **Properties.**

- 1546 • GW is a *metric* on the space of mm-spaces up to equivalence.
- 1547 • If $X = Y$ and $d_X = d_Y$, then GW = 0 regardless of labeling.
- 1548 • GW generalizes Wasserstein distance: if $X = Y$ as sets with the same underlying metric,
 1549 then GW reduces to W_2 .

1552 **Statistical viewpoint.** For empirical datasets $X = \{x_i\}_{i=1}^n, Y = \{y_j\}_{j=1}^m$, the metric structure is
 1553 given by pairwise distance matrices $(d_X(x_i, x_{i'}))$ and $(d_Y(y_j, y_{j'}))$. The GW distance then becomes
 1554 a quadratic assignment problem over couplings $\pi \in \mathbb{R}^{n \times m}$ with row/column marginals $1/n, 1/m$.

1556 **F.3 ENTROPIC GROMOV–WASSERSTEIN DISTANCE**

1558 The GW optimization in equation 46 is computationally hard due to its quadratic objective. To
 1559 address this, Peyré et al. (2016) introduced the *entropic regularized GW distance*, defined as

$$1560 \text{GW}_\gamma^2(X, Y) := \min_{\pi \in \Pi(\mu_X, \mu_Y)} \left\{ \iint |d_X(x, x') - d_Y(y, y')|^2 d\pi(x, y) d\pi(x', y') - \gamma H(\pi) \right\}, \quad (47)$$

1563 where $H(\pi) = -\sum_{i,j} \pi_{ij} \log \pi_{ij}$ is the Shannon entropy and $\gamma > 0$ is the regularization parameter.
 1564

1565 **Effects of entropic regularization.**

- **Computational:** The problem becomes smooth and solvable by Sinkhorn-like iterations, scaling to tens of thousands of points.
- **Statistical:** GW_γ inherits concentration bounds and enjoys faster empirical convergence (regularization reduces variance).
- **Geometric:** The optimal coupling π becomes diffuse, capturing probabilistic alignments between X and Y .

Connections to our work. In our setting, the product spaces \mathcal{C} (CNN) and \mathcal{K} (Crypto) each define mm-spaces under their product metrics and empirical measures. Our clean vs. adversarial concentration bounds on k -NN diameters directly control the *intra-space geometry* terms in equation 46. Thus, these results serve as building blocks for bounding clean/adversarial GW and entropic GW distances, providing rigorous separation guarantees for detection.

G PROOFS FOR GROMOV–WASSERSTEIN BOUNDS

Definition 11 (Quadratic Gromov–Wasserstein discrepancy). *Let $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$ be metric–measure spaces. A coupling $\pi \in \Pi(\mu, \nu)$ is a probability measure on $\mathcal{X} \times \mathcal{Y}$ whose marginals are μ and ν , i.e.*

$$\pi(A \times \mathcal{Y}) = \mu(A), \quad \pi(\mathcal{X} \times B) = \nu(B) \quad \text{for all measurable } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}.$$

The quadratic GW discrepancy is defined as

$$\text{GW}^2((\mathcal{X}, d_{\mathcal{X}}, \mu), (\mathcal{Y}, d_{\mathcal{Y}}, \nu)) := \inf_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{\substack{(x, y) \sim \pi \\ (x', y') \sim \pi}} \left[(d_{\mathcal{X}}(x, x') - d_{\mathcal{Y}}(y, y'))^2 \right].$$

Remark 4 (Upper bound by identity coupling). *For brevity, we write $\text{GW}^2(\mathcal{X}, \mathcal{Y})$ as the quadratic GW discrepancy between two metric–measure spaces $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$. Let $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\nu = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$, with distance matrices $D_{\mathcal{X}}[i, j] = d_{\mathcal{X}}(x_i, x_j)$ and $D_{\mathcal{Y}}[i, j] = d_{\mathcal{Y}}(y_i, y_j)$. Consider the identity coupling $\pi_0 = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$. Since GW^2 is an infimum over couplings, evaluating at any feasible π gives an upper bound:*

$$\text{GW}^2(\mathcal{X}, \mathcal{Y}) \leq \frac{1}{n^2} \|D_{\mathcal{X}} - D_{\mathcal{Y}}\|_F^2.$$

More generally, for any permutation σ (with permutation matrix P), the coupling $\pi_\sigma = \frac{1}{n} \sum_i \delta_{(x_i, y_{\sigma(i)})}$ yields

$$\text{GW}^2(\mathcal{X}, \mathcal{Y}) \leq \frac{1}{n^2} \|D_{\mathcal{X}} - P D_{\mathcal{Y}} P^\top\|_F^2.$$

These bounds are typically loose but serve as alignment-dependent certificates.

Proposition 3 (Cross-space stability under perturbations). *Let $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$ be metric–measure spaces with distance matrices $D_{\mathcal{X}}, D_{\mathcal{Y}}$. Let $\tilde{D}_{\mathcal{X}} = D_{\mathcal{X}} + \Delta_{\mathcal{X}}$ and $\tilde{D}_{\mathcal{Y}} = D_{\mathcal{Y}} + \Delta_{\mathcal{Y}}$ be perturbed versions. Define the clean offset $A := D_{\mathcal{X}} - D_{\mathcal{Y}}$ and the perturbation offset $E := \Delta_{\mathcal{X}} - \Delta_{\mathcal{Y}}$. Then*

$$|\text{GW}^2(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}) - \text{GW}^2(\mathcal{X}, \mathcal{Y})| \leq \frac{2}{n^2} \|A\|_F \|E\|_F + \frac{1}{n^2} \|E\|_F^2.$$

Proof. By Remark 4, evaluating both GW objectives at the identity coupling gives

$$\text{GW}^2(\mathcal{X}, \mathcal{Y}) \leq \frac{1}{n^2} \|A\|_F^2, \quad \text{GW}^2(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}) \leq \frac{1}{n^2} \|A + E\|_F^2.$$

Hence

$$|\text{GW}^2(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}) - \text{GW}^2(\mathcal{X}, \mathcal{Y})| \leq \frac{1}{n^2} \|\|A + E\|_F^2 - \|A\|_F^2\|.$$

Expanding and applying Cauchy–Schwarz yields,

$$|\|A + E\|_F^2 - \|A\|_F^2| = |2\langle A, E \rangle + \|E\|_F^2| \leq 2\|A\|_F \|E\|_F + \|E\|_F^2.$$

Substituting this bound into the previous inequality gives

$$|\text{GW}^2(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}) - \text{GW}^2(\mathcal{X}, \mathcal{Y})| \leq \frac{2}{n^2} \|A\|_F \|E\|_F + \frac{1}{n^2} \|E\|_F^2,$$

which is the desired result. \square

1620
 1621 **Theorem 1** (Clean cross-space GW upper bound via K -NN star radii). *Fix a clean query x and
 1622 consider its local neighborhoods $\mathcal{N}_K^{\mathcal{C}}(x) \subset \mathcal{C}$ and $\mathcal{N}_K^{\mathcal{K}}(x) \subset \mathcal{K}$, each endowed with the uniform
 1623 probability measure on K points.*

1624 *Let $R_{\mathcal{C}}$ and $R_{\mathcal{K}}$ denote the corresponding K -NN radii (the K -th star distances from x) in \mathcal{C} and
 1625 \mathcal{K} respectively. Then, for any confidence levels $\delta_{\mathcal{C}}, \delta_{\mathcal{K}} \in (0, 1)$, the following high-probability
 1626 envelopes hold:*

$$1627 \quad R_{\mathcal{C}} \leq \mu_{\mathcal{C}} \left(1 + \sqrt{\frac{2 \log K}{d}} + \sqrt{\frac{2 \log(2/\delta_{\mathcal{C}})}{d}} \right) \quad \text{with probability} \geq 1 - \delta_{\mathcal{C}}, \quad (5)$$

$$1629 \quad R_{\mathcal{K}} \leq \mu_{\mathcal{K}} \left(1 + \frac{C_k}{\mu_{\mathcal{K}}} \sqrt{d} \left(\sqrt{2 \log K} + \sqrt{2 \log(2/\delta_{\mathcal{K}})} \right) \right) \quad \text{with probability} \geq 1 - \delta_{\mathcal{K}}. \quad (6)$$

1631 *Consequently, with probability at least $1 - (\delta_{\mathcal{C}} + \delta_{\mathcal{K}})$,*

$$1633 \quad \text{GW}^2 \left(\mathcal{N}_K^{\mathcal{C}}(x), \mathcal{N}_K^{\mathcal{K}}(x) \right) \leq 4 \left(1 - \frac{1}{K} \right) (R_{\mathcal{C}} + R_{\mathcal{K}})^2. \quad (7)$$

1635 *Proof.* Let $X := \mathcal{N}_K^{\mathcal{C}}(x) = \{x_1, \dots, x_K\}$ and $Y := \mathcal{N}_K^{\mathcal{K}}(x) = \{y_1, \dots, y_K\}$ be the K neighbors in
 1636 \mathcal{C} and \mathcal{K} , respectively, both with the uniform measure $K^{-1} \sum_{i=1}^K \delta_{(.)}$. We denote their distance ma-
 1637 trices as $D_{\mathcal{C}}[i, j] := d_{\mathcal{C}}(x_i, x_j)$ and $D_{\mathcal{K}}[i, j] := d_{\mathcal{K}}(y_i, y_j)$, which satisfy $D_{\mathcal{C}}[i, i] = D_{\mathcal{K}}[i, i] = 0$.
 1638 By Remark 4, evaluating the quadratic GW objective at the identity coupling $\pi_0 = \frac{1}{K} \sum_{i=1}^K \delta_{(x_i, y_i)}$
 1639 yields

$$1641 \quad \text{GW}^2(X, Y) \leq \frac{1}{K^2} \|D_{\mathcal{C}} - D_{\mathcal{K}}\|_F^2. \quad (48)$$

1643 Let $q_{\mathcal{C}}$ be the clean query center in \mathcal{C} and $q_{\mathcal{K}}$ the center in \mathcal{K} . Define the K -NN radii as $R_{\mathcal{C}} :=$
 1644 $\max_{1 \leq i \leq K} d_{\mathcal{C}}(x_i, q_{\mathcal{C}})$ and $R_{\mathcal{K}} := \max_{1 \leq i \leq K} d_{\mathcal{K}}(y_i, q_{\mathcal{K}})$. By the triangle inequality in each product
 1645 metric, we have

$$1646 \quad d_{\mathcal{C}}(x_i, x_j) \leq d_{\mathcal{C}}(x_i, q_{\mathcal{C}}) + d_{\mathcal{C}}(q_{\mathcal{C}}, x_j) \leq 2R_{\mathcal{C}}, \quad d_{\mathcal{K}}(y_i, y_j) \leq 2R_{\mathcal{K}}, \quad (i \neq j). \quad (49)$$

1647 Hence every *off-diagonal* entry of $D_{\mathcal{C}}$ (resp. $D_{\mathcal{K}}$) is bounded by $2R_{\mathcal{C}}$ (resp. $2R_{\mathcal{K}}$).

1649 There are exactly $K(K - 1)$ off-diagonal entries. Using equation 49 we arrive at

$$1650 \quad \|D_{\mathcal{C}}\|_F^2 \leq K(K - 1) (2R_{\mathcal{C}})^2, \quad \|D_{\mathcal{K}}\|_F^2 \leq K(K - 1) (2R_{\mathcal{K}})^2.$$

1652 Therefore, by the triangle inequality for $\|\cdot\|_F$,

$$1653 \quad \|D_{\mathcal{C}} - D_{\mathcal{K}}\|_F \leq \|D_{\mathcal{C}}\|_F + \|D_{\mathcal{K}}\|_F \\ 1654 \leq 2\sqrt{K(K - 1)} (R_{\mathcal{C}} + R_{\mathcal{K}}). \quad (50)$$

1656 Substituting equation 50 into equation 48:

$$1657 \quad \text{GW}^2(X, Y) \leq \frac{1}{K^2} \left(2\sqrt{K(K - 1)} (R_{\mathcal{C}} + R_{\mathcal{K}}) \right)^2 = 4 \left(1 - \frac{1}{K} \right) (R_{\mathcal{C}} + R_{\mathcal{K}})^2,$$

1659 which is exactly equation 7 and completes the proof. \square

1661 **Notation (adversarial queries, radii, and separation gap).** Let x be a clean image and η a per-
 1662 turbation. For each space $\mathcal{M} \in \{\mathcal{C}, \mathcal{K}\}$, define the *adversarial query* as $\tilde{q}_{\mathcal{M}} := z_{\mathcal{M}}^{\mathcal{M}}(x + \eta)$, the
 1663 embedding of the perturbed image $x + \eta$ into \mathcal{M} . As the dataset is fixed and only the query moves,
 1664 so the K -NN neighborhood may change membership relative to the clean case. We define the ad-
 1665 versarial neighborhood as $\tilde{\mathcal{N}}_K^{\mathcal{M}}(x + \eta) := \{z_1^{\mathcal{M}}, \dots, z_K^{\mathcal{M}}\}$, which are the K nearest neighbors to $\tilde{q}_{\mathcal{M}}$
 1666 under $d_{\mathcal{M}}$. The associated *adversarial radii* are $r_i^{\mathcal{M}} := d_{\mathcal{M}}(z_i^{\mathcal{M}}, \tilde{q}_{\mathcal{M}})$, and $R_{\mathcal{M}}^{\text{adv}} := \max_{1 \leq i \leq K} r_i^{\mathcal{M}}$.

1667 Adversarial shifts often produce a “cluster split” in these radii, i.e., some neighbors become unusu-
 1668 ally close to $\tilde{q}_{\mathcal{M}}$, while others remain farther away. To capture this structure, we partition $\tilde{\mathcal{N}}_K^{\mathcal{M}}(x + \eta)$
 1669 into an inner group L and an outer group H of sizes $(1 - \theta)K$ and θK by thresholding $\{r_i^{\mathcal{M}}\}$. The
 1670 *adversarial separation gap* in \mathcal{M} is

$$1672 \quad \gamma_{\mathcal{M}} := \min_{i \in H} r_i^{\mathcal{M}} - \max_{j \in L} r_j^{\mathcal{M}},$$

1673 which is positive when the inner and outer sets are well separated.

1674
 1675 **Theorem 2** (Adversarial cross-space GW lower bound). *Fix a query x and perturbation η , and*
 1676 *consider the adversarial neighborhoods $\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta)$ and $\tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)$, each with uniform measure*
 1677 *on K points. Let $\gamma_{\mathcal{C}}$ be the separation gap and let $R_{\mathcal{K}}^{\text{adv}}$ denote the adversarial K -NN radius in \mathcal{K} ,*
 1678 *bounded as in Theorem 8. Then, with probability at least $1 - \delta_{\mathcal{K}}^{\text{env}}$, $\text{GW}^2(\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta), \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)) \geq$*
 1679 $2\theta^2 (\gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}})_+^2$.

1681 *Proof.* In any metric space (M, d) with center q , one has for all u, v ,

$$|d(u, q) - d(v, q)| \leq d(u, v) \leq d(u, q) + d(v, q).$$

1684 We apply this to the adversarial neighborhoods. For the \mathcal{C} -space, each $x_i, x_j \in \tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta)$ has radii
 1685 $r_i^{\mathcal{C}} = d_{\mathcal{C}}(x_i, \tilde{q}_{\mathcal{C}})$, while for the \mathcal{K} -space, each $y_a, y_b \in \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)$ has radii $r_a^{\mathcal{K}} = d_{\mathcal{K}}(y_a, \tilde{q}_{\mathcal{K}})$.

1687 Hence,

$$d_{\mathcal{C}}(x_i, x_j) \geq |r_i^{\mathcal{C}} - r_j^{\mathcal{C}}|, \quad d_{\mathcal{K}}(y_a, y_b) \leq r_a^{\mathcal{K}} + r_b^{\mathcal{K}} \leq 2R_{\mathcal{K}}^{\text{adv}}. \quad (51)$$

1690 We now identify which neighbor pairs give us a guaranteed discrepancy. Recall that the adversarial
 1691 neighborhood in \mathcal{C} is partitioned into an inner set L of size $(1 - \theta)K$ and an outer set H of size θK ,
 1692 with separation gap $\gamma_{\mathcal{C}} := \min_{i \in H} r_i^{\mathcal{C}} - \max_{j \in L} r_j^{\mathcal{C}} > 0$.

1693 A natural question arises, namely, *Why focus on cross pairs?* If both indices come from H (outer-
 1694 outer) or both from L (inner-inner), the corresponding radii may be very close, and no nontrivial
 1695 separation is guaranteed. However, whenever one index $i \in H$ and the other $j \in L$, we know
 1696 $r_i^{\mathcal{C}} - r_j^{\mathcal{C}} \geq \gamma_{\mathcal{C}}$.

1697 By the triangle inequality bound equation 51,

$$d_{\mathcal{C}}(x_i, x_j) \geq |r_i^{\mathcal{C}} - r_j^{\mathcal{C}}| \geq \gamma_{\mathcal{C}}, \quad d_{\mathcal{K}}(y_a, y_b) \leq 2R_{\mathcal{K}}^{\text{adv}}.$$

1700 Therefore, for any cross pair $(i, j) \in H \times L$ or $(j, i) \in L \times H$, and for all choices of (a, b) in \mathcal{K} ,

$$|d_{\mathcal{C}}(x_i, x_j) - d_{\mathcal{K}}(y_a, y_b)| \geq \gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}}. \quad (52)$$

1703 *How many such pairs exist?* Define $S := (H \times L) \cup (L \times H) \subset \{1, \dots, K\}^2$. Then

$$|S| = |H||L| + |L||H| = 2|H||L| \geq 2\theta^2 K^2.$$

1706 Thus, at least $2\theta^2 K^2$ ordered pairs (i, j) enjoy the guaranteed discrepancy equation 52, which will
 1707 next drive our GW lower bound.

1708 For any coupling $\pi \in \Pi(\tilde{\mu}, \tilde{\nu})$ with uniform marginals, the GW objective can be written as

$$\text{GW}^2(\tilde{\mathcal{C}}, \tilde{\mathcal{K}}) = \inf_{\pi} \sum_{i, i'} \sum_{j, j'} \pi[i, j] \pi[i', j'] \left(d_{\mathcal{C}}(x_i, x_{i'}) - d_{\mathcal{K}}(y_j, y_{j'}) \right)^2.$$

1713 From equation 52, we have that each summand in the inner sum (over j, j') is bounded below by
 1714 $(\gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}})_+^2$. Since the coupling π has uniform marginals, the total weight assigned to the block
 1715 $\{i\} \times \{i'\}$ after summing over j, j' is fixed:

$$\sum_{j, j'} \pi[i, j] \pi[i', j'] = \left(\sum_j \pi[i, j] \right) \left(\sum_{j'} \pi[i', j'] \right) = \frac{1}{K} \cdot \frac{1}{K} = \frac{1}{K^2}.$$

1719 Therefore for each $(i, i') \in S$, $\sum_{j, j'} \pi[i, j] \pi[i', j'](\dots) \geq \frac{1}{K^2} (\gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}})_+^2$.

1720 Summing over all $(i, i') \in S$ gives

$$\mathbb{E}_{\pi \otimes \pi} \left[(d_{\mathcal{C}}(x, x') - d_{\mathcal{K}}(y, y'))^2 \right] \geq \frac{|S|}{K^2} (\gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}})_+^2,$$

1724 because contributions from pairs outside S are nonnegative and can be dropped. Finally, recalling
 1725 $|S| \geq 2\theta^2 K^2$, we arrive at $\mathbb{E}_{\pi \otimes \pi}[\dots] \geq 2\theta^2 (\gamma_{\mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}})_+^2$. As this bound is independent of
 1726 the choice of coupling, it continues to hold after taking the infimum over π . Finally, substituting the
 1727 high-probability envelope for $R_{\mathcal{K}}^{\text{adv}}$ from Theorem 8 yields the explicit form of the bound, which
 completes the proof. \square

1728
 1729 **Remark 5** (Instantiating γ_C from clean geometry). *The abstract separation parameter γ_C in Theorem 2 can be linked to earlier \mathcal{C} results. Let q and \tilde{q} be the clean and adversarial queries, with the clean K -NN neighborhood partitioned into inner set L and outer set H . The clean separation gap is*

$$1732 \quad \Delta_{\text{clean}} := \min_{i \in H} d_{\mathcal{C}}(x_i, q) - \max_{j \in L} d_{\mathcal{C}}(x_j, q).$$

1734 By our earlier adversarial absorption radius analysis in \mathcal{C} , adversarial perturbations shift each star
 1735 distance by at most $\frac{\sqrt{d}\sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon + \mathbf{1}_{\{c \neq \hat{c}\}}$. Hence the induced adversarial gap satisfies
 1736

$$1738 \quad \gamma_C \geq \left(\Delta_{\text{clean}} - 2 \left(\frac{\sqrt{d}\sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon + \mathbf{1}_{\{c \neq \hat{c}\}} \right) \right)_+.$$

1740 Thus γ_C is not an arbitrary constant: it can be certified from clean geometry plus the perturbation
 1741 shift and possible label flip.

1742 **Corollary 6** (Explicit clean–adversarial gap across \mathcal{C} and \mathcal{K}). *Combining Theorem 2 with Remark 5,
 1743 with probability at least $1 - (\delta_{\mathcal{K}}^{\text{env}} + \delta_{\text{grad}})$,*

$$1745 \quad \text{GW}^2(\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta), \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)) \geq 2\theta^2 \left(\underbrace{\Delta_{\text{clean}}}_{\text{clean sep.}} - \underbrace{2 \left(\frac{\sqrt{d}\sigma}{\sqrt{\delta_{\text{grad}}}} \varepsilon + \mathbf{1}_{\{c \neq \hat{c}\}} \right)}_{\text{adv. shift in } \mathcal{C}} - 2R_{\mathcal{K}}^{\text{adv}} \right)_+^2.$$

1749 This bound separates the clean structure, the \mathcal{C} -side adversarial shift, and the \mathcal{K} -side absorption,
 1750 making the cross–space adversarial gap explicit.

1752 MIRROR THEOREMS FOR UPPER AND LOWER BOUNDS ON GW

1754 **Theorem 10** (Clean cross–space GW lower bound). *Fix a clean query x and its clean neighborhoods $\mathcal{N}_K^{\mathcal{C}}(x)$ and $\mathcal{N}_K^{\mathcal{K}}(x)$, each with uniform measure on K points. Suppose the clean \mathcal{C} -radii
 1755 around the clean center q_C exhibit a separation gap*

$$1758 \quad \gamma_C^{\text{clean}} := \min_{i \in H} d_{\mathcal{C}}(x_i, q_C) - \max_{j \in L} d_{\mathcal{C}}(x_j, q_C) > 0,$$

1760 for a partition into inner L and outer H of sizes $(1 - \theta)K$ and θK . Let $R_{\mathcal{K}}^{\text{clean}}$ denote the clean
 1761 K -NN radius in \mathcal{K} , bounded by the clean \mathcal{K} envelope. Then

$$1763 \quad \text{GW}^2(\mathcal{N}_K^{\mathcal{C}}(x), \mathcal{N}_K^{\mathcal{K}}(x)) \geq 2\theta^2 \left(\gamma_C^{\text{clean}} - 2R_{\mathcal{K}}^{\text{clean}} \right)_+^2.$$

1765 Proof sketch. *Identical to Theorem 2 (Steps 1–4) with “adversarial” replaced by “clean” and $R_{\mathcal{K}}^{\text{adv}}$
 1766 replaced by $R_{\mathcal{K}}^{\text{clean}}$. The cross-pairs $(H \times L) \cup (L \times H)$ enforce an entrywise gap of at least
 1767 $\gamma_C^{\text{clean}} - 2R_{\mathcal{K}}^{\text{clean}}$; uniform marginals then yield the factor $2\theta^2$ after averaging over couplings.*

1769 **Theorem 11** (Adversarial cross–space GW upper bound via K -NN star radii). *Fix a query x and
 1770 perturbation η , and consider the adversarial neighborhoods*

$$1772 \quad \tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta), \quad \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta),$$

1773 each with uniform measure on K points. Let $R_{\mathcal{C}}^{\text{adv}}$ and $R_{\mathcal{K}}^{\text{adv}}$ denote the adversarial K -NN radii in
 1774 \mathcal{C} and \mathcal{K} , respectively (each bounded by the adversarial envelopes in those spaces). Then

$$1776 \quad \text{GW}^2(\tilde{\mathcal{N}}_K^{\mathcal{C}}(x + \eta), \tilde{\mathcal{N}}_K^{\mathcal{K}}(x + \eta)) \leq 4 \left(1 - \frac{1}{K} \right) \left(R_{\mathcal{C}}^{\text{adv}} + R_{\mathcal{K}}^{\text{adv}} \right)^2.$$

1778 Proof sketch. *Copy Theorem 1 verbatim, replacing clean radii by adversarial radii. The identity
 1779 coupling and Frobenius argument give $\text{GW}^2 \leq K^{-2} \|D_{\mathcal{C}} - D_{\mathcal{K}}\|_F^2$. Each off-diagonal entry
 1780 is at most $2R^{\text{adv}}$ by triangle inequality via the adversarial centers, so $\|D_{\mathcal{C}} - D_{\mathcal{K}}\|_F \leq$
 1781 $2\sqrt{K(K-1)}(R_{\mathcal{C}}^{\text{adv}} + R_{\mathcal{K}}^{\text{adv}})$, which yields the claim.*

1782 G.2 GAP THEOREM IN GW
1783

1784 We now combine the clean and adversarial envelopes established in Theorems 1, 2, 10, and 11 to
1785 show that their GW discrepancies are separated by a margin that is nonvanishing in high dimension.

1786 **Theorem 3** (Cross–space GW gap). *With probability at least $1 - (\delta_{\mathcal{C}} + \delta_{\mathcal{K}} + \delta_{\mathcal{K}}^{\text{env}} + \delta_{\text{aux}})$, the*
1787 *clean and adversarial GW discrepancies satisfy $|\text{GW}_{\text{adv}}^2 - \text{GW}_{\text{clean}}^2| \geq \tau := \max\{\tau_{\text{adv}}, \tau_{\text{clean}}, 0\}$,*
1788 *where $\tau_{\text{adv}} = L_{\text{adv}} - U_{\text{clean}}$ and $\tau_{\text{clean}} = L_{\text{clean}} - U_{\text{adv}}$. Under Assumption 2, for fixed K and*
1789 *perturbation $\|\eta\|_{\infty} = \varepsilon$, we obtain $\tau = \Omega(d^2\sigma^2\varepsilon^2) - O(\frac{\log K}{d})$.*

1790
1791 *Proof.* On the joint event where all four bounds hold:

$$1793 \text{GW}_{\text{adv}}^2 \geq L_{\text{adv}}, \quad \text{GW}_{\text{clean}}^2 \leq U_{\text{clean}},$$

1794 which implies

$$1795 \text{GW}_{\text{adv}}^2 - \text{GW}_{\text{clean}}^2 \geq L_{\text{adv}} - U_{\text{clean}}.$$

1796 Similarly,

$$1798 \text{GW}_{\text{clean}}^2 \geq L_{\text{clean}}, \quad \text{GW}_{\text{adv}}^2 \leq U_{\text{adv}},$$

1799 which implies

$$1800 \text{GW}_{\text{clean}}^2 - \text{GW}_{\text{adv}}^2 \geq L_{\text{clean}} - U_{\text{adv}}.$$

1801 Taking the maximum of these two margins yields the result. \square

1802
1803 **Discussion.** *Clean side.* For fixed K , as $d \rightarrow \infty$, the clean K –NN radii in both \mathcal{C} and \mathcal{K} concentrate:

$$1804 R_{\mathcal{C}}, R_{\mathcal{K}} = O\left(\mu + \sqrt{\frac{\log K}{d}}\right),$$

1805 so the clean upper envelope U_{clean} vanishes at rate $O\left(\sqrt{\frac{\log K}{d}}\right)$.

1806 *Adversarial side.* A perturbation $\|\eta\|_{\infty} = \varepsilon$ shifts the K –NN star distances in \mathcal{C} by $\delta_{\mathcal{C}}(\varepsilon) =$
1807 $\Theta\left(\frac{\sqrt{d}}{\sqrt{\delta_{\text{grad}}}} \sigma \varepsilon\right)$, which induces a separation gap $\gamma_{\mathcal{C}}$. Meanwhile, absorption in \mathcal{K} is controlled by
1808 $R_{\mathcal{K}}^{\text{adv}} = O(C_k \sqrt{d})$. Together, this yields $L_{\text{adv}} = \Omega(d \sigma^2 \varepsilon^2)$.

1809 *Gap scaling.* As we have $\tau = \Omega(d \sigma^2 \varepsilon^2) - O\left(\frac{\log K}{d}\right)$, so the gap is asymptotically nonvanishing:
1810 the clean side contracts while the adversarial side grows linearly in d . This proves robustness in high
1811 dimension.

1812 *Implication for entropic solvers.* Because the GW gap remains bounded away from zero asymptotically,
1813 entropic relaxations that preserve relative ordering inherit the same discriminative power,
1814 justifying our detector design.

1815 G.3 ENTROPIC GW COROLLARIES AND RISK CONTROL

1816 **Corollary 7** (Entropic relaxation preserves lower bounds). *For any metric–measure spaces*
1817 $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ *and* $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$ *and any* $\lambda > 0$,

$$1818 \text{GW}_{\lambda}^2(\mathcal{X}, \mathcal{Y}) \geq \text{GW}^2(\mathcal{X}, \mathcal{Y}).$$

1819 Hence the lower bounds of Theorems 2 and 10 remain valid verbatim under entropic GW.

1820 **Corollary 8** (Entropic slack in upper bounds). *For uniform marginals on K points,*

$$1821 \text{GW}_{\lambda}^2(\mathcal{X}, \mathcal{Y}) \leq \text{GW}^2(\mathcal{X}, \mathcal{Y}) + 2\lambda \log K.$$

1822 Thus the upper bounds of Theorems 1 and 11 hold with additive slack $2\lambda \log K$.

1823 **Corollary 9** (Quenched key version). *All high–probability envelopes on the \mathcal{K} –side radii (Theo-*
1824 *rems 8, 2, 11) were stated in the annealed sense, averaging over random keys (b, k) . By condi-*
1825 *tioning, the same inequalities hold for any fixed (b, k) with identical probability bounds over the*
1826 *randomness of image sampling and adversarial perturbations.*

Risk control The GW gap theorem (Theorem 3) ensures that, with high probability, the clean and adversarial discrepancies GW_{clean}^2 and GW_{adv}^2 are separated by a margin $\tau > 0$. In practice, however, we only observe the empirical, regularized estimator \widehat{GW}_{λ}^2 , which deviates from the truth due to (i) statistical sampling noise and (ii) entropic bias. If these deviations exceed τ , the detector may fail. The next lemma formalizes that controlling the estimation error to $\tau/3$ suffices.

Lemma 4 (Risk control via GW margin). *If the gap event holds with margin $\tau > 0$ and an estimator \widehat{GW}_{λ}^2 satisfies $\Pr(|\widehat{GW}_{\lambda}^2 - GW^2| \leq \tau/3) \geq 1 - \delta_{\text{est}}$, then thresholding \widehat{GW}_{λ}^2 at the midpoint between clean and adversarial envelopes makes no error on this event. Thus $\Pr(\text{misclassification}) \leq \Pr(E_{\text{gap}}^c) + \delta_{\text{est}}$.*

Proof. On the event E_{gap} , the clean and adversarial discrepancies satisfy conditions $GW_{\text{clean}}^2 \leq U_{\text{clean}}$ and $GW_{\text{adv}}^2 \geq L_{\text{adv}}$, with $L_{\text{adv}} - U_{\text{clean}} \geq \tau_{\text{adv}}$, and symmetrically $GW_{\text{clean}}^2 \geq L_{\text{clean}}$ and $GW_{\text{adv}}^2 \leq U_{\text{adv}}$, with $L_{\text{clean}} - U_{\text{adv}} \geq \tau_{\text{clean}}$. By definition, $\tau = \max\{\tau_{\text{adv}}, \tau_{\text{clean}}\} > 0$, so there exists a threshold t^* lying strictly between the clean and adversarial ranges, with a buffer of at least $\frac{\tau}{2}$ to each side.

In the case of a *clean instance*, on E_{est} we have that $\widehat{GW}_{\lambda}^2 \leq GW_{\text{clean}}^2 + \frac{\tau}{3} \leq U_{\text{clean}} + \frac{\tau}{3}$. Since $t^* \geq U_{\text{clean}} + \frac{\tau}{2}$, we conclude $\widehat{GW}_{\lambda}^2 \leq t^* - \frac{\tau}{6} < t^*$, so the classifier correctly outputs “clean.”

For an *adversarial instance*, on E_{est} , we have $\widehat{GW}_{\lambda}^2 \geq GW_{\text{adv}}^2 - \frac{\tau}{3} \geq L_{\text{adv}} - \frac{\tau}{3}$. Since $t^* \leq L_{\text{adv}} - \frac{\tau}{2}$, we similarly conclude $\widehat{GW}_{\lambda}^2 \geq t^* + \frac{\tau}{6} > t^*$, so the classifier correctly outputs “adversarial.”

Thus, on $E_{\text{gap}} \cap E_{\text{est}}$, the plug-in classifier is error-free. Finally, since E_{gap} holds with probability at least $1 - \delta_{\text{gap}}$ (from Theorem 3) and E_{est} with probability at least $1 - \delta_{\text{est}}$, a union bound yields $\mathbb{P}(\text{misclassification}) \leq \delta_{\text{gap}} + \delta_{\text{est}}$. \square

Discussion. Lemma 4 formalizes the transition from a *theoretical gap* to a *practical detector*. Theorem 3 ensures a margin τ exists between clean and adversarial discrepancies. The lemma shows that if the empirical entropic GW estimator concentrates within $\tau/3$ of the truth, then a midpoint threshold t^* separates the two classes with zero error. The factor 1/3 is convenient: it splits the error budget evenly, allowing statistical variance and entropic bias to each consume at most $\tau/6$. This provides a direct analogue to margin-based classifiers in statistical learning: once the theoretical gap is positive, robust classification depends only on estimator concentration, not on further geometric properties of \mathcal{C} or \mathcal{K} . In particular, higher dimension amplifies τ , so the limiting risk is controlled primarily by solver accuracy and sample complexity rather than geometry itself.

H DETAILS OF ADVERSARIAL IMAGE GENERATION

We focus on the following white-box and black-box attacks in this work across the supervised and zero-shot settings:

H.1 WHITE-BOX ATTACKS

White-box attacks assume access to the internal parameters of the target model.

- **Auto Attack** (Croce & Hein, 2020): A parameter-free ensemble attack combining four complementary attacks: APGD-CE, APGD-DLR, FAB-T, and Square Attack. The ensemble automatically selects optimal hyperparameters and provides reliable robustness evaluation without manual tuning.
- **Carlini & Wagner (C&W) Attack** Carlini & Wagner (2017): An optimization-based attack that formulates adversarial example generation as:

$$\min_{\delta} \|\delta\|_p + c \cdot f(x + \delta) \quad (53)$$

1890 where $f(x + \delta) = \max(\max\{Z(x + \delta)_i : i \neq t\} - Z(x + \delta)_t, -\kappa)$ with Z representing
 1891 logits, t the target class, and κ the confidence parameter.

- 1892 • **Projected Gradient Descent (PGD) Attack** Madry et al. (2018): An iterative first-order
 1893 adversarial attack using projected gradient descent:

$$1895 \quad x_{t+1} = \Pi_S(x_t + \alpha \cdot \text{sign}(\nabla_x \ell(\theta, x_t, y))) \quad (54)$$

1896 where Π_S denotes projection onto the constraint set $S = \{x' : \|x' - x\|_\infty \leq \epsilon\}$ and ℓ is
 1897 the loss function.

- 1898 • **Auto-PGD (APGD) Attack** (Croce & Hein, 2020): An enhanced version of PGD with
 1899 automatic step size adaptation and momentum. The step size is dynamically adjusted based
 1900 on the loss trajectory:

$$1901 \quad \alpha_t = \alpha_0 \cdot \rho^{k_t} \quad (55)$$

1902 where k_t counts the number of step size reductions and $\rho = 0.75$.

- 1903 • **Fast Gradient Sign Method (FGSM)** (Goodfellow et al., 2015): A single-step attack that
 1904 generates adversarial examples using:

$$1906 \quad x_{adv} = x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y)) \quad (56)$$

1907 where J is the cost function used to train the neural network, θ are the model parameters,
 1908 and ϵ controls the perturbation magnitude.

- 1909 • **Universal Adversarial Perturbation** (Moosavi-Dezfooli et al., 2017): Generates image-
 1910 agnostic perturbations that fool classifiers across different inputs:

$$1912 \quad \min_v \|v\|_p \text{ subject to } \mathbb{P}_{x \sim \mu}[\hat{k}(x + v) \neq \hat{k}(x)] \geq 1 - \delta \quad (57)$$

1914 where v is the universal perturbation, μ is the data distribution, and δ is the desired fooling
 1915 rate.

- 1916 • **Adversarial Patch Attack** Brown et al. (2017): Generates printable adversarial patches
 1917 that can cause misclassification in the physical world:

$$1919 \quad \hat{p} = \arg \max_p \mathbb{E}_{x, t, l} [\log \Pr(\hat{y} | A(p, x, l, t))] \quad (58)$$

1920 where $A(p, x, l, t)$ applies patch p to image x at location l with transformation t , and \hat{y} is
 1921 the target class.

1923 H.2 BLACK-BOX ATTACKS

1925 Black-box attacks operate without knowledge of internal model parameters.

- 1926 • **Frequency Attack** Yin et al. (2019): Exploits the vulnerability of neural networks in the
 1927 frequency domain by applying perturbations to the Fourier transform:

$$1929 \quad \mathcal{F}(x_{adv}) = \mathcal{F}(x) + \delta_f \quad (59)$$

1930 where \mathcal{F} denotes the Fourier transform and δ_f represents frequency-domain perturbations.

- 1932 • **Square Attack** Andriushchenko et al. (2020): A query-efficient score-based black-box
 1933 attack that uses random search within ℓ_p balls:

$$1934 \quad x_{t+1} = x_t + \eta_t \cdot h_t \quad (60)$$

1936 where h_t is a random direction sampled uniformly from $\{-1, +1\}^d$ and η_t is the step size
 1937 adapted based on the attack success.

- 1938 • **Gaussian Blur Attack** (Zhang et al., 2022): Applies Gaussian blur to exploit the frequency
 1939 bias of deep neural networks:

$$1940 \quad G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \quad (61)$$

1943 where σ controls the blur intensity and the convolution $x_{blur} = x * G_\sigma$ generates the
 1944 adversarial example.

1944
 1945 • **Semantic Rotation Attack** (Hosseini & Poovendran, 2018): Applies geometric transfor-
 1946 mations including rotations that preserve semantic content while causing misclassification:
 1947

$$R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad (62)$$

1949 where θ represents the rotation angle applied to the input image coordinates.

1950 • **Pixel Flip Attack** (Su et al., 2019): A sparse attack that modifies only a few pixels to
 1951 cause misclassification:

$$\min |S| \text{ subject to } f(x \oplus \delta_S) \neq f(x) \quad (63)$$

1952 where S is the set of modified pixel locations, δ_S represents the pixel modifications, and \oplus
 1953 denotes the modification operation.

1956 H.3 ADVERSARIAL IMAGE GENERATION IN THE SUPERVISED SETTING

1958 In the supervised setting, adversarial examples are generated against traditional classification models
 1959 trained on labeled datasets. The model produces logits through a standard forward pass:

$$z = f_\theta(x), \quad (64)$$

1960 where $f_\theta(x)$ denotes the neural network with parameters θ , $x \in \mathbb{R}^{H \times W \times C}$ is the input image, and
 1961 $z \in \mathbb{R}^K$ are the raw logits for K classes.

1964 The final classification layer is typically a linear transformation:

$$z = W^T h + b, \quad (65)$$

1966 where h is the penultimate layer representation, $W \in \mathbb{R}^{d \times K}$ is the weight matrix, and $b \in \mathbb{R}^K$ is
 1967 the bias vector.

1969 The predicted class probabilities are obtained via the softmax function:

$$P(y = c | x) = \frac{\exp(z_c)}{\sum_{j=1}^K \exp(z_j)}, \quad (66)$$

1973 where z_c is the logit for class c .

1974 During adversarial attack generation, the commonly used loss function is the cross-entropy loss:

$$\mathcal{L}(x, y) = -\log P(y | x) = -z_y + \log \left(\sum_{j=1}^K \exp(z_j) \right). \quad (67)$$

1979 H.4 ADVERSARIAL IMAGE GENERATION IN THE ZERO-SHOT SETTING

1981 In the zero-shot setting, adversarial examples are generated against Vision-Language Models
 1982 (VLMs) using its image encoder model (in our case CLIP Radford et al. (2021)), which do not
 1983 require training on the target classes. The model consists of separate image and text encoders that
 1984 project inputs into a shared embedding space.

1985 Given an input image $x \in \mathbb{R}^{H \times W \times C}$ and a set of K class names $\{c_1, c_2, \dots, c_K\}$, the zero-shot
 1986 classification process proceeds as follows:

1988 **Image Encoding:** The image encoder $E_I : \mathbb{R}^{H \times W \times C} \rightarrow \mathbb{R}^d$ maps the input image to an ℓ_2 -
 1989 normalized embedding in the shared representation space:

$$v_I = \frac{E_I(x)}{\|E_I(x)\|_2}, \quad (68)$$

1992 where $v_I \in \mathbb{R}^d$ represents the normalized image embedding with unit norm.

1994 **Text Encoding:** For each class c_i , a text prompt is constructed using the template “A photo of c_i ”.
 1995 The text encoder $E_T : \mathcal{V}^* \rightarrow \mathbb{R}^d$ maps each prompt to a normalized embedding in the same shared
 1996 space:

$$v_{T,i} = \frac{E_T(\text{“A photo of } c_i\text{”})}{\|E_T(\text{“A photo of } c_i\text{”})\|_2}, \quad (69)$$

1998 where \mathcal{V}^* denotes the vocabulary space and $v_{T,i} \in \mathbb{R}^d$ is the normalized text embedding for class
 1999 c_i .

2000 **Logit Computation:** The logits are computed as the temperature-scaled cosine similarities between
 2001 the image embedding and each text embedding:
 2002

$$z_i = \tau \cdot v_I^T v_{T,i} = \tau \cdot \cos(v_I, v_{T,i}), \quad (70)$$

2003 where $\tau > 0$ is a temperature parameter that controls the sharpness of the similarity distribution.
 2004 The complete logit vector is:
 2005

$$z = \tau \cdot [v_I^T v_{T,1}, \quad v_I^T v_{T,2}, \quad \dots, \quad v_I^T v_{T,K}]^T \in \mathbb{R}^K. \quad (71)$$

2006 **Classification Decision:** The predicted class is obtained by selecting the class with the maximum
 2007 logit value:
 2008

$$\hat{y} = \arg \max_{i \in \{1, \dots, K\}} z_i = \arg \max_{i \in \{1, \dots, K\}} v_I^T v_{T,i}. \quad (72)$$

2009 The class posterior probabilities are obtained through softmax normalization:
 2010

$$P(y = c_i \mid x) = \frac{\exp(\tau \cdot v_I^T v_{T,i})}{\sum_{j=1}^K \exp(\tau \cdot v_I^T v_{T,j})}. \quad (73)$$

2024 H.5 ADVERSARIAL ATTACK HYPERPARAMETER SELECTION

2025 In this section, we provide the detailed configuration of adversarial attack methods used in our ex-
 2026 periments (Section 6). Table 6 summarizes the set of hyperparameters chosen for each attack. These
 2027 values are selected following common practice in the adversarial robustness literature to ensure a
 2028 fair comparison across methods.

2029 We consider a diverse set of attack strategies, including optimization-based, gradient-based, score-
 2030 based, and patch-based approaches. For gradient-based methods such as PGD, Auto-PGD, FGSM,
 2031 and Square Attack, we evaluate under multiple perturbation budgets with $\epsilon \in \{4/255, 8/255\}$.
 2032 Universal Perturbation is evaluated with a wider range of perturbation strengths, namely $\epsilon \in \{4/255, 8/255, 12/255\}$.
 2033

2034 For optimization-based attacks, the Carlini & Wagner (CW) attack is configured with confidence pa-
 2035 rameter $\kappa = 0.0$, following the default setting to generate minimally perturbed adversarial examples.
 2036 AutoAttack is evaluated under $\epsilon \in \{4/255, 8/255\}$, consistent with its standardized benchmark pro-
 2037 tocol.
 2038

2039 Patch-based and spatial transformations are included to account for more physically realizable ad-
 2040 versarial scenarios. The Patch Attack is tested with square patches of shape (3, 8, 8) and (3, 16, 16),
 2041 while the Spatial Attack allows for up to 30° rotation and translations of up to 10% of the image
 2042 dimensions.
 2043

2044 In addition to the attacks described above, we also include several specialized perturbations and
 2045 image corruptions to probe robustness across different perturbation modalities: a Frequency Attack
 2046 with noise strength noise_strength = 0.05, Gaussian Blur with $\sigma = 1.0$ (blur_type set to “uniform”),
 2047 Pixel Flip with num_pixel = 5 and attack mode set to “random”, and a Semantic Rotation with
 2048 angle = 8°. These parameter choices are summarized in Table 6 and were chosen to reflect common
 2049 settings used in prior work while providing a broad coverage of perturbation types.

2050 These configurations ensure that the evaluation captures a broad spectrum of attack types, ranging
 2051 from small-norm pixel perturbations to structured and geometric transformations. See Table 6 for
 an overview of the attack methods and the full set of parameter values used in our experiments.

2052	Attack Method	Parameter Values
2053	AutoAttack (AA)	$\epsilon = 4/225, 8/225$
2054	C&W (CW)	$\kappa = 0.0$
2055	Patch Attack (PT)	patch_shape = (3, 8, 8), (3, 16, 16)
2056	PGD	$\epsilon = 4/255, 8/255$
2057	Spatial Attack (SA)	max rotation: 30°, max translation: 10% of the image size
2058	Square Attack (SQ)	$\epsilon = 4/255, 8/255$
2059	Universal Perturbation (UP)	$\epsilon = 4/255, 8/255, 12/255$
2060	Auto-PGD (AP)	$\epsilon = 4/255, 8/255$
2061	FGSM (FG)	$\epsilon = 4/255, 8/255$
2062	Frequency Attack (FA)	noise_strength = 0.05
2063	Gaussian Blur (GB)	$\sigma = 1.0$, blur_type = uniform
2064	Pixel Flip (PF)	num_pixel = 5, attack_mode = random
2065	Semantic Rotation (SR)	angle = 8

2066 Table 6: Overview of adversarial attack methods and their parameter settings. Parameter value
 2067 written with **bold** represents the default value of the corresponding attack among its parameter
 2068 configurations.

2071 H.6 EXAMPLES OF ADVERSARIAL IMAGES SUPERVISED SETTING

2073 H.6.1 GAUSSIAN BLUR ATTACK

2086 Figure 3: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
 2087 Original Image with True Label *car*, Center: Adversarial Image with Predicted Label *truck* and
 2088 Right: Perturbation

2103 Figure 4: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
 2104 Original Image with True Label *plane*, Center: Adversarial Image with Predicted Label *bird* and
 2105 Right: Perturbation

2106 H.6.2 PATCH ATTACK
21072110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Figure 5: Comparison between Original and Perturbed Images using Patch attack. Left: Original Image with True Label *car*, Center: Adversarial Image with Predicted Label *truck* and Right: Perturbation

Figure 6: Comparison between Original and Perturbed Images using Patch attack. Left: Original Image with True Label *plane*, Center: Adversarial Image with Predicted Label *bird* and Right: Perturbation

H.7 EXAMPLES OF ADVERSARIAL IMAGES ZERO SHOT SETTING

H.7.1 APGD ATTACK

Figure 7: Comparison between Original and Perturbed Images using APGD attack. Left: Original Image with True Label *Dolphin*, Center: Adversarial Image with Predicted Label *Camera* and Right: Perturbation

2160 H.7.2 PGD ATTACK

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

Figure 8: Comparison between Original and Perturbed Images using APGD attack. Left: Original Image with True Label *Trilobite*, Center: Adversarial Image with Predicted Label *Helicopter* and Right: Perturbation

I DETECTION METHODS CONFIGURATION

This section provides detailed descriptions of the adversarial detection methods evaluated in our experiments, with configurations specified in Table 7. Further, we also mention the hyperparameter settings used in our defense approach.

I.1 MAHALANOBIS DETECTOR

The Mahalanobis detector (Lee et al., 2018) leverages the Mahalanobis distance to measure distributional deviations of test samples from training data in the neural network’s feature space. For a given sample \mathbf{x} and its feature representation $\mathbf{f}(\mathbf{x})$ at layer l , the method computes class-conditional Gaussian distributions $\mathcal{N}(\boldsymbol{\mu}_c^{(l)}, \boldsymbol{\Sigma}^{(l)})$ from clean training data. The Mahalanobis distance is defined as:

$$M_c^{(l)}(\mathbf{x}) = (\mathbf{f}^{(l)}(\mathbf{x}) - \boldsymbol{\mu}_c^{(l)})^T (\boldsymbol{\Sigma}^{(l)})^{-1} (\mathbf{f}^{(l)}(\mathbf{x}) - \boldsymbol{\mu}_c^{(l)})$$

The minimum distance across all classes serves as the confidence score for adversarial detection, exploiting the property that adversarial perturbations typically push samples away from the natural data manifold.

I.2 FEATURE SQUEEZING

Feature Squeezing (Xu et al., 2018) reduces the degrees of freedom available to adversarial perturbations by applying input transformations that compress the feature space. Our implementation uses median smoothing with a 2×2 kernel and L_1 distance metric for comparing predictions. For an input \mathbf{x} and its squeezed version \mathbf{x}' , the detection score is computed as:

$$\text{score}(\mathbf{x}) = \|\mathbf{p}(\mathbf{x}) - \mathbf{p}(\mathbf{x}')\|_1$$

where $\mathbf{p}(\cdot)$ represents the model’s prediction probabilities. A threshold is determined using the training false positive rate (FPR) of 0.2, assuming legitimate inputs remain robust to minor spatial transformations while adversarial examples exhibit significant prediction changes.

I.3 METADECTECT

MetaDetect (Ma et al., 2019) formulates adversarial detection as a few-shot learning problem using meta-learning principles. The method employs episodic training with support sets $\mathcal{S} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_s}$ and query sets $\mathcal{Q} = \{(\mathbf{x}_j, y_j)\}_{j=1}^{N_q}$, where $y_i \in \{0, 1\}$ indicates clean (0) or adversarial (1) samples. Our configuration uses $N_s = 1$ support example and $N_q = 15$ query examples with a conv3 architecture. The meta-detector learns a function f_θ that maps from support-query episode pairs to detection decisions, optimizing over episode distributions to generalize across different attack types.

2214 I.4 MAGNET
2215

2216 MagNet (Meng & Chen, 2017) combines detection and defense mechanisms using autoencoder-
2217 based reconstruction and probability estimation. The method trains an autoencoder $\mathcal{E}_\phi : \mathbb{R}^d \rightarrow \mathbb{R}^d$
2218 on clean data to approximate the natural data manifold. For detection, it computes the reconstruction
2219 error:

$$2220 \mathcal{L}_{\text{rec}}(\mathbf{x}) = \|\mathbf{x} - \mathcal{E}_\phi(\mathbf{x})\|_1^2$$

2221 Additionally, MagNet estimates the probability density using the Jensen-Shannon divergence be-
2222 tween the original and reconstructed inputs' predicted distributions. The underlying assumption is
2223 that adversarial examples, lying off the natural manifold, will exhibit higher reconstruction errors
2224 and lower probability estimates compared to legitimate inputs.

Detection Method	Parameters
Mahalanobis Detector	train_fpr = 0.15
Feature Squeezing	distance metric: L_1 , squeezer: median smoothing (2×2), train_fpr=0.2
MetaDetect	num_support = 1, num_query = 15, arch = conv3
MagNet	l_1 norm reconstruction error, train_fpr = 0.15

2231 Table 7: Parameters and configurations for different adversarial detection methods. Methods refer-
2232 enced: Mahalanobis (Lee et al., 2018), Feature Squeezing (Xu et al., 2018), MetaDetect (Ma et al.,
2233 2019), and MagNet (Meng & Chen, 2017).

2234
2235 I.5 HYPER PARAMETER CONFIGURATION FOR THE PROPOSED METHOD
2236

Hyperparameter	Candidate Values	Optimal Value	Description
k_{local}	{8, 10, 12, 15}	8	Local Gromov-Wasserstein features
k_{global}	{3, 5, 7}	3	Global Gromov-Wasserstein features
ϵ_{gw}	{0.2, 0.5, 0.8}	0.5	Entropic regularization strength

2237 Table 8: **Hyperparameter search for GW features:** We performed a grid search over the candidate
2238 values of each hyperparameter and chose the values that achieved the best trade-off between robust-
2239 ness and model usability. Based on this search, we selected the optimal parameters as $k_{\text{local}} = 8$,
2240 $k_{\text{global}} = 3$, and $\epsilon_{\text{gw}} = 0.5$.

Hyperparameter	Candidate Values	Optimal Value	Description
Kernel	{linear, rbf, poly}	rbf	Choice of kernel function
C	{0.1, 1, 10, 100}	1	Regularization parameter
γ	{scale, auto, 0.01, 0.001}	scale	Kernel Coeff. for RBF

2241 Table 9: **Hyperparameter search for SVM:** We performed a grid search over the candidate values
2242 of each hyperparameter and selected the optimal configuration based on validation accuracy. The
2243 chosen parameters are Kernel = rbf, $C = 1$, $\gamma = \text{scale}$.

2244 J ADAPTIVE ATTACK FORMULATION
2245

2246 Evaluating the robustness of a defense mechanism against an adaptive adversary is crucial. We
2247 consider an adversary who possesses complete knowledge of the defense's architecture, including
2248 the classifier $f_\theta(x)$, the CNN feature extractor $\phi_{\text{cnn}}(x)$, and the crypto feature extractor $\phi_{\text{cr}}^{(b)}(x)$
2249 with its associated transform T_b . However, the adversary is unaware of the defender's specific, fixed
2250 secret bit vector $b^* \in \{0, 1\}^D$ used in deployment. This section formalizes the adversary's objective
2251 and optimization strategy to generate adversarial examples under this realistic uncertainty, focusing
2252 on two distinct consistency-based attacks. This approach is typical for evaluating defenses against
2253 strong, adaptive attackers Athalye et al. (2018).

2268 J.1 ATTACKER’S PRIOR OVER SECRET BITS
22692270 To account for the unknown secret b^* , the adversary models it as a random variable b drawn from a
2271 prior distribution $p(b)$. This prior is constructed as a mixture model over a set of plausible Bernoulli
2272 distributions, \mathcal{M} , reflecting the adversary’s uncertainty about the specific statistical properties of b^* :

2273
$$p(b) = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} \prod_{j=1}^D \text{Bernoulli}(b_j; p_m),$$

2274
2275

2276 where p_m corresponds to the individual Bernoulli success probability for each distribution type in
2277 \mathcal{M} (e.g., $p_m = 0.5$ for uniform or Gaussian-threshold components, and specific probabilities like
2278 0.3, 0.7 for biased Bernoulli components). This mixture prior allows the adversary to account for
2279 various possibilities of how the defender might have generated b^* . Modeling unknown parameters
2280 in this manner is a standard robust optimization technique Ben-Tal et al. (2009).2281 J.2 ATTACKER’S OBJECTIVE FUNCTION
22822283 The adversary’s goal is to craft an adversarial example x from a benign input x_0 that achieves
2284 misclassification by $f_\theta(x)$ while simultaneously maintaining a high degree of feature consistency
2285 with x_0 . The latter ensures the adversarial example does not trip the defense’s detection mechanisms,
2286 particularly those relying on the crypto features. Since the specific b^* is unknown, the adversary
2287 targets an *average* consistency, minimizing the expected penalty under their prior $p(b)$.2288 The general adversarial objective is:
2289

2290
$$\max_{x \in \mathcal{X}} \mathcal{L}(x; x_0, y) = \ell(f_\theta(x), y) - \lambda \mathbb{E}_{b \sim p(b)} [C(x, x_0; b)],$$

2291

2292 where $\ell(f_\theta(x), y)$ is the cross-entropy loss for the true label y , which the adversary seeks to max-
2293 imize; $\lambda > 0$ is a weighting factor that balances the misclassification objective against the consis-
2294 tency penalty — a formulation commonly used in adversarial attacks to trade off attack success and
2295 imperceptibility or stealth Carlini & Wagner (2017); $C(x, x_0; b)$ quantifies the discrepancy between
2296 features of x and x_0 for a given b , with lower values of C implying better stealth against consistency
2297 checks; and \mathcal{X} defines the allowed perturbation space, typically restricted to a range $[a, b]^{H \times W \times C}$
2298 for pixel values.2299 J.3 CONSISTENCY PENALTIES ($C(x, x_0; b)$)
23002301 We define the consistency penalty $C(x, x_0; b)$ using an OT-like discrepancy metric, $D_{\text{OT}}(\cdot, \cdot)$. This
2302 metric compares feature vectors (L_2 distance if dimensions match) or their statistical summaries
2303 (L_2 distance between mean, std, min, max, skewness, kurtosis if dimensions differ or comparison of
2304 statistics is explicitly requested).2305 For this study, we consider two specific attack formulations based on distinct consistency penalties:
23062307 J.3.1 CROSS-SPACE CONSISTENCY ATTACK (C_{cross})
23082309 This attack targets the defense by imposing consistency across both the standard CNN feature space
2310 and the specialized crypto feature space. The adversary aims to ensure that the features extracted
2311 from the adversarial example x remain similar to those from the clean input x_0 in both domains.
2312 The penalty term is defined as the sum of discrepancies in each feature space:

2313
$$C_{\text{cross}}(x, x_0; b) = D_{\text{OT}}(\phi_{\text{cnn}}(x), \phi_{\text{cnn}}(x_0)) + D_{\text{OT}}(\phi_{\text{cr}}^{(b)}(x), \phi_{\text{cr}}^{(b)}(x_0)).$$

2314 By minimizing this penalty, the adversarial example is constrained to modify the input in a way that,
2315 on average over b , preserves the inherent characteristics captured by both ϕ_{cnn} and $\phi_{\text{cr}}^{(b)}$.
23162317 J.3.2 MULTI-SCALE CONSISTENCY ATTACK (C_{ms})
23182319 This attack extends the cross-space consistency by introducing an additional constraint on global
2320 CNN feature similarity. This reflects a defense that might perform multi-scale or global consistency
2321 checks specifically on CNN features. The C_{ms} penalty is structured as:

2322
$$C_{\text{ms}}(x, x_0; b) = C_{\text{local}}(x, x_0; b) + C_{\text{global}}(x, x_0),$$

2322
2323

where:

2324
2325
2326
2327
2328
2329

- $C_{\text{local}}(x, x_0; b) = C_{\text{cross}}(x, x_0; b)$ represents the local, cross-space consistency across CNN and crypto features.
- $C_{\text{global}}(x, x_0) = D_{\text{OT}}(\phi_{\text{cnn}}(x), \phi_{\text{cnn}}(x_0))$ ensures global consistency focusing solely on CNN features. Note that C_{global} does not depend on b , as the global consistency check is assumed to be deterministic based on CNN features, which are not secrets-dependent.

2330
2331

The combined penalty

2332
2333

$$C_{\text{ms}}(x, x_0; b) = 2 \cdot D_{\text{OT}}(\phi_{\text{cnn}}(x), \phi_{\text{cnn}}(x_0)) + D_{\text{OT}}(\phi_{\text{cr}}^{(b)}(x), \phi_{\text{cr}}^{(b)}(x_0))$$

2334
2335
2336
2337
2338
2339

effectively doubles the weight on CNN feature consistency, making the adversarial example potentially harder to detect by defenses performing aggregated checks on CNN features.

To optimize the objective function, the adversary utilizes an iterative PGD Madry et al. (2018) is used. Since the objective involves an expectation over the unknown b , a Monte Carlo (MC) approximation is employed Rubinstein & Kroese (2016).2340
2341
2342

K IMPLEMENTATION DETAILS

2343
2344
2345

K.1 PSEUDOCODE FOR CROSS-SPACE DETECTOR

2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Algorithm 1 Multi-Scale Cross-Space GW Detector

Require: Image x ; $z \leftarrow h_{\theta}(x)$; $p \leftarrow T_k^{(b)}(x)$

- 1: **for all** $s \in \{\text{lo, gl}\}$ **do**
- 2: Build $\mathcal{N}_s^Z(z), \mathcal{N}_s^P(p)$; compute $\mu_s^Z, \mu_s^P, \psi_s^Z, \psi_s^P$
- 3: $g_1 \leftarrow \text{GW}_{\lambda}^2(\mu_s^Z, \mu_s^P); g_2 \leftarrow \text{GW}_{\lambda}^2(\psi_s^Z, \psi_s^P)$
- 4: $h \leftarrow \text{ENTROPY}(\psi_s^Z, \psi_s^P); \mathbf{f} \leftarrow \mathbf{f} \parallel [g_1, g_2, h]$
- 5: **end for**
- 6: **return** $\text{SVM}(\mathbf{f}) \in \{\text{clean, adv}\} = 0$

We provide the hyperparameter selection details for GW features in Table 8 and for SVM classifier in Table 9.

L ADDITIONAL EXPERIMENTS

L.1 ADDITIONAL BASELINE DEFENCES AND ATTACKS

To evaluate performance against imperceptible and optimization-free attacks, we extend our experiments to three recent low-magnitude adversarial methods, i.e., AdvAD, PGN, and BSR, which explicitly target the small-perturbation regime. These attacks probe the limits of pixel-level stability and serve as stringent tests for detectors relying on fine-grained geometric discrepancies.

In addition to our default ResNet-18 backbone, we generate all attacks using a Vision Transformer (ViT) to assess robustness across fundamentally different architectural families. Table 10 reports binary detection accuracy for all attacks and defenses. Table 11 reports corresponding AUROC values.

Across all attack types—including classical gradient-based attacks (PGD, SQ, PT) and modern diffusion-based or non-parametric attacks (AdvAD, PGN, BSR)—our detector achieves the strongest performance on both ResNet-18 and ViT. Competing baselines degrade substantially under stronger or low-magnitude attacks, whereas our Z-P discrepancy remains highly separable across architectures, perturbation magnitudes, and attack mechanisms.

Attack	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	97.8	91.7	74.4	46.3	81.9	<u>97.5</u>	69.5
	ViT	<u>95.7</u>	49.8	70.3	57.5	49.4	<u>93.2</u>	77.5
SQ	ResNet-18	97.6	89.1	88.5	45.8	91.9	91.9	59.5
	ViT	<u>96.2</u>	51.0	87.3	56.3	49.7	<u>90.5</u>	62.5
PT	ResNet-18	98.0	86.4	67.3	46.5	50.1	<u>90.1</u>	78.0
	ViT	<u>95.4</u>	51.3	71.2	54.9	49.3	<u>89.5</u>	78.5
AAD	ResNet-18	96.4	54.4	41.3	49.6	53.2	<u>94.6</u>	61.0
	ViT	<u>93.7</u>	52.6	52.7	53.6	50.1	<u>92.7</u>	80.0
PGN	ResNet-18	96.5	70.8	61.0	45.6	49.6	<u>94.9</u>	75.0
	ViT	<u>96.9</u>	52.2	65.8	53.7	49.9	<u>94.9</u>	75.5
BSR	ResNet-18	95.0	73.0	42.4	45.5	62.1	<u>92.9</u>	78.5
	ViT	<u>98.7</u>	51.9	53.9	53.7	50.0	<u>93.2</u>	76.0

Table 10: Detection accuracy (%) on CIFAR-10 for a range of classical and low-magnitude attacks, evaluated using ResNet-18 and ViT. Best results are in bold; second best are underlined.

Attack	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	0.99	0.81	0.69	0.49	0.51	<u>0.99</u>	0.72
	ViT	<u>0.99</u>	0.72	0.72	0.57	0.49	<u>0.96</u>	0.89
SQ	ResNet-18	0.99	0.55	<u>0.87</u>	0.48	0.49	0.95	0.54
	ViT	<u>0.99</u>	0.40	<u>0.88</u>	0.56	0.50	0.95	0.60
PT	ResNet-18	0.99	<u>0.93</u>	0.52	0.50	0.54	0.95	0.89
	ViT	<u>0.99</u>	0.47	0.63	0.54	0.52	0.94	<u>0.90</u>
AAD	ResNet-18	0.99	0.61	0.56	0.49	0.51	<u>0.97</u>	0.55
	ViT	<u>0.98</u>	0.88	0.55	0.53	0.53	<u>0.97</u>	0.94
PGN	ResNet-18	0.99	0.79	0.59	0.48	0.50	<u>0.98</u>	0.80
	ViT	<u>0.97</u>	0.54	0.61	0.55	0.51	<u>0.98</u>	0.81
BSR	ResNet-18	0.99	0.64	0.53	0.48	0.51	<u>0.95</u>	0.87
	ViT	<u>0.99</u>	0.59	0.58	0.55	0.54	<u>0.96</u>	0.84

Table 11: AUROC comparison on CIFAR-10 for various attacks generated using ResNet-18 and ViT. Best results are in bold; second best are underlined.

L.2 EXPERIMENTAL EVALUATIONS WITH ADDITIONAL METRICS

Attacks	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	0.97/0.98	0.89/0.95	0.71/0.72	0.17/0.54	0.97/0.65	0.98/0.95	0.67/0.74
	ViT	1.00/0.90	0.49/0.95	0.73/0.78	0.57/0.57	0.25/0.01	<u>0.98/0.93</u>	0.72/0.90
SQ	ResNet-18	0.96/0.97	0.88/0.89	0.83/0.88	0.16/0.52	0.22/0.01	<u>0.89/0.92</u>	0.60/0.54
	ViT	0.95/0.94	0.50/0.98	<u>0.93/0.80</u>	0.56/0.57	0.40/0.01	0.88/0.90	0.63/0.60
PT	ResNet-18	0.97/0.98	0.87/0.84	0.62/0.49	0.17/0.57	0.55/0.01	0.91/0.88	0.72/0.91
	ViT	0.99/0.93	0.50/0.98	0.75/0.61	0.53/0.56	0.25/0.01	<u>0.89/0.87</u>	0.72/0.92
AAD	ResNet-18	0.98/0.93	0.63/0.21	0.55/0.41	0.49/0.54	0.87/0.07	<u>0.89/0.93</u>	0.61/0.57
	ViT	0.93/0.92	0.51/1.00	0.55/0.61	<u>0.82/0.53</u>	0.41/0.01	0.89/0.95	0.73/0.95
PGN	ResNet-18	0.97/0.93	0.83/0.51	0.67/0.59	0.15/0.51	0.34/0.01	<u>0.90/0.91</u>	0.70/0.85
	ViT	0.98/0.95	0.51/0.99	0.67/0.58	<u>0.82/0.53</u>	0.44/0.01	<u>0.92/0.94</u>	0.71/0.86
BSR	ResNet-18	0.99/0.91	0.84/0.55	0.45/0.62	0.15/0.51	<u>0.94/0.25</u>	<u>0.96/0.88</u>	0.72/0.92
	ViT	0.99/0.98	0.50/0.98	0.51/0.64	<u>0.82/0.53</u>	0.42/0.01	<u>0.93/0.91</u>	0.71/0.87

Table 12: Precision / Recall comparison of adversarial detection on CIFAR-10 under various attacks generated using ResNet-18 and ViT, with best results in bold and second best underlined.

Table 12 reports the *precision* and *recall* of different adversarial detection methods across six attack types using both ResNet-18 and ViT. Across nearly all attacks and architectures, **our method achieves the highest precision and recall values** (highlighted in bold), often reaching **near-perfect scores close to 1.00**, demonstrating its strong ability to accurately detect adversarial inputs. In contrast, EA generally appears as the second-best performer, but still lags behind our approach, particularly on challenging attacks such as AAD, PGN, and BSR. Overall, these results show that our

detector is **highly robust and consistent**, maintaining **superior numerical performance across all attack families and both model architectures**.

Figure 9: PR curves for our method on attacks generated via ResNet-18 model on CIFAR10 dataset. The small inset box displays a zoomed-in view of the upper-right corner of the PR curves.

In Figure 9, the Precision–Recall (PR) curves show that our detector maintains consistently high precision and recall across all six attack types. All curves remain close to the top-right region, indicating strong overall detection performance. The zoomed inset further illustrates that even at high recall values (close to 1.0), the precision for each attack remains above 0.95 with only minimal degradation. The high Average Precision (AP) scores (0.987–0.998) confirm the robustness of our method, demonstrating reliable performance even against stronger modern attacks such as AdvAD, PGN, and BSR. Overall, the PR curves highlight that our approach is highly accurate, stable, and generalizes well across diverse adversarial attacks.

	Ours	MD	FS	MAD	MN
AA	94.9	67.2	82.0	48.3	71.6
CW	93.8	72.1	<u>85.3</u>	48.9	54.2
PT	94.4	84.9	<u>67.1</u>	49.5	54.8
PGD	94.8	<u>90.0</u>	73.7	49.0	78.5
SA	93.4	<u>76.7</u>	73.7	39.2	52.5
SQ	93.4	<u>87.7</u>	87.8	48.5	41.9
UP	94.4	<u>65.0</u>	52.9	49.0	45.4
AP	93.8	66.9	<u>80.7</u>	48.6	71.1
FG	94.3	72.3	<u>60.2</u>	49.1	42.2
FA	94.6	48.5	<u>49.3</u>	48.7	47.3
GB	73.2	48.5	<u>50.9</u>	48.1	46.1
PF	93.3	50.3	<u>50.7</u>	48.5	46.9
SR	93.1	48.9	<u>52.0</u>	48.9	46.8

Table 13: End-to-end accuracy (%). Best results are in bold and second best are underlined.

Table 13 shows that our method consistently achieves the highest end-to-end detection accuracy across all evaluated attacks. For every attack type, our detector outperforms all competing defenses, often by margins of 10–40%. FS and MD occasionally achieve the second-best performance, but they remain substantially weaker overall, while MAD and MN lag far behind on most attacks. These results demonstrate that our approach generalizes robustly across a broad spectrum of adversarial perturbations and maintains reliable detection performance even against diverse and challenging attack strategies.

Attacks	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	95.6	50.00	68.9	45.8	91.00	<u>94.9</u>	–
SQ	ResNet-18	96.7	50.00	84.2	45.5	49.00	<u>89.6</u>	–
PT	ResNet-18	96.2	50.00	73.7	45.0	50.50	<u>88.2</u>	–
AAD	ResNet-18	97.6	50.00	55.9	49.6	59.38	<u>95.4</u>	–
PGN	ResNet-18	96.3	50.00	63.2	46.3	49.06	<u>93.2</u>	–
BSR	ResNet-18	97.8	50.00	59.4	46.35	50.31	<u>93.6</u>	–

Table 14: Detection accuracy (%) comparison on ImageNet + ResNet-18 with best (bold) and second best (underlined).

Attacks	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	0.98	0.53	<u>0.73</u>	0.503	0.68	0.98	–
SQ	ResNet-18	0.97	0.55	0.79	0.489	0.49	<u>0.94</u>	–
PT	ResNet-18	0.99	0.52	0.71	0.45	0.50	<u>0.95</u>	–
AAD	ResNet-18	0.99	0.49	0.55	0.495	0.45	<u>0.96</u>	–
PGN	ResNet-18	0.98	0.50	0.66	0.488	0.44	<u>0.95</u>	–
BSR	ResNet-18	0.99	0.50	0.62	0.488	0.43	<u>0.95</u>	–

Table 15: AUC comparison on ImageNet with best (bold) and second best (underlined).

L.3 EVALUATION ON THE IMAGENET DATASET ON DEFAULT RESNET-18 MODEL

In this section, we additionally evaluate our method on the large-scale ImageNet Deng et al. (2009) dataset using the default ResNet-18 backbone. This allows us to verify that the detector remains effective when applied to high-resolution images and a significantly more challenging data distribution.

Note: The BY He et al. (2022) baseline does not provide a publicly available codebase, so we reproduce the method following the details reported in the original paper. Running BY requires a self-supervised model trained on the target dataset; while we trained such a model for CIFAR-10, training an equivalent backbone for ImageNet is computationally prohibitive. Consequently, we omit BY from the ImageNet experiments due to the intractable training cost and scale of the dataset.

Tables 14, 15, and 16 jointly show that our detector achieves the strongest overall performance on ImageNet across all six adversarial attacks. In terms of detection accuracy and AUC, our method consistently reaches top performance—typically in the 0.98–0.99 range—while the next-best baseline, EA, trails by 1–5% depending on the attack. The precision and recall results further reinforce this trend: our detector attains the best or second-best PR scores in nearly all settings, maintaining high recall even for challenging attacks such as AdvAD, PGN, and BSR. Competing defenses such as MD, FS, MAD, and MN perform substantially worse across all metrics. Together, these results confirm that our approach scales robustly to high-resolution ImageNet data and preserves strong discriminative ability under a wide range of adversarial perturbations.

L.4 SENSITIVITY TO THE PRIME-RESOLUTION PARAMETER k

Figure 10 shows how detection accuracy varies as the prime-resolution parameter k is changed. Across the entire tested range ($k = 3$ to $k = 8$), the mean detection accuracy remains extremely stable, fluctuating only within a narrow interval of approximately 0.954–0.957. The shaded region captures variability across repeated runs and likewise remains tightly concentrated.

These results indicate that the detector is not sensitive to the specific choice of k . Even when k is varied over a relatively broad range, the performance remains effectively unchanged. This

Attacks	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	1/0.93	0.50/1.00	0.65/0.82	0.05/0.55	0.92/1.00	0.98/0.97	–
SQ	ResNet-18	0.98/0.96	0.50/1.00	0.84/0.76	0.05/0.52	0.42/0.06	<u>0.89/0.91</u>	–
PT	ResNet-18	0.96/0.95	0.50/1.00	0.82/0.65	0.04/0.45	0.52/0.09	<u>0.87/0.89</u>	–
AAD	ResNet-18	0.99/0.96	0.50/1.00	0.51/0.55	0.49/0.54	0.87/0.21	<u>0.93/0.96</u>	–
PGN	ResNet-18	<u>0.94/0.97</u>	0.50/1.00	0.61/0.68	0.16/0.52	0.28/0.01	0.95/0.92	–
BSR	ResNet-18	0.97/0.96	0.50/1.00	0.50/0.73	0.16/0.52	0.54/0.03	<u>0.96/0.91</u>	–

Table 16: Precision / Recall comparison on ImageNet under various attacks, with best values in bold and second best underlined.

2538
2539
2540
2541
2542
2543

Attacks	Model	Ours	MD	FS	MAD	MN	EA	BY
PGD	ResNet-18	<u>0.96</u>	0.66	0.72	0.10	<u>0.96</u>	0.97	-
SQ	ResNet-18	0.96	0.66	0.79	0.09	0.10	<u>0.90</u>	-
PT	ResNet-18	0.95	0.66	0.72	0.08	0.15	<u>0.88</u>	-
AAD	ResNet-18	0.97	0.66	0.52	0.51	0.35	<u>0.95</u>	-
PGN	ResNet-18	0.95	0.66	0.64	0.24	0.02	<u>0.93</u>	-
BSR	ResNet-18	0.96	0.66	0.59	0.24	0.07	<u>0.93</u>	-

2544 Table 17: F1 score comparison on ImageNet under various adversarial attacks. Best results are
2545 shown in bold, second best underlined.2559 Figure 10: Sensitivity of the detector to the prime-resolution parameter k .

2564 robustness reflects an intrinsic property of our method, i.e., once the prime gaps are sufficiently
2565 fine to induce stable absorption and injectivity behavior, further refinement provides little additional
2566 benefit. In practice, this means that k does not require fine-tuning to achieve strong performance,
2567 simplifying deployment across different datasets and architectures.

2569

L.5 COMPARISON WITH ALTERNATIVE QUANTIZATION SCHEMES

2571 To assess whether the advantages of our quantization scheme can be replicated by other non-uniform
2572 discretization strategies, we compare it against three alternatives: *Fibonacci quantization*, *logarithmic quantization*,
2573 and standard *uniform quantization*. All approaches are evaluated under the same
2574 experimental setup and across five random seeds (1, 3, 5, 21, 42). Table 18 reports detection accuracy
2575 for each seed, together with the mean and standard deviation.

Quantization	Seed					Mean \pm Std
	1	3	5	21	42	
Ours	0.94	0.92	0.95	0.94	0.96	0.94 \pm 0.01
Fibonacci	0.62	0.61	0.55	0.60	0.68	0.61 \pm 0.04
Logarithmic	0.70	0.61	<u>0.61</u>	0.56	0.58	0.62 \pm 0.05
Uniform	0.65	<u>0.65</u>	0.60	0.56	0.65	<u>0.62</u> \pm 0.03

2583 Table 18: Detection accuracy of different quantization schemes across five random seeds. Values
2584 reported using a ResNet backbone and CIFAR-10 under mixed attacks (PGD, FGSM, APGD).

2586 Across all seeds, our method achieves the highest mean accuracy and the lowest variance, demon-
2587 strating both improved performance and greater stability compared to all alternative discretization
2588 schemes. Notably, replacing our scheme with Fibonacci or logarithmic quantization does *not* yield
2589 comparable results, despite also introducing non-uniform discretization. Uniform quantization per-
2590 forms similarly poorly. These results suggest that the structural properties of our secret prime quan-
2591 tization strategy are essential for producing a reliable Z-P discrepancy signal, and that generic dis-
cretization methods do not replicate this behavior in practice.

2592 L.6 SENSITIVITY ANALYSIS OF k_{LOCAL} AND k_{GLOBAL}
2593

	k_{local}	Accuracy		k_{global}	Accuracy
2594	8	97.90	2595	3	97.90
2596	10	86.15	2597	5	<u>95.60</u>
2598	12	92.57	2599	7	83.45
	15	<u>93.24</u>		10	85.35

2600 Table 19: Detection accuracy as a function of the local neighborhood size k_{local} (left) and the global
2601 neighborhood size k_{global} (right).
26022603 We evaluate the sensitivity of our detector to the neighborhood parameters k_{local} and k_{global} , which
2604 govern the local consistency scale and the global support for GW coupling, respectively.
26052606 For the local neighborhood size, we test $k_{\text{local}} \in \{8, 10, 12, 15\}$. Accuracy remains consistently high
2607 across all settings, with the best performance (**97.9%**) obtained at $k_{\text{local}} = 8$. While performance
2608 dips for $k_{\text{local}} = 10$, it recovers for larger values (12 and 15), indicating that the method is broadly
2609 robust to the choice of local scale.
26102611 For the global neighborhood size, we test $k_{\text{global}} \in \{3, 5, 7, 10\}$. Smaller global neighborhoods
2612 yield the best performance, with $k_{\text{global}} = 3$ achieving **97.9%**. Larger values gradually degrade
2613 performance, suggesting that excessively large global supports may introduce noise or dilute the
2614 structural alignment captured during cross-space GW coupling.
26152616 Overall, the detector displays stable performance across a wide range of neighborhood sizes, with
2617 optimal performance achieved at smaller values. Based on this analysis, we adopt $k_{\text{local}} = 8$ and
2618 $k_{\text{global}} = 3$ for all main experiments.
26192620 L.7 ROBUSTNESS AGAINST COMMON CORRUPTIONS
26212622 To assess whether the detector responds specifically to adversarial perturbations, rather than
2623 generic input noise, we evaluate its behaviour under benign corruptions using the CIFAR-C bench-
2624 mark Hendrycks & Dietterich (2019a). CIFAR-C includes a diverse set of naturally occurring degra-
2625 dation types, such as Gaussian, shot, and impulse noise; blur corruptions (defocus, frosted glass,
2626 motion, zoom); weather effects (snow, frost, fog); brightness and contrast shifts; elastic distortions;
2627 pixelation; and JPEG compression.
26282629 Table 20 reports results for the *Gaussian noise* corruption. The detector maintains high accuracy
2630 and AUROC, indicating that benign perturbations do not trigger the characteristic Z–P discrepancies
2631 associated with adversarial attacks. This supports our claim that the method does not misclassify
2632 natural corruptions as adversarial.
2633

Corruption Type	Detection Accuracy	AUROC	Precision / Recall / F1
Gaussian Noise	96.43%	0.99	0.97 / 0.96 / 0.96

2634 Table 20: Performance of our detector under Gaussian noise (CIFAR-C).
26352636 L.8 RUNTIME AND MEMORY EFFICIENCY
26372638 Table 21 compares inference-time and memory footprint across several recent adversarial detection
2639 baselines. Our detector achieves a competitive runtime of 0.12 seconds per sample while main-
2640 taining a moderate CPU and GPU memory footprint. Methods such as BY He et al. (2022) require
2641 substantially larger memory because they process multiple transformed copies of each input, result-
2642 ing in expanded intermediate activations. In contrast, our detector relies on a single forward pass
2643 through a ResNet backbone, leading to a modest GPU footprint.
26442645 Lightweight approaches such as FS Xu et al. (2018) and MN Meng & Chen (2017) offer faster
2646 runtimes but exhibit either higher memory usage or weaker robustness. Overall, our method strikes
2647 an effective balance among runtime efficiency, memory consumption, and detection performance.
2648

	Method	Runtime (s)	CPU (GB)	GPU (GB)
2646	BY	0.152	2.00	0.60
2647	EA	0.115	0.20	11.80
2648	MD	0.141	0.68	<u>0.10</u>
2649	FS	0.005	<u>0.25</u>	0.17
2650	MAD	0.105	3.30	0.00
2651	MN	<u>0.012</u>	0.78	0.10
2652	Ours	0.120	0.62	2.04
2653				

Table 21: **Runtime and memory usage of different adversarial detection methods on CIFAR-10.** Best values in bold, second-best underlined.

L.9 ROBUSTNESS AND GENERALIZATION CAPABILITIES

L.9.1 RELIABILITY ANALYSIS

We study detector reliability across a range of perturbation levels using TPR/FPR heatmaps (Fig. 11). With dataset and backbone fixed, only adversarial conditions vary, revealing how consistently detectors identify adversarial inputs while avoiding false positives on clean samples.

(a) TPR Heatmap (higher is better).

(b) FPR Heatmap (lower is better).

Figure 11: **Reliability via TPR/FPR heatmaps.** X-axis: attack types with perturbation levels, Y-axis: defenses. Thresholds are calibrated only on clean samples, so baselines yield constant FPR across attacks.

L.9.2 CROSS-ATTACK GENERALIZATION

To evaluate generalization to unseen attacks, we train on ResNet18 adversarial samples from FG and PGD, then test on CW, SQ, SA, and PT. Results (Table 22) report accuracy, adversarial recall, and adversarial precision. Our method consistently outperforms baselines, demonstrating robustness to unseen attack families.

Attack	Ours	MD	FS	MAD	MN
CW	97.5/100/95	71/51/86	90/90/90	49.5/69/46.6	60/45/63
SQ	93.5/98/89	88/85/91	94.5/99/90.8	48.5/63/47	45/15/46
SP	95.5/99/92	86/80/90	92.5/95/90.5	49/67/49	48/21/46
PT	95/100/90	91/90/91	89.5/89/89.9	49/67/49	45/15/37

Table 22: **Cross-Attack Generalization.** Accuracy / Recall_{adv} / Precision_{adv} (%).

2700 L.9.3 CROSS-MODEL GENERALIZATION
27012702 We also test transfer robustness by training on ResNet18 attacks and evaluating on FourierNet (FNet)
2703 adversarial samples. Table 23 reports detection accuracy, recall, and precision. Our method again
2704 outperforms baselines, showing resilience to model transfer attacks.
2705

Attack	Ours	MD	FS	MAD	MN
CW	95/97/94	54/17/68	73.5/91/67.4	50/69/50	50/25/52
SQ	87/93/83	51/10/55	<u>77.0/98/69.0</u>	49/67/49	52/29/54
SP	94/93/95	64/37/82	<u>74/92/67.6</u>	49/67/49	53/31/56
PT	96/95/97	57/22/73	<u>72.5/89/66.9</u>	47/64/48	49/22/47
FG	93/99/89	55/18/69	<u>70.0/84/65.6</u>	46/61/47	50/25/50
PGD	98/99/99	56/21/72	<u>74.5/93/67.9</u>	50/69/50	50/26/52

2714 Table 23: **Cross-Model Generalization.** Accuracy / Recall_{adv} / Precision_{adv} (%).
27152716 L.10 TRUE POSITIVE RATE (TPR) ANALYSIS
27172718 Table 24 reports the *true positive rate* (TPR) across adversarial attack types, i.e., the fraction of
2719 adversarial inputs correctly detected as adversarial. The formula is, $TPR = \frac{\text{detected adversarial}}{\text{all adversarial}}$. Bold
2720 entries denote the best-performing method, and underlined entries denote the second best. Our
2721 method consistently achieves the highest TPR in 12 out of 13 attacks, showing large margins es-
2722 pecially for transfer-based (UP) and perceptual/frequency attacks (FA, PF, SR). The only exception
2723 is Gaussian blur (GB), where all detectors struggle, but our method still provides a clear advantage
2724 over baselines. These results highlight that our cross-space framework is particularly effective in
2725 reliably flagging adversarial samples, even under challenging attack families.
2726

Attack / Method	Ours	MD	FS	MAD	MN
AA	97.40 ± 1.07	50.60 ± 1.99	86.50 ± 1.24	57.96 ± 3.10	74.09 ± 1.26
CW	96.33 ± 0.57	59.90 ± 0.65	<u>93.20 ± 0.14</u>	56.82 ± 1.52	39.30 ± 1.60
PT	97.73 ± 0.34	85.50 ± 0.85	56.70 ± 2.49	55.33 ± 3.92	40.50 ± 1.66
PGD	97.20 ± 1.07	<u>95.30 ± 0.62</u>	69.90 ± 2.68	56.22 ± 1.18	87.90 ± 0.29
SA	96.67 ± 0.23	69.00 ± 1.91	<u>69.90 ± 0.17</u>	36.20 ± 0.62	35.80 ± 2.86
SQ	<u>96.67 ± 0.90</u>	91.20 ± 0.77	98.20 ± 1.12	55.90 ± 3.34	14.80 ± 1.12
UP	97.00 ± 1.14	45.60 ± 3.06	28.50 ± 2.52	<u>55.80 ± 2.12</u>	21.70 ± 1.17
AP	96.22 ± 1.11	49.30 ± 1.65	83.90 ± 1.44	<u>54.28 ± 1.59</u>	73.10 ± 1.51
FG	96.87 ± 1.57	60.30 ± 2.64	42.90 ± 3.26	53.09 ± 0.72	15.30 ± 1.57
FA	94.33 ± 1.23	<u>12.50 ± 0.88</u>	21.10 ± 1.23	<u>53.34 ± 3.08</u>	25.50 ± 1.78
GB	73.00 ± 10.27	12.40 ± 1.92	24.50 ± 0.53	<u>50.42 ± 2.38</u>	23.10 ± 2.06
PF	96.33 ± 0.57	16.10 ± 1.20	24.00 ± 0.46	<u>53.01 ± 3.65</u>	24.70 ± 1.21
SR	95.33 ± 1.07	13.30 ± 0.19	26.60 ± 1.24	54.20 ± 2.37	24.40 ± 2.29

2741 Table 24: **True positive rate (%) on adversarial samples:** This table shows the results of TPR
2742 measured on adversarial samples.
27432744 L.11 EXPERIMENTS ON FMNIST AND KMNIST
27452746 Table 25 and Table 26 show the result of the detection accuracy on FMNIST and KMNIST re-
2747 spectively. Regarding the performance of MD on FMNIST and KMNIST, we observed that the
2748 distributions of Mahalanobis scores for clean and adversarial samples did not show significant
2749 difference. This is because clean and adversarial features for FMNIST and KMNIST are fairly similar
2750 in the feature space of ResNet18, making it difficult for MD to distinguish between clean and adver-
2751 sarial samples. The similar feature representations in these datasets limit the separability of the two
2752 distributions of Mahalanobis scores. A similar phenomenon regarding the distributions of clean and
2753 adversarial features used for detection was observed in MN.

2754
2755
2756
2757
2758

Attack	Ours	MD	MN
AA4	97.60 ± 0.22	50.00 ± 0.56	49.90 ± 1.59
AA8	96.43 ± 0.59	50.40 ± 0.86	50.10 ± 1.75
CW	96.10 ± 1.63	51.60 ± 0.67	<u>54.05 ± 1.43</u>
PT7	98.63 ± 0.17	89.45 ± 0.45	<u>90.20 ± 0.32</u>
PT14	94.10 ± 0.49	90.20 ± 0.43	90.09 ± 0.32
PGD	97.63 ± 0.53	49.80 ± 0.67	49.90 ± 1.80
PGD8	95.33 ± 0.97	51.45 ± 0.69	50.30 ± 1.82
SA	97.21 ± 1.36	80.80 ± 2.01	53.10 ± 0.15
SQ	97.20 ± 0.57	50.05 ± 0.55	50.00 ± 0.18
SQ8	96.47 ± 4.01	52.20 ± 0.67	50.73 ± 0.52
UP	99.87 ± 0.05	50.05 ± 0.71	<u>50.23 ± 1.85</u>
UP8	98.30 ± 1.27	51.15 ± 0.55	50.65 ± 1.50
UP12	99.23 ± 0.68	54.75 ± 1.37	51.80 ± 1.23
AP	98.63 ± 0.34	49.70 ± 0.65	49.49 ± 1.74
AP8	99.50 ± 0.36	50.05 ± 0.99	50.20 ± 1.83
FG	97.27 ± 3.44	59.95 ± 0.67	49.95 ± 1.66
FG8	95.53 ± 0.62	51.85 ± 0.81	50.78 ± 1.73
FA	97.65 ± 0.78	68.90 ± 0.30	45.65 ± 0.90
GB	87.27 ± 0.32	68.12 ± 0.49	41.60 ± 0.10
PF	92.22 ± 0.45	69.68 ± 0.42	48.85 ± 1.17
SR	97.65 ± 0.76	70.30 ± 0.77	41.99 ± 1.43

2775 Table 25: The results of binary accuracy on FMNIST using ResNet18.
2776

2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

Attack	Ours	MD	MN
AA	97.33 ± 0.33	50.10 ± 1.91	50.00 ± 1.00
AA8	98.08 ± 0.26	50.30 ± 1.84	50.00 ± 0.98
PT7	96.87 ± 0.35	53.35 ± 0.86	<u>75.8 ± 0.72</u>
PT14	97.63 ± 0.46	52.20 ± 0.31	<u>86.27 ± 0.27</u>
PGD	98.10 ± 0.45	50.95 ± 1.72	49.45 ± 0.68
PGD8	98.60 ± 0.36	51.80 ± 1.47	49.25 ± 0.69
SA	98.10 ± 1.85	50.45 ± 0.98	<u>56.50 ± 0.39</u>
SQ	98.77 ± 0.05	51.15 ± 1.49	48.85 ± 0.96
SQ8	95.32 ± 3.51	52.25 ± 1.48	48.85 ± 0.85
UP	99.87 ± 0.05	51.15 ± 0.61	49.60 ± 0.67
UP8	98.30 ± 1.27	52.05 ± 1.41	49.90 ± 0.10
UP12	99.41 ± 0.05	53.10 ± 1.47	50.05 ± 0.70
AP	98.63 ± 0.34	50.60 ± 1.78	49.65 ± 0.68
AP8	99.50 ± 0.36	51.35 ± 1.36	49.25 ± 0.69
FG	97.57 ± 1.54	51.15 ± 1.54	49.65 ± 0.68
FG8	99.47 ± 0.25	52.05 ± 1.71	48.70 ± 0.10
FA	98.16 ± 1.76	50.00 ± 1.85	49.95 ± 0.91
GB	93.86 ± 0.34	38.85 ± 1.56	41.15 ± 1.04
PF	96.87 ± 0.65	49.00 ± 1.96	<u>52.20 ± 0.74</u>
SR	98.10 ± 1.85	48.95 ± 1.53	<u>52.12 ± 0.66</u>

2802 Table 26: The results of binary accuracy on KMNIST using ResNet18.
2803

2804
2805
2806
2807

2808 **M COMPARISON OF OUR PROPOSED DEFENCE AGAINST BASELINE**
 2809 **DEFENCES ON CIFAR-10 DATASET**
 2810

2811 **M.1 BINARY ACCURACY COMPARISON**
 2812

2813 In this section we present the **binary accuracy** results for detecting adversarial attacks on CIFAR-
 2814 10. This metric measures how well each defense method can correctly classify samples as either
 2815 adversarial or clean. Our proposed method consistently outperforms all baselines across all attack
 2816 types, achieving accuracy rates between 96.97% and 97.83%. The Mahalanobis Detector (MD)
 2817 shows the second-best performance for most attacks, while Feature Squeezing (FS) performs well
 2818 on specific attack types like CW and PGD4. The MAD and MN methods show poor performance
 2819 with accuracies around 50%, essentially equivalent to random guessing. The standard deviations for
 2820 our method are consistently low (0.22% to 0.65%), indicating stable and reliable performance.

Attack / Metric	Ours	MD	FS	MAD	MN
AA8	97.73 ± 0.47	90.40 ± 1.4	79.35 ± 0.84	50.85 ± 0.20	79.04 ± 1.03
CW	96.97 ± 0.61	73.55 ± 2.13	86.00 ± 0.56	51.43 ± 2.16	56.65 ± 1.71
PT8	97.30 ± 0.22	52.80 ± 1.91	52.00 ± 0.55	43.43 ± 2.32	51.09 ± 0.95
PGD	97.57 ± 0.54	71.25 ± 1.60	81.10 ± 1.07	48.91 ± 1.33	76.05 ± 0.83
SQ	97.30 ± 0.65	86.85 ± 1.81	84.70 ± 1.23	49.11 ± 1.32	44.45 ± 1.48
UP	97.83 ± 0.50	66.40 ± 2.40	53.65 ± 1.23	50.92 ± 1.86	47.85 ± 1.83
AP8	97.50 ± 0.22	90.0 ± 2.17	79.20 ± 1.49	50.87 ± 1.3	79.30 ± 0.41
FG8	97.73 ± 0.42	85.85 ± 1.34	63.35 ± 2.18	50.68 ± 2.07	44.40 ± 1.54

2830
 2831 **Table 27: Comparison of detection performance (%) under different adversarial attacks:** Bold
 2832 values indicate the best performance, and underlined values denote the second-best.
 2833

2834 **M.2 TPR ON ADVERSARIAL SAMPLES COMPARISON**
 2835

Attack / Metric	Ours	MD	FS	MAD	MN
AA8	96.60 ± 0.86	93.56 ± 1.51	79.90 ± 1.72	55.67 ± 2.49	84.10 ± 1.03
CW	96.33 ± 0.57	59.90 ± 0.65	93.20 ± 0.14	56.82 ± 1.52	39.30 ± 1.60
PT8	96.07 ± 0.5	18.40 ± 1.80	25.20 ± 0.39	40.83 ± 1.90	28.20 ± 1.03
PGD	97.07 ± 1.34	55.30 ± 1.12	83.40 ± 2.22	51.79 ± 1.78	78.10 ± 0.30
SQ	96.00 ± 0.75	86.50 ± 2.76	90.60 ± 1.48	52.19 ± 1.56	14.90 ± 1.23
UP	97.00 ± 1.14	45.60 ± 3.06	28.50 ± 2.52	55.80 ± 2.12	21.70 ± 1.17
AP8	96.73 ± 1.09	92.60 ± 0.96	79.60 ± 3.50	55.69 ± 2.17	84.60 ± 2.73
FG8	96.87 ± 0.96	84.50 ± 2.19	47.90 ± 3.63	55.32 ± 1.27	14.80 ± 1.49

2845
 2846 **Table 28: The results of TPR measured on 1k adversarial samples.** TPR := (the number of adv
 2847 correctly detected) / (the number of adv) $\times 100$ (%). The best results are written in **bold**, and the
 2848 second-best results are written with underlines.
 2849

2850 In this section we focus on **True Positive Rate (TPR)**, which specifically measures how well each
 2851 method detects adversarial samples (the percentage of adversarial samples correctly identified as
 2852 adversarial). Our method maintains excellent TPR performance (96.00% to 97.07%) across all
 2853 attack types. Feature Squeezing (FS) shows strong TPR for CW and SQ4 attacks (93.20% and
 2854 90.60% respectively) but performs poorly on P8 and UP4 attacks. The Mahalanobis Detector (MD)
 2855 demonstrates good TPR for AA8 and AP8 attacks (92.3% and 91.4%) but fails significantly on
 2856 P8 attack (16.8%). The MAD method shows moderate TPR (40.83% to 56.82%) but with high
 2857 variance, while MagNet (MN) fails with low TPR for most attacks, indicating it cannot effectively
 2858 detect adversarial samples.
 2859

2860 **M.3 END TO END ACCURACY COMPARISON**
 2861

2862 In this section we present the **end-to-end accuracy**, which is a comprehensive metric that considers
 2863 both correct detection of adversarial samples by the detector and correct detection of clean samples

and correct classification of clean samples. Our method achieves excellent end-to-end accuracy (93.9% to 94.8%) across all attack types, demonstrating consistent and robust performance. The Mahalanobis Detector (MD) shows moderate performance (51.0% to 89.0%) with good results on AA8 and AP8 attacks but struggling with P8 attack. Feature Squeezing (FS) shows reasonable performance (51.30% to 85.30%) but with significant variation across different attacks, performing well on CW and SQ4 attacks but struggling with P8 and UP4 attacks. The MAD method shows poor performance (42.03% to 49.18%) with accuracies around random guessing level. MagNet (MN) performs with low accuracies for most attacks, indicating it cannot provide effective end-to-end protection. The consistency of our method across different attack types demonstrates its robustness and reliability in maintaining both detection accuracy and classification performance under adversarial conditions.

Attack / Metric	Ours	MD	FS	MAD	MN
AA8	94.1	<u>89.0</u>	78.64	49.18	76.60
CW	94.8	72.0	<u>85.30</u>	48.92	54.20
PT8	94.4	51.0	<u>51.30</u>	42.03	48.65
PGD	94.4	70.0	<u>80.40</u>	48.72	73.60
SQ	93.9	<u>86.0</u>	84.00	47.99	42.00
UP	94.4	<u>65.0</u>	52.94	48.99	45.40
AP8	94.6	<u>89.0</u>	78.50	48.58	76.85
FG8	94.5	<u>84.0</u>	62.64	49.04	41.95

Table 29: The results of end-to-end accuracy: ((the number of correctly detected adversarial samples by the detector)+(the number of correctly detected clean samples and correctly classified samples))/(1000 + 1000).