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ABSTRACT

Adpversarial vulnerability persists across modern vision architectures from CNNs
to vision language models (VLMs), yet existing detection methods rely on heuris-
tics without theoretical guarantees. We address the fundamental question of when
adversarial perturbations can be provably detected from a geometric perspective.
Our key insight is that adversarial perturbations cannot simultaneously preserve
geometric structure across spaces with fundamentally different properties. Ac-
cordingly, we construct two such complementary metric spaces. First, we use
a standard CNN embedding space Z, where adversarial samples exhibit signifi-
cant displacement patterns. Second, we build a novel prime-quantized space P,
that absorbs small perturbations through number-theoretic discretization, result-
ing in minimal displacement, while preserving discriminability. We then leverage
the geometric discrepancies across spaces Z and P to detect adversarial sam-
ples. To the best of our knowledge, we establish the first rigorous separation the-
ory for adversarial detection, proving that adversarial samples create unavoidable
geometric inconsistencies across both spaces. Our framework provides theoret-
ical guarantees including pixel-level absorption bounds, neighborhood diameter
concentration, Gromov-Wasserstein (GW) separation theorems, and practical risk
control. Extensive experiments validate our theoretical predictions and achieve
consistently strong detection performance across a wide range of attack types and
model families.

1 INTRODUCTION

Vision systems have rapidly progressed from CNNs He et al.| (2016) to Vision-Language Models
(VLMs) Radford et al.|(2021)) and multimodal architectures |(OpenAll (2023), yet adversarial vulner-
ability persists across all these paradigms. As these increasingly capable models are deployed at
scale, the consequences of undetected adversarial attacks also scale, making detection a core safety
requirement.

Defenses fall into three main families. Adversarial training (Madry et al.| 2018} Zhang et al.} 2019
Gowal et al.;, [2021) augments models with adversarial examples. While effective in restricted sce-
narios, it requires expensive retraining and often fails to generalize across diverse attacks, includ-
ing gradient-based (Goodfellow et al., 2015; Madry et al.| [2018}; |Carlini & Wagner, 2017)), physi-
cal (Brown et al., [2017), and natural corruptions (Hendrycks & Dietterich, 2019; [Engstrom et al.
2019). Detection methods (Metzen et al., [2017; [Feinman et al., [2017; Ma et al., [2018; |[Lee et al.,
2018; Ma et al.| 2019 [Meng & Chenl [2017; Mahmood et al.| 2021)) rely on auxiliary classifiers or
statistical tests, but remain heuristic and easily broken by adaptive adversaries (Athalye et al.,|2018)).
Certifiable robustness (Raghunathan et al.,|2018}; |(Cohen et al.,[2019; Salman et al., 2019) provides
provable invariance regions, but targets robust classification rather than detection, and is compu-
tationally intensive. Trade-off frameworks such as TRADES (Zhang et al.l 2019) deepened our
theoretical understanding, but left unanswered the key question: “Can detection itself be endowed
with guarantees, and what properties make adversarial examples inherently detectable?”

Our insight. Clean and adversarial samples leave distinct geometric traces across two complemen-
tary spaces, namely, the CNN embedding space Z and a prime-quantized space P. In Z, clean
samples form tight neighborhoods, while adversarial ones exhibit characteristic displacements that
disrupt local structure. In P, each pixel is discretized by rounding to nearby primes under a secret
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bit mask, so small perturbations are either absorbed within prime gaps or forced into discrete jumps.
This mechanism preserves overall discriminability yet creates systematic cross-space inconsisten-
cies, making adversarial inputs detectable through geometric analysis.

To the best of our knowledge, we establish the first rigorous separation theory for adversarial de-
tection, spanning four levels of guarantees: (i) pixel-level absorption bounds proving when pertur-
bations vanish in P or cross prime-gap boundaries, (ii) /{-NN diameter envelopes showing clean
and adversarial neighborhoods diverge differently in Z and P, (iii) cross-space separation theorems
based on Gromov—Wasserstein (GW) distances that yield a non-vanishing gap scaling with dimen-
sion and perturbation strength, and (iv) risk control guarantees establishing that simple thresholding
achieves bounded misclassification rates. Together, these results provide a principled foundation for
adversarial detection, addressing the open question of when and why detection must succeed.

Contributions. (i) We introduce prime quantization, a cryptographically inspired discretization that
generalizes across CNN, VLM, and multimodal architectures, and could extend to other one-way
transforms. (ii) We present a unified theoretical framework proving that adversarial perturbations
necessarily induce cross-space inconsistencies, with guarantees from pixel absorption up through
GW-based separation. (iii) We empirically validate our method on a broad suite of attacks, VLM
zero-shot settings, and adaptive adversaries, demonstrating consistent and strong performance com-
pared to state-of-the-art defenses.

2 RELATED WORK

Adversarial attacks are categorized by attacker knowledge into: (i) white-box (FGSM (Goodfellow
et al.,[2015), PGD (Madry et al.;,[2018), C&W (Carlini & Wagner,[2017)), (ii) black-box (ZOO (Chen
et al., 2017), Square (Andriushchenko et al., 2020)), and (iii) adaptive attacks that exploit defense
mechanisms (Athalye et al., 2018)), often defeating methods that appear robust under non-adaptive
evaluation.

Detection methods include: (i) autoencoder-based reconstruction (MagNet (Meng & Chen, |2017)),
PixelDefend (Song et al.l 2018)), (ii) distributional analysis (Mahalanobis (Lee et al., 2018)), (iii)
prediction differences (Feature Squeezing (Xu et al., 2018))), and (iv) learned classifiers (MetaAd-
vDet (Ma et al.,[2019)). These approaches remain heuristic and are routinely bypassed by adaptive
adversaries, with no guarantees on when detection must succeed.

Robust training and certification methods such as adversarial training (Madry et al., |2018),
TRADES (Zhang et al.}2019), and certified defenses based on randomized smoothing (Cohen et al.}
2019) or patch-based strategies (Xiang et al.,|2022)) aim at robust classification rather than detection,
often requiring retraining and incurring accuracy trade-offs.

In contrast, our work provides the first theoretical guarantees that adversarial perturbations create
unavoidable cross-space inconsistencies, yielding a principled basis for detection with quantifiable
confidence. Unlike most prior defenses, we further evaluate on vision—language models in zero-shot
settings, highlighting robustness beyond CNN benchmarks.

3 PRELIMINARIES

We introduce notation and the prime-quantized space used by our detector.

Let X € [0,1]¥*4 be N images, each z; € [0,1]¢ a flattened vector of d normalized pixels with
label y; € Y (Y] = C). A classifier fo = gg o hg (Where hy is the feature extractor and gy the
classification head) has embedding Z; = hy(z;) € R™, with Z = [Z,..., Zy]T. With a slight
abuse of notation, we also use Z to denote the ambient embedding space R™ equipped with the
Euclidean metric dz(z;, zj) = ||z; — 2;||2. Thus, each Z; is both a row of the embedding matrix and
a point in metric space (Z,dz).

Definition 1 (Adversarial perturbation). Given x;, a perturbation 1 € R? yields &; = x; + . It is
e-bounded if ||n]| 0o < €.

To defend against such perturbations, we transform images into a discrete prime space via three
steps: (i) scale to integers, (ii) round to primes, and (iii) rescale.
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Definition 2 (Scaling). For k € N, let Py, = {p < 10* : p prime}. Define Si(z; ;) = |z;10%]
and S;*(n) =n-107F.

Definition 3 (Prime rounding). Given secret bit b; € {0, 1}, map integer n to the nearest prime in
Py. If pe <n < pey1, where pg,py1 € Py, then Rg))(n) = P, R,(:)(n) = pey1.

Definition 4 (Prime quantization). The pixel transform is T,ib-")(:vi’j) =5, 1(ngb-")(Sk(a:m-))).
Extending component-wise yields T,gb) : [0,1]4 — [0, 1)

Example 1. For k = 2, x;; = 0.38 gives Sy = 38, between 37 and 41. Then TS") = 0.37,
TQ(U = 0.41. A perturbation 0.385 still maps to 38, hence quantization is unchanged.

Space transformation. T,Eb) maps images into discrete P, where prime gaps and secret (b, k) yield
irregular, attacker-unpredictable rounding. Unlike uniform quantization, prime rounding introduces
structured but unpredictable discretization.

Problem statement. Given x € [0, 1]%, construct a detector D(z) € {clean,adv} by comparing

hg(z) € Z and T,Eb) (z) € P, ensuring w.h.p. that clean inputs agree across spaces while adversarial
ones create detectable discrepancies.

4 MULTISCALE GROMOV-WASSERSTEIN (GW) ADVERSARIAL DETECTOR

Our method compares neighborhood behaviors of samples across the embedding space Z and the
prime-quantized space P, exploiting their complementary geometries.

Clean neighborhoods. In Z, clean samples cluster by class, so a sample’s local neighborhood
is dominated by its true label and its global neighborhood aligns with class centroids. In contrast,
prime quantization scatters samples uniformly in P, destroying spatial coherence, resulting in neigh-
borhoods that show nearly uniform label distributions without clustering.

Adversarial neighborhoods. In Z, adversarial ) e )
samples jump from their true cluster toward a wrong NRE) oo e M;(f’/')
e . . | 2 :

qlass, shlftlng.both loca}l apd global label dlstrlbu— | M)~ s N,
tions. In P, prime quantization often reduces the im- | ‘ i
pact of small perturbations, depending on the quanti- o § . R
zation gaps and perturbation strength. Therefore, ad- N . Y o Vel o

. . . % (09 Jump + + * e
versarial neighborhoods tend to resemble their clean | * ot t_ re *
counterparts more closely. This creates systematic 3 LI NP + .
cross-space discrepancies between Z and P. ANEEE AN ) + (;\;‘4 « P

: * o T T . °

We next formalize these ideas via neighborhood ; 0,07

maps and quantify their mismatches using Gromov-

Wasserstein (GW) distances. . .
Figure 1: Geometry in Z (clusters) vs. P

Definition 5 (Neighborhood map and induced dis- (dispersed).

tributions). Let (M, dy) be a metric space. For a
query ¢ € M and integer K > 1, a neighborhood
map N I'\é' : M — 2M yeturns a set of K reference points, defining local neighborhoods when K
corresponds to nearest neighbors or global neighborhoods when K corresponds to class centroids.
The corresponding spatial distribution is uf! () = % Zze/\f}g(q) 0, € P(M) (ie., the space

of probability measures over M). If ¢ : M — {1,...,C} is a class-label map, the corresponding
semantic distribution is defined by the pushforward Y} (q) = cupf(q) = %> .c N () Oc(z) €
PL,...,C}).

The GW distance compares probability distributions that are supported on possibly distinct metric
spaces via alignment.

Definition 6 (Gromov-Wasserstein Distance). Consider two metric measure (mm) spaces
(X,dx,ux)and (Y,dy ,vx) along with a loss function L*(x, 2 y,y') == |dx (x,2")—dy (y,y')|%,
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the squared GW distance between them is

GWoxoy)im _int (et x dy (e’ < dy)
YE(pxvy) Jxxy JX xY

, where Tl (11x , vy ) denotes the set of couplings between measures px and jvy . Additionally, ~(dx ¥

dy)y(dz' x dy’) represent integration w.r.t. the product coupling v ® ~.

As exact computation of GW? uses a quadratic assignment problem (QAP), known to be NP-
hard |Abdel Nasser H. Zaied| (2014)), various approximate reformulations that are computationally
tractable have been proposed. We focus on the entropic GW distance proposed by Peyré et al.
(2016))

GWR(ux,vy) = __inf //LQ(%x’,y,y’)v(dw x dy)y(dz' x dy') + MK L(v||px @ vy)
yel(px,vy)

, where K L(-,) is the Kullback-Liebler divergence between coupling ~ and the product measure

tx @ vy, and A > 0 is a regularization parameter.

Algorithm. Our detector takes an image z, extracts its CNN embedding z = hg(z) € Z and prime-

quantized version p = T,gb) (x) € P, and compares neighborhoods at two scales (s € {lo, gl}).
For each scale, we compute (i) spatial distributions 12, 1%, (ii) semantic distributions ¥Z, ¢, and
derive g1 = GW3 (uZ, b)), go = GW3(¢Z,F), and entropy h = ENTROPY (47, ¢F). The
resulting six-dimensional feature vector £(2) = [91 10, 92,10, Mos 91,815 92,0l hgl] encodes cross-space
discrepancies, which are classified by an SVM. Full pseudocode is provided in Algorithm |1} in
Appendix [K.1]

5 GEOMETRIC FOUNDATIONS AND THEORETICAL GUARANTEES

We begin by analyzing the stability of the prime quantization map 7 () , which is central to our cross-
space detector. The key question is, "when does a perturbation vanish into quantization noise, and
when does it inevitably alter the output?” Our results formalize two complementary phenomena:
pixel-level local stability and image-level injectivity. Prime quantization related proofs are deferred
to Appendix [C} All our formal results are stated for local neighborhoods. While the framework
naturally extends to global neighborhoods, we leave the full theoretical treatment of that case to
future work.

5.1 PIXEL-LEVEL ABSORPTION

The absorption radius (Definition[7) captures the largest perturbation at a pixel that leaves its quan-
tized value unchanged.

Definition 7 (Absorption radius). For z; € [0,1] with Sk(z;) = n € (pe, pe+1), the absorption
min{n_pévkpé+l_n}
10% :

radius is Taps (x5, k) =

Proposition 1 (Absorption guarantee). If |1;| < rans(z;, k), then T,gbj)(xj +n,) = T,gbj)(a:j)for
all bits b;.

Lemma 1 (Absorption bounds). For any x; € [0,1], 545 < raps(2j, k) < 3.

Remarks. These results formalize pixel-level stability: perturbations smaller than r,ps vanish
under prime quantization, while larger ones necessarily cause a quantization change. Although
Lemmapermits Tabs < 1/2, practical values are tiny (e.g., < 1.8 x 1073 for k = 4). Since adver-

sarial budgets in vision (€ > 1/255 ~ 3.9 x 10~2) typically exceed these radii, most attacks cross
prime boundaries and induce detectable discrepancies between Z and P.

5.2 IMAGE-LEVEL INJECTIVITY

While prime quantization is many-to-one per pixel, we must ensure it does not collapse distinct
images globally. Lemma[2]shows that such collisions are exponentially unlikely.
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Lemma 2 (Collision probability). Fix k > 2 and let N := 10*. Let x,2' € [0,1]¢ be two inde-
pendent random images with i.i.d. pixel marginals whose densities are bounded by A on [0,1] (in

particular, N = 1 for the uniform distribution). For a fixed secret bit vector b € {0,1}%, let T,gb)
be the prime—quantization transform (Definition H)). Assume the prime—gap envelope Gy, from As-

d
sumption Then, Pr [T,Eb)(a:) = T,Eb) ()] < (A2 %) . In particular, for A = 1, the collision

probability decays as (G k/ 10k)d in the number of pixels.

Remarks. Lemma 2] establishes that global collisions are vanishingly rare. Even with pixel-level
absorption, distinct images remain separable: e.g., for CIFAR-10 (d = 3072) and k = 4, (G}, /10%)4
is effectively zero. Thus, quantization is locally many-to-one but globally almost injective, ensuring
discriminability while dampening small perturbations.

5.3 BRIDGE TO GW SEPARATION

Pixel-level absorption (Def. [7] Prop. [I) and image-level injectivity (Lemma [2) set the boundary
conditions: if € < s, perturbations vanish in P while Z still moves; if € > 7,15, quantization
shifts and P changes—so in both regimes Z and P neighborhoods diverge. To formalize these
divergences, we embed samples into spatial-semantic product spaces C = (Z x Y,d¢) and K =

(P xY,dx), representing each image as (hg(x),y) and (Téb) (),y). By Theoremand Corollary
the /., product is the tightest among admissible component metrics, so any discrepancy in geometry
or label mass yields separation in C and K. This construction underlies the GW envelope and gap
theorems that follow.

5.4 DIAMETER ENVELOPES IN C AND K

We now summarize the behavior of k-nearest neighbor diameters in the two product spaces C (CNN-
based) and /C (prime-quantized). For clean samples, diameters concentrate tightly around a median
distance; for adversarially perturbed samples, explicit additive expansion terms appear. The full
technical statements and proofs are deferred to Appendix [E]

Lemma 3 (Unified local diameter envelopes in C and ). For any confidence 6 € (0,1) and local
neighborhood size K\, > 2, and under the variance proxy (Assumption[2)) and prime-gap sensitivity
(Assumption [B) conditions (see Appendix [E), the following bounds hold for clean queries q and
adversarial queries ¢ = q + n:

diam (,/\/‘Ic(lo(q)) < 2[[1,(;(1—}-\/210%K10 _|_\/2logL(i2/5))7 (1)
=USean
diam (NG, (@) < USean + 22 [lloc + 2115, e)
N——
Jacobian drift
. s , A 210g(2/0
dinm (N, (@) < 20(a) (14 iy /208 1 o f21on2i0)), 4
=:Ufjean

A

diam (/\/}’20@)) < Uﬁean + Cy \/(3(\/210gK10+ \/2log(2/6)> + 2\\/[%0 Illo0 4+ 21gyzq-

key sensitivity
“)
Here pc is the clean median pairwise distance in C, i2**(q) is the maximum key-annealed median
distance in K, o is the variance proxy from Assumption 2] Cy, = 2Gy, is the prime-gap sensitivity
constant from Assumption 3] and 1 is the adversarial perturbation.
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Figure 2: Geometric inconsistency detection and gap theorem validation. 1st panel: clean neigh-
borhoods; 2nd panel: adversarial separation (y¢ = 3.567); 3rd panel: gap theorem across ¢ €
{2/255,4/255,6/255,8/255}; 4th panel: risk control thresholding (left:clean; right:adversarial).

Geometric Insight. In C, clean neighborhood diameters concentrate around a median distance
(App. Lemma [f]), while adversarial perturbations add a Jacobian-driven drift and a possible label-
flip penalty (App. Thm. [7} cf. equation [Tl-equation[2)). In K, clean neighborhoods are stabilized by
prime-gap sensitivity (App. Thm. [8), whereas adversarial perturbations add terms from key sensi-
tivity, perturbation norms, and label flips (App. Thm. [0} cf. equation [3}-equation ). Together these
define the diameter envelopes that underlie the cross-space GW theorems. Fig.[2| (1st—2nd panels)
empirically confirms this: clean samples form compact clusters consistent with Thms. [6] [8] while
adversarial queries induce the predicted separation gap ¢ = 3.567 (App. Thm. [2).

5.5 GROMOV—WASSERSTEIN BOUNDS: CLEAN VS. ADVERSARIAL

We now move from local geometry (K-NN diameter bounds in C and XC, Lemma3) to a distribu-
tional geometry comparison across spaces. The Gromov—Wasserstein (GW) distance aligns pairwise
distance structures, allowing us to bound: (i) in the clean case, similarity of C and /C, and (ii) in the
adversarial case, a provable increase when perturbations inflate diameters differently across spaces.
This separation underlies our detection framework.

Theorem 1 (Clean cross—space GW upper bound via K-NN star radii). Fix a clean query x and
consider its local neighborhoods NG (x) C C and N (x) C K, each endowed with the uniform
probability measure on K points.

Let Re and Ry denote the corresponding K-NN radii (the K-th star distances from x) in C and
IC respectively. Then, for any confidence levels é¢c,d0x € (0,1), the following high-probability
envelopes hold:

Lie (1 + \/ 20og K \/ 2log(2/ 50)) with probability > 1 — é¢, (5)

i (1 + 5—;\/3(\/2 log K + /2 log(2/6;c))) with probability > 1 — §c.  (6)

Re

IN

IN

Rx

Consequently, with probability at least 1 — (6¢ + dxc),
Gw2(/v§(x), Ng(m) < 4(1 - %) (Re + Ric)’. )

Full proof and derivation of radius envelopes equation [S}-equation[6]are given in Appendix

Notation (adversarial queries, radii, and gap). For a clean input x and perturbation 7, the ad-
versarial query in M € {C,K} is gu = 2M(z + 7). Its K nearest neighbors form j\~/1'\("(x +1n) =
{M, 2MY with radii ¥M = dw(2M, Gum) and maximum R = max; rM. We partition the K
neighbors into an inner set L of size (1 — ) K and outer set H of size 0K, and define the separation
gap as ym = min;e M — max; ey, r;\»".

Theorem 2 (Adversarial cross—space GW lower bound). Fix a query x and perturbation 7, and
consider the adversarial neighborhoods ./\7}% (x +n) and N K(x +n), each with uniform measure
on K points. Let ¢ be the separation gap and let R;‘Cd" denote the adversarial K—-NN radius in IC,
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bounded as in Theorem Then, with probability at least 1 -, GW2(/\7}C< (z+n), NE ($+?7)) >
2

202 (10 — 21 .
+

Full proof is provided in Appendix [G|

Mirror results. For brevity, we omit the symmetric (i) clean lower bounds and (ii) adversarial up-
per bounds on GW, but detailed proofs are provided in Theorem[I0|and Theorem [IT]in Appendix |G|

Remarks. Together with Theorem |1} these results establish a clear separation: GW distance is
tightly bounded for clean neighborhoods but grows under adversarial perturbations whenever ¢
dominates R%d". Empirical results in Fig.(panel 3) confirm this gap theorem: the cross-space GW
discrepancy increases monotonically with perturbation strength . The growth matches the theoret-
ical scaling Q(d?0%e?) — O(logTK) derived by combining our adversarial lower bound (Theorem
with clean concentration envelopes (Lemma [3} see Appendix [G). This demonstrates that stronger
perturbations amplify cross-space inconsistencies, making detection increasingly reliable.

5.6 GW GAP AND RISK CONTROL

Theorem 3 (Cross—space GW gap). With probability at least 1 — (¢ + dxc + 0 + Oaux), the
clean and adversarial GW discrepancies satisfy |GW2,, — GW2_..| > 7 := max{Tady, Telean, 0},
where Toqv = Ladv — Uclean and Teiean = Leclean — Uadv. Under Assumption@] for fixed K and

perturbation ||1||c = €, we obtain T = Q(d*c?c?) — O(IO%K)_

Lemma 4 (Risk control via GW margin). If the gap event holds with margin 7 > 0 and an estimator

GW3 satisfies Pr(|GW§\ - GW?| < 7/3) > 1 — by, then thresholding CGW3 at the midpoint
between clean and adversarial envelopes makes no error on this event. Thus Pr(misclassification) <
Pr(Eg,,) + est-

From GW to entropic GW. All bounds above were stated for quadratic GW?. For entropic
GW GW?\ with A > 0, the lower bounds remain unchanged, while the upper bounds incur only
an additive 2\ log K (Corollaries [7/H8). Hence, the clean/adversarial separation guarantees extend
seamlessly to the entropic case used in practice.

Remarks. Theorem [3| certifies a provable margin: clean neighborhoods in C,K contract to
O(logdK), while adversarial perturbations inflate by Q(d?02¢?). Lemma (4| translates this into a

L —

statistical guarantee: once GW?\ concentrates within 7/3, thresholding achieves negligible error.
Empirical evidence (Fig. [2] panel 4) confirms the theory: clean and adversarial discrepancy dis-
tributions separate cleanly, validating the predicted risk bound. Proofs and full derivations are in

App.
6 EMPIRICAL ANALYSIS

6.1 EXPERIMENTAL SETUP

Adversarial Attacks. We evaluate a broad suite spanning gradient-based, optimization, spatial, and
perceptual perturbations: Auto-Attack (AA) (Croce & Hein, [2020), Carlini-Wagner (CW) (Carlini
& Wagner, 2017), Patch (PT) (Brown et al.,[2017), Projected Gradient Descent (PGD) (Madry et al.,
2018)), Spatial (SA) (Engstrom et al. 2019), Square (SQ) (Andriushchenko et al., 2020), Universal
Perturbations (UP) (Moosavi-Dezfooli et al., [2017), Auto-PGD (AP) (Croce & Hein, [2020), Fast
Gradient Sign (FG) (Goodfellow et al.l 2015), Frequency (FA) (Yin et al., 2019), Gaussian Blur
(GB) (Zhang et al.| 2022)), Pixel Flip (PF) (Su et al., 2019)), and Semantic Rotation (SR) (Hosseini
& Poovendran| 2018)). We use these boldface abbreviations throughout tables and figures for brevity.
Refer to Table[5]in Appendix for attack hyperparameter settings and defaults.

Baseline Defenses. We benchmark against representative detection methods: Mahalanobis Detec-
tor (MD) (Lee et al., [2018), Feature Squeezing (FS) (Xu et al., |2018), Meta-Adversarial-Detect
(MAD) (Ma et al., 2019), and MagNet (MN) (Meng & Chen, |2017)).
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Evaluation Metrics. We report three complementary metrics. (1) Binary detection accuracy: over-
all accuracy of classifying inputs as clean or adversarial. (2) True Positive Rate (TPR): fraction of
adversarial samples correctly flagged as adversarial, i.e., TPR = W. (3) End-to-End ac-
curacy: combined performance of detector and classifier, defined as the proportion of clean samples
both correctly classified and passed by the detector (allowed), plus adversarial samples correctly

flagged (blocked). This metric reflects system-level robustness under attack.

6.2 ADVERSARIAL DETECTION ACCURACY

Setup. We evaluate detection on CIFAR-10 [Krizhevsky| (2009), FMNIST [Xiao et al.| (2017), and
KMNIST |Clanuwat et al.| (2018)) using ResNet18 He et al.| (2016), with adversarial datasets gener-
ated from the attack suite in Sec.[6.1] Detector/classifier hyperparameters and attack configurations
appear in Appendix[[land Appendix respectively.

Results and analysis. Table|lalshows that our detector achieves > 95% binary detection on 12 of

Ours MD FS MAD MN Ours MD FS MAD MN
AA 979 689 82.7 52.0 74.1 AA 949 672 82.0 483 71.6
CW 970 736 860 514 567 CW 938 721 853 489 542
PT 980 864 678 50.7 573 PT 944 849 67.1 495 548
PGD 978 913 744 51.1 81.0 PGD 948 90.0 73.7 49.0 785
SA 96.8 78.1 744 41.1 549 SA 934 767 737 392 525
SQ 97.6 89.2 88.5 51.0 444 SQ 934 877 878 485 419
UP 978 664 537 507 479 UP 944 650 529 490 454
AP 976 683 814 502 73.6 AP 938 669 80.7 486 71.1
FG 98.0 738 609 49.6 447 FG 943 723 60.2 49.1 422
FA 95.1 499 50.0 49.7 49.8 FA 94.6 485 493 487 473
GB 85.7 498 51.7 482 48.6 GB 732 48.5 50.9 48.1 46.1
PF 97.0 51.7 514 495 494 PF 93.3 503 50.7 48.5 469
SR 959 503 527 50.1 49.1 SR 93.1 489 52.0 489 46.8

(a) Binary detection accuracy (%). (b) End-to-end accuracy (%).

Table 1: Adversarial detection results. (a) Binary detection accuracy and (b) End-to-end accuracy
across attacks and defenses. Rows: attacks; columns: defenses. Best in bold, second best under-
lined.

13 attacks, with Gaussian blur (85.7%) as the only exception. Accuracy remains consistently high
across attack families: (i) Gradient/optimization (AA, CW, PGD, AP): 96-98%, with margins of
+10-20 points, since small-norm shifts in Z are often absorbed in P, producing sharp cross-space
mismatches; (ii) Spatial/patch (SA, PT): 97-98 %, where local structural changes disrupt geometry
differently in each space; (iii) Transfer/decision-based (SQ, UP): 97-98 %, where transfer-induced
distortions misalign Z and P far more than gradient-based attacks, yielding especially large gains
(+31 points on UP); and (iv) Perceptual/frequency (FA, PF, SR): 95-97%, where frequency and
semantic shifts perturb P’s discrete neighborhoods and Z’s embeddings in complementary ways,
creating highly detectable discrepancies. Gaussian blur is the hardest case because it averages neigh-
boring pixels, suppressing edges and textures, inducing similar distortions in both Z and P. This
reduces the cross-space discrepancy that our detector exploits. Nevertheless, uneven quantization
in P ensures residual separation, and we still outperform all baselines on blur. Table [Tb| confirms
the same trend at the system level: our detector consistently yields the highest end-to-end accuracy
across all attacks (e.g., AA: 94.9, CW: 93.8, PGD: 94.8). Full per-dataset results and additional
metrics, including TPR/FPR heatmaps, are reported in App.[M]

6.3 ADAPTIVE ATTACK RESISTANCE AND ABLATION

Adaptive attacks. We test two white-box adaptive formulations: (i) cross-space (Ce oss) and (ii)
multi-scale (C\y,5), where the adversary knows the architecture but not the secret bit vector b*. The
complete formulation of the adversary’s objective, the prior distribution over unknown secret bits,
the consistency penalties, and the optimization procedure are provided in Appendix I As shown
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Dataset  Coross Cms Features AA CW PT PGD FG

CIFAR-10 86.7 84.5 Localonly 67.7 76.2 73.2 62.5 79.1

FMNIST 89.6 879 Global only 83.5 66.5 75.6 65.0 71.3

KMNIST 88.2 86.8 Both 97.9 97.0 98.0 97.8 98.0
(a) Adaptive attack detection (%). (b) Ablation on CIFAR-10 (%).

Table 2: Adaptive robustness and feature ablation. (a) Our method resists adaptive white-box
attacks despite defense-aware optimization. (b) Combining local and global GW features yields the
strongest detection across attacks.

in Table @a our method maintains strong detection (84-90%) across CIFAR-10, FMNIST, and
KMNIST, demonstrating robustness even when defenses are explicitly targeted. This accuracy drop
relative to non-adaptive attacks arises because the adversary now explicitly optimizes to minimize
cross-space discrepancies (CNN vs. crypto features). By enforcing feature consistency under a prior
over b, they can partially reduce the mismatches our detector relies on.

Ablation study. To quantify feature contributions, we compare detectors using only local GW
features, only global GW features, or both. Table[2b shows that while local or global features alone
yield moderate performance (65-83% ), combining them achieves 97-98% across all attacks. This
confirms that local fine-grained cues and global structural signals are complementary.

6.4 ZERO-SHOT SETTING

Adversarial robustness in large-scale Vision—Language Models (VLMs) remains underexplored, es-
pecially in zero-shot use where models are accessed only through APIs and adversaries must rely
on transfer attacks. This regime provides a natural test of cross-model generalization for detectors.
We evaluate our framework on LLaVA-

1.5-7B (Liu et all [2023) with CalTech- Attack | Clean Acc.  Adv. Acc.  Detect. Acc.
101 (Fei-Fe1 et al., 2004), generating ad- PGD 552+ 04 895+ 0.2
versarial images using PGD, AP, and FG APGD | 61.8+0.3 537403 89.5+0.1

as in (Cu et al) [2024). CLIP (Rad- FG 51.54+0.5 90.8+0.3
ford et al., |2021)) embeddings define the Z

Space. Table 3: Zero-shot adversarial detection. LLaVA-

Table Bl shows that attacks reduce classifi- 1.5-7B on CalTech-101. Clean accuracy is shared

cation accuracy by up to 10 points, but our 2cTOss attacks.

detector sustains >89% accuracy across

all cases. The robustness arises because perturbations disrupt semantic alignment in Z while being
unevenly absorbed in P, producing cross-space mismatches detectable even under transfer. Over-
all, these results suggest our cross-space guarantees extend naturally to VLMs in realistic, API-
constrained zero-shot regimes.

Additional results. Further evaluations on robustness and generalization, including TPR/FPR
heatmaps, cross-attack transfer, and cross-model generalization, are reported in Appendix [L]

7 CONCLUSION

We introduced a principled framework for adversarial detection based on geometric inconsistencies
between the embedding space Z and a prime-quantized space P. Our theory shows that adversarial
perturbations inevitably create detectable cross-space discrepancies, providing the first guarantees
for when detection must succeed. Experiments confirm consistently high detection accuracy across
diverse attacks, strong generalization to zero-shot VLMs, and robustness to adaptive adversaries.
These results demonstrate that geometric reasoning offers a solid foundation for adversarial robust-
ness. An immediate direction is to adapt our framework to multimodal models, where both adver-
sarial pressure and generalization demands are higher. Extending our theoretical guarantess from
local to global neighborhoods also forms an interesting direction for future work.
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8 REPRODUCIBILITY STATEMENT

In accordance with the guidelines, we present all assumptions, definitions, and proofs underlying the
theoretical results in Appendix [CHG|] Implementation details, training setups, and hyperparameters
of our method are provided in Appendix [K]and Appendix [[} enabling independent reproduction of
results. Due to institutional clearance requirements, we cannot release source code at submission
time, but the algorithmic descriptions and parameter specifications are sufficient to reimplement our
method. We will make code available once internal review permits.

10
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APPENDIX

A LLM USAGE

In this work, we employed large language models (LLMs) as auxiliary tools for: (1) polishing
and refining text, (2) assisting in literature search and related work, (3) formatting tables, and (4)
providing coding support (e.g., debugging and boilerplate generation).

B NOTATION

For ease of reference, we summarize in Table ] the main symbols and spaces used throughout the
paper. Unless otherwise noted, all notation is consistent across sections.

Symbol Meaning

Data & embeddings

X ={e}N,, = ¢ Dataset of IV images (dimension d).
[0,1)¢

Y={1,...,C}, yi € Label set and label of x;.
Y

he : [0,1]¢ =R™ CNN feature extractor.

z; = ho(z;) € R™ Embedding of x;.

Tlgb) Prime quantization map with key b and resolution k.
Qk*b(m) Prime—quantized embedding of x.

P Prime—quantized space (Euclidean metric).

Product spaces & metrics

C=(ZxY,de) CNN-label product space;
de((2,y), (2,y)) = max{[}z — '||2, 1y # ']}.
K= (P xY,dk) Prime—label product space (analogous metric).
Neighborhoods & radii
N¥(q) K -nearest neighbors of ¢in M € {C, K}
Ruv, RYY Clean / adversarial K—NN radii in M.
M Distance of i-th neighbor to g in M.
™ Separation gap between outer and inner neighbor groups.
GW quantities & envelopes
GW?, GW3 Quadratic and entropic GW discrepancies.
Dwm Distance matrix in space M.
T Coupling (transport plan) in GW.
U., L. GW upper / lower envelopes.
T Two-sided GW margin.
Perturbations & constants
7, [17llee < € Adversarial perturbation and budget.
e Median pairwise distance in C.
;ﬁ,‘;y? T Key—annealed median; maximum over dataset.
o Variance proxy (Assumption Al).
Gr, Cr =2Gk Prime gap bound (Dusart) and sensitivity constant.
é Confidence parameters (clean/env/grad/est/gap).
d, m, C, N, K Input dim, embedding dim, #classes, #samples, #neighbors.
be{0,1}% k Secret key bits; quantization resolution.

Table 4: Notation summary used throughout the paper.
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C PROOFS FOR PRIME QUANTIZATION RESULTS

Proof Roadmap. The auxiliary results in this section establish the robustness of the prime quan-
tization transform under bounded perturbations. We begin with Lemma [5] which shows how a
perturbation of size e translates into an integer drift in the scaled domain. This feeds directly into
Theorem 4} which proves that whenever the perturbation budget exceeds the distance to a prime
boundary, one can construct a feasible perturbation that crosses the gap, thereby changing the quan-
tized value. To complement this, we define the absorption radius (Definition[7), derive the guarantee
that perturbations below this radius are absorbed (Proposition [I)), and bound the possible size of
this radius in Lemma(I] Finally, Corollary [I] ties these ingredients together, yielding a crisp detec-
tion condition: perturbations below the absorption radius leave quantization unchanged, while those
above it necessarily induce a detectable change.

Lemma 5 (Perturbation budget constraint on scaled pixel values). Let z € [0, 1]¢ be an image and
x; € [0,1] its j-th pixel. Consider a perturbation vector 1 € R® with ||n||c < €. Then for each
pixel x;,

|Sk(xj +mj) — Sk(z;)] < |e-10F] +1.

Proof. We have Si(z; +n;) = |(z; +n;) - 10| = |z; - 10* +n; - 10* | and Sy (z;) = |z; - 10%].
Since ||n]ls < e, it follows that [n;| < € and hence |n; - 10¥| < ¢ - 10*. By the floor inequality
[la+b] — |a]] < []b]], it follows that,
|Sk(j + 1) = Su(;)| = [l - 10° +m; - 107 ] — |5 - 10%]]
< [ny - 10% +1
< le-10%] 4+ 1.
O

Theorem 4 (e-Dependent Gap-Crossing Detection). Let x; € [0,1] be the j-th pixel of an image,
with Sk(x;) = n € (p, pi+1), and let € > 0 be a perturbation budget such that

e-10% > min{n —p;, pry1 —n}.

Then there exists a perturbation 1; with |n;| < € such that Sy(x;) and Sy(x; + n;) lie in different
prime gap intervals, and hence

bj bj
T (g 4 ) # T ()
for any secret bit b; € {0,1}.

Proof. From Lemma any perturbation |n;| < e induces an integer drift in the scaled domain of at

most |e-10% | + 1. Thus, whenever €- 10* exceeds the distance from n to the nearest prime boundary,
some perturbation 7; exists that pushes Sy (x;) across that boundary.

Since Si(z;) =n € (p1, pi41), two cases arise:

() Closertop;. If n —p; < pyy1 —n and € - 10 > n — p;, choose n; < 0with —e < 7; <
—(n—p;)/10%. Then Sk(z; +n;) < [n+n; - 10%] < p;, placing the perturbed value in (p;—_1, p;).

(ii) Closer to p;11. If pj41—n < n—p; and €-10F > pj1 —n, choose n; > 0 with (p;1—n)/10% <

nj < €. Then Sy(z; 4+ n;) > |n+n; - 10F| > pi41, placing the perturbed value in (p+1,pj+2)-

In both cases, S (x; + ;) and Si(z;) lie in different prime-gap intervals. Since R;ij ) rounds each

integer to one of the two primes bracketing its interval, the images
b b, .
R (Sk(xy) € (o}, RY(Skles +m)) € {pepea}, (4]
must map to disjoint prime sets. Hence
T (@) = S (@) # SN @ (m) = T (g + ).

Therefore, if € - 10 > min{n — p;, pi+1 — n}, some perturbation |1;| < € necessarily changes the
prime quantization output, regardless of the secret bit b;. O
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Remark 1. The condition in TheoremH)is sufficient: it ensures that some perturbation of size < €
crosses a prime boundary, though not every direction must. This simplification is enough for our
later GW separation results.

Definition 7 (Absorption radius). For z; € [0,1] with Si(x;) = n € (pe, pe+1), the absorption
miﬂ{n*m’kpz#rlfn}
10 :

radius is raps(xj, k) =

Proposition 1 (Absorption guarantee). If |n;| < 7abs(z;, k), then T,ibj )(g:j +n;) = T,Eb")(:cj) for
all bits b;.

Proof. By Definition 7| of absorption radius ru (25, k), we have Sy.(x;), Sk(x; +1;) € (pe; Pes1)
for the same prime gap interval. Since both S;(z;) and Si(z; + ;) lie in the same prime gap

(p(;b, ])954_1), the prime rounding operator R,gbj ) maps both to the same prime: R,(ij ) (Sk(zj +mn5)) =
Ry7 (Sk(5)).-

Applying S, ! to both sides:

T (2 + ) = Sy MR (Sl +1y)) = Sp LB (Si(x3)) = T (a5).
O

Lemma 6 (Elementary Prime Gap Bound Hardy & Wright|(2008))). For any two consecutive primes
P < Pi+1, we have the prime gap as p;41 — p1 < pi-

Assumption 1 (Prime-gap envelope for all k > 2). Let N = 10*. There exists an absolute constant
Cy > 0 covering N < x¢ = 396,738 such that

N

G i= Cot ornye

satisfies por1 — pe < Gy, for all consecutive primes py < pgy1 < N. This is a direct consequence
of Proposition 6.8 in Dusart Dusart (2010).

Lemma 1 (Absorption bounds). For any x; € [0,1], 5455 < rans(zj, k) < 5.

Proof. By Deﬁnition for the j-th pixel z; € [0, 1] with Si(z;) = n € (pe, pe+1), the absorption
radius is
min{n — pg, pry1 —n}

10% '

Tabs(Zj,k) =
We will now proceed to prove each bound separately.
(i) Lower bound. The minimum prime gap is 1 (between 2 and 3). Hence for any n € (pg, pe+1), at
least one of (n — py) or (pe41 — n) is at least 1/2. Thus, min{n — py, pey1 —n} > 3, which
implies raps(z;, k) > ﬁ
(ii) Upper bound. The maximum of min{ n — py, per1 — n } occurs when n is at the midpoint of
the prime gap, i.e., min{n — p;, pey1 —n} < ’”*127_”. Since pgy1 < 10* by construction, it

10% /2 . .
follows that 7aps(z, k) < 10,{ = 4. Hence, we obtain 555 < 7abs(z;,k) < 3, which

completes the proof. O

Corollary 1 (Absorption vs. Gap-Crossing Condition). Let z; € [0,1] be a pixel and € > 0 a
perturbation budget. Then:

(i) Absorption. If € < rans(zj, k), every |n;| < € is absorbed, i.e. T,gbj)(xj +n;) = T,gbj)(xj).

(i) Gap crossing. If € > rans(2;, k), there exists some |n;| < € for which T,gbj) (xj+n;) # T,gbj)(a?j).

Proof. Part (i) is an immediate consequence of Proposition For part (ii), Theorem [ ensures
that whenever € - 10¥ > min{n — p¢, pss1 — n}, equivalently € > Tabs(Zj, k), one can construct
a perturbation 7); that shifts Si(z;) into a different prime-gap interval, thereby altering the prime
quantization output. O
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Lemma 2 (Collision probability). Fix k > 2 and let N := 10*. Let x,2' € [0,1]¢ be two inde-
pendent random images with i.i.d. pixel marginals whose densities are bounded by A on [0,1] (in

particular, N = 1 for the uniform distribution). For a fixed secret bit vector b € {0,1}%, let T,gb)

be the prime—quantization transform (Definition H)). Assume the prime—gap envelope Gy, from As-
d

sumption Then, Pr [T,Eb)(a:) = T,Eb) ()] < (A2 %) . In particular, for A = 1, the collision

probability decays as (G k/ 10k)d in the number of pixels.

Proof. Fix two independent images x, 2’ € [0,1]? with i.i.d. pixel marginals of density at most A
on [0, 1]. Let N = 10¥, and for each pixel index i € {1,...,d} define the scaled integers

Ui = Sp(x;) = [N, U; := Sk(x;) = [Nz

Partition {0,1,..., N — 1} into prime-gap intervals I; = (p;,pj4+1) N{0,..., N — 1} with lengths
g; = |I;]. Since each pixel marginal has density < A, the probability of landing in any integer bin
is < A/N. Therefore, for any gap I,

A A A
PlUie[j] < Y & = Agﬁj, Pr[U! € I;] < AQNJ.

u€l;

For a fixed secret bit b;, collision occurs at pixel 4 if both U; and U] fall in the same gap [;, since
then R,(cbi) maps both to the same prime. By independence of U; and U/,

2
Prlcollision at pixel i] = > Pr(U; € |Pr{Ul € I]] < Y (A gﬁ) .
J J

Pixels are i.i.d. across i, so collisions at all d coordinates occur with probability

Pr[T" (x) = T\ ()] < (AQZ(gj/N)2>d.

J
Finally, note that }°(g;/N)* < (max; g;/N) - >, g;/N < Gy/N, where G}, is the prime-gap

d
envelope from Assumption |1} Hence, Pr [T,gb)(a:) = T,gb) (/)] < (AQ%) , yielding the stated
bound. O

Remark 2 (Numerics and scope). For k = 3 (N = 10%) with empirical maximum gap Gy =
36, the per-pixel factor is 36/1000 = 0.036, so for CIFAR-10 (d = 3072) the bound is at most
(0.036)3972  ~ 10~44x10° For | = 4 (N = 10%, Gy = 36), the per-pixel factor is 3.6 x 1073
and the overall bound is even smaller. This result is distributional, i.e., it certifies that collisions are
exponentially unlikely for two independent draws with bounded pixel densities. It does not claim

that T,gb) is injective on [0,1]% (the map is many-to-one by construction). Rather; it quantifies that
image-level collisions are negligible under natural sampling.

D PROOFS FOR BOUNDS IN fp PRODUCT METRIC SPACES

Roadmap. In Section [5] we introduced the spatial-semantic product spaces C and K, both en-
dowed with the ¢, metric. The purpose of this appendix is to justify that choice. We first establish
in Theorem E] that upper bounds in an £, product space always imply corresponding bounds in the
component spaces. We then prove in Corollary E]that among all £, metrics, /-, achieves the tightest
possible uniform upper bound. Together these results explain why ¢ is the natural metric for C and
KC, ensuring that perturbations in either spatial geometry or class distribution immediately translate
into separation in the product space.

Let (X, dx) and (Y, dy ) be metric spaces. We consider their product space W = X x Y endowed
with a standard ¢,, product metric. For p € [1, 00), this metric is defined by

dwp((x1,91), (T2,92)) == (dx (z1,22)? +dY(yl,y2)p)1/p7 ®)
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and for p = co by

dw,oo (1, 1), (T2, y2)) := max {dx (z1,x2), dy (y1,92) }- )

We now establish a general theorem relating upper bounds in the product space W to upper bounds
in the component spaces X and Y.

Theorem 5 (Component-wise Upper Bounds from ¢,, Product Metrics). Let (X,dx) and (Y, dy)
be metric spaces, and let W = X x Y with the £, metric dy,, for some p € [1,00]. Suppose there
exists a constant M > 0 such that

dW,p((xlayl)v(x%yZ)) S M? v(xlvyl)ﬂ(anyQ) cw. (10)
Then the following component-wise bounds hold:

dx(v1,22) <M, dy(y1,y2) <M, Vw20 € X, y1,12 €Y. (1)
Proof. We consider two cases:
(i) 1 < p < co. By definition, for any (x1,y1), (x2,y2) € W,

dw (@1, 91), (22,92)) = (dx (21, 22)" + dy (g1, 32)") /7.
Since dx (x1,x2)P > 0 and dy (y1,y=2)P > 0, it immediately follows that
dx (z1,22)" < dx(v1,72)" + dy (y1,92)" = dw,p((21,91), (T2, y2))".

Taking the p-th root on both sides gives dx (z1,z2) < dwp((x1,%1), (2,¥2)) < M. An identical
argument applies to dy (y1, y2).

(ii) p = oo. By definition,
dw,0o (71, Y1), (T2, Y2)) = max{dx (21, z2),dy (y1,y2)}.
Hence, by properties of the maximum function,
dx (1, 72) < dw,co((T1,41), (T2,92)) < M, dy(y1,y2) < dw,co((z1,91), (72,32)) < M.
Combining the two cases, the theorem follows. O

Corollary 2 (Tightest Upper Bound in ¢, Product Spaces). Let (X,dx) and (Y, dy) have known
upper bounds M x and My respectively, i.e.,

dx(z1,72) < Mx, dy(y1,y2) < My, Vri1,12€ X, 41,52 €Y.
Then the corresponding upper bound for the product space (W, dw ) is

(M% + MEYY/P, 1< p< oo,

d <

wp((z1,91), (22, 92)) < {max{MX,My}, p = 0.

Moreover, among all £,, product metrics, the (., metric achieves the tightest upper bound, i.e.,
maX{MXvMY} < (Mg( + M}P;)l/p’ vp S [1,00),

and is therefore optimal when minimizing the guaranteed upper bound in the product space.

Proof. The bound for 1 < p < oo follows directly from the monotonicity of the £, norm:

dwp((1,91), (22,92)) < (MY + MEL)P.

For p = oo, by definition dyy, o, = max{dx,dy} < max{Mx, My }. To see that {, is the tightest,
observe that for any p < oo, (M% + ML)'/P > max{Mx, My }. Equality occurs only if one of
Mx or My is zero. Hence, ¢, gives the smallest guaranteed upper bound over all £, norms. [
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Definition 8 (Spatial, semantic, and product metric spaces). Let X C [0,1] be the image space
andY = g{l, ..., C} the label set. For a representation map f : X — R'™, define the spatial metric
space (M, dx) with MX = {f(z) : v € X} and dx (x1,22) = ||x1 — 72||2. The semantic metric
space is (MY | dy) with MY =Y and dy (y1,y2) = 1[y1 # y2).

Their L product is the metric space

MXY = (MY x MY, dxy), dxy ((x1,91), (22, y2)) = max{dx (1, 22), dy (y1,92)}-

Each image x € X embeds as (f(x),y) where y € Y is its class label. Projections are defined by

IIx(z,y) = x and Iy (z,y) = y. Instantiating f = hy yields the space C with spatial component

(b)

Z, and instantiating f = ka yields KC with spatial component P.

Instantiating f(xz) = hg(z) or f(z) = T,Eb) (z) yields the product spaces C and I, respectively.
These will serve as the foundation for the GW bounds in Section

E PROOFS FOR DIAMETER BOUNDS IN C AND K

Proposition 2 (Concentration in f, product spaces). Let {(X;,d;)}", be metric spaces
and let W = [, X; be endowed with the (s, product metric doo((;)Iy, (yi)iey) =
maxi<i<n di(2;, yi). Let X = (X1,...,X,) be a random element of W and fix reference points
m; € X; (e.g., means or Fréchet means), writing m = (mq, ..., mp).

Assume that each coordinate concentrates around its reference point, i.e., there exist tail functions
; + (0,00) — [0, 1] such that for all t > 0,

Pr{d;(X;,m;) >t} < oi(t)  (i=1,...,n).

Then the product random element concentrates around m in (W, d): for all t > 0,

1<i<n

Pr{doo(X,m) Zt} = Pr{ max d;(X;,m;) > t} < Xn:wl(t)

Proof. The event {d (X, m) > t} equals {max; d;(X;, m;) > t}, which is contained in the union
U, {di(Xi,m;) > t}. Apply the union bound and the assumed coordinate-wise tail bounds. O

Corollary 3. (1) For n = 2 and real-valued coordinates with d;(x,m) = |z —m
max{X,Y} and m = max{EX,EY} gives

Pr{|M —m| >t} < Pr{|X — EX| >t} + Pr{|]Y — EY| > t}.

, letting M =

Theorem 6 (CNN Product Space Clean Diameter Bounds). Let C = (Z XY, d¢) be the CNN product
space. For clean images, the K -nearest neighbor diameter satisfies, for any ¢ € (0,1),

P|diam (V§ (Zelean)) < 2 4e (1 + \/21051( n \/210,«;52/6))} > 1-9, (12)
where ¢ is the clean median pairwise distance in C and d is the spatial feature dimension of Z.

Proof. We first establish that distances between clean embeddings in the product space C satisfy sub-
Gaussian concentration properties. This will serve as the foundation for bounding K -NN diameters.
Recall the definition of a sub-Gaussian random variable.

Definition (Sub-Gaussian random variable). A real random variable X is called sub-Gaussian
with parameter o if for all t € R,

202

Equivalently, its tail probabilities satisfy P[ | X — E[X]| > t] < 2exp (,ﬁ)
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For a random vector Z = (Z1,...,Zq) € R, we say Z is sub-Gaussian if every linear functional
is sub-Gaussian:
121k, = sup |{Z, [y, < o0,
ueSI—1

where for a random variable Y, the sub-Gaussian norm is || Y|, = inf{¢ > 0 : E[eyz/tz] < 2}

Each image « maps to the product space via z = (hg(z),y) € C, where hy(z) € Z is its CNN
embedding and y € Y its class label. For two clean images x;, x;, we denote their embeddings by
zi, z; and define the product space distance as D;; = d¢/(2;, z;).

We now analyze the spatial and semantic components of D;;.

Spatial component. The embedding I1z(z) € R< has sub-Gaussian coordinates due to several
architectural and statistical effects. Namely, batch normalization enforces near unit variance and
zero mean across feature activations |loffe & Szegedy|(2015); Santurkar et al.|(2018). In|Poole et al.
(2016); [Schoenholz et al.| (2017), the authors demonstrate CLT effects arise from weighted sums
of many independent activations, yielding approximately Gaussian tails. Moreover, Regularization
techniques (e.g., weight decay [Krogh & Hertz|(1992), dropout[Srivastava et al.|(2014))) further con-
strain magnitudes, supporting sub-Gaussian tails |Wager et al.|(2013).

Formally, if 022 is the empirical variance of a coordinate in Z, then for all £ > 0,

7)-

t
202

P([lz())e — Elllz(=)e]| > ¢) < 2exp(—

Thus T14(2) is sub-Gaussian with ||[TIz ()|, < Kz, where Kz = O(cz+/d). By standard results

(see (Vershynin, 2018, Thm. 3.1.1)), Euclidean distances between embeddings in Z concentrate
sharply around their mean.

Semantic component. The label projection ITy (z) contributes

dy (My (z:), My (25)) = Wy # y;},
which is bounded in {0, 1} and deterministic once class labels are fixed.

Product space concentration. Since C is equipped with the /., product metric,

de(2i, 25) = max{dz(z(2:), Uz (2;)), dv (yi,y;)},

the concentration of the spatial component transfers to the product distance (by Proposition[2)). Thus
deviations of d¢(z;, z;) away from its clean median pc occur with sub-Gaussian tails: there exist
constants ¢, C' > 0 such that

P(|de (2, 2) — pel > t) < Cexp(—cdt?). (13)

When controlling the K'-th neighbor distance, we invoke equation [I3] which in turn also allows us
control over the neighborhood diameter.

K-NN order statistics to diameter bound. Fix a clean query z and let D; = d¢(z, z;) denote the
distance between z and the i.i.d. clean samples {z;}j_;. Let D1y < --- < Dy, denote the order
statistics. For any threshold 7, the classical characterization of order statistics (David & Nagarajal
2003} Eq. (2.1.3)) gives

{Dw =7} = {#li:Diz7} = n—k+1}. (14)
The event on the right means that there are at least n — k+ 1 indices for which D; > 7. Equivalently,
there exists a subset S C {1,...,n} with |S| =n — k + 1 such that
D;>71 Vielb.
That is,

(D=7t | (D=7} (15)
SC{1,..,n} i€S
|S|=n—k+1
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Applying the union bound to equation [T3]yields

P{Dgy 27t < Y B([(){Di=r}). (16)
SC{l,..,n} i€S
|S|=n—k+1

Since the D;s are i.i.d., the probability for any fixed S factors as

(VD> 7}) = [[P(Di > 7) = (B(D; > 7)) "7

i€S €S

There are (n_z +1) such subsets S. Hence equationsimpliﬁes to
n n—k+1
P{Dy, > < P(D; > . 17
Dw =)< (4, ) @©0z) a7

We now shift our focus to the next part, where we bound the diameter via pairwise bounds on the
K -nearest neighbor set. Let N (z) = {z(1), ..., 2} be the k nearest neighbors of z (ties broken
arbitrarily) and consider their pairwise distances d¢(z(;), 2(j)) for 1 <4 < j < k. By the triangle
inequality,
de(2() 7)) = de(2),2) +de(2,2(5)) = Dy + Dy

Using equation [I3] and the fact that sums of independent sub-Gaussian random variables remain
sub-Gaussian with the same d-scaling up to absolute constants [Vershynin| (2018)), one obtains that
there exists ¢/ > 0 such that for all £ > 0,

P{dc(z(), 2(j)) = 2uc+t} < 2exp(—c dt?). (18)

Note that the inequality equation [I8]is an upper bound that does not use any special property of
the indices beyond being distinct sample points. Indeed, selecting nearest neighbors to z can only
decrease the chance that their mutual distance is large.

Applying the union bound over the (12“) unordered pairs inside A ;f (z) as proposed in Boucheron
et al.[(2013))), we arrive at

P{diam (Nkc(z)) > 2uc +1t} < <k

2) 2 exp(—cdt?). (19)

Imposing a target failure probability § € (0, 1) on the right-hand side and solving for ¢:

g log (5) + log(2/6
(k>-ze—cdf <5 e £y el T1e/d) (20)

2 cd

= t>

ol
—— (V2logk + /2108(2/9))
where we used log (%) < 2logk and va +b < /a + Vb.
Substituting this choice of ¢ into equation[I9] yields, with probability at least 1 — 4,

1
—— (V2logk + \/2108(2/3)).
oo (V2TogF + v/ 21080270)

Equivalently, writing the deviation addend in a multiplicative form and absorbing absolute constants
into the sub-Gaussian proxy (or normalizing units), one obtains the stated bound:

diam (N§ (2)) < 2uc(1+\/21c{)jgk+\/210g§2/6))

diam (N§(2)) < 2pc +

O

Corollary 4 (95% confidence bound). For confidence level § = 0.05, the K-nearest neighbor
diameter in C satisfies

diam (N (2)) < 2pue (1 + g/ 2e K 27\/{)7

with probability at least 95%.
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Notation. We adopt the metric space setup of Deﬁnition In particular, C = (Z x Y, d¢) denotes
the CNN product space and K = (P x Y, dx) the prime-quantized product space. Let yc and
i denote the clean median pairwise distances in C and K respectively. We consider adversarial
perturbations 7 € R with ||1]|o < €, where € > 0 is the fixed attack budget.

Definition 9 (Adversarial query). Let x € X be a clean input with ground-truth label y € Y. For
an e-bounded perturbation n € R%, the adversarial query under representation map f : X — R™ is

(f(z+mn),y) € M.
Thus adversarial queries live in the same product space as clean points. Note that a classifier
may produce a prediction § # vy, but §j is not part of the definition. Instantiating f = hg yields
adversarial queries in C, and instantiating f = T,gb) yields adversarial queries in IC.

Assumption 2 (Al: variance-only control via Jacobian proxy). Let A(n, z) := ||f(z+n) — f(2)||2
be the feature displacement under perturbation . For small perturbations with ||n||s < € we
assume there exists a constant o> > 0 (a variance proxy) such that

E[A(n,z)?] < do®é. (1)

Interpretation. By first-order Taylor expansion, f(x+n)— f(z) = J(x)n, where J(z) = Vf(z) €

R™* js the Jacobian of f at x (with m the feature dimension). Thus,
m
A(m,z)? ~ | J(@mls =Y, (2), m)*.
r=1

Assumption equation 21| requires that each row J,..(x) has second moment bounded by o, so that
the expected squared shift across m features grows at most linearly with d (via ||n]|ec < €) and
quadratically with e.

By Chebyshev’s inequality, for any dgraa € (0,1),

A(n,z) < Vdo

- \V 5grad

Here §graq acts as a tolerance parameter: it specifies the probability mass we are willing to allocate
to rare large deviations in feature shifts. Smaller values of Sgraq yield higher-probability guarantees
but make the bound looser. This provides a high-probability control of adversarial feature shifts
using only variance information, without assuming Lipschitz continuity or sub-Gaussianity of the
Jacobian.

Remark 3 (Relating ¢/, and /5 budgets). An (., budget € implies an {5 budget €3 < Vde, and

conversely an U5 budget e implies (o, budget > €3/ Vd. This allows translating {s—based results to
our {, setting and vice versa.

€ with probability at least 1 — dgrad. (22)

In the adversarial setting, the k-NN neighborhood can enlarge only insofar as the query itself is
displaced relative to its clean location. Thus, bounding the query’s displacement (via Assumption2)
allows us to extend the clean k-NN diameter bound to the adversarial case.

Theorem 7 (Adversarial K-NN diameter via Theorem [ and Al). Fix K > 2 and confidence
levels dciean, Ograd € (0,1). Let x be a clean query and x + 1 its adversarially perturbed version
with € = ||1||c. Assume Theorem [](clean diameter concentration) and Assumption 2| (variance-
only shift). Define y as the classifier’s predicted label for x + n. Then, with probability at least
1- (5c1ean + 5gmd)>

diam (NG (2 +m) < 2pc (14 /28K 4 (/2106 000m))
n 2Vdo
vV 6grad

The indicator term vanishes when the adversarial perturbation does not change the predicted label,
and contributes an additional 2 otherwise.

e + 21{y75i1}- (23)
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Proof. Reusing our diameter bounds in Theorem [0} for the clean query = we have, with probability
atleast 1 — dcleans

diam (/\/’}é(m)) < 2uc (1 + \/21051( n \/QIOg(Qééclean)). (24)

By Assumption and Chebyshev, with probability at least 1 — dgrad,
Vdo

6grad

1f(@+n) = fl@)]2 < € (25)

We now analyze how the K-NN neighborhood changes when we replace the clean query z =
(f(x),y) with its adversarially perturbed versions. Recall our notation:

Z:=(f(x+mn),y), unsuccessful adversarial query (true label);

Z:=(f(x+mn),9), successful adversarial query (misclassified label).
Let z(1y, - - -, 2(k) denote the K nearest neighbors of whichever adversarial query we use (ties arbi-
trary).

For any two distinct neighbors z(;) and z(
sarial query ¢ € {Z, 2} gives

de(2(y, (7)) < de(ziy»q) + delas (7)) - (26)

j)» the triangle inequality with respect to the chosen adver-

We next control each of the two addends above by inserting the clean query z = (f(z),y) as a
reference point. For the first term we write

de(z(),q) < de(z@), 2) +de(z,q). (27)
Likewise, for the second term we have
de(q, 2()) < de(z,q) + de(z, 2(5)). (28)

Thus, each path from a neighbor to the adversarial query is decomposed into a clean part (from
neighbor to z) plus a shift part (from z to q). The size of the shift depends on which adversarial
anchor ¢ is chosen

de(z,2) = ||f(ff+77)—f($)\|2v (29)
because the spatial features move but the label y remains unchanged. On the other hand,
de(z,2) < [lf(z+n) = F@)ll2 + Lyyzgy, (30)

since the spatial features shift as before, but in addition the semantic label may flip from y to ¢, con-
tributing an extra unit in the product metric. Substituting equation [27}-equation [30]into equation 26
we obtain for any pair i # j:

de(2(i)s 2(3)) < de(zay, 2) + de(2, 2(5)) + 2|1 f (@ +n) — f(2)]l2, 31)

de(2(i), 7)) < del2),2) +delz,2)) + 20| f (x +1) = f@) 2 + 20 gypy,  (32)
corresponding to the true-label and predicted-label anchors, respectively. Finally, maximizing over

all pairs 1 <7 < j < K yields
diam (Vi (z + 1)) < diam (Ng(2)) + 2| f(@+n) = f(@)lla + 21gyngy.  (33)

This shows that the adversarial K-NN diameter can expand relative to the clean case by at most twice
the feature shift plus a discrete penalty of 2 if the adversarial perturbation also flips the predicted
label.

Finally, intersecting equation [24] and equation [25] and applying the union bound gives probability
> 1 — (Octean + grad). On this event,

2Vdo
vV 6grad

dlam(N}C((ZC-F?])) < 2#C(1—|—\/2105K+\/210g(2£6c1ean)) + e + 21{%&@}.
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Assumption 3 (Prime-gap sensitivity under bit flips). Fix k& > 2 and let Gy, be the prime-gap
envelope from Assumption l Then, for every coordinate j € {1,...,d}, every two images x,x’' €
X, and any two secret keys b, b’ € {0, 1} that differ only at bit j, we have

[T (@) - (2], — (1" (z) — T ‘@), < 26k (34)
difference difference
before flip after flip

Explanation. Flipping one bit can move the j-th coordinate by at most one local prime gap < Gy.
For two inputs, both coordinates may shift, so by the triangle inequality their pairwise difference
changes by at most 2G\, regardless of the absolute difference.

Definition 10 (Key-annealed (data-quenched) median in K). Fix a clean query x € X and a fixed
clean image x' € X (or, more generally, a fixed dataset and query). Let (b, k) denote the envi-
ronment, where b ~ Unif({0, 1}%) and k is either fixed or drawn independently from a prescribed
distribution ‘Py. Define

DR (g, 2') = d;c(z(b’k)(m), z(b7k)(x')).

The key-annealed (data-quenched) median for the pair (x,x') is
Iullzey( /> = mf{m : ]}D(b7k)[D(b’k) (x,x/) S m} Z %} .

When a single symbol is used, we write i for ul,(cey with the convention that the probability is over
(b, k) only (the data are held fixed).

For brevity, we denote the maximal key-annealed median by

pe™ (@) = Jnax. Y (z, ;).
Theorem 8 (Annealed-over-keys clean K -NN diameter in [C). Assume the prime-gap envelope (As-
sumption |1) and set Cy, := 2Gy. Let the key b ~ Unif({0,1}%) and let the granularity k be
either fixed or drawn independently from a prescribed distribution Py. Fix a clean query x and a
fixed dataset {x;}I'_, (data quenched). Then for any integer K > 2 and any deny € (0, 1), with
probability at least 1 — depy over the draw of (b, k),

diam (NK($ b, k)) < 2Mmax< )(1 + ‘umax \/W max ) 210g(3l/(5env)>7

where P (x) = maXi<i<n ,ul,?y(x,xi) and, if k is random, one may take Cj :=
2 SUPLesupp(py,) Gk to make the bound uniform in k.

Proof. Fix the clean dataset {x;}!" ; and the clean query x; these are held deterministic in this
theorem. The randomness comes solely from the key b (and k if random). We will (i) establish
McDiarmid concentration for pairwise distances under random keys, (ii) apply a union bound over
the ( 2) neighbor pairs, and (iii) control the scale via a two-hop envelope anchored at 2 u2**(x).

Fix any pair (i, ) of dataset indices. For simplicity of notations, let Q? := T")(z;) € R%. Define
the spatial distance under key b as

d
o\ 1/2
Ry(®) = (| Q= @b, = (X (100 — [@1m)") " (35)
m=1
Now flip a single key bit b,,, — b/, while keeping all other bits fixed. By Assumption [1} the m-th

coordinate difference can change by at most 2G, (a single prime-gap shift per image, hence a 2G,
change for a difference), while all other coordinates remain unchanged:

QY1 — QYT — ([Q%m—[Q%m) | < 2Gk, (@Y1~ 1QY]e = [QY—[Q%c (£ #m).
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From a vector viewpoint, let
o) == Q- Q5 eRY, () = v(b)+Aen with |A] <2G,
where e,, is the m-th standard basis vector. Then the Euclidean norm changes by at most
[o@®)ll2 = lw®)ll2| < [v®) =v®)]l2 = |A] < 2Gx =t Cy. (36)

Therefore, R;;(b) is coordinate-wise Cy-Lipschitz in each bit b,.

Leth = (b, ...,bq) € {0,1}¢ be uniformly random with independent bits. McDiarmid’s inequality
states: if F'(by, ..., by) satisfies |F(b) — F(b(™)| < ¢,, whenever b, b(™) differ only at coordinate
m, then for any ¢ > 0,

P(|F(b) —EF()| > t) < 26xp<2752>
T S )

Applying this to F' = R;; with ¢,,, = C}, (by equation [36) yields

2t?
Py (|Rij(b) — Eo[Rij(b)]| > t) < 2exp| —=75 | - 37)
acy
Write the product embedding as z(»*)(z) := (T,Eb) (x), y) € K, where y is the class label of
(and similarly y; for x;). Define the product distance under key b:
DZ](Z)) = d}c (Z(b’k) (SL’Z), Z(b’k) (I'J)) = max { Rij (b), 1 [yz 7& y]} } (38)

Since the label indicator does not depend on b (clean case), for any ¢ > 0,
| Dij (b) — B[ Dij (0)]] < [Rij(b) — Eo[Ri; (D)]],
and therefore equation [37)implies
212
By(|Dis(b) — By Dy ®)]] > t) < zexp(—dcz). (39)
k
Let ¢ := 2(®*)(z) be the (random-key) embedded query and N (z;b, k) = {z(1), ..., 2(x)} its

K nearest neighbors in dy (ties arbitrary). Write M := ﬁK) for the number of unordered pairs

among these neighbors. For any fixed pair (u, v),equation [37| gives the one-pair tail bound, where
Ck = 2Gk and Duv(b) = dK(Z(u), Z(U)).

By the union bound over all M pairs, we have

2t2
Pb(lggggK\Duv(b) — Ey[Dun(b)]| > t) < M-2eXp(—ng) - (40)

Given a target failure probability deny € (0, 1), we choose ¢ such that the RHS of equationequals

6env:
212 \/E \/ 2
M -2 ——— | = denv t = — 4/ log M 1 .
exp( dC’,%) = Cy. 5 |/ 108 + log 5

With this choice of ¢, equation[40]is equivalent to the deterministic-looking high-probability bound

]P’b< max |Dw,(b) — Eb[Dm,(b)H < Cj - \/g- \/log (12() + log(2/b0env) ) > 1 —onv-

1<u<v<K
(41)
K

Put simply, simultaneously for all (%) neighbor pairs, the deviation | Dy, (b) — Ey[D., (b)]] is at
most the RHS of equation 1] with probability at least 1 — ey, (over the randomness of the key b).

By definition of the K-NN diameter, diam (N5 (;b,k)) = max,<y Dy, (b). From equation
with probability at least 1 — dep,y, every pairwise distance D, () is within a fixed deviation of its
expectation Ey[D,,,, (b)]. Therefore, simultaneously for all pairs u < v,

Do) < EylDos(®)] + Cry/4 \/1og (I;) +108(2/Sony)-
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Maximizing over all pairs, we obtain

diam (Ng(x;lx k)) < Tk + Cy \/g\/log (I;) +10g(2/benv), (42)

where we have set ' := max, <, Ep[Dyy(b)]-

Let ¢ = 2(®*)(2) be the query, and let 2(1),- - -» 2(k) be its K nearest neighbors in dx. By the
triangle inequality (“two-hop routing”),

Duy(b) < dic(2(u),q) + di (4, 2(0)) < 2Dk (D), (43)
where D7

(K) (b) is the K -th nearest-neighbor radius under key b. It is standard in k-NN theory that,
under mild density bounds on the underlying distribution Devroye et al.|(1996), the scale of DE‘K) is
controlled by the same order as the (key-annealed, data-quenched) pairwise median distance. Hence
we may conservatively bound

g := maxEy[Dyy (b)] < 22 (). (44)

u<v

Substituting equation 44 into equation (42| and using log (12< ) < 2log K together with va +b <
Va+ /b, we conclude that with probability at least 1 — fepy,

diam (N (250, k) < 2p@™(z) + Cy Vd (\/QIOgKJr V2 log(2/5cnv)).

max

Factoring out 2 12 (z) yields the stated bound. O

Corollary 5 (Quenched-in-key clean diameter bound). Under the assumptions of Theorem|8| there
exists a set of keys G C {0,1}4 with Py(G) > 1 — Seny such that for every b € G (and the given k),
the bound in Theorem|[8| holds for the fixed key b and the given clean dataset and query x:

diam (N (30, k)) < 2uR™(z) + CpVd (\/210gK + \/210g(2/5env)).

Proof sketch. The set G is the (key, k)-event on which the union bound in equation 41| holds; this
event has probability > 1 — 0eny. On G, the derivation of Theorem 8| is deterministic, hence the
bound is valid for every b € G (quenched).

Theorem 9 (Adversarial K-NN diameter in /C (concise reuse)). Fix K > 2 and deny, dgrad € (0,1).
Let g = (Q%*(x),y) be the clean query and g, = (Q**(x + ), ) the adversarial query (predicted
label § may differ from y). Assume the prime-gap sensitivity bound with Gy, (Assumption|3)) and let
C := 2Gy. Then, with probability at least 1 — (deny + Ograd) over the key b (and k, if random),

2\/&0
——IInlloc + 21y}
YV 6grad

Proof. We reuse the clean-case analysis verbatim with one adversarial modification. Define
Ri;(b) := [|Q%*(z;) — Q"*(x;)||2. Flipping one bit b,,, changes the m-th coordinate difference by
at most 2G, (Assumption , so the squared norm changes by at most C?. Hence R;; is coordinate-
wise C-Lipschitz, and McDiarmid’s inequality yields

Pb(yRij(b)—EbRij(b)\ zt) < 2exp<—j—§g). )

diam (N (g,)) < 2ux + Cr \/ﬁ(\/QlogK—i—\/Q log(2/6env)) +

For the K neighbors of the adversarial query we union bound equation [ over all pairs. Choosing

(=i \/10g (') + o2/,

we obtain, with probability > 1 — depy,

u<<v

max | Dyy(b) — Ep Doy () ] < G @ \/ log <I2{ > +108(2/0eny)- &)
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As in the clean proof, the triangle inequality through the query gives maxy<, EpDyy(b) <
2 EbD?wKr) (b) < 2pg, where i is the key-annealed median proxy from Definition

Let the K neighbors be taken w.r.t. g,. For any pair z(y), 2(v)>

dic(2(u), 2(v) < dic(Zu), q) + di(q; 2w)) +2 dic (¢, qn)
———
clean star path o
arpa < \/%Hn\lw-&-l{y#g}
2Vdo

< di(z(),q) + dx(g 2@)) + Moo + 21py2g3- (45)

vV 5grad

Maximizing over pairs converts the clean star radius bound into the adversarial one, with an additive
2vd
L oo + 21y

grad

Finally, combining the clean star envelope with the uniform deviation equation [f] and adding the
adversarial term from equation Using log (12( ) < 2log K yields the stated bound. O

F A BRIEF PRIMER ON METRIC MEASURE SPACES AND
GROMOV—WASSERSTEIN DISTANCES

F.1 METRIC MEASURE SPACES

A metric measure space (mm-space) is a triple (X, dx, ux) , where X is a Polish space, dx is a
metric on X, and px is a Borel probability measure on X. Intuitively, an mm-space encodes both
the geometry (via dx) and the distribution of mass (via ux).

Two mm-spaces (X, dx, ux) and (Y, dy, py) are considered equivalent if there exists a measure-
preserving isometry ¢ : X — Y, ie. dx(z,2") = dy(p(z),p(2’)) and py = @gpx. This
quotienting ensures that we compare spaces only up to relabeling of points.

The classical notion of distance between mm-spaces is the Gromov—Hausdorff distance, which mea-
sures how well two spaces can be embedded into a common metric space with small distortion.
However, it is highly combinatorial and not well-suited to data applications.

F.2 THE GROMOV—WASSERSTEIN DISTANCE

The Gromov—Wasserstein (GW) distance relaxes Gromov—Hausdorff by using optimal transport
ideas. For two mm-spaces (X, dx, ux) and (Y, dy, uy ), the squared GW distance is defined as

GW2((X5 anMX)a(}/a deNY)) = min / ‘dX(I7x/)7dY(yay/)|2 dﬂ(l‘,y) dﬂ(l‘/7y/)7
me€Il(px,py)
(46)

where TI(ux, py ) is the set of couplings with marginals px, 1y . Thus GW finds a soft correspon-

dence 7w between X and Y and penalizes discrepancies between their intra-space distances.

Properties.

* GW is a metric on the space of mm-spaces up to equivalence.
e If X =Y and dx = dy, then GW = 0 regardless of labeling.

* GW generalizes Wasserstein distance: if X = Y as sets with the same underlying metric,
then GW reduces to Wh.

Statistical viewpoint. For empirical datasets X = {z;};";, Y = {y;}}_,, the metric structure is

given by pairwise distance matrices (dx (z;, z;/)) and (dy (y;, y;+)). The GW distance then becomes
a quadratic assignment problem over couplings 7 € R™*™ with row/column marginals 1/n,1/m.
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F.3 ENTROPIC GROMOV—WASSERSTEIN DISTANCE

The GW optimization in equation [46|is computationally hard due to its quadratic objective. To
address this, Peyré et al. (2016) introduced the entropic regularized GW distance, defined as

GW2(X,Y) := min { / ldx (z,2") — dy (y,y) > dr(z, y) dr(z',y) — 7H(7r)}7
mell(px,py)
(47)
where H (1) = — ZZ ; iz log ;j is the Shannon entropy and «y > 0 is the regularization parameter.

Effects of entropic regularization.

* Computational: The problem becomes smooth and solvable by Sinkhorn-like iterations,
scaling to tens of thousands of points.

* Statistical: GW, inherits concentration bounds and enjoys faster empirical convergence
(regularization reduces variance).

* Geometric: The optimal coupling 7 becomes diffuse, capturing probabilistic alignments
between X and Y.

Connections to our work. In our setting, the product spaces C (CNN) and K (Crypto) each define
mm-spaces under their product metrics and empirical measures. Our clean vs. adversarial concen-
tration bounds on k-NN diameters directly control the intra-space geometry terms in equation 46|
Thus, these results serve as building blocks for bounding clean/adversarial GW and entropic GW
distances, providing rigorous separation guarantees for detection.

G PROOFS FOR GROMOV—WASSERSTEIN BOUNDS

Definition 11 (Quadratic Gromov—Wasserstein discrepancy). Ler (X,dx,p) and (Y,dy,v) be
metric—measure spaces. A coupling © € I(u, v) is a probability measure on X x ) whose marginals
are pand v, i.e.

(A xY) = u(A), m(X x B) =v(B) forall measurable AC X, B C ).
The quadratic GW discrepancy is defined as

GW(X,dx,p),(V,dy,v)) == inf E(z,y)wﬂ[(dx(wyx')—dy(yyy/))Q].
mell(p,v) (2 Y~

Remark 4 (Upper bound by identity coupling). For brevity, we write GW? (X,)) as the quadratic
GW discrepancy between two metric—measure spaces (X,dx,p) and (Y,dy,v). Let p =
IS 0p, and v = 23 6, with distance matrices Dx[i,j] = dx(x;,x;) and Dyli, j] =
dy(yi,y;). Consider the identity coupling my = % DIy O(ai,y:)- Since GW? is an infimum over
couplings, evaluating at any feasible T gives an upper bound:

1
GW2(X,)) < — |[Dx = Dy}

More generally, for any permutation o (with permutation matrix P), the coupling mw, =
1 .
n Ez 5(11‘,%(1)) ylelds 1
2 T112
GW*(X,Y) < —[|Dx = P Dy P
These bounds are typically loose but serve as alignment-dependent certificates.

Proposition 3 (Cross-space stability under perturbations). Let (X, dx, i) and (), dy, v) be metric—

measure spaces with distance matrices Dy, Dy. Let Dy = Dy + Ay and Dy = Dy + Ay be
perturbed versions. Define the clean offset A := Dy — Dy and the perturbation offset £/ :=
AX — Ay. Then

- 2 1
GW(X,9) = GW*(X, V)| < S [Alr[Bllr + 5 IE]E-
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Proof. By Remark [4] evaluating both GW objectives at the identity coupling gives
CWA(X.)) < HlAlf,  GWA(XD) < A+ E|%.

Hence o
GW2(E,9) - GWA(X, D) < &[4+ B3 — Al

Expanding and applying Cauchy—Schwarz yields,
1A+ E|F — [Al%] = 1204, B) + | Bl% | < 2| Alr|EllF + | Bl
Substituting this bound into the previous inequality gives

1
2|

GW2(2,3) - WX, D)| < S AR IElF + —5 B3,

2
1
which is the desired result. O
Theorem 1 (Clean cross—space GW upper bound via K-NN star radii). Fix a clean query x and

consider its local neighborhoods N (x) C C and N¥(x) C K, each endowed with the uniform
probability measure on K points.

Let Re and Ry denote the corresponding K-NN radii (the K-th star distances from x) in C and
IC respectively. Then, for any confidence levels éc,dx € (0,1), the following high-probability
envelopes hold:

Re < pe (1 + \/2lodgK + \/Zlogg/‘SC)) with probability > 1 — d¢, 5
Re < px (1 + 5—;\/&(\/2 log K + /2 10g(2/6;c))) with probability > 1 — 8. (6)

Consequently, with probability at least 1 — (d¢ + i),
GW2(WNE (@), NE()) < 4(1- %) (Re + Re)’. ™

Proof. Let X := NG (x) = {x1,...,zx}andY := N&(2) = {y1,...,yx } be the K neighbors in
C and IC, respectively, both with the uniform measure K ! Zf{:l d(.). We denote their distance ma-
trices as De|i, j| := de(z4, z;) and Dx[i, j] := di (s, y,), which satisfy D¢[i,i] = Dgli,i] = 0.
By Remark evaluating the quadratic GW objective at the identity coupling my = % Zfil O(aiyi)
yields

1 2

2

GW(X,Y) < 7 [|Pe = Dic|[p- (48)
Let g¢ be the clean query center in C and gx the center in K. Define the K-NN radii as R¢ :=

maxi<;<xk de(%;, q¢) and R := maxi<;<x dx (¥;, gc ). By the triangle inequality in each product
metric, we have

de(xi, ;) < de(wi,qe) +de(qe,v;) < 2Re, di(yi,y;) < 2Ry, (i#j). (49
Hence every off-diagonal entry of D¢ (resp. Dx) is bounded by 2R (resp. 2Rx).
There are exactly K (K — 1) off-diagonal entries. Using equation 49| we arrive at

[Dell7 < K(K —1)(2Re)?, Dl < K(K —1)(2Rx)*.
Therefore, by the triangle inequality for || - || 7,
[De = Dillr < | Dellr + |1 Dkl

< 2¢/K(K —1)(Re¢ + Rx). (50)
Substituting equation [50]into equation 48}
1 2
GW?(X,Y) £ — (2VEKK 1) (Re+ Rx)) = 4(1- %) (R + Ric)*,

which is exactly equation[7]and completes the proof. O
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Notation (adversarial queries, radii, and separation gap). Let x be a clean image and 7 a per-
turbation. For each space M € {C, K}, define the adversarial query as Gy = 2M(x + 1), the
embedding of the perturbed image x + 7 into M. As the dataset is fixed and only the query moves,
so the K—NN neighborhood may change membership relative to the clean case. We define the ad-

versarial neighborhood as MM (z + 1) := {zM, ..., M}, which are the K nearest neighbors to Gy
under dy. The associated adversarial radii are r™ := dy(zM, Gu), and Rﬁ,ld" = MaAX1<i<K M.

Adbversarial shifts often produce a “cluster split” in these radii, i.e., some neighbors become unusu-
ally close to g, while others remain farther away. To capture this structure, we partition N I'\é' (x+mn)
into an inner group L and an outer group H of sizes (1 — §) K and 0K by thresholding {rM}. The
adversarial separation gap in M is

™ = minrl-v' — maxrg/',
i€H JEL

which is positive when the inner and outer sets are well separated.

Theorem 2 (Adversarial cross—space GW lower bound). Fix a query x and perturbation 0, and
consider the adversarial neighborhoods NS (x + n) and N (x + 1), each with uniform measure
on K points. Let ¢ be the separation gap and let Ra,cd" denote the adversarial K—NN radius in K,

bounded as in Theorem Then, with probability at least 1 -0, GWQ(./\N/}C( (z+n), NE (x—i-n)) >

2
262 (ye — 2R) K

Proof. In any metric space (M, d) with center ¢, one has for all u, v,

‘ d(u’ q) - d<v7 Q) | < d(u7 ’U) < d(“’v Q) + d(”? Q)'
We apply this to the adversarial neighborhoods. For the C-space, each x;,z; € J\~/}(’; (z +n) has radii
r¢ = de (w4, G ), while for the K-space, each y,, s € NE(z +n) has radii 75 = dic(ya, gc)-
Hence,

de(wiyzy) > |r§ =78, dcWarwp) < TR +0f < 2REY. (51)

We now identify which neighbor pairs give us a guaranteed discrepancy. Recall that the adversarial
neighborhood in C is partitioned into an inner set L of size (1 — §) K and an outer set H of size K,
with separation gap ¢ := min;e g rf — maxjer, rf > 0.

A natural question arises, namely, Why focus on cross pairs? If both indices come from H (outer—
outer) or both from L (inner—inner), the corresponding radii may be very close, and no nontrivial
separation is guaranteed. However, whenever one index ¢ € H and the other j € L, we know
rf — TJC > ve.
By the triangle inequality bound equation[51]

de(wia;) > [r§ =S| > ve,  dic(yasps) < 2REN.

Therefore, for any cross pair (i,j) € H x Lor (j,i) € L x H, and for all choices of (a, b) in £,

|de(zi,25) — dic(Yaryp) | > 7o — 2 REV. (52)

How many such pairs exist? Define S := (H x L)U (L x H) C {1,..., K}?. Then
S| = [H||IL| + |L|IH| = 2|H||L] > 26°K>.

Thus, at least 202 K2 ordered pairs (4, j) enjoy the guaranteed discrepancy equation which will
next drive our GW lower bound.

For any coupling 7 € II(f, 7) with uniform marginals, the GW objective can be written as

GW(C,K) =inf ) > ali,jlx[i', ] (dc(wi, i) = dic(y;, yj/))Q-

.
XAV
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From equation we have that each summand in the inner sum (over j, j') is bounded below by
(ve — QR?Cd")i. Since the coupling 7 has uniform marginals, the total weight assigned to the block
{i} x {i'} after summing over j, j is fixed:

o e L. . 1 1 1
ZT([Z?]]W[’/’]/] = (Zﬂ-[za]]) (Zﬂ-[llhj/}> = E . E = ﬁ
jaj/ 7 j/
Therefore for each (i,7') € S, Zj,j’ wli, w31 --) > % (ve — QRiaCdv)i.

Summing over all (i,i’) € S gives

2 51 adv
Ener | (de(@,2) = dic(y,y)’] = 125 (e — 2802,
because contributions from pairs outside S are nonnegative and can be dropped. Finally, recalling
|S| > 262K?, we arrive at Ergr[---] > 260 (y¢ — 2R3)2. As this bound is independent of

the choice of coupling, it continues to hold after taking the infimum over 7. Finally, substituting the
high—probability envelope for R%i" from Theorem @ yields the explicit form of the bound, which
completes the proof. O

Remark 5 (Instantiating v¢ from clean geometry). The abstract separation parameter ¢ in Theo-
rem 2| can be linked to earlier C results. Let q and { be the clean and adversarial queries, with the
clean K—NN neighborhood partitioned into inner set L and outer set H. The clean separation gap
is

Aclean = Izléllgll dC (xiv Q> - Ijneag( dC (Ijv Q)

By our earlier adversarial absorption radius analysis in C, adversarial perturbations shift each star

distance by at most \/\{337" € + 1{cz¢). Hence the induced adversarial gap satisfies
grad

Yo 2 (Aclean - 2(\/% €+ 1{c;£é}))+
Thus ~¢ is not an arbitrary constant: it can be certified from clean geometry plus the perturbation
shift and possible label flip.

Corollary 6 (Explicit clean—adversarial gap across C and K). Combining Theorem[2|with Remark 3]
with probability at least 1 — (6 + Ograd),

WA o+ 1) N ) 2 287 ( Qg =2(fE e 4 Lopn) 282

adv. shift in C

clean sep.

This bound separates the clean structure, the C—side adversarial shift, and the K—side absorption,
making the cross—space adversarial gap explicit.

G.1 MIRROR THEOREMS FOR UPPER AND LOWER BOUNDS ON GW

Theorem 10 (Clean cross—space GW lower bound). Fix a clean query x and its clean neighbor-
hoods NG (x) and N (z), each with uniform measure on K points. Suppose the clean C—radii

around the clean center qc exhibit a separation gap
clean
c

= ?élg}dc(xqu) - Ijr_lea‘l}/{dC(‘rj7QC) >07

for a partition into inner L and outer H of sizes (1 — 0)K and K. Let R,Cclcan denote the clean
K-NN radius in K, bounded by the clean KC envelope. Then

2
GW(NE(2), Nk (@) = 267 (e — 2Ri™)
+
Proof sketch. Identical to Theorem(Steps 1—4) with “adversarial” replaced by “clean” and R;acd"
replaced by R{°™. The cross-pairs (H x L) U (L x H) enforce an entrywise gap of at least

fyglcan - QR%CE"“; uniform marginals then yield the factor 20? after averaging over couplings.
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Theorem 11 (Adversarial cross—space GW upper bound via K-NN star radii). Fix a query x and
perturbation n, and consider the adversarial neighborhoods

./VIC((J:—FT]), /\71?(3?4'77)’

each with uniform measure on K points. Let R"‘d" and R}"Cd" denote the adversarial K—NN radii in
C and K, respectively (each bounded by the adversarial envelopes in those spaces). Then

GW2<./\~/}C((:E+77), Kf}?(az+n)) < 4(%%) (Radv R;ach)2.

Proof sketch. Copy Theorem [I] verbatim, replacmg clean radii by adversarial radii. The iden-
tity coupling and Frobenius argument give GW? < K~2||D¢ — Dx||%. Each off-diagonal en-
try is at most 2R*Y by triangle inequality via the adversarial centers, so |D¢ — Dil|lp <

2/ K (K — 1)(R3Y + RY), which yields the claim.

G.2 GAP THEOREM IN GW

We now combine the clean and adversarial envelopes established in Theorems [T} 2} [T0] and [T1] to
show that their GW discrepancies are separated by a margin that is nonvanishing in high dimension.

Theorem 3 (Cross—space GW gap). With probability at least 1 — (d¢ + 0xc + 02V + Oaux), the
clean and adversarial GW discrepancies satisfy |GW?2,, — GW? | > 7 := max{Tadv, Teloan, 0},
where Toqv = Ladv — Uclean and Teiean = Leclean — Uadv. Under Assumption[Z] for fixed K and

perturbation ||n|| s = €, we obtain T = Q(d?0?e?) — O(IO%K)'

Proof. On the joint event where all four bounds hold:

GW Z Ladvv Gwclean = Uclcana

adv
which implies

CGW2,, — GW?2

adv clean > Ladv - Uclean~

Similarly,
GW2ean = Lelcan GW2,, < Uy,
which implies
GWeiean = GWiay = Letean = Unav-

Taking the maximum of these two margins yields the result. [

clean —

Discussion. Clean side. For fixed K, as d — 00, the clean K—NN radii in both C and K concen-

trate:
Re, R = O<M+ \/ logK),

so the clean upper envelope Ujean Vanishes at rate O(\ / %).

Adversarial side. A perturbation ||n]|c = € shifts the K-NN star distances in C by dc(e) =
@( Vd_ 5), which induces a separation gap «¢. Meanwhile, absorption in K is controlled by

RV = O(CyVd). Together, this yields Laq, = Q(d o2e?).

Gap scaling. As wehave 7 = Q(do?c?) — O( bgdK ), so the gap is asymptotically nonvanishing:
the clean side contracts while the adversarial side grows linearly in d. This proves robustness in high
dimension.

Implication for entropic solvers. Because the GW gap remains bounded away from zero asymp-
totically, entropic relaxations that preserve relative ordering inherit the same discriminative power,
justifying our detector design.
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G.3 ENTROPIC GW COROLLARIES AND RISK CONTROL

Corollary 7 (Entropic relaxation preserves lower bounds). For any metric—measure spaces
(X,dx,p) and (¥,dy,v) and any A > 0,

GW3(X,Y) > GW2(X,)).

Hence the lower bounds of Theorems [2|and[10|remain valid verbatim under entropic GW.

Corollary 8 (Entropic slack in upper bounds). For uniform marginals on K points,
CW3(X,)) < GW3(X,)) + 2X\log K.

Thus the upper bounds of Theorems [I|and[I1| hold with additive slack 2\ 1og K.

Corollary 9 (Quenched key version). All high—probability envelopes on the K—side radii (Theo-
rems Ei] were stated in the annealed sense, averaging over random keys (b, k). By condi-
tioning, the same inequalities hold for any fixed (b, k) with identical probability bounds over the
randomness of image sampling and adversarial perturbations.

Risk control The GW gap theorem (Theorem [3) ensures that, with high probability, the clean

and adversarial discrepancies GW?,,, and GW?2,, are separated by a margin 7 > 0. In practice,
—_—

however, we only observe the empirical, regularized estimator GW?3, which deviates from the truth
due to (i) statistical sampling noise and (ii) entropic bias. If these deviations exceed 7, the detector
may fail. The next lemma formalizes that controlling the estimation error to 7/3 suffices.

Lemma 4 (Risk control via GW margin). If the gap event holds with margin T > 0 and an estimator
GW3 satisfies Pr(|GW3 — GW?| < 7/3) > 1 — best, then thresholding GW3 at the midpoint

between clean and adversarial envelopes makes no error on this event. Thus Pr(misclassification) <

PI'(EC ) + 5est~

gap

Proof. On the event Fg,p,, the clean and adversarial discrepancies satisfy conditions GW2...

Uclean and GW2, > Laqy, with Laqy — Uclean > Tadv. and symmetrically GW?_. . > Leean
and GWidv < Uady, With Lejean — Uady > Telean- By definition, 7 = max{Tady, Tclean > 0, sO
there exists a threshold ¢* lying strictly between the clean and adversarial ranges, with a buffer of at
least 7 to each side.

In the case of a clean instance, on E.; we have that GW?\ < GW

o —

2
clean

+ % < Uclean + 3. Since

t* > Ugloan + % we conclude GWi < t* — % < t*, so the classifier correctly outputs “clean.”

-

For an adversarial instance, on E.g, we have GWi > QW2 T > Lagv —

adv — 3
—_—

-
3- Since

t* < Lagy — 5, we similarly conclude GW?\ > t*+ ¢ > t*, so the classifier correctly outputs
“adversarial.”

Thus, on Egap, N Eegt, the plug—in classifier is error—free. Finally, since Eg,p, holds with probability
at least 1 — dgap, (from Theorem [3) and Eg, with probability at least 1 — de;, @ union bound yields
P(misclassification) < gap + Jest- O

Discussion. Lemma [ formalizes the transition from a theoretical gap to a practical detector.
Theorem [3] ensures a margin 7 exists between clean and adversarial discrepancies. The lemma
shows that if the empirical entropic GW estimator concentrates within 7/3 of the truth, then a
midpoint threshold ¢* separates the two classes with zero error. The factor 1/3 is convenient: it
splits the error budget evenly, allowing statistical variance and entropic bias to each consume at
most 7/6. This provides a direct analogue to margin-based classifiers in statistical learning: once
the theoretical gap is positive, robust classification depends only on estimator concentration, not on
further geometric properties of C or K. In particular, higher dimension amplifies 7, so the limiting
risk is controlled primarily by solver accuracy and sample complexity rather than geometry itself.
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H DETAILS OF ADVERSARIAL IMAGE GENERATION

We focus on the following white-box and black-box attacks in this work across the supervised and
zero-shot settings:

H.1 WHITE-BOX ATTACKS

White-box attacks assume access to the internal parameters of the target model.

* Auto Attack (Croce & Hein, [2020): A parameter-free ensemble attack combining four
complementary attacks: APGD-CE, APGD-DLR, FAB-T, and Square Attack. The ensem-
ble automatically selects optimal hyperparameters and provides reliable robustness evalua-
tion without manual tuning.

» Carlini & Wagner (C&W) Attack |Carlini & Wagner| (2017): An optimization-based at-
tack that formulates adversarial example generation as:

min 6], + ¢ f(z+ ) (53)
where f(z + 0) = max(max{Z(x + 9); : i # t} — Z(x + &)+, —k) with Z representing
logits, ¢ the target class, and x the confidence parameter.

* Projected Gradient Descent (PGD) Attack Madry et al. (2018): An iterative first-order
adversarial attack using projected gradient descent:

Tep1 = Hg(zp + - sign(V,.0(0, x4, y))) (54)

where Ilg denotes projection onto the constraint set S = {2’ : |2/ — z||oc < €} and ¢ is
the loss function.

¢ Auto-PGD (APGD) Attack (Croce & Hein, [2020): An enhanced version of PGD with
automatic step size adaptation and momentum. The step size is dynamically adjusted based
on the loss trajectory:

ar = ag - p* (55)
where k; counts the number of step size reductions and p = 0.75.

* Fast Gradient Sign Method (FGSM) (Goodfellow et al.[2015): A single-step attack that
generates adversarial examples using:

Tady = T +€- SIgn(VzJ(97 Zz, y)) (56)

where J is the cost function used to train the neural network, 6 are the model parameters,
and e controls the perturbation magnitude.

* Universal Adversarial Perturbation (Moosavi-Dezfooli et al.,|2017): Generates image-
agnostic perturbations that fool classifiers across different inputs:

min [[v]|,, subject to Py, [k(z + v) # k(z)] > 1 -0 (57)

where v is the universal perturbation, y is the data distribution, and § is the desired fooling
rate.

» Adversarial Patch Attack [Brown et al.| (2017): Generates printable adversarial patches
that can cause misclassification in the physical world:

p = argmaxE, , ;[log Pr(g|A(p, z,1,t))] (58)
P

where A(p, x,l,t) applies patch p to image x at location [ with transformation ¢, and g is
the target class.
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H.2 BLACK-BOX ATTACKS
Black-box attacks operate without knowledge of internal model parameters.

* Frequency Attack Yin et al.[(2019): Exploits the vulnerability of neural networks in the
frequency domain by applying perturbations to the Fourier transform:

Flzady) = Flx)+ o5 (59)
where F denotes the Fourier transform and d 7 represents frequency-domain perturbations.

* Square Attack Andriushchenko et al.| (2020): A query-efficient score-based black-box
attack that uses random search within ¢, balls:

Tpp1 = Ty + 1 by (60)

where h; is a random direction sampled uniformly from {—1,41}¢ and 7 is the step size
adapted based on the attack success.

* Gaussian Blur Attack (Zhang etal.l|2022): Applies Gaussian blur to exploit the frequency

bias of deep neural networks:
2 2
exp (—x ty ) 61)

Gy (x =

o(2,9) 2702 202

where o controls the blur intensity and the convolution x4, = x * G, generates the
adversarial example.

» Semantic Rotation Attack (Hosseini & Poovendran| |2018)): Applies geometric transfor-
mations including rotations that preserve semantic content while causing misclassification:

Ry — {cos f —sin 9}

sinf  cosf
where 6 represents the rotation angle applied to the input image coordinates.

* Pixel Flip Attack (Su et al| [2019): A sparse attack that modifies only a few pixels to
cause misclassification:

min | S| subject to f(z @ ds) # f(z) (63)

where S is the set of modified pixel locations, ds represents the pixel modifications, and &
denotes the modification operation.

(62)

H.3 ADVERSARIAL IMAGE GENERATION IN THE SUPERVISED SETTING

In the supervised setting, adversarial examples are generated against traditional classification models
trained on labeled datasets. The model produces logits through a standard forward pass:

z = fo(x), (64)

where fy(z) denotes the neural network with parameters 6, x € RH*Wx¢

z € RE are the raw logits for K classes.

is the input image, and

The final classification layer is typically a linear transformation:
z=WTh+b, (65)

where h is the penultimate layer representation, W € R4*X is the weight matrix, and b € R¥ is
the bias vector.

The predicted class probabilities are obtained via the softmax function:
exp(z
P(y:c|:v):K#7 (66)
> j=1 exp(z;)
where z, is the logit for class c.
During adversarial attack generation, the commonly used loss function is the cross-entropy loss:

K
L(z,y) =—1logP(y | ©) = —z, + log Zexp(zj) . (67)

Jj=1
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H.4 ADVERSARIAL IMAGE GENERATION IN THE ZERO-SHOT SETTING

In the zero-shot setting, adversarial examples are generated against Vision-Language Models
(VLMs) using its image encoder model (in our case CLIP Radford et al.| (2021))), which do not
require training on the target classes. The model consists of separate image and text encoders that
project inputs into a shared embedding space.

Given an input image 2 € R7XWXC and a set of K class names {ci, co,...,cx}, the zero-shot
classification process proceeds as follows:

Image Encoding: The image encoder £; : RE>XWxC _ Rd maps the input image to an /-
normalized embedding in the shared representation space:
Er(z)

— 68
U = B @) (©8)

where v; € R? represents the normalized image embedding with unit norm.

Text Encoding: For each class ¢;, a text prompt is constructed using the template “A photo of ¢;”.
The text encoder E7 : V* — RY maps each prompt to a normalized embedding in the same shared
space:
E7(“A photo of ¢;”
vpg = —rUCAphotoofer) (69)
’ ||E7(“A photo of ¢;”)||2

where V* denotes the vocabulary space and vy ; € R? is the normalized text embedding for class
C;.

Logit Computation: The logits are computed as the temperature-scaled cosine similarities between
the image embedding and each text embedding:

T
zi =T -vjUr; =T - cos(vr,vr,;), (70)

where 7 > 0 is a temperature parameter that controls the sharpness of the similarity distribution.
The complete logit vector is:

T K
z:T-[v}FvT’l, v}vaﬁg, ceey U?UT’K} e R™. 71

Classification Decision: The predicted class is obtained by selecting the class with the maximum
logit value:
Yy =arg max z; =arg max U?’UT,Z‘. (72)

i€{l,....K} gie{l,...,K}
The class posterior probabilities are obtained through softmax normalization:
exp (7' - v?vm)

Sjcaexp (revfer)

Ply=c¢|a)= (73)

H.5 ADVERSARIAL ATTACK HYPERPARAMETER SELECTION

In this section, we provide the detailed configuration of adversarial attack methods used in our ex-
periments (Section[6). Table[5|summarizes the set of hyperparameters chosen for each attack. These
values are selected following common practice in the adversarial robustness literature to ensure a
fair comparison across methods.

We consider a diverse set of attack strategies, including optimization-based, gradient-based, score-
based, and patch-based approaches. For gradient-based methods such as PGD, Auto-PGD, FGSM,
and Square Attack, we evaluate under multiple perturbation budgets with ¢ € {4/255,8/255}.
Universal Perturbation is evaluated with a wider range of perturbation strengths, namely ¢ €
{4/255,8/255,12/255}.

For optimization-based attacks, the Carlini & Wagner (CW) attack is configured with confidence pa-
rameter £ = 0.0, following the default setting to generate minimally perturbed adversarial examples.
AutoAttack is evaluated under e € {4/255,8/255}, consistent with its standardized benchmark pro-
tocol.
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Patch-based and spatial transformations are included to account for more physically realizable ad-
versarial scenarios. The Patch Attack is tested with square patches of shape (3, 8,8) and (3, 16, 16),
while the Spatial Attack allows for up to 30° rotation and translations of up to 10% of the image
dimensions.

In addition to the attacks described above, we also include several specialized perturbations and
image corruptions to probe robustness across different perturbation modalities: a Frequency Attack
with noise strength noise_strength = 0.05, Gaussian Blur with 0 = 1.0 (blur_type set to “uniform”),
Pixel Flip with num_pixel = 5 and attack mode set to “random”, and a Semantic Rotation with
angle = 8°. These parameter choices are summarized in Table[5|and were chosen to reflect common
settings used in prior work while providing a broad coverage of perturbation types.

These configurations ensure that the evaluation captures a broad spectrum of attack types, ranging
from small-norm pixel perturbations to structured and geometric transformations. See Table [3] for
an overview of the attack methods and the full set of parameter values used in our experiments.

Attack Method Parameter Values

AutoAttack (AA) ¢ = 4/225,8/225

C&W (CW) k=0.0

Patch Attack (PT) patch_shape = (3, 8, 8), (3,16, 16)
PGD e =4/255,8/255

Spatial Attack (SA) max rotation: 30°, max translation: 10% of the image size
Square Attack (SQ) € =4/255,8/255

Universal Perturbation (UP) | ¢ = 4/255,8/255,12/255

Auto-PGD (AP) e =4/255,8/255

FGSM (FG) e =4/255,8/255

Frequency Attack (FA) noise_strength = 0.05

Gaussian Blur (GB) o = 1.0, blur_type = uniform

Pixel Flip (PF) num_pixel = 5, attack_mode = random
Semantic Rotation (SR) angle = 8

Table 5: Overview of adversarial attack methods and their parameter settings. Parameter value
written with bold represents the default value of the corresponding attack among its parameter
configurations.

H.6 EXAMPLES OF ADVERSARIAL IMAGES SUPERVISED SETTING

H.6.1 GAUSSIAN BLUR ATTACK

Original image Perturbed image
label: car Predicted label: truck Perturbation

&

Figure 3: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
Original Image with True Label car, Center: Adversarial Image with Predicted Label fruck and
Right: Perturbation
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Original image Perturbed image
label: plane Predicted label: bird Perturbation

Figure 4: Comparison between Original and Perturbed Images using Gaussian blur attack. Left:
Original Image with True Label plane, Center: Adversarial Image with Predicted Label bird and
Right: Perturbation

H.6.2 PATCH ATTACK

Original image Perturbed image
label: car Predicted label: truck Perturbation

by

Figure 5: Comparison between Original and Perturbed Images using Patch attack. Left: Original
Image with True Label car, Center: Adversarial Image with Predicted Label fruck and Right: Per-
turbation

Original image Perturbed image
label: plane Predicted label: bird Perturbation

Figure 6: Comparison between Original and Perturbed Images using Patch attack. Left: Original
Image with True Label plane, Center: Adversarial Image with Predicted Label bird and Right:
Perturbation
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H.7 EXAMPLES OF ADVERSARIAL IMAGES ZERO SHOT SETTING

H.7.1 APGD ATTACK

True Predicted
Dolphin Camera Perturbation

Figure 7: Comparison between Original and Perturbed Images using APGD attack. Left: Original
Image with True Label Dolphin, Center: Adversarial Image with Predicted Label Camera and Right:
Perturbation

H.7.2 PGD ATTACK

True Predicted
Trilobite Helicopter Perturbation

Figure 8: Comparison between Original and Perturbed Images using APGD attack. Left: Original
Image with True Label Trilobite, Center: Adversarial Image with Predicted Label Helicopter and
Right: Perturbation

I DETECTION METHODS CONFIGURATION

This section provides detailed descriptions of the adversarial detection methods evaluated in our
experiments, with configurations specified in Table[6] Further, we also mention the hyperparameter
settings used in our defense approach.

1.1 MAHALANOBIS DETECTOR

The Mahalanobis detector leverages the Mahalanobis distance to measure distri-
butional deviations of test samples from training data in the neural network’s feature space. For a
given sample x and its feature representation f(x) at layer [, the method computes class-conditional

Gaussian distributions A/ (ug), > 1)) from clean training data. The Mahalanobis distance is defined
as:
MO ) = (00 = p0)" (B0) 71 (D o0) - )

The minimum distance across all classes serves as the confidence score for adversarial detection,
exploiting the property that adversarial perturbations typically push samples away from the natural
data manifold.
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1.2 FEATURE SQUEEZING

Feature Squeezing (Xu et al.,[2018) reduces the degrees of freedom available to adversarial pertur-
bations by applying input transformations that compress the feature space. Our implementation uses
median smoothing with a 2 x 2 kernel and L; distance metric for comparing predictions. For an
input x and its squeezed version x’, the detection score is computed as:

score(x) = [|p(x) — p(x')||1

where p(-) represents the model’s prediction probabilities. A threshold is determined using the
training false positive rate (FPR) of 0.2, assuming legitimate inputs remain robust to minor spatial
transformations while adversarial examples exhibit significant prediction changes.

1.3 METADETECT

MetaDetect (Ma et al.l|2019) formulates adversarial detection as a few-shot learning problem using
meta-learning principles. The method employs episodic training with support sets S = {(x;, ¥;) } oo,
and query sets Q = {(x;, yj)}j.v:ql, where y; € {0,1} indicates clean (0) or adversarial (1) sam-
ples. Our configuration uses [Ny = 1 support example and N, = 15 query examples with a conv3
architecture. The meta-detector learns a function fy that maps from support-query episode pairs to
detection decisions, optimizing over episode distributions to generalize across different attack types.

1.4 MAGNET

MagNet (Meng & Chen, [2017) combines detection and defense mechanisms using autoencoder-
based reconstruction and probability estimation. The method trains an autoencoder & : R? — RY
on clean data to approximate the natural data manifold. For detection, it computes the reconstruction
error:

Lrec(x) = ||X - &b(X)H%

Additionally, MagNet estimates the probability density using the Jensen-Shannon divergence be-
tween the original and reconstructed inputs’ predicted distributions. The underlying assumption is
that adversarial examples, lying off the natural manifold, will exhibit higher reconstruction errors
and lower probability estimates compared to legitimate inputs.

Detection Method Parameters

Mabhalanobis Detector  train_fpr = 0.15

Feature Squeezing distance metric: L1, squeezer: median smoothing (2x2), train_fpr=0.2
MetaDetect num_support = 1, num_query = 15, arch = conv3

MagNet [y norm reconstruction error, train_fpr = 0.15

Table 6: Parameters and configurations for different adversarial detection methods. Methods refer-
enced: Mahalanobis (Lee et al., 2018)), Feature Squeezing (Xu et al.,|2018), MetaDetect (Ma et al.,
2019), and MagNet (Meng & Chenl 2017).

1.5 HYPER PARAMETER CONFIGURATION FOR THE PROPOSED METHOD

Hyperparameter Candidate Values Optimal Value Description

Kiocal {8,10,12, 15} 8 Local Gromov-Wasserstein features
Eglobal {3,5,7} 3 Global Gromov-Wasserstein features
€ow {0.2,0.5,0.8} 0.5 Entropic regularization strength

Table 7: Hyperparameter search for GW features: We performed a grid search over the candidate
values of each hyperparameter and chose the values that achieved the best trade-off between robust-
ness and model usability. Based on this search, we selected the optimal parameters as kjoca = 8,
kglobal = 3, and €ow = 0.5.
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Hyperparameter Candidate Values Optimal Value Description
Kernel {linear, rbf, poly} rbf Choice of kernel function
C {0.1, 1, 10, 100} 1 Regularization parameter
~ {scale, auto, 0.01, 0.001} scale Kernel Coeff. for RBF

Table 8: Hyperparameter search for SVM: We performed a grid search over the candidate values
of each hyperparameter and selected the optimal configuration based on validation accuracy. The
chosen parameters are Kernel = rbf, C' = 1, v = scale.

J ADAPTIVE ATTACK FORMULATION

Evaluating the robustness of a defense mechanism against an adaptive adversary is crucial. We
consider an adversary who possesses complete knowledge of the defense’s architecture, including

the classifier fy(x), the CNN feature extractor ¢cn, (), and the crypto feature extractor o (z)
with its associated transform 7T3,. However, the adversary is unaware of the defender’s specific, fixed
secret bit vector b* € {0, 1} used in deployment. This section formalizes the adversary’s objective
and optimization strategy to generate adversarial examples under this realistic uncertainty, focusing
on two distinct consistency-based attacks. This approach is typical for evaluating defenses against
strong, adaptive attackers |Athalye et al.|(2018).

J.1 ATTACKER’S PRIOR OVER SECRET BITS

To account for the unknown secret b*, the adversary models it as a random variable b drawn from a
prior distribution p(b). This prior is constructed as a mixture model over a set of plausible Bernoulli
distributions, M, reflecting the adversary’s uncertainty about the specific statistical properties of b*:

D
1 .
p(b) = i E I | Bernoulli(b;; pm),

meM j=1

where p,, corresponds to the individual Bernoulli success probability for each distribution type in
M (e.g., pm = 0.5 for uniform or Gaussian-threshold components, and specific probabilities like
0.3, 0.7 for biased Bernoulli components). This mixture prior allows the adversary to account for
various possibilities of how the defender might have generated b*. Modeling unknown parameters
in this manner is a standard robust optimization technique |Ben-Tal et al.| (2009).

J.2  ATTACKER’S OBJECTIVE FUNCTION

The adversary’s goal is to craft an adversarial example z from a benign input x( that achieves
misclassification by fy(z) while simultaneously maintaining a high degree of feature consistency
with xg. The latter ensures the adversarial example does not trip the defense’s detection mechanisms,
particularly those relying on the crypto features. Since the specific b* is unknown, the adversary
targets an average consistency, minimizing the expected penalty under their prior p(b).

The general adversarial objective is:

rxneaz}(iﬁ(x;:co,y) = e(fG(x)ay) - AEpr(b)[C(xva;b)}7

where £(fo(x),y) is the cross-entropy loss for the true label y, which the adversary seeks to max-
imize; A > 0 is a weighting factor that balances the misclassification objective against the consis-
tency penalty — a formulation commonly used in adversarial attacks to trade off attack success and
imperceptibility or stealth|Carlini & Wagner (2017); C(x, xo; b) quantifies the discrepancy between
features of x and x for a given b, with lower values of C' implying better stealth against consistency
checks; and X' defines the allowed perturbation space, typically restricted to a range [a, b]H#*W*¢
for pixel values.
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J.3 CONSISTENCY PENALTIES (C(z, z0; b))

We define the consistency penalty C(x, zo; b) using an OT-like discrepancy metric, Dor(+, ). This
metric compares feature vectors (Lo distance if dimensions match) or their statistical summaries
(L4 distance between mean, std, min, max, skewness, kurtosis if dimensions differ or comparison of
statistics is explicitly requested).

For this study, we consider two specific attack formulations based on distinct consistency penalties:

J.3.1 CROSS-SPACE CONSISTENCY ATTACK (Coross)

This attack targets the defense by imposing consistency across both the standard CNN feature space
and the specialized crypto feature space. The adversary aims to ensure that the features extracted
from the adversarial example x remain similar to those from the clean input xy in both domains.
The penalty term is defined as the sum of discrepancies in each feature space:

Ccross(xv Zos b) = DOT(¢cnn (3’3)’ @Dcnn (1‘0)) + DOT(¢£€) (.ﬁ), ¢g) (xO))
By minimizing this penalty, the adversarial example is constrained to modify the input in a way that,
on average over b, preserves the inherent characteristics captured by both ¢, and ¢§;).

J.3.2 MULTI-SCALE CONSISTENCY ATTACK (Cins)

This attack extends the cross-space consistency by introducing an additional constraint on global
CNN feature similarity. This reflects a defense that might perform multi-scale or global consistency
checks specifically on CNN features. The C\,s penalty is structured as:

Oms ($, Zos b) = Clocal(xv Zos b) + Cglobal(xa zO)a
where:
* Clocal(,20;0) = Ceross(x, x0; b) represents the local, cross-space consistency across
CNN and crypto features.

* Calobal (T, 20) = DOT(qﬁcnn(x), d)cnn(xo)) ensures global consistency focusing solely on
CNN features. Note that Cyloba1 does not depend on b, as the global consistency check is
assumed to be deterministic based on CNN features, which are not secrets-dependent.

The combined penalty

Crns (sz Lo; b) =2 DOT(QSCnn(x)a ¢Cnn (fﬂo)) + DOT(QSE;I;) (.’E), ¢((;l;) (:L'O))
effectively doubles the weight on CNN feature consistency, making the adversarial example poten-
tially harder to detect by defenses performing aggregated checks on CNN features.

To optimize the objective function, the adversary utilizes an iterative PGD [Madry et al.| (2018)
is used. Since the objective involves an expectation over the unknown b, a Monte Carlo (MC)
approximation is employed Rubinstein & Kroese|(2016).

K IMPLEMENTATION DETAILS

K.1 PSEUDOCODE FOR CROSS-SPACE DETECTOR

We provide the hyperparmeter selection details for GW features in Table [/|and for SVM classifier
in Table

L  ADDITIONAL EXPERIMENTS

L.1 ROBUSTNESS AND GENERALIZATION CAPABILITIES
L.1.1 RELIABILITY ANALYSIS

We study detector reliability across a range of perturbation levels using TPR/FPR heatmaps (Fig.[9).
With dataset and backbone fixed, only adversarial conditions vary, revealing how consistently de-
tectors identify adversarial inputs while avoiding false positives on clean samples.
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Algorithm 1 Multi-Scale Cross-Space GW Detector

Require: Image x; z < hg(z); p T(b)( )
forall s € élo gl} do
Build NZ ( ); compute pZ Z P
g1 GWA(H@? 5) g2 GWQ( ¢P)
h <+ ENTROPY (2, pL); £ < £ || [gl,gg,h]
end for
return SVM(f) € {clean,adv} =0

A A

100
Ours{ 0.80 1.40 1.93 1.67 2.40 50

MD{14.30 14.30 14.30 14.30 14.30 a0
FS{21.20 21.20 21.20 21.20 21.20
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20
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MN{26.00 26.00 26.00 26.00 26.00
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< &g O ©
(a) TPR Heatmap (higher is better). (b) FPR Heatmap (lower is better).

Figure 9: Reliability via TPR/FPR heatmaps. X-axis: attack types with perturbation levels, Y-
axis: defenses. Thresholds are calibrated only on clean samples, so baselines yield constant FPR
across attacks.

L.1.2 CROSS-ATTACK GENERALIZATION

To evaluate generalization to unseen attacks, we train on ResNet18 adversarial samples from FG and
PGD, then test on CW, SQ, SA, and PT. Results (Table E) report accuracy, adversarial recall, and
adversarial precision. Our method consistently outperforms baselines, demonstrating robustness to
unseen attack families.

Attack | Ours MD FS MAD MN

CW | 97.5/100/95 71/51/86  90/90/90  49.5/69/46.6 60/45/63
SQ 93.5/98/80  88/85/91 94.5/99/90.8  48.5/63/47  45/15/46
SP 95.5/99/92  86/80/90  92.5/95/90.5  49/67/49  48/21/46
PT 95/100/90  91/90/91 80.5/39/80.0  49/67/49  45/15/37

Table 9: Cross-Attack Generalization. Accuracy / Recall,gy / Precision,gy (%).

L.1.3 CROSS-MODEL GENERALIZATION

We also test transfer robustness by training on ResNet18 attacks and evaluating on FourierNet (FNet)
adversarial samples. Table [I0]reports detection accuracy, recall, and precision. Our method again
outperforms baselines, showing resilience to model transfer attacks.

L.2 TRUE POSITIVE RATE (TPR) ANALYSIS

Table [T1] reports the true positive rate (TPR) across adversarial attack types, i.e., the fraction of
adversarial inputs correctly detected as adversarial. The formula is, TPR = % Bold
entries denote the best-performing method, and underlined entries denote the second best. Our

method consistently achieves the highest TPR in 12 out of 13 attacks, showing large margins es-
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Attack | Ours MD FS MAD MN

cw 95/97/94 54/17/68 73.5/91/67.4 50/69/50 50/25/52
sQ 87/93/83 51/10/55 77.0/98/69.0 49/67/49 52/29/54
SP 94/93/95 64/37/82 74/92/67.6  49/67/49 53/31/56
PT 96/95/97 57/22/73 72.5/89/66.0 A7/64/48 49/22/47
FG 93/99/89 55/18/69 70.0/84/65.6 46/61/47 50/25/50
PGD | 98/99/99 56/21/72 T4.5/93/67.9 50/69/50 50/26/52

Table 10: Cross-Model Generalization. Accuracy / Recall,g, / Precision,gy, (%).

pecially for transfer-based (UP) and perceptual/frequency attacks (FA, PF, SR). The only exception
is Gaussian blur (GB), where all detectors struggle, but our method still provides a clear advantage
over baselines. These results highlight that our cross-space framework is particularly effective in

reliably flagging adversarial samples, even under challenging attack families.

Attack / Method Ours MD FS MAD MN

AA 97.40 £1.07 50.60+1.99 86.50+1.24 57.96+3.10 74.09 £ 1.26
CwW 96.33 £0.57 59.90+0.65 93.20+0.14 56.824+1.52 39.30 =+ 1.60
PT 97.73+£0.34 85.50+0.85 56.70+2.49 55.334+3.92 40.50 £ 1.66
PGD 97.20+£1.07 95.30+0.62 69.904+2.68 56.224+1.18 87.90£0.29
SA 96.67 £0.23 69.00+1.91 69.90+0.17 36.204+0.62 35.80 & 2.86
SQ 96.67 + 0.90 91.20£0.77 98.20+£1.12 55.904+3.34 14.80+1.12
18] 4 97.00£1.14 45.60+3.06 28.504+2.52 55.804+2.12 21.70+£1.17
AP 96.22 +1.11 49.30+1.65 83.904+1.44 54.28+1.59 73.10+1.51
FG 96.87 £1.57 60.30+2.64 42.90+3.26 53.094+0.72 15.30 4+ 1.57
FA 94.33 +1.23 12.50£0.88 21.10£1.23 53.34 £3.08 25.50+ 1.78
GB 73.00 £10.27 12.40+£1.92 24.50+£0.53 50.42+2.38 23.10 + 2.06
PF 96.33 £0.57 16.10+1.20 24.004+0.46 53.01 £3.65 24.70+1.21
SR 95.33 +£1.07 13.30+0.19 26.60+1.24 54.204+2.37 24.40 £ 2.29

Table 11: True positive rate (%) on adversarial samples: This table shows the results of TPR
measured on adversarial samples.

L.3 EXPERIMENTS ON FMNIST AND KMNIST

Table and Table show the result of the detection accuracy on FMNIST and KMNIST re-
spectively. Regarding the performance of MD on FMNIST and KMNIST, we observed that the
distributions of Mahalanobis scores for clean and adversarial samples did not show significant dif-
ference. This is because clean and adversarial features for FMNIST and KMNIST are fairly similar
in the feature space of ResNet18, making it difficult for MD to distinguish between clean and adver-
sarial samples. The similar feature representations in these datasets limit the separability of the two
distributions of Mahalanobis scores. A similar phenomenon regarding the distributions of clean and
adversarial features used for detection was observed in MN.

M COMPARISON OF OUR PROPOSED DEFENCE AGAINST BASELINE
DEFENCES ON CIFAR-10 DATASET

M.1 BINARY ACCURACY COMPARISON

In this section we present the binary accuracy results for detecting adversarial attacks on CIFAR-
10. This metric measures how well each defense method can correctly classify samples as either
adversarial or clean. Our proposed method consistently outperforms all baselines across all attack
types, achieving accuracy rates between 96.97% and 97.83%. The Mahalanobis Detector (MD)
shows the second-best performance for most attacks, while Feature Squeezing (FS) performs well
on specific attack types like CW and PGD4. The MAD and MN methods show poor performance
with accuracies around 50%, essentially equivalent to random guessing. The standard deviations for
our method are consistently low (0.22% to 0.65%), indicating stable and reliable performance.
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Attack Ours MD MN

AA4 97.60 + 0.22 50.00 + 0.56  49.90 £+ 1.59
AAS8 96.43 = 0.59  50.40 4+ 0.86 50.10 &£ 1.75
CwW 96.10 +1.63 51.60 +0.67 54.05 4+ 1.43
PT7 98.63 +0.17 89.45+0.45 90.20 £ 0.32
PT14 94.10 £ 0.49 90.20 +0.43  90.09 £ 0.32
PGD 97.63 +0.53 49.80 + 0.67  49.90 £+ 1.80
PGDS8 95.33 £ 0.97 51.45 4+ 0.69 50.30 4 1.82
SA 97.21 +1.36 80.80 +2.01 53.10 £ 0.15
SQ 97.20 £ 0.57  50.05 £+ 0.55 50.00 £ 0.18
SQ8 96.47 + 4.01 52.20 + 0.67  50.73 £ 0.52
up 99.87 + 0.05 50.05 + 0.71 50.23 +1.85
UPS8 98.30 +1.27 51.15 4+ 0.55 50.65 £+ 1.50
UP12 99.23 +0.68 54.75+1.37 51.80+1.23
AP 98.63 +0.34 49.70 £ 0.65  49.49 +1.74
AP8 99.50 + 0.36  50.05 4+ 0.99 50.20 4+ 1.83
FG 97.27 +3.44 59.954+0.67 49.95+ 1.66
FG8 95.53 + 0.62 51.85 +0.81 50.78 £ 1.73
FA 97.65 +0.78 68.90+0.30 45.65 4+ 0.90
GB 87.27 + 0.32 68.12 +0.49  41.60 £ 0.10
PF 92.22 + 0.45 69.68 + 0.42  48.85 £ 1.17
SR 97.65 +0.76 70.30 +0.77  41.99 +1.43

Table 12: The results of binary accuracy on FMNIST using ResNet18.

Attack Ours MD MN

AA 97.33 +0.33 50.10+1.91 50.00 + 1.00
AA8 98.08 £ 0.26 50.30 £1.84 50.00 + 0.98
PT7 96.87 + 0.35 53.35 + 0.86 75.8 +0.72
PT14 97.63 +0.46 52.20 +0.31  86.27 + 0.27
PGD 98.10 + 0.45 50.95+1.72  49.45 4+ 0.68
PGDS8 98.60 +0.36 51.80 +1.47  49.25 4+ 0.69
SA 98.10 +1.85 50.45 +£0.98 56.50 + 0.39
SQ 98.77 £ 0.05 51.15+1.49  48.85 4 0.96
SQ8 95.32 +3.51 52.25 +1.48 48.85+ 0.85
UP 99.87+0.05 51.154+0.61 49.60 + 0.67
UP8 98.30 + 1.27 52.05 + 1.41 49.90 + 0.10
UP12 99.41 + 0.05 53.10 +1.47  50.05 £+ 0.70
AP 98.63 +0.34 50.60 £ 1.78  49.65 + 0.68
AP8 99.50+0.36 51.35+1.36 49.25 4+ 0.69
FG 97.57+1.54 51.15+1.54  49.65 £+ 0.68
FG8 99.47 +0.25 52.05+1.71 48.70 £ 0.10
FA 98.16 +1.76 50.00 +1.85  49.95 + 0.91
GB 93.86 +0.34 3885+ 1.56 41.154+1.04
PF 96.87 + 0.65 49.00 £ 1.96 52.20 + 0.74
SR 98.10 + 1.85 48.95 £+ 1.53 52.12 4+ 0.66

Table 13: The results of binary accuracy on KMNIST using ResNet18.

Attack / Metric Ours MD FS MAD MN

AAS 97.734+0.47 90.40+1.4 79.354+0.84 50.854+0.20 79.04+1.03
CwW 96.97 +£0.61 73.554+2.13 86.00+0.56 51.43+2.16 56.65+1.71
PTS 97.304+0.22 52.804+1.91 52.00+0.55 43.43+2.32 51.094+0.95
PGD 97.574+054 T71.254+1.60 81.104+1.07 48.91+1.33 76.05=+0.83
SQ 97.304+0.65 86.85+1.81 84.70+1.23 49.11+1.32 44.454+1.48
[0) i 97.83+ 050 66.40+240 53.65+1.23 50.92+1.86 47.85+1.83
APS8 97.50 +0.22 90.0+2.17 79.204+1.49 50.87 + 1.3 79.30 & 0.41
FG8 97.734+0.42 85854+1.34 63.35+2.18 50.68+£2.07 44.404+1.54

Table 14: Comparison of detection performance (%) under different adversarial attacks: Bold
values indicate the best performance, and underlined values denote the second-best.
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M.2 TPR ON ADVERSARIAL SAMPLES COMPARISON

Attack / Metric Ours MD FS MAD MN

AAS8 96.60 =0.86 93.56+1.51 7990+1.72 55.67+249 84.10+1.03
CW 96.33+0.57 59.904+0.65 93.20+0.14 56.82+1.52 39.3041.60
PT8 96.07 0.5 18.40+1.80 25.20+0.39 40.83+1.90 28.20+1.03
PGD 97.07+1.34 5530+1.12 83.40+2.22 51.79+1.78 78.10=+0.30
SQ 96.00+0.75 86.50+2.76 90.60+1.48 52.19+1.56 14.904+1.23
(0] 4 97.00+1.14 4560+3.06 2850+2.52 5580+212 21.70+1.17
AP8 96.73+1.09 92.60+0.96 79.60+3.50 55.69+2.17 84.60+2.73
FG8 96.87+0.96 84.50+2.19 47.90+3.63 55.32+1.27 14.804+1.49

Table 15: The results of TPR measured on 1k adversarial samples. TPR := (the number of adv
correctly detected) / (the number of adv) x100 (%). The best results are written in bold, and the
second-best results are written with underlines.

In this section we focus on True Positive Rate (TPR), which specifically measures how well each
method detects adversarial samples (the percentage of adversarial samples correctly identified as
adversarial). Our method maintains excellent TPR performance (96.00% to 97.07%) across all
attack types. Feature Squeezing (FS) shows strong TPR for CW and SQ4 attacks (93.20% and
90.60% respectively) but performs poorly on P8 and UP4 attacks. The Mahalanobis Detector (MD)
demonstrates good TPR for AA8 and APS attacks (92.3% and 91.4%) but fails significantly on
P8 attack (16.8%). The MAD method shows moderate TPR (40.83% to 56.82%) but with high
variance, while MagNet (MN) fails with low TPR for most attacks, indicating it cannot effectively
detect adversarial samples.

M.3 END To END ACCURACY COMPARISON

In this section we present the end-to-end accuracy, which is a comprehensive metric that considers
both correct detection of adversarial samples by the detector and correct detection of clean samples
and correct classification of clean samples. Our method achieves excellent end-to-end accuracy
(93.9% to 94.8%) across all attack types, demonstrating consistent and robust performance. The
Mahalanobis Detector (MD) shows moderate performance (51.0% to 89.0%) with good results on
AAS8 and APS attacks but struggling with P8 attack. Feature Squeezing (FS) shows reasonable
performance (51.30% to 85.30%) but with significant variation across different attacks, performing
well on CW and SQ4 attacks but struggling with P8 and UP4 attacks. The MAD method shows
poor performance (42.03% to 49.18%) with accuracies around random guessing level. MagNet
(MN) performs with low accuracies for most attacks, indicating it cannot provide effective end-
to-end protection. The consistency of our method across different attack types demonstrates its
robustness and reliability in maintaining both detection accuracy and classification performance
under adversarial conditions.

Attack / Metric | Ours MD FS MAD MN
AASR 94.1 89.0 7864 49.18 76.60
CwW 94.8 72.0 85.30 48.92 54.20
PTS 944 51.0 51.30 42.03 48.65
PGD 94.4 70.0 80.40 48.72 73.60
SQ 93.9 86.0 84.00 47.99 42.00
18) 94.4 65.0 5294 4899 4540
AP8 94.6 89.0 7850 48.58 76.85
FGS8 945 84.0 62.64 49.04 41.95

Table 16: The results of end-to-end accuracy: ((the number of correctly detected adversarial samples by the detector)+
(the number of correctly detected clean samples and correctly classified samples)) /(1000 + 1000).
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