
Multi-model Ensemble Conformal Prediction
in Dynamic Environments

Erfan Hajihashemi
Department of Electrical Engineering & Computer Science

University of California, Irvine
ehajihas@uci.edu

Yanning Shen∗

Department of Electrical Engineering & Computer Science
University of California, Irvine

yannings@uci.edu

Abstract

Conformal prediction is an uncertainty quantification method that constructs a
prediction set for a previously unseen datum, ensuring the true label is included
with a predetermined coverage probability. Adaptive conformal prediction has been
developed to address data distribution shifts in dynamic environments. However,
the efficiency of prediction sets varies depending on the learning model used.
Employing a single fixed model may not consistently offer the best performance
in dynamic environments with unknown data distribution shifts. To address this
issue, we introduce a novel adaptive conformal prediction framework, where the
model used for creating prediction sets is selected ‘on the fly’ from multiple
candidate models. The proposed algorithm is proven to achieve strongly adaptive
regret over all intervals while maintaining valid coverage. Experiments on real
and synthetic datasets corroborate that the proposed approach consistently yields
more efficient prediction sets while maintaining valid coverage, outperforming
alternative methods.

1 Introduction

Most machine learning algorithm designs aim to enhance label prediction accuracy. Nevertheless, a
significant challenge persists as many models demonstrate limitations in predicting labels with high
certainty, falling short of achieving the desired levels of accuracy and other critical evaluation metrics.
In applications such as medical diagnosis, it is sometimes more efficient to predict a subset of labels
rather than a single label [Levy et al., 2021, Straitouri et al., 2023]. This necessitates predicting a set
of candidate labels with a valid coverage probability, rather than limiting to a single label.

One of the most widely used frameworks for set prediction is conformal prediction [Vovk et al.,
2005]. Conventional conformal prediction algorithms can achieve the desired coverage assuming
the exchangeability of data [Balasubramanian et al., 2014]. However, in many real-world online
problems, the distribution of data shifts over time, making the exchangeability assumption no longer
applicable. Consequently, adaptive conformal prediction algorithms have been developed [Gibbs
and Candes, 2021], where prediction sets are constructed in a time-varying manner. Despite these
advancements, the efficiency (e.g., prediction set size or regret) of previous conformal prediction
methods in online settings with distribution shifts heavily depends on the model employed, and
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a single model may not consistently perform well across various distribution shifts. Creating an
efficient prediction set size is as important as obtaining the desired coverage. Trivial cases may arise
where the prediction set alternates between an empty set and the full set of labels, with the full set
being created with a probability equal to the desired coverage probability, and empty sets otherwise.
This approach achieves the desired coverage but leads to impractical prediction sets [Bhatnagar et al.,
2023]. To address this limitation, our proposed algorithm incorporates multiple learning models
simultaneously. It dynamically selects the suitable model based on the performance of each model
with the most recently received data.

Related work: Conformal prediction [Vovk et al., 2005, Shafer and Vovk, 2008, Vovk, 2015] is an
effective method for uncertainty quantification that has been widely used to predict a set of candidate
labels for income data. It treats the learning model as a black box and provides a prediction set for new
test data. Conformal prediction is applicable in both Classification [Ding et al., 2024, Shi et al., 2013,
Romano et al., 2020] and Regression [Romano et al., 2019, Papadopoulos et al., 2011, Boström et al.,
2017] problems. In dynamic environments where data distribution shifts over time, using vanilla
conformal prediction algorithms may not lead to the desired coverage performance. To cope with
this challenge, conformal prediction in dynamic environments has been studied recently. [Tibshirani
et al., 2019] explored conformal prediction for dynamic settings using a reweighting approach, but
their method requires prior information about the data dependency structure; [Barber et al., 2023]
resolved this dependency by requiring weights to be fixed. Incorporating time-varying coverage
probability was introduced in [Gibbs and Candes, 2021], but determining the appropriate step size
remains a significant challenge. One way to address dynamic environments is adopting learning with
expert advice [Cesa-Bianchi et al., 1997, Vovk, 1995, Littlestone and Warmuth, 1994]. [Zaffran et al.,
2022] suggested that tuning the step size based on expert (base learner) aggregation could be an
effective strategy; however, this method causes each expert to receive equal impact from all historical
data, which makes the algorithm unable to adapt to sharp distribution shifts. Furthermore, [Gibbs
and Candès, 2022] introduced an approach that employs multiple experts, each assigned a distinct
step size from a pool of candidate sizes, resulting in varying coverage probabilities at each time t.
While [Gibbs and Candès, 2022] successfully demonstrated adaptive regret across time intervals of
a fixed width, [Bhatnagar et al., 2023] points out that this approach fails to achieve suitable regret
across varying widths of arbitrary time intervals simultaneously. [Bhatnagar et al., 2023] addressed
this limitation by establishing strongly adaptive regret [Daniely et al., 2015] across any arbitrary
time interval width. Their proposed methodology assigns a specific time interval to each expert.
Despite achieving sublinear strongly adaptive regret, the efficacy of this approach depends on the
hyper-parameter selection that determines each expert’s lifetime. The proposed method in our study
also employs experts who operate within specific time intervals. However, each expert consists
of multiple learning models, aiming to select the appropriate model according to the specific data
distribution during its operation, resulting in more efficient prediction sets.

Contributions. Overall, our contributions can be summarized as follows:
I) We introduce a novel adaptive conformal prediction algorithm, Strongly Adaptive Multimodel
Ensemble Online Conformal Prediction (SAMOCP), designed for dynamic environments with
unknown distribution shifts. This algorithm incorporates multiple models and dynamically selects a
model based on its performance in previous time steps.
II) We demonstrate that SAMOCP exhibits strongly adaptive regret for any arbitrary time interval
while ensuring valid coverage.
III) Through experimental tests on classification tasks subject to distribution shifts, we demonstrate
that SAMOCP outperforms existing methods by constructing more efficient prediction sets while
also achieving a coverage probability closely aligned with the target value.

2 Preliminaries

This section explains standard conformal prediction and adaptive online conformal predictions, where
data is collected sequentially. We begin with outlining standard conformal prediction. Given a miss
coverage probability α, a learning model m , a historical dataset {(Xτ , Y

true
τ )}t−1

τ=1, and a new data
Xt ∈ X , the objective is to construct a prediction set Cm

α (Xt) ⊆ Y := {1, 2, . . . ,K}, where K
denotes the total number of classes, such that Cm

α (Xt) contains the true label Y true
t with probability

1− α. In the online setting, historical dataset is updated to {(Xτ , Y
true
τ )}tτ=1 at the end of each time

t when true label Y true
t for input data Xt is observed. In this scenario, conformal prediction treats
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the historical dataset as a calibration dataset, which is utilized to determine whether a candidate
label Y ∈ Y should be included in the prediction set. Consequently, in an online manner, conformal
prediction relies on an evolving calibration dataset, which contains all the historical data ‘on the
fly’ to decide which candidate labels should be included in the prediction set. Non-conformity
scores {Sm(Xτ , Y

true
τ )}t−1

τ=1 are introduced. Specifically, each non-conformity score Sm(Xτ , Y
true
τ )

assesses the disagreement between the ground-truth label Y true
τ and predicted label f̂m(Xτ ). Upon

obtaining a new datum Xt, the standard conformal prediction algorithm constructs the prediction set
for Xt as Cm

α (Xt) = {Y ∈ Y | Sm(Xt, Y ) ≤ q̂mα }, where the threshold q̂mα is obtained as

q̂mα = Quantile

(
⌈t(1− α)⌉

t− 1
, {Sm(Xτ , Y

true
τ )}t−1

τ=1

)
. (1)

The Quantile function sorts all non-conformity scores of the historical data and then identifies the
⌈t(1−α)⌉th smallest score as q̂mα . Note that 1−α is fixed, hence conformal prediction cannot readily
cope with potential data distribution shifts in dynamic environments. Adaptive conformal prediction
algorithms have been developed to address this issue, allowing the miss coverage probability to vary
at each time t and thereby enabling the algorithm to dynamically adapt to potential shifts in the
distribution. In such a scenario, q̂mα can be obtained by replacing α with αt in (1). Then at each time
step t, αt is updated after observing Y true

t .

Recent studies on online conformal prediction with distribution shifts have incorporated adaptive
miss coverage probabilities to address dynamic environments. However, methods based on a single
learning model may not achieve consistently reliable performance in dynamic environments. This
underscores the necessity for employing multiple models and adaptive strategies to determine the
appropriate model for each time t. To this end, in this work, we introduce a novel adaptive multi-
model online conformal prediction algorithm designed to identify the suitable learning model at each
time t within dynamic environments. At time slot t, the goal is to construct a prediction set for the
new data Xt, based on the historical dataset {(Xτ , Y

true
τ )}t−1

τ=1, such that the true label is included
in the prediction set with probability 1− α. The proposed algorithm for dynamic settings achieves
strongly adaptive regret while ensuring valid coverage.

3 Methodology

In this section, two adaptive algorithms are developed for static and dynamic environments respec-
tively. Subsection 3.1 develops the Multimodel Ensemble Online Conformal Prediction (MOCP)
algorithm to identify the suitable learning model among M distinct candidates in a static environment.
Subsequently, in Subsection 3.2, we propose SAMOCP, an adaptation of MOCP tailored for dynamic
environments with unknown distribution shifts.

3.1 Multi-model Conformal Prediction in Static Environments

Note that the non-conformity score Sm(Xτ , Y
true
τ ) depends on the learning model. Such dependency

leads to a model-specific ordering of non-conformity scores, yielding different prediction sets for
each model. After observing Y true

t , the adaptive miss coverage probability αt must be updated for
time t+ 1 to cope with distribution shifts effectively. Given that different models achieve different
prediction sets, assigning and updating the same αt for different models would be inadequate. Instead,
at each time t, we assign a specific miss coverage probability to each model m ∈ [M ], denoted as
αm
t , and update it based on the corresponding prediction set. Consequently, for M learning models,

there are M candidates for miss coverage probability αt at each time t. Each candidate is updated
according to a distinct rule. These M update rules operate in parallel, with each one updating the
corresponding miss coverage probability upon observing the true label. Next, the update procedure
for αm

t will be examined, followed by a detailed explanation of how each instance of MOCP selects
the appropriate miss coverage probability from M distinct options at each time step.
To update miss coverage probability αm

t , we adopt the pinball loss [Koenker and Bassett, 1978],
which can be written as

L(ᾱm
t , αm

t ) = α(ᾱm
t − αm

t )−min{0, ᾱm
t − αm

t }, (2)

where
ᾱm
t = sup{α̃ : Y true

t ∈ Cm
α̃ (Xt)} (3)
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is the best possible value of miss coverage probability for model m at time t which constructs the
smallest prediction set that covers Y true

t .The miss coverage probability αm
t+1 can be updated via

SF-OGD [Orabona and Pál, 2018] as

αm
t+1 = αm

t − η
∇αm

t
L(ᾱm

t , αm
t )√∑t

τ=1 ∥∇αm
τ
L(ᾱm

τ , αm
τ )∥22

, (4)

where η is the learning rate and

∇αm
t
L(ᾱm

t , αm
t ) = I[ᾱm

t < αm
t ]− α = errmt − α, (5)

with errmt := I[Y true
t /∈ Cm

αm
t
] equals 1 if the predicted set does not contain the true label Y true

t ,
and 0 otherwise. According to the updating rule outlined in equation (4), the adjustment of αm

t at
each time t is governed by the ∇αm

t
L(ᾱm

t , αm
t ), as detailed in equation (5). When errmt = 1, it

signals that the coverage probability 1− αm
t is too small, resulting in a prediction set that can not

encompass Y true
t . Consequently, there’s a necessity to enlarge the coverage probability, effectively

achieved by reducing αm
t , which would be facilitated by (4); given that the denominator in the second

term is always positive and the gradient will be positive in this scenario. On the other hand, when
ᾱm
t > αm

t , 1− αm
t leads to a prediction set that covers Y true

t but also includes unnecessary labels
Y ′ := {Y ′ ∈ Y | q̂mᾱm

t
< Sm(Xt, Y

′) ≤ q̂mαm
t
}. In such cases, optimization necessitates increasing

αm
t to avoid including unnecessary labels and output a more efficient prediction set. This adjustment

is facilitated by the update rule (4).

Additionally, the weight wm
t is assigned to each model m ∈ [M ], which influences the selection of its

corresponding miss coverage probability αm
t . MOCP learns which model to select over time based on

the performance of each model over previous time steps, as reflected in wm
t . The algorithm updates

the weight associated with each model after revealing the true label Y true
t . This update is performed

with respect to the loss function of the corresponding miss coverage probability. Specifically, wm
t can

be updated by
wm

t+1 = wm
t exp (−ϵL (ᾱm

t , αm
t )) , (6)

where 0 < ϵ < 1 is the step size. At each time t, upon receiving new data Xt, MOCP first
calculates the normalized weights, denoted as {w̄m

t }Mm=1. For any m ∈ [M ], w̄m
t =

wm
t∑M

j=1 wj
t

ensures that w̄m
t ∈ [0, 1] and represents the likelihood of selecting miss coverage probability αm

t .
Then, the algorithm selects miss coverage probability αm̂

t , where m̂ ∈ [M ], according to PMF
w̄t := (w̄m

t )Mm=1, i.e., each miss coverage probability αm
t is selected with probability proportional

to the corresponding normalized weight w̄m
t . The prediction set for Xt is constructed according to

the threshold in (1), by replacing α and m with αm̂
t and m̂ respectively. After receiving Y true

t , each
weight wm

t and miss coverage probability αm
t are updated according to (6) and (4), respectively. This

entire process is detailed in Algorithm 1. The MOCP algorithm achieves a runtime of O(T ) when
the number of models M is constant.

Given that the environment is static, there exists a miss coverage probability that can minimize the
loss function for each model m ∈ [M ] over [T ], denoted as αm. The best miss coverage probability
among {αm}Mm=1 can be obtained by

αm∗
= argmin

{αm,m∈[M ]}

T∑
t=1

L(ᾱm
t , αm) with αm = argmin

αm
t

T∑
t=1

L(ᾱm
t , αm

t ). (7)

The following theorem demonstrates that MOCP achieves sublinear regret (See proof in A.2).

Theorem 1 Algorithm 1 achieves the following regret bound in a static environment

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm∗

t , αm∗
) ≤
√
T

(
(1 + 2η)2

2η
+

η

2α
+ lnM + (1 + η)2

)
. (8)

3.2 Multi-model Ensemble Conformal Prediction In Dynamic Environments

Through Algorithm 1, we demonstrated how to select the suitable miss coverage probability of a
model that has achieved lower loss compared to other models over previous time steps. However,
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Algorithm 1 Multi-model Ensemble Online Conformal Prediction (MOCP)

Require: α ∈ [0, 1], learning rate η ≥ 0, and step size ϵ ∈ (0, 1).
wm

1 ← 1
M {Initialization of weight for each model}

αm
1 ← α {Initialization of miss coverage probability for each model}

for t ∈ [T ] do
Observe Xt ∈ X .
Calculate normalized weights by w̄m

t =
wm

t∑M
j=1 wj

t

, ∀m ∈ [M ].

Select one of the miss coverage probabilities {αm
t }Mm=1 according to PMF w̄t = (w̄m

t )Mm=1.
Observe true label Y true

t and compute optimal value ᾱm
t ∀m ∈ [M ] with (3).

for m ∈ [M ] do
Obtain loss L(ᾱm

t , αm
t ).

Update wm
t+1 with (6).

Update αm
t+1 with (4).

end for
end for

Time

Ex
pe

rt

1

2

3

4

5

1 2 3 4 5

Figure 1: Expert creation over 5 time steps using lifetime formula (9) when g = 1. At each time t, an
expert is created, marked by a filled circle to indicate the start of the activity, and an unfilled circle to
denote the end of the expert’s activity.

this approach assumes a static environment that does not change over time, which may limit the
algorithm’s effectiveness in dynamic environments where data distribution shifts occur. In addition,
the selection of stepsize ϵ in (6) critically affects the performance. In environments with unknown
distribution shifts, a large ϵ indicates faster adaptation to abrupt changes, whereas a small ϵ is
more suitable for environments with less variability. Thus, the efficient choice of ϵ depends on the
variability of the environment, which poses a challenge in scenarios with unknown distribution shifts.

To address this limitation, we introduce Strongly Adaptive (SA)MOCP. Specifically, each instance of
MOCP is treated as an ‘expert’, and multiple experts are created at distinct time steps with specific
step sizes and lifetimes to cope with potential distribution shifts. At the end of its lifetime, the expert
becomes inactive, ensuring that it no longer affects the decision-making process, refer to Figure 1
for an illustration. This strategy prevents outdated experts from contributing to the selection of the
suitable miss coverage probability in dynamic environments. Subsequently, SAMOCP dynamically
selects the appropriate expert for each time t and utilizes its chosen miss coverage probability to
construct the prediction set. The lifetime of each expert is determined by the specific time t at which
it was created and hyperparameter g ∈ N, as [Bhatnagar et al., 2023].

λ(t) = g ·max
n∈Z
{2n : t ≡ 0 mod 2n} . (9)

The active interval of the expert created at time t is defined as [t, t + λ(t) − 1]. Consequently,
experts considered active at any given time τ are those whose active intervals include τ . In a dynamic
setting with unknown distribution shifts, the best model may vary across different distributions. This
variability results in scenarios where, at each time t, some active experts might not have adapted to
the current data distribution yet, and thus they rely on different models compared to more recently
established active experts. In such cases, the miss coverage probability of model m̂ ∈ [M ] chosen
by expert n at time t is represented as αm̂n

t , and its best possible value is denoted as ᾱm̂n
t . To select

the suitable miss coverage probability among different experts, we assigned distinct weights to each,
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with specific initialization and step sizes for updates. Specifically, this weight for expert n at time t is
denoted as hn

t , and its step size is defined as ϵn := min(ϵ, σ√
λ(n)

), where σ > 1 is a constant and

λ(n) is the lifetime for expert n that obtained by (9). Given that nth expert is activated at t = n, the
initialization and update rule for hn

t is as follows:

hn
t+1 =


ϵn if t = n− 1

hn
t exp (−ϵn · rnt ) if t ∈ [n, n+ λ(n)− 1)

0, otherwise
(10)

where rnt = L(ᾱm̂n̂
t , αm̂n̂

t )− L(ᾱm̂n
t , αm̂n

t ) represents the loss of the nth expert relative to the loss
of the learner who selects expert n̂. We denote the set of active experts at each time t as A(t). The
learner selects the suitable miss coverage probability among all active experts according to the PMF
h̄t := (h̄n

t )n∈A(t), where each h̄n
t represents the normalized version of the weight hn

t , calculated as
h̄n
t =

hn
t∑

i∈A(t) h
i
t
, ensuring that h̄n

t ∈ [0, 1]. Algorithm 2 summarizes the SAMOCP method. It can

be observed from (9) that the maximum number of active experts (MOCP instances) at each time t is
g⌊log2 t⌋. Hence, the complexity of SAMOCP is of order O(T log2 T ).

Algorithm 2 Strongly Adaptive Multi-model Ensemble Online Conformal Prediction (SAMOCP)

Require: α ∈ [0, 1], hyperparameters η ≥ 0, ϵ ∈ (0, 1), and σ > 1.
for t ∈ [T ] do

Create new expert n (where n = t) by Algorithm 1(αm̂n̂
t−1, η, ϵ

n).
Remove experts whose lifetime has been finished.
Every active expert selects miss coverage probability from M options.
Calculate normalized weights by h̄n

t =
hn
t∑

i∈A(t) h
i
t
.

Select one miss overage probability from active experts according to PMF h̄t = (h̄n
t )n∈A(t).

Construct prediction set for Xt using selected miss coverage probability.
Observe true label Y true

t .
for n ∈ A(t) do

Obtain learner loss L(ᾱm̂n̂
t , αm̂n̂

t ).
Update every parameters assigned to each model for expert n via Algorithm 1.
Update hn

t+1 with (10).
end for

end for

Let CovE(T ) :=
∣∣∣ 1T ∑T

t=1 E[errt]− α
∣∣∣ represent the coverage error. In a dynamic setting where

multiple experts are incorporated, each including M miss coverage probabilities, the expected error
is calculated as E[errt] =

∑t
n=1

∑M
m=1 h̄

n
t w̄

mn
t errmn

t , where mn represents the mth model by
expert n. Using the two following theorems, we prove that SAMOCP has bounded coverage error
and achieves strongly adaptive regret across any time interval of arbitrary width (Proofs can be found
A.3 and A.4).

Theorem 2 For any T ≥ 1 and any γ ∈
(
1
2 , 1
)
, Algorithm 2 achieves the coverage error bound

CovE(T ) ≤ O
(
inf
γ

{
T

1
2−γ + T γ−1βγ(T )

})
, (11)

where βγ(T ) measures the smoothness of model weights within experts and the cumulative gradient
norm for each model within experts. The definition of βγ(T ) is provided in detail in equation (31) in
the Appendix A.3. If there exists a γ ∈

(
1
2 , 1
)

such that βγ(T ) ≤ Õ(T θ) where θ < 1− γ, then the

coverage bound (11) will be CovE(T ) ≤ Õ
(
T−min( 1

2−γ,γ−1+θ)
)
= oT (1).

Theorem 3 Algorithm 2 achieves strongly adaptive regret over any interval I ⊆ [T ] and positive
constants A, B, as follows∑

t∈I

∑
n∈A(t)

M∑
m=1

h̄n
t w̄

mn
t L(ᾱmn

t , αmn
t )−

∑
t∈I

L(ᾱm∗n∗

t , αm∗n∗
) ≤ A

√
|I|+B lnT

√
|I|, (12)
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where
αm∗n∗

= argmin
αm∗n

∑
t∈I

L(ᾱm∗n
t , αm∗n). (13)

Note that in equation (13), αm∗n represents the miss coverage probability assigned to the best model
for expert n, as obtained by equation (7).

The miss coverage probability αm∗n∗
in (13), is related to specific interval I , which can vary across

different intervals with distinct distributions in a dynamic environment. In such settings, there is no
fixed miss coverage probability αm∗n∗

that can be consistently applied over various time intervals.
This necessitates establishing that SAMOCP has bounded regret in dynamic environments with
respect to the time-varying benchmark in (16), as demonstrated by the following lemma. The proof is
provided in A.5.

Lemma 1 By defining the variation of the loss function to be

V (L(·)Tt=1) :=

T∑
t=1

max
{m∈[M ],n∈A(t)}

∣∣L(ᾱmn
t+1, α

mn
t+1)− L(ᾱmn

t , αmn
t )

∣∣ . (14)

We establish the following bound for the dynamic regret of Algorithm 2
T∑

t=1

∑
n∈A(t)

M∑
m=1

h̄n
t w̄

mn
t L(ᾱmn

t , αmn
t )−

T∑
t=1

L(ᾱm∗n∗

t , αm∗n∗

t ) ≤ Õ(T 2
3V

1
3 (L(.)Tt=1)) (15)

where Õ suppresses positive constants and polylogarithmic factors, e.g., log T . Also the best miss
coverage probability at each time t can be obtained by

αm∗n∗

t = argmin
{m∈[M ],n∈A(t)}

L(ᾱmn
t , αmn

t ). (16)

Lemma 1 establishes that the dynamic regret of SAMOCP (15) depends on the variation of the loss
functions (14). In addition, it can be obtained from (15) that SAMCOP achieves sublinear regret if
the variation of the loss function is also sublinear, i.e., V (L(.)Tt=1) = o(T ).

4 Experiments

In this section, the performance of the proposed method, SAMOCP, is assessed within the context of
classification tasks. We conduct a comprehensive comparison with recently proposed methods in
online conformal prediction for dynamic environments within classification tasks. The section begins
with a detailed explanation of the experimental settings, followed by a discussion of the results. Note
that throughout the experiments in this section, the desired miss coverage probability α is 0.1. All
experiments were performed on a workstation with NVIDIA RTX A4000 GPU. Codes are avail-
able at hyperrefhttps://github.com/erfanhajihashemi/Multi-model-Ensemble-Conformal-Prediction-
in-Dynamic-Environments.

Dataset: We utilize corrupted versions of CIFAR-10 and CIFAR-100 [Krizhevsky, 2009], known
as CIFAR-10C and CIFAR-100C [Hendrycks and Dietterich, 2019]. These datasets consist of 15
generated corruptions spanning 5 distinct levels of severity. The evaluation encompasses two settings:
sudden and gradual distribution shifts. For both settings, the data sequence is split into batches of
500 data samples each. The severity of corruption changes (increases or decreases) after each batch
of data. In the sudden shifts, the severity level alternates between the version of the data without
any corruption (severity level 0) and the most severe corruption (severity level 5). In the gradual
setting, severity starts at level 0 and increases one by one after each batch until it reaches level 5.
After reaching level 5, the severity decreases one by one and goes back to level 0 in subsequent
batches. This cycle of increasing and decreasing severity continues throughout the experiment. Also,
additional experiments on TinyImageNet-C [Hendrycks and Dietterich, 2019] and synthetic data are
provided in the Appendix, Section B.

Baselines and experimental settings: We employ ResNet-50, ResNet-18 [He et al., 2016],
GoogLeNet [Szegedy et al., 2015], and DenseNet-121 [Huang et al., 2017] as candidate learning mod-
els. Each active expert consists of all these learning models and needs to select the appropriate model
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during its active interval. The proposed method is compared with the most recent adaptive conformal
prediction algorithms designed for dynamic environments, including FACI [Gibbs and Candès, 2022],
ScaleFreeOGD [Bhatnagar et al., 2023], and SAOCP [Bhatnagar et al., 2023]. FACI employs a fixed
number of active experts over all time steps, with each expert assigned one of the candidate learning
rates for updating the miss coverage probability. ScaleFreeOGD reduces the learning rate based on
the cumulative norms of gradients [Orabona and Pál, 2018]. SAOCP allows each expert to have
its own active interval, within which it operates similarly to ScaleFreeOGD. In order to show how
SAMOCP results in more efficient sets compared to SAOCP in a multi-model setting, we developed
a multi-model ensemble version of SAOCP, denoted as SAOCP(MM), where each expert consists
of M update rules, each corresponding to a different learning model. This approach follows our
multi-model approach but employs a similar rule to SAOCP for updating weights. To determine the
value of g, we employed a grid search approach within the candidates {4, 8, 16, 24, 32, 48, 64}. The
one that led to the smallest prediction set size (Avg Width) while maintaining reasonable coverage and
runtime was selected, which was g = 8. While the hyperparameter g is set to 8 for both SAMOCP
and SAOCP(MM), it is set to 32 for SAOCP, as in [Bhatnagar et al., 2023]. Since 4 learning mod-
els are incorporated in this section, the maximum number of updates at each time t in SAMOCP,
Mg⌊log2 t⌋, is equal to that in SAOCP and SAOCP(MM), which is 32⌊log2 t⌋. Meanwhile, note that
randomness might be undesirable in practice, the predicted miss coverage in SAMOCP is calculated
in a deterministic fashion, i.e., αt =

∑
n∈A(t)

∑M
m=1 h̄

n
t w̄

mn
t αmn

t . For every experiment conducted
on the synthetic dataset, CIFAR-10C, CIFAR-100C, parameters ϵ, σ, and η were selected through
grid search, with values of 0.9, 140, and 0.05, respectively.

Score Functions: We utilized the nonconformity score defined as in [Angelopoulos et al., 2020] to
construct prediction sets. Let

Sm(X,Y ) = ξ
√

max([kY − kreg], 0) + Utf̂
m
Y (X) + ρ(X,Y ), (17)

where f̂m
Y (X) denotes the probability of predicting label Y for input X by model m, and Ut is

a random variable sampled from a uniform distribution over the interval [0, 1]. The term kY :=

|{Y ′ ∈ Y | f̂m
Y ′(X) ≥ f̂m

Y (X)}| denotes the number of labels that have a higher or equal predicted
probability than label Y according to the model’s output probability distribution, e.g., the softmax
output. ρ(X,Y ) :=

∑K
Y ′=1 f̂

m
Y ′(X)I[f̂m

Y ′(X) > f̂m
Y (X)] sums up the probabilities of all labels that

have a higher predicted probability than label Y . The hyperparameters ξ and kreg are set to 0.02 and
5 for CIFAR-100C, and 0.1 and 1 for Cifar-10C, respectively.

Evaluation Metrics: Coverage measures the percentage of instances where the true label is included
in the prediction sets outputted by the conformal prediction algorithm over the period [T ]. Avg Width
refers to the average size of these prediction sets. Adaptive regret is calculated for time intervals of
length 100. The metric Avg Regret represents the average of these regret values across the entire
time horizon [T ]. Run Time indicates the time required to complete each iteration of the algorithm.
Lastly, Single Width measures the probability that prediction sets contain exactly one element while
accurately covering the true label, highlighting cases that are most informative for predictions.

4.1 Results

Table 1 presents the performance of SAMOCP for the classification task on the CIFAR-100C dataset
under a gradual shift setting, where each method receives 8, 550 data points sequentially. It is evident
that the performance of previous methods, particularly in terms of prediction set size and single-
width prediction sets, depends on the learning model employed. The proposed method SAMOCP
outperforms existing methods by creating smaller prediction sets, lower regret, and more single-width
prediction sets that correctly cover the true label, while also achieving coverage close to the targeted
level. It is noteworthy that SAMOCP surpasses every variant of previous methods in these aspects.
Furthermore, SAMOCP is faster than SAOCP and SAOCP(MM), despite having the same maximum
number of updates at each time t.

In dynamic environments, data distribution does not necessarily shift gradually. Instead, we may
encounter abrupt distribution shifts, with significant differences between data distributions in two suc-
cessive time slots. To demonstrate how SAMOCP behaves in such environments, another experiment
was conducted, in which SAMOCP can successfully track these sharp transitions and select a suitable
learning model for creating a prediction set. Experimental results on CIFAR-10C are detailed in
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Table 1: Results on the CIFAR-100C dataset with a gradual distribution shift. The target coverage is
90%, and the average regret is calculated over an interval size of 100. Bold numbers denote the best
results in each column. SAMOCP achieves the best performance in terms of average width, average
regret, and single width.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time Single Width

SAMOCP 88.16 ± 0.18 5.43 ± 0.28 0.92 ± 0.07 34.87 ± 0.67 0.29 ± 0.01
SAOCP(MM) 85.89 ± 0.84 6.61 ± 0.26 4.42 ± 0.51 47.80 ± 0.22 0.27 ± 0.01

DenseNet-121 FACI 89.64 ± 0.28 5.77 ± 0.62 1.18 ± 0.74 8.22 ± 0.07 0.28 ± 0.01
ScaleFreeOGD 89.97 ± 0.02 6.04 ± 0.10 1.55 ± 0.06 3.02 ± 0.06 0.26 ± 0.01
SAOCP 88.90 ± 0.10 5.80 ± 0.08 2.04 ± 0.04 40.74 ± 0.31 0.27 ± 0.00

ResNet-50 FACI 89.67 ± 0.33 6.50 ± 0.57 1.24 ± 0.90 8.45 ± 0.09 0.26 ± 0.01
ScaleFreeOGD 89.97 ± 0.02 6.72 ± 0.13 1.58 ± 0.07 3.12 ± 0.04 0.25 ± 0.01
SAOCP 88.79 ± 0.14 6.48 ± 0.13 2.08 ± 0.10 41.35 ± 0.34 0.25 ± 0.00

ResNet-18 FACI 89.56 ± 0.28 6.82 ± 0.77 1.17 ± 0.75 8.39 ± 0.06 0.25 ± 0.01
ScaleFreeOGD 89.96 ± 0.02 7.29 ± 0.19 1.55 ± 0.07 3.05 ± 0.04 0.23 ± 0.01
SAOCP 88.76 ± 0.22 6.9 ± 0.17 2.06 ± 0.07 41.23 ± 0.26 0.24 ± 0.01

GoogLeNet FACI 89.63 ± 0.30 6.33 ± 0.74 1.10 ± 0.78 8.30 ± 0.09 0.27 ± 0.01
ScaleFreeOGD 89.96 ± 0.01 6.71 ± 0.15 1.52 ± 0.06 3.04 ± 0.04 0.24 ± 0.00
SAOCP 88.68 ± 0.11 6.38 ± 0.12 2.07 ± 0.07 41.13 ± 0.39 0.26 ± 0.01

Table 2, where the proposed algorithm again outperforms previous methods in terms of prediction set
size, regret, and single width prediction sets that accurately cover the true labels while maintaining
coverage close to the target value.

To demonstrate that SAMOCP achieves the lowest regret over different intervals compared to existing
methods, we illustrate the regret for various interval sizes in Figure 2. For each existing method, there
are 4 different regrets corresponding to the 4 learning models used and the lowest regret is depicted.
The results show that our method consistently leads to lower regret than the best version of each
previous method across different learning models. Note that a lower regret implies that the algorithm
adapts faster to changes. The regret calculated over different time intervals indicates the algorithm’s
adaptivity in capturing the distribution shift at different time scales. Therefore, Figure 2 indicates that
the SAMOCP can adapt faster to distribution shifts compared to benchmarks in various time scales.
Furthermore, we include experiments on synthetic data and another real dataset, TinyImageNet-C,
using different sets of learning models that do not necessarily contain 4 models in the Appendix,
Section B. This demonstrates how SAMOCP can rely on a mixture of learning models over the period
[T ] and select the appropriate one for each distribution setting.

Table 2: Results on the CIFAR-10C dataset with a sudden distribution shift. The target coverage is
90%, and the average regret is calculated over an interval size of 100. Bold numbers denote the best
results in each column. SAMOCP achieves the best performance in terms of average width, average
regret, and single width.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time Single Width

SAMOCP 88.37 ± 0.23 1.24 ± 0.06 0.98 ± 0.11 33.75 ± 0.34 0.69 ± 0.03
SAOCP(MM) 86.80 ± 2.39 1.45 ± 0.13 3.87 ± 1.05 47.08 ± 0.19 0.56 ± 0.05

DenseNet-121 FACI 89.57 ± 0.37 1.30 ± 0.12 1.46 ± 0.73 8.11 ± 0.10 0.68 ± 0.05
ScaleFreeOGD 89.99 ± 0.01 1.46 ± 0.02 1.71 ± 0.04 2.92 ± 0.07 0.52 ± 0.02
SAOCP 88.77 ± 0.18 1.41 ± 0.02 2.24 ± 0.06 39.62 ± 0.22 0.54 ± 0.01

ResNet-50 FACI 89.74 ± 0.35 1.50 ± 0.04 1.35 ± 0.93 8.11 ± 0.08 0.55 ± 0.01
ScaleFreeOGD 89.98 ± 0.01 1.52 ± 0.01 1.71 ± 0.05 2.89 ± 0.04 0.54 ± 0.01
SAOCP 89.12 ± 0.08 1.51 ± 0.01 2.17 ± 0.06 40.25 ± 0.27 0.53 ± 0.01

ResNet-18 FACI 89.63 ± 0.34 1.36 ± 0.13 1.52 ± 0.76 8.11 ± 0.08 0.64 ± 0.05
ScaleFreeOGD 89.99 ± 0.01 1.52 ± 0.02 1.69 ± 0.06 2.91 ± 0.06 0.49 ± 0.01
SAOCP 88.83 ± 0.06 1.48 ± 0.02 2.24 ± 0.07 40.16 ± 0.22 0.51 ± 0.01

GoogLeNet FACI 89.73 ± 0.34 1.43 ± 0.06 1.41 ± 0.89 8.10 ± 0.10 0.58 ± 0.02
ScaleFreeOGD 89.99 ± 0.02 1.46 ± 0.01 1.70 ± 0.06 2.89 ± 0.04 0.55 ± 0.00
SAOCP 89.09 ± 0.14 1.44 ± 0.01 2.17 ± 0.08 40.13 ± 0.17 0.55 ± 0.01
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Figure 2: Evaluation of average regret over different interval sizes (50, 100, . . . , 500). Note that for
previous methods relying on a single model, the lowest regret across the 4 learning models is selected.
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Conclusion

In this study, we introduced a novel conformal prediction algorithm designed for online environments
undergoing distribution shifts. Recognizing that the selection of baseline models affects the efficiency
of conformal prediction, our algorithm incorporates multiple models simultaneously. For each expert,
the contribution of each model is dynamically adjusted based on its time-evolving weight. We
demonstrated that our proposed method SAMOCP achieves strongly adaptive regret across any time
interval of arbitrary width and maintains valid coverage. Experimental results in environments with
both gradual and sudden distribution shifts indicated that our algorithm produces more informative
prediction sets and achieves a coverage rate close to the target value, compared to those created by
previous methods using their best baseline models.
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A Proofs

Lemma 2 For every α ∈ [0, 1] and learning rate η > 0, adaptive miss coverage probability αm
t for

any model m ∈ [M ] and t ∈ [T ] is bounded as

αm
t ∈ [−η, 1 + η] .

A.1 Proof of lemma 2

Based on equation (4), we have

|αm
t − αm

t−1| = η

∣∣∣∣∣∣ (α− errmt−1)√∑t−1
τ=1 ∥∇αm

τ
L(ᾱm

τ , αm
τ )∥22

∣∣∣∣∣∣ ≤ η. (18)

We prove this lemma using a contradiction. Suppose there exists a t̂ such that αm
t̂

/∈ [−η, 1 + η],
where t̂ ≥ 2 is the smallest such time index. We first prove the case of violating the upper bound; by
contradiction, assume αm

t̂
> 1+ η. According to equation (18), this would necessitate that αm

t̂−1
≥ 1.

Given that we assumed t̂ is the smallest time index to violate the upper bound, it should follow that
αm
t̂−1
≤ 1 + η. However, αm

t̂−1
> 1 > ᾱm

t̂−1
implies errm

t̂−1
= 1. By equation (4) we have

αm
t̂

= αm
t̂−1

+ η
α− 1√∑t̂−1

τ=1 ∥∇αm
τ
L(ᾱm

τ , αm
τ )∥22

≤ αm
t̂−1
≤ 1 + η,

which contradicts our assumption that αm
t̂−1

> 1 + η. Next, assume αm
t̂

< −η. By equation (18), we
have αm

t̂−1
< 0. Given that t̂ is the smallest index that violates the lower bound of the lemma, it must

hold that αm
t̂−1
≥ −η. Considering αm

t̂−1
< 0 < ᾱm

t̂−1
, we deduce that errm

t̂−1
= 0. Therefore, by

equation (4), we have

αm
t̂

= αm
t̂−1

+ η
α√∑t̂−1

τ=1 ∥∇αm
τ
L(ᾱm

τ , αm
τ )∥22

≥ αm
t̂−1
≥ −η,

which contradicts our initial assumption that αm
t̂

< −η.

A.2 Proof of Theorem 1, Regret for MOCP:

Algorithm 1 has the following regret bound
T∑

t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm∗

t , αm∗
) ≤
√
T

(
(1 + 2η)2

2η
+

η

2α
+ lnM + (1 + η)2

)
,

Where αm∗
can be obtained via (7). To prove the theorem, we first introduce and prove the following

two lemmas

Lemma 3 for miss coverage probability assigned to any model m̃ ∈ [M ], we have the following
bound

T∑
t=1

L(ᾱm̃
t , αm̃

t )−
T∑

t=1

L(ᾱm̃
t , αm̃) ≤

√
T

2η
(1 + 2η)2 +

η
√
T

2α
,

where αm̃ = argminαm̃
t

∑T
t=1 L(ᾱ

m̃
t , αm̃

t ).
Proof: We first begin with

(αm̃
t+1 − αm̃)2 = (αm̃

t − η
∇αm̃

t
L(ᾱm̃

t , αm̃
t )√∑t

τ=1 ∥∇αm̃
τ
L(ᾱm̃

τ , αm̃
τ )∥22

− αm̃)2.

Then define adaptive learning rate ηt [Duchi et al., 2011, Hazan et al., 2007] as

ηt :=
η√∑t

τ=1 ∥∇αm̃
τ
L(ᾱm̃

τ , αm̃
τ )∥22

.
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So we have

(αm̃
t+1 − αm̃)2 = (ηt∇αm̃

t
L(α̃m̃

t , αm̃
t ))2 + (αm̃

t − αm̃)2 − 2ηt(α
m̃
t − αm̃)∇αm̃

t
L(α̃m̃

t , αm̃
t ).

Therefore,

(αm̃
t − αm̃)∇αm̃

t
L(ᾱm̃

t , αm̃
t ) =

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηt
+

ηt
2
(∇αm̃

t
L(ᾱm̃

t , αm̃
t ))2.

Since the loss function (2) is convex, we have the following inequality

L(ᾱm̃
t , αm̃

t )− L(ᾱm̃
t , αm̃) ≤ (αm̃

t − αm̃)∇αm̃
t
L(ᾱm̃

t , αm̃
t ). (19)

By summing (19) over t ∈ [T ] we have

T∑
t=1

(
L
(
ᾱm̃
t , αm̃

t

)
− L

(
ᾱm̃
t , αm̃

))
≤

T∑
t=1

(αm̃
t − αm̃)2 − (αm̃

t+1 − αm̃)2

2ηt
+

T∑
t=1

ηt
2

(
∇αm̃

t
L(ᾱm̃

t , αm̃
t )
)2

≤
√
T

2η

T∑
t=1

(
(αm̃

t − αm̃)2 − (αm̃
t+1 − αm̃)2

)
+

η

2

T∑
t=1

1√∑t
τ=1 ∥∇αm̃

τ
L(ᾱm̃

τ , αm̃
τ )∥22

≤
√
T

2η

(
(αm̃

1 − αm̃)2 − (αm̃
T+1 − αm̃)2

)
+

η

2

T∑
t=1

1

α
√
T

(i)
≤
√
T

2η
(1 + 2η)2 +

η
√
T

2α
, (20)

where (i) used αm
t ∈ [−η, 1 + η] by Lemma 2.

Lemma 4 For miss coverage probability assigned to any model m̃ ∈ [M ] we have the following
bound

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm̃
t , αm̃

t ) ≤ lnM

ϵ
+ ϵ(1 + η)2T.

Proof: Referring to the definition of w̄m
t in Subsection 3.1 and defining Wt :=

∑M
m=1 w

m
t , we have

WT+1 =

M∑
m=1

wm
T+1 =

M∑
m=1

wm
T exp (−ϵL(ᾱm

T , αm
T )) = WT

M∑
m=1

w̄m
T exp (−ϵL(ᾱm

T , αm
T ))

(i)
≤WT

M∑
m=1

w̄m
T

(
1− ϵL(ᾱm

T , αm
T ) + ϵ2L(ᾱm

T , αm
T )2

)
= WT

(
1− ϵ

M∑
m=1

w̄m
T L(ᾱm

T , αm
T ) + ϵ2

M∑
m=1

w̄m
T L(ᾱm

T , αm
T )2

)
(ii)
≤ WT exp

(
−ϵ

M∑
m=1

w̄m
T L(ᾱm

T , αm
T ) + ϵ2

M∑
m=1

w̄m
T L(ᾱm

T , αm
T )2

)

≤W1 exp

(
−ϵ

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t ) + ϵ2

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )2

)
, (21)

where W1 = 1, (i) follows from the inequality exp(−ϵx) ≤ 1 − ϵx + ϵ2x2 for |ϵ| ≤ 1, and (ii)
follows from 1 + x ≤ ex. On the other hand, we have

WT+1 ≥ wm̃
T+1 = wm̃

1

T∏
t=1

exp (−ϵL(ᾱm̃
t , αm̃

t )) = wm̃
1 exp (−ϵ

T∑
t=1

L(ᾱm̃
t , αm̃

t )), (22)
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where wm̄
1 = 1

M . By combining (21) and (22) we have

exp

(
−ϵ

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t ) + ϵ2

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )2

)

≥ 1

M
exp

(
−ϵ

T∑
t=1

L(ᾱm̃
t , αm̃

t )

)
. (23)

By taking the logarithm on both sides we have

−ϵ
T∑

t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t ) + ϵ2

T∑
t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )2 ≥ − lnM − ϵ

T∑
t=1

L(ᾱm̃
t , αm̃

t ),

which leads to
T∑

t=1

M∑
m=1

w̄m
t L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm̃
t , αm̃

t ) ≤ lnM

ϵ
+ Tϵ(1 + η)2. (24)

Now, we define the best model in the static environment as

m∗ = argmin
m∈M

T∑
t=1

L(ᾱm
t , αm

t ).

Then, we replace m̃ with best model m∗ in Lemma 3 and 4.By setting ϵ = 1√
T

and summing results
of two lemmas we have:

T∑
t=1

M∑
m=1

w̄m
T L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm∗

t , αm∗

t ) +

T∑
t=1

L(ᾱm∗

t , αm∗

t )−
T∑

t=1

L(ᾱm∗

t , αm∗
)

=

T∑
t=1

M∑
m=1

w̄m
T L(ᾱm

t , αm
t )−

T∑
t=1

L(ᾱm∗

t , αm∗
) ≤
√
T

(
(1 + 2η)2

2η
+

η

2α
+ lnM + (1 + η)2

)
.

(25)

A.3 Proof of Theorem 2, Coverage error for SAMOCP:

We first define expected miss coverage error as

E[errt] =
t∑

n=1

M∑
m=1

h̄n
t w̄

mn
t errmn

t .

The proof of this theorem is based on a grouping argument. So we first divide T into ⌈T 1−γ⌉ group
for γ ∈ ( 12 , 1), and write the kth group as

Gk = {tk−1 + 1, . . . ,min(tk, T )}.
where |Gk| ≤ ⌈T γ⌉. We also define a new variable, Hmn

n:t , assigned to mth update rule of nth expert
as follows

Hmn
n:t :=

√√√√ t∑
τ=n

∥∇αmn
τ

L(ᾱmn
τ , αmn

τ )∥22.

So the update rule in (4) can be written as:

αmn
t+1 = αmn

t + η
(α− errmn

t )

Hmn
n:t

. (26)

For kth group where 2 ≤ k ≤ ⌈T 1−γ⌉, by using (26) we have

E[errt]− α =

t∑
n=1

M∑
m=1

h̄n
t w̄

mn
t (errmn

t − α) =
1

η

t∑
n=1

M∑
m=1

h̄n
t w̄

mn
t (αmn

t − αmn
t+1)H

mn
n:t .
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Since at each time t we activate an expert with lifetime as defined in (9), the nth expert will be
activated at time t = n. Consequently, h̄n

t will be 0 for t < n. Therefore, we have

1

η

t∑
n=1

M∑
m=1

h̄n
t w̄

mn
t (αmn

t − αmn
t+1)H

mn
n:t =

1

η
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M∑
m=1

h̄n
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w̄mn
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(αmn
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t+1)H
mn
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+
1

η

t∑
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M∑
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t (αmn

t − αmn
t+1)H

mn
n:t −

1

η
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M∑
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=
1
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M∑
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n:t

)(αmn
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Note that according to (26), Hmn
n:t (α

mn
t − αmn

t+1) ≤ η. By summing (27) over t ∈ Gk we have∣∣∣∣∣∑
t∈Gk
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For G1 we have∣∣∣∣∣∑
t∈G1

E[errt]− α

∣∣∣∣∣ = ∑
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(29)
By summing over all group we have∣∣∣∣∣
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We define βγ(T ) as:

βγ(T ) :=

1 +

⌈T 1−γ⌉∑
k=2

max
t∈Gk

t∑
n=1

M∑
m=1

∣∣∣∣h̄n
t w̄

mn
t − h̄n
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n:t

∣∣∣∣
 . (31)

Then we have: ∣∣∣∣∣
T∑

t=1

E[errt]− α

∣∣∣∣∣ = O(T 3
2−γ + T γβγ(T )).

A.4 Proof of Theorem 3, static regret for SAMOCP

We can write the regret as

∑
t∈Iñ

∑
n∈A(t)

M∑
m=1

h̄n
t w̄

mn
t L(ᾱmn

t , αmn
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t∈Iñ

M∑
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t L(ᾱmñ
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t , αmñ
t )−

∑
t∈Iñ

L(ᾱm∗ñ
t , αm∗ñ), (32)

where Iñ denotes the time interval during which expert ñ is active, starting at time t = ñ. The third
and fourth terms in the expression are analogous to the regret experienced by expert ñ, as established
in Theorem 1. To evaluate the regret for the first and second terms, we employ Lemma 4. The main
difference is in the number of experts considered: For a looser bound, assuming that experts remain
active beyond their designated lifetime, the maximum number of experts at each time step t would be
gt. Thus, we derive the following bound for the first and second terms

∑
t∈Iñ

∑
n∈A(t)

M∑
m=1

h̄n
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mñ
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√
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σ
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|Iñ|σ(1 + η)2√
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√
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(
ln (gt) + σ2(1 + η)2

)
. (33)

By summing (33) with regret bound of Theorem 1 we have

∑
t∈Iñ

∑
n∈A(t)

M∑
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t w̄

mn
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t , αmn
t )−

∑
t∈Iñ
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|Iñ|

(
(1 + 2η)2
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η
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)
, (34)

Until this point, the regret bound we’ve established applies solely to intervals that start with expert
ñ, where each interval’s length corresponds to the lifetime of expert ñ. However, to derive a regret
bound for any arbitrary time interval I , we need to partition the interval into subintervals in a suitable
manner. As proposed in [Daniely et al., 2015], we can divide an interval I into two sequences
of non-overlapping and consecutive intervals, denoted as (I−p, ..., I0) and (I1, ..., Iq), such that
|Ir+1|
|Ir| ≤

1
2 for all r ∈ (1, q − 1), and |Ir|

|Ir+1| ≤
1
2 for all r ∈ (−p,−1). Subsequently, by employing
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the inequality
∑∞

r=1

√
2−rT0 ≤ 4

√
T0, and by replacing ñ with n∗ using (13), we have∑
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√
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Given that A and B are positive constant variables, we have determined the regret bound for our
problem, demonstrating sublinear regret for Algorithm 2.

A.5 Proof of Lemma 1, Dynamic regret for SAMOCP:

To prove the regret in a dynamic environment we adopt a method which was first proposed by [Besbes
et al., 2015]. So we can write the dynamic regret in our problem as

T∑
t=1

∑
n∈A(t)

M∑
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t ), (36)

where αm∗n∗

t is obtained by (16). The first two terms in (36) represent the static regret as defined in
Theorem 3 and have been shown to be bounded. Consequently, to establish the overall regret bound,
it is sufficient to find the upper bounds for the third and fourth terms in (36). We begin by dividing
the total time interval T into sub-intervals Ir indexed by r = 1, ..., [T/|I|] where |I| is the length of
each interval. so we can rewrite (36) as
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For the second two terms we have∑
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where V (L(.)t) is the variability of environment [Besbes et al., 2015] defined in (14). So the regret
in (36) for any arbitrary |I| will be
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Since (35) holds for any interval I ⊆ [T ], By selecting |I| =
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B Additional Experiments

B.1 Synthetic Dataset

In this subsection, we present our analysis using synthetic data to compare our proposed method,
SAMOCP, with recent adaptive conformal prediction methods designed for dynamic settings. We
analyze our experiments with a new set of learning models to demonstrate how our proposed method
can effectively utilize a mixture of learning models to cope with distribution shifts in a dynamic
environment with unknown distribution changes. Additionally, experiments with synthetic data
also confirm that SAMOCP maintains its advantages when varying the number of learning models.
Specifically, we conducted experiments for cases with 2 and 3 learning models.
Data Generation: To generate synthetic data that mimics real-world scenarios, we employ two
distinct transformation sequences. The first transformation sequence introduces visual noise and
blur effects through the application of Gaussian blur and random Gaussian noise. This approach
aims to subtly degrade image clarity, simulating real-life challenges such as camera focus issues or
atmospheric conditions like fog or mist. The Gaussian blur is applied with moderate settings, while
random noise is incorporated to simulate sensor noise or digital compression artifacts commonly
encountered in digital imagery. The second transformation sequence focuses on color manipulation.
By adjusting image attributes such as brightness, contrast, saturation, and hue in minor increments, we
challenge the models to perform reliably under varying lighting conditions and color settings—typical
variations that occur due to different times of the day or inconsistencies in camera settings. Addition-
ally, a random conversion of some images to grayscale is employed to further challenge the models’
dependency on color information.
In this experiment, two distinct datasets each containing 3000 images are generated from each trans-
formation type. These datasets are designed with a fixed number of 20 classes and hyperparameters ξ
and kreg are set to 0.1 and 4, respectively. The variations between the datasets are due to random
elements introduced during image processing, such as differences in which pixels are affected by
noise or how color properties are altered. This randomness ensures each dataset contains unique
instances, even though they stem from the same transformation principles. By concatenating images
from the two datasets, the experiment simulates both gradual and sudden distribution shifts. Gradual
shifts are seen within the datasets from a single transformation, while sudden shifts occur when
switching between datasets from different transformations.

Table 3: Results on the generated synthetic dataset for Efficientnet_b0 and GoogLeNet learning
models. The target coverage percentage is 90%. Bold numbers denote the best results in each column
for methods with coverage in the 85− 90 range. Red numbers indicate unacceptable coverage.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time

SAMOCP 87.90 ± 0.26 17.54 ± 0.01 0.48 ± 0.36 19.51 ± 0.03
SAOCP(MM) 81.98 ± 7.35 16.54 ± 1.45 6.97 ± 2.59 26.30 ± 0.24

Efficientnet_b0 FACI 89.80 ± 0.31 17.96 ± 0.05 0.30 ± 0.18 6.82 ± 0.02
ScaleFreeOGD 89.96 ± 0.00 18.05 ± 0.01 1.61 ± 0.01 2.45 ± 0.00
SAOCP 88.73 ± 0.08 17.82 ± 0.01 2.18 ± 0.02 34.43 ± 0.06

GoogLeNet FACI 89.66 ± 0.30 18.05 ± 0.09 1.36 ± 0.79 6.89 ± 0.02
ScaleFreeOGD 89.95 ± 0.00 18.07 ± 0.03 1.82 ± 0.03 2.46 ± 0.00
SAOCP 88.39 ± 0.07 17.75 ± 0.02 2.55 ± 0.03 34.78 ± 0.06

We conducted experiments using a distinct set of learning models. As shown in Table 3, we
incorporated two learning models, Efficientnet_b0 and GoogLeNet, where we achieved the smallest
prediction set size with coverage close to the target. The SAOCP for GoogLeNet obtained an
average width close to our method; however, it is noteworthy that the maximum number of updates
in SAOCP is twice that of SAMOCP, demonstrating that our algorithm achieved this result with
lower computational costs. Additionally, its regret is almost five times larger than our method’s. We
also provide synthetic data analysis using another set of learning models consisting of GoogLeNet,
DenseNet-121, and EfficientNet-B0 [Tan and Le, 2019], as detailed in Table 4 where our method again
was able to construct smaller prediction sets. It should also be noted that, due to severely corrupted
data in our synthetic dataset, none of the models were able to produce single width prediction sets
that cover true labels.
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Table 4: Results on the generated synthetic dataset for EfficientNet-B0, DenseNet-121, and
GoogLeNet learning models. The target coverage percentage is 90%.Bold numbers denote the
best results in each column for methods with coverage in the 85− 90 range. Red numbers indicate
unacceptable coverage.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time

SAMOCP 88.04 ± 0.31 17.60 ± 0.04 0.65 ± 0.45 26.39 ± 0.37
SAOCP(MM) 80.95 ± 7.75 16.29 ± 1.55 7.06 ± 3.03 34.80 ± 0.36

Efficientnet_b0 FACI 89.80 ± 0.31 17.96 ± 0.05 0.30 ± 0.18 7.37 ± 0.07
ScaleFreeOGD 89.96 ± 0.00 18.05 ± 0.01 1.61 ± 0.01 2.65 ± 0.01
SAOCP 88.73 ± 0.08 17.82 ± 0.01 2.18 ± 0.02 37.25 ± 0.15

DenseNet-121 FACI 89.72 ± 0.32 18.04 ± 0.07 1.07 ± 0.73 7.42 ± 0.05
ScaleFreeOGD 89.95 ± 0.01 18.06 ± 0.02 1.81 ± 0.04 2.65 ± 0.03
SAOCP 88.39 ± 0.09 17.72 ± 0.01 2.53 ± 0.02 37.83 ± 0.16

GoogLeNet FACI 89.66 ± 0.30 18.05 ± 0.09 1.36 ± 0.79 7.49 ± 0.06
ScaleFreeOGD 89.95 ± 0.00 18.07 ± 0.03 1.82 ± 0.03 2.66 ± 0.03
SAOCP 88.39 ± 0.07 17.75 ± 0.02 2.55 ± 0.03 37.90 ± 0.21

B.2 TinyImageNet Dataset

Here, we conduct the experiment on a new dataset involving a gradual distribution shift using
a new real dataset, TinyImageNet-C, which is a corrupted version of the TinyImageNet [Le and
Yang, 2015] dataset that features 200 distinct classes. We have also incorporated a new mixture
of learning models—GoogLeNet, DenseNet-121, EfficientNet-B0, and MobileNet-V2 [Li et al.,
2021] to demonstrate the performance of our algorithm. In Table 5, we detail our proposed method’s
comparison with previous methods, where, once again, our algorithm is able to achieve smaller
prediction set sizes while maintaining coverage close to the target value of 1− α. It is reasonable
to study prediction sets in situations where we achieve coverage close to the desired level. The
SAOCP(MM) method achieves coverage of less than 85%, which is significantly below the target
value. Therefore, we do not consider its prediction sets in our comparison. As demonstrated
in the table, SAMOCP obtains smaller prediction sets and operates faster than SAOCP. For the
TinyImageNet-C dataset, the parameters η, ξ and kreg are set to 0.025, 0.01 and 20, respectively.
Other parameters remain consistent with previous experiments. All real datasets are downloaded
from the Zenodo repository.

Table 5: Results on the TinyImageNet-C dataset with a gradual distribution shift. The target coverage
is 90%, and the average regret is calculated over an interval size of 100. Bold numbers denote the
best results in each column for methods with coverage in the 85-90 range. Red numbers indicate
unacceptable coverage. SAMOCP achieves the best performance in terms of average width and single
width.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time Single Width

SAMOCP 87.73 ± 0.35 171.64 ± 1.34 1.28 ± 0.20 35.22 ± 0.72 0
SAOCP(MM) 84.91 ± 1.22 165.93 ± 3.32 4.80 ± 0.77 48.55 ± 0.15 0

GoogLeNet FACI 89.69 ± 0.29 177.93 ± 1.21 1.07 ± 0.67 8.48 ± 0.06 0
ScaleFreeOGD 89.96 ± 0.01 178.38 ± 0.49 1.41 ± 0.08 3.16 ± 0.03 0
SAOCP 88.36 ± 0.07 174.81 ± 0.50 2.02 ± 0.08 40.83 ± 0.32 0

DenseNet-121 FACI 89.68 ± 0.31 176.66 ± 1.10 1.30 ± 0.74 8.54 ± 0.11 0
ScaleFreeOGD 89.95 ± 0.02 177.24 ± 0.64 1.53 ± 0.06 3.18 ± 0.05 0
SAOCP 88.48 ± 0.12 173.79 ± 0.57 2.09 ± 0.04 40.09 ± 0.36 0

Efficientnet_b0 FACI 89.64 ± 0.35 176.78 ± 1.03 1.01 ± 0.61 8.56 ± 0.07 0
ScaleFreeOGD 89.95 ± 0.01 177.23 ± 0.63 1.37 ± 0.06 3.17 ± 0.05 0
SAOCP 88.30 ± 0.18 173.52 ± 0.63 1.98 ± 0.08 41.06 ± 0.15 0

Mobilenet_v2 FACI 89.69 ± 0.30 175.26 ± 0.95 0.98 ± 0.52 8.55 ± 0.07 0
ScaleFreeOGD 89.95 ± 0.01 175.82 ± 0.51 1.36 ± 0.07 3.19 ± 0.04 0
SAOCP 88.30 ± 0.15 171.83 ± 0.55 1.94 ± 0.06 40.60 ± 0.23 0
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B.3 SAMOCP vs. SAOCP (equal lifetimes)

We compared our method with a specific version of SAOCP where the hyperparameter g in equation
(9) is set to 8, giving both SAOCP and SAMOCP experts the same lifetime. We conduct experiments
identical to those described in section 4, addressing both sudden and gradual shifts for CIFAR-10C
and CIFAR-100C, respectively. Our results are demonstrated in Table 6 for CIFAR-10C and in Table
7 for CIFAR-100C. For both cases, we observe the advantage of utilizing multiple learning models
instead of a single model, as our proposed method, SAMOCP, significantly outperforms SAOCP
across all four learning models. SAMOCP achieved better results in terms of coverage, average width,
average regret, and single width compared to SAOCP.

Table 6: Performance evaluation of SAOCP with same lifetime time as SAMOCP for sudden
distribution shift setting on CIFAR-10C.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time Single Width

SAMOCP 88.37 ± 0.23 1.24 ± 0.06 0.98 ± 0.11 33.75 ± 0.34 0.69 ± 0.03

DenseNet-121 SAOCP 87.16 ± 0.10 1.45 ± 0.03 4.36 ± 0.14 14.73 ± 0.09 0.53 ± 0.01
ResNet-50 SAOCP 87.87 ± 0.15 1.52 ± 0.01 3.91 ± 0.11 14.78 ± 0.07 0.52 ± 0.01
ResNet-18 SAOCP 87.16 ± 0.18 1.51 ± 0.02 4.38 ± 0.16 14.85 ± 0.08 0.51 ± 0.01
GoogLeNet SAOCP 87.74 ± 0.10 1.45 ± 0.01 3.92 ± 0.15 14.84 ± 0.06 0.54 ± 0.01

Table 7: Performance evaluation of SAOCP with same lifetime time as SAMOCP for gradual
distribution shift setting on CIFAR-100C.

Model Method Coverage (%) Avg Width Avg Regret(×10−3) Run Time Single Width

SAMOCP 88.16 ± 0.18 5.43 ± 0.28 0.92 ± 0.07 34.87 ± 0.67 0.29 ± 0.01

DenseNet-121 SAOCP 87.33 ± 0.14 6.12 ± 0.16 4.03 ± 0.06 14.89 ± 0.06 0.27 ± 0.00
ResNet-50 SAOCP 87.22 ± 0.12 6.75 ± 0.16 3.99 ± 0.14 15.01 ± 0.07 0.26 ± 0.00
ResNet-18 SAOCP 87.15 ± 0.14 7.24 ± 0.22 4.10 ± 0.11 15.02 ± 0.08 0.25 ± 0.00
GoogLeNet SAOCP 87.09 ± 0.16 6.78 ± 0.12 4.14 ± 0.13 14.98 ± 0.09 0.26 ± 0.00

B.4 SAMOCP vs. MOCP

To validate the advantage of SAMOCP versus MOCP in dynamic environments, we conducted
experiments for both sudden and gradual distribution shifts. see Tables 8 and 9. In both tables,
SAMOCP outperforms MOCP in terms of Average Width and Single Width metrics.

Table 8: Comparison of MOCP and SAMOCP on the CIFAR-10C dataset with a sudden distribution
shift. The target coverage is 90%. Bold numbers denote the best results in each column.

Method Coverage (%) Avg Width Single Width

MOCP 89.96 ± 0.33 1.29 ± 0.08 0.67 ± 0.04
SAMOCP 88.37 ± 0.23 1.24 ± 0.06 0.69 ± 0.03

21



Table 9: Comparison of MOCP and SAMOCP on the CIFAR-100C dataset with a gradual distribution
shift. The target coverage is 90%. Bold numbers denote the best results in each column.

Method Coverage (%) Avg Width Single Width

MOCP 89.77 ± 0.19 5.85 ± 0.28 0.28 ± 0.01
SAMOCP 88.16 ± 0.18 5.43 ± 0.28 0.29 ± 0.01
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The result tables (sections 4 and B) demonstrate that our method does not
achieve the best coverage and runs slower than single models.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theorem and lemma in section 3.1 and 3.2 we explained our assump-
tions and provide clear proof in section A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide explanation of our experiment procedure in section 4 and also
provide full explanation of generating synthetic data set in section B.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to the GitHub repository, containing the full implementation of the
method described in the paper, is provided in Section 4

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In sections 4 and B, we determine the values of the hyperparameters.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

22



Justification: We did every experiment for 10 different random seeds.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In section B, we mentioned that we used an NVIDIA RTX A4000 GPU,
and demonstrated the run time for each iteration of our algorithm compared to previous
algorithms.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not expect any direct societal impact in our work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In section 4 we cited every datasets we employed.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In section B we mentioned that real datasets are downloaded from Zenodo
respiratory.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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