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Abstract
The recent explosion of interest in multimodal applications has resulted in a wide
selection of datasets and methods for representing and integrating information from
different modalities. Despite these empirical advances, there remain fundamental
research questions: How can we quantify the interactions that are necessary to
solve a multimodal task? Subsequently, what are the most suitable multimodal
models to capture these interactions? To answer these questions, we propose an
information-theoretic approach to quantify the degree of redundancy, uniqueness,
and synergy relating input modalities with an output task. We term these three
measures as the PID statistics of a multimodal distribution (or PID for short), and
introduce two new estimators for these PID statistics that scale to high-dimensional
distributions. To validate PID estimation, we conduct extensive experiments on
both synthetic datasets where the PID is known and on large-scale multimodal
benchmarks where PID estimations are compared with human annotations. Finally,
we demonstrate their usefulness in (1) quantifying interactions within multimodal
datasets, (2) quantifying interactions captured by multimodal models, (3) principled
approaches for model selection, and (4) three real-world case studies engaging with
domain experts in pathology, mood prediction, and robotic perception where our
framework helps to recommend strong multimodal models for each application.

1 Introduction
A core challenge in machine learning lies in capturing the interactions between multiple input
modalities. Learning different types of multimodal interactions is often quoted as motivation for
many successful multimodal modeling paradigms, such as contrastive learning to capture redun-
dancy [54, 82], modality-specific representations to retain unique information [100], as well as tensors
and multiplicative interactions to learn higher-order interactions [52, 58, 115]. However, several
fundamental research questions remain: How can we quantify the interactions that are necessary to
solve a multimodal task? Subsequently, what are the most suitable multimodal models to capture
these interactions? This paper aims to formalize these questions by proposing an approach to quantify
the nature (i.e., which type) and degree (i.e., the amount) of modality interactions, a fundamental
principle underpinning our understanding of multimodal datasets and models [62].

By bringing together two previously disjoint research fields of Partial Information Decomposition
(PID) in information theory [13, 41, 108] and multimodal machine learning [9, 62], we provide
precise definitions categorizing interactions into redundancy, uniqueness, and synergy. Redundancy
quantifies information shared between modalities, uniqueness quantifies the information present in
only one of the modalities, and synergy quantifies the emergence of new information not previously
present in either modality. A key aspect of these four measures is that they not only quantify
interactions between modalities, but also how they relate to a downstream task. Figure 1 shows
a depiction of these four measures, which we refer to as PID statistics. Leveraging insights from
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neural representation learning, we propose two new estimators for PID statistics that can scale to
high-dimensional multimodal datasets and models. The first estimator is exact, based on convex
optimization, and is able to scale to features with discrete support, while the second estimator is an
approximation based on sampling, which enables us to handle features with large discrete or even
continuous supports. We validate our estimation of PID in 2 ways: (1) on synthetic datasets where
PID statistics are known due to exact computation and from the nature of data generation, and (2) on
real-world data where PID is compared with human annotation. Finally, we demonstrate that these
estimated PID statistics can help in multimodal applications involving:

1. Dataset quantification: We apply PID to quantify large-scale multimodal datasets, showing that
these estimates match common intuition for interpretable modalities (e.g., language, vision, and
audio) and yield new insights in other domains (e.g, healthcare, HCI, and robotics).

2. Model quantification: Across a suite of models, we apply PID to interpret model predictions and
find consistent patterns of interactions that different models capture.

3. Model selection: Given our findings from dataset and model quantification, a new research
question naturally arises: given a new multimodal task, can we quantify its PID values to infer (a
priori) what type of models are most suitable? Our experiments show success in model selection
for both existing benchmarks and completely new case studies engaging with domain experts in
computational pathology, mood prediction, and robotics to select the best multimodal model.

Finally, we make public a suite of trained models across 10 model families and 30 datasets to acceler-
ate future analysis of multimodal interactions at https://github.com/pliang279/PID.

2 Background and Related Work
LetXi and Y be sample spaces for features and labels. Define ∆ to be the set of joint distributions over
(X1,X2,Y). We are concerned with features X1, X2 (with support Xi) and labels Y (with support
Y) drawn from some distribution p ∈ ∆. We denote the probability mass (or density) function by
p(x1, x2, y), where omitted parameters imply marginalization. Key to our work is defining estimators
that given p or samples {(x1, x2, y) : X1 × X2 × Y} thereof (i.e., dataset or model predictions),
returns estimates for the amount of redundant, unique, and synergistic interactions.

2.1 Partial Information Decomposition
Classical Information Theory Partial Information Decomposition

Figure 1: PID decomposes I(X1, X2;Y ) into redun-
dancy R between X1 and X2, uniqueness U1 in X1

and U2 in X2, and synergy S in both X1 and X2.

Information theory formalizes the amount of
information that one variable provides about
another [86]. However, its extension to 3 vari-
ables is an open question [34, 70, 93, 106].
In particular, the natural three-way mutual
information I(X1;X2;Y ) = I(X1;X2) −
I(X1;X2|Y ) [70, 93] can be both positive
and negative, which makes it difficult to inter-
pret. In response, Partial information decom-
position (PID) [108] generalizes information
theory to multiple variables by decomposing
Ip(X1, X2;Y ), the total information 2 vari-
ables X1, X2 provide about a task Y into 4 quantities (see Figure 1): redundancy R between X1 and
X2, uniqueness U1 in X1 and U2 in X2, and synergy S that only emerges when both X1 and X2 are
present. We adopt the PID definition proposed by Bertschinger et al. [13]:

R = max
q∈∆p

Iq(X1;X2;Y ), (1)

U1 = min
q∈∆p

Iq(X1;Y |X2), U2 = min
q∈∆p

Iq(X2;Y |X1), (2)

S = Ip(X1, X2;Y )− min
q∈∆p

Iq(X1, X2;Y ), (3)

where ∆p = {q ∈ ∆ : q(xi, y) = p(xi, y) ∀y ∈ Y, xi ∈ Xi, i ∈ [2]} and the notation Ip(·) and Iq(·)
disambiguates mutual information under p and q respectively. The key lies in optimizing q ∈ ∆p

to satisfy the marginals q(xi, y) = p(xi, y), but relaxing the coupling between x1 and x2: q(x1, x2)
need not be equal to p(x1, x2). The intuition behind this is that one should be able to infer redundancy
and uniqueness given only access to p(x1, y) and p(x2, y), and therefore they should only depend on
q ∈ ∆p. Synergy is the only term that should depend on the coupling p(x1, x2), and this is reflected
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in (3) depending on the full p distribution. This definition enjoys several useful properties in line with
intuition, as we will see in comparison with related frameworks for interactions below [13].

2.2 Related Frameworks for Feature Interactions
Information-theoretic definitions: Perhaps the first measure of redundancy in machine learning is
co-training [14, 8, 23], where 2 variables are redundant if they are conditionally independent given
the task: I(X1;X2|Y ) = 0. As a result, redundancy can be measured by I(X1;X2;Y ). The same
definition of redundancy is used in multi-view learning [98, 94, 89] which further define I(X1;Y |X2)
and I(X2;Y |X1) as unique information in X1, X2. However, I(X1;X2;Y ) can be both positive and
negative [51]. PID resolves this by separating R and S such that R− S = I(X1;X2;Y ), identifying
that prior measures confound redundancy and synergy. This crucially provides an explanation for
the distinction between mediation, where one feature conveys the information already in another
(i.e., R > S), versus moderation, where one feature affects the relationship of other features (i.e.,
S > R) [10, 36]. Furthermore, if I(X1;X2;Y ) = 0 then existing frameworks are unable to
distinguish between positive R and S canceling each other out.

Statistical measures: Other approaches have studied interaction measures via statistical measures,
such as redundancy via distance between prediction logits using either feature [69], statistical
distribution tests on input features [114, 7], or via human annotations [85]. However, it is unclear
how to extend these definitions to uniqueness and synergy while remaining on the same standardized
scale like PID provides. Also of interest are notions of redundant and synergistic interactions in
human and animal communication [78, 79, 30, 85], which we aim to formalize.

Model-based methods: Prior research has formalized definitions of non-additive interactions [32] to
quantify their presence [88, 101, 102, 46] in trained models, or used Shapley values on trained features
to measure interactions [49]. Parallel research has also focused on qualitative visualizations of real-
world multimodal datasets and models, such as DIME [68], M2Lens [105], and MultiViz [61].

3 Scalable Estimators for PID
PID as a framework for multimodality: Our core insight is that PID provides a formal framework
to understand both the nature and degree of interactions involved when two features X1 and X2 are
used for task Y . The nature of interactions is afforded by a precise decomposition into redundant,
unique, and synergistic interactions, and the degree of interactions is afforded by a standardized unit
of measure (bits). However, computing PID is a considerable challenge, since it involves optimization
over ∆p and estimating information-theoretic measures. Up to now, analytic approximations of
these quantities were only possible for discrete and small support [13, 41, 109] or continuous but
low-dimensional variables [76, 81, 110]. Leveraging ideas in representation learning, Sections 3.1
and 3.2 are our first technical contributions enabling scalable estimation of PID for high-dimensional
distributions. The first, CVX, is exact, based on convex optimization, and is able to scale to problems
where |Xi| and |Y| are around 100. The second, BATCH, is an approximation based on sampling,
which enables us to handle large or even continuous supports for Xi and Y . Applying these estimators
in Section 4, we show that PID provides a path towards understanding the nature of interactions in
datasets and those learned by different models, and principled approaches for model selection.

3.1 CVX: Dataset-level Optimization
Our first estimator, CVX, directly compute PID from its definitions using convex programming.
Crucially, Bertschinger et al. [13] show that the solution to the max-entropy optimization problem:
q∗ = argmaxq∈∆p

Hq(Y |X1, X2) equivalently solves (1)-(3). When Xi and Y are small and
discrete, we can represent all valid distributions q(x1, x2, y) as a set of tensors Q of shape |X1| ×
|X2| × |Y| with each entry representing Q[i, j, k] = p(X1 = i,X2 = j, Y = k). The problem then
boils down to optimizing over valid tensors Q ∈ ∆p that match the marginals p(xi, y).

Given a tensor Q representing q, our objective is the concave function Hq(Y |X1, X2).
While Bertschinger et al. [13] report that direct optimization is numerically difficult as routines such
as Mathematica’s FINDMINIMUM do not exploit convexity, we overcome this by rewriting conditional
entropy as a KL-divergence [38], Hq(Y |X1, X2) = log |Y| − KL(q||q̃), where q̃ is an auxiliary
product density of q(x1, x2) · 1

|Y| enforced using linear constraints: q̃(x1, x2, y) = q(x1, x2)/|Y|.
Finally, optimizing over Q ∈ ∆p that match the marginals can also be enforced through linear
constraints: the 3D-tensor Q summed over the second dimension gives q(x1, y) and summed over
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Figure 2: We propose BATCH, a scalable estimator for PID over high-dimensional continuous
distributions. BATCH parameterizes q̃ using a matrix A learned by neural networks such that mutual
information objectives over q̃ can be optimized via gradient-based approaches over minibatches.
Marginal constraints q̃ ∈ ∆p are enforced through a variant of the Sinkhorn-Knopp algorithm on A.

the first dimension gives q(x2, y), yielding the final optimization problem:

argmax
Q,Q̃

KL(Q||Q̃), s.t. Q̃(x1, x2, y) = Q(x1, x2)/|Y|, (4)∑
x2

Q = p(x1, y),
∑
x1

Q = p(x2, y), Q ≥ 0,
∑

x1,x2,y

Q = 1. (5)

The KL-divergence objective is recognized as convex, allowing the use of conic solvers such as SCS
[75], ECOS [27], and MOSEK [6]. Plugging q∗ into (1)-(3) yields the desired PID.

Pre-processing via feature binning: In practice, X1 and X2 often take continuous rather than discrete
values. We work around this by histogramming each Xi, thereby estimating the continuous joint
density by discrete distributions with finite support. We provide more details in Appendix B.1.

3.2 BATCH: Batch-level Amortization
We now present BATCH, our next estimator that is suitable for large datasets where Xi is high-
dimensional and continuous (|Y| remains finite). To estimate PID given a sampled dataset D =

{(x(j)
1 , x

(j)
2 , y(j))} of size n, we propose an end-to-end model parameterizing marginal-matching joint

distributions in ∆p and a training objective whose solution returns approximate PID values.

Simplified algorithm sketch: Our goal, loosely speaking, is to optimize q̃ ∈ ∆p for objective (1)
through an approximation using neural networks instead of exact optimization. We show an overview
in Figure 2. To explain our approach, we first describe (1) how we parameterize q̃ using neural
networks such that it can be learned via gradient-based approaches, (2) how we ensure the marginal
constraints q̃ ∈ ∆p through a variant of the Sinkhorn-Knopp algorithm, and finally (3) how to scale
this up over small subsampled batches from large multimodal datasets.

Parameterization using neural networks: The space of joint distributions ∆ is often too large to
explicitly specify. To tackle this, we implicitly parameterize each distribution q̃ ∈ ∆ using a neural
network fϕ that takes in batches of modalities X1 ∈ X̃n

1 ,X2 ∈ X̃n
2 and the label Y ∈ Yn before

returning a matrix A ∈ Rn×n×|Y| representing an (unnormalized) joint distribution q̃, i.e., we want
A[i][j][y] = q̃(X1[i],X2[j], y) for each y ∈ Y . In practice, fϕ is implemented via a pair of encoders
fϕ(1) and fϕ(2) that learn modality representations, before an outer product to learn joint relationships
Ay = exp(fϕ(1)(X1, y)fϕ(2)(X2, y)

⊤) for each y, yielding the desired n×n×|Y| joint distribution.
As a result, optimizing over q̃ can be performed via optimizing over parameters ϕ.

Respecting the marginal constraints: How do we make sure the q̃’s learned by the network satisfies
the marginal constraints (i.e., q̃ ∈ ∆p)? We use an unrolled version of Sinkhorn’s algorithm [24]
which projects A onto ∆p by iteratively normalizing A’s rows and columns to sum to 1 and rescaling
to satisfy the marginals p(xi, y). However, p(xi, y) is not easy to estimate for high-dimensional
continuous xi’s. In response, we first expand p(xi, y) into p(y|xi) and p(xi) using Bayes’ rule. Since
A was constructed by samples xi from the dataset, the rows and columns of A are already distributed
according to p(x1) and p(x2) respectively. This means that it suffices to approximate p(y|xi) with
unimodal classifiers p̂(y|xi) parameterized by neural networks and trained separately, before using
Sinkhorn’s algorithm to normalize each row to p̂(y|x1) and each column to p̂(y|x2).

Objective: We choose the objective Iq(X1;X2;Y ), which equivalently solves the optimization
problems in the other PID terms [13]. Given matrix A representing q̃(x1, x2, y), the objective can
be computed in closed form through appropriate summation across dimensions in A to obtain q̃(xi),
q̃(x1, x2), q̃(xi|y), and q̃(x1, x2|y) and plugging into Iq̃(X1;X2;Y ) = Iq̃(X1;X2)−Iq̃(X1;X2|Y ).
We maximize Iq̃(X1;X2;Y ) by updating parameters ϕ via gradient-based methods. Overall, each
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Figure 3: Left to right: (a) Contour plots of the GMM’s density for ||µ||2 = 2.0. Red line denotes the
optimal linear classifier. (b) PID (Cartesian) computed for varying ∠µ with respect to the x axis. (c)
PID (Polar) for varying ∠µ, with U1 and U2 corresponding to unique information from (r, θ). Plots
(d)-(f) are similar to (a)-(c), but repeated for ||µ||2 = 1.0. Legend: ✖(R),q(U1),s(U2),u(S),
✚(Sum). Observe how PID changes with the change of variable from Cartesian (b and e) to Polar
(c and f), as well as how a change in ||µ||2 can lead to a disproportionate change across PID (b vs e).

gradient step involves computing q̃ = SINKHORNp̂(A), and updating ϕ to maximize (1) under q̃.
Since Sinkhorn’s algorithm is differentiable, gradients can be backpropagated end-to-end.

Approximation with small subsampled batches: Finally, to scale this up to large multimodal
datasets where the full q̃ may be too large to store, we approximate q̃ with small subsampled batches:
for each gradient iteration t, the network fϕ now takes in a batch of m≪ n datapoints sampled from
D and returns A ∈ Rm×m×|Y| for the subsampled points. We perform Sinkhorn’s algorithm on A
and a gradient step on ϕ as above, as if Dt was the full dataset (i.e., mini-batch gradient descent).
While it is challenging to obtain full-batch gradients since computing the full A is intractable, we
found our approach to work in practice for large m. Our approach can also be informally viewed as
performing amortized optimization [3] by using ϕ to implicitly share information about the full batch
using subsampled batches. Upon convergence of ϕ, we extract PID by plugging q̃ into (1)-(3).

Implementation details such as the network architecture of f , approximation of objective (1) via
sampling from q̃, and estimation of Iq̃({X1, X2};Y ) from learned q̃ are in Appendix B.3.

4 Evaluation and Applications of PID in Multimodal Learning
We design experiments to (1) understand PID on synthetic data, (2) quantify real-world multimodal
benchmarks, (3) understand the interactions captured by multimodal models, (4) perform model
selection across different model families, and (5) applications on novel real-world tasks.

4.1 Validating PID Estimates on Synthetic Data
Our first goal is to evaluate the accuracy of our proposed estimators with respect to the ground truth (if
it can be computed) or human judgment (for cases where the ground truth cannot be readily obtained).
We start with a suite of datasets spanning both synthetic and real-world distributions.

Table 1: Results on estimating PID on synthetic bitwise
datasets. Both our estimators exactly recover the correct
PID values as reported in Bertschinger et al. [13].

Task OR AND XOR
PID R U1 U2 S R U1 U2 S R U1 U2 S
Exact 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1
CVX 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1
BATCH 0.31 0 0 0.5 0.31 0 0 0.5 0 0 0 1

Synthetic bitwise features: We sam-
ple from a binary bitwise distribution:
x1, x2 ∼ {0, 1}, y = x1 ∧ x2, y =
x1 ∨ x2, y = x1 ⊕ x2,. Each bitwise
operator’s PID can be solved exactly
when the xi’s and labels are discrete and
low-dimensional [13]. Compared to the
ground truth in Bertschinger et al. [13],
both our estimators exactly recover the
correct PID values (Table 1).

Gaussian Mixture Models (GMM): Consider a GMM, where X1, X2 ∈ R and the label Y ∈
{−1,+1}, comprising two equally weighted standard multivariate Gaussians centered at ±µ, where
µ ∈ R2, i.e., Y ∼ Bernoulli(1/2), (X1, X2)|Y = y ∼ N (y · µ, I). PID was estimated by sampling
1e6 points, histogramming them into 50 bins spanning [−5,+5] to give p, and then applying the CVX
estimator. We term this PID-Cartesian. We also compute PID-Polar, which are PID computed
using polar coordinates, (r, θ). We use a variant where the angle θ is given by the arctangent with
principal values [0, π] and the length r ∈ R could be negative. θ specifies a line (through the origin),
and r tells us where along the line the datapoint lies on.

Results: We consider ||µ||2 ∈ {1.0, 2.0}, where for each ||µ||2, we vary the angle ∠µ that µ makes
with the horizontal axis. Our computed PID is presented in Figure 3. Overall, we find that the
PID matches what we expect from intuition. For Cartesian, unique information dominates when
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Table 2: Estimating PID on synthetic generative model datasets. Both CVX and BATCH measures
agree with each other on relative values and are consistent with ground truth interactions.

Task DR DU1 DU2 DS y = f(z∗1 , z
∗
2 , z

∗
c )

PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.16 0 0 0.05 0 0.16 0 0.05 0 0 0.17 0.05 0.07 0 0.01 0.14 0.04 0.01 0 0.07
BATCH 0.29 0.02 0.02 0 0 0.30 0 0 0 0 0.30 0 0.11 0.02 0.02 0.15 0.06 0.01 0.01 0.06
Truth 0.58 0 0 0 0 0.56 0 0 0 0 0.54 0 0 0 0 0.56 0.13 0 0 0.27

Task y = f(z1, z
∗
2 , z

∗
c ) y = f(z1, z2, z

∗
c ) y = f(z∗1 , z

∗
2 , zc) y = f(z∗2 , z

∗
c ) y = f(z∗2 , zc)

PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.04 0.06 0 0.07 0.07 0 0 0.12 0.1 0 0.01 0.07 0.03 0 0.04 0.05 0.1 0 0.04 0.05
BATCH 0.04 0.09 0 0.06 0.11 0.02 0.02 0.10 0.11 0.02 0.02 0.05 0.07 0 0.06 0 0.19 0 0.06 0
Truth 0 0.25 0 0.25 0.18 0 0 0.36 0.22 0 0 0.22 0.21 0 0.21 0 0.34 0 0.17 0

the angle goes to 0 or π/2 — if centroids share a coordinate, then observing that coordinate yields
no information about y. Conversely, synergy and redundancy peak at π/4. Interestingly, synergy
seems to be independent of ||µ||2. For Polar, redundancy is 0. Furthermore, θ contains no unique
information, since θ shows nothing about y unless we know r (in particular, its sign). When the angle
goes to π/2, almost all information is unique in r. The distinctions between Cartesian and Polar
highlight how different representations of data can exhibit wildly different PID values, even if total
information is the same. More thorough results and visualizations of q∗ are in Appendix C.2.

Synthetic generative model: We begin with a set of latent vectors z1, z2, zc ∼ N (0d,Σ
2
d), d = 50

representing information unique to X1, X2 and common to both respectively. [z1, zc] is transformed
into high-dimensional x1 using a fixed transformation T1 and likewise [z2, zc] to x2 via T2. The label
y is generated as a function of (1) only zc, in which case we expect complete redundancy, (2) only z1
or z2 which represents complete uniqueness, (3) a combination of z1 and z2 representing complete
synergy, or (4) arbitrary ratios of each of the above with z∗i representing half of the dimensions
from zi and therefore half of each interaction. In total, Table 2 shows the 10 synthetic datasets we
generated: 4 specialized datasets DI , I ∈ {R,U1, U2, S} where y only depends on one interaction,
and 6 mixed datasets with varying interaction ratios. We also report the ground-truth interactions as
defined by the label-generating process and the total capturable information using the bound in Feder
and Merhav [29], which relates the accuracy of the best model on these datasets with the mutual
information between the inputs to the label. Since the test accuracies for Table 2 datasets range from
67-75%, this corresponds to total MI of 0.42− 0.59 bits.

Results: From Table 2, both CVX and BATCH agree in relative PID values, correctly assigning the
predominant interaction type and interactions with minimal presence consistent with the ground-truth
based on data generation. For example, DR has the highest R value, and when the ratio of z1
increases, U1 increases from 0.01 on y = f(z∗1 , z

∗
2 , z

∗
c ) to 0.06 on y = f(z1, z

∗
2 , z

∗
c ). We also note

some interesting observations due to the random noise in label generation, such as the non-zero
synergy measure of datasets such as DR,DU1

,DU2
whose labels do not depend on synergy.

4.2 Quantifying Real-world Multimodal Benchmarks
We now apply these estimators to quantify the interactions in real-world multimodal datasets.

Real-world multimodal data setup: We use a large collection of real-world datasets in Multi-
Bench [60] which test multimodal fusion of different input signals (including images, video, audio,
text, time-series, sets, and tables) for different tasks (predicting humor, sentiment, emotions, mortality
rate, ICD-9 codes, image-captions, human activities, digits, and design interfaces). We also include
experiments on question-answering (Visual Question Answering 2.0 [5, 39] and CLEVR [53]) which
test grounding of language into the visual domain. For the 4 datasets (top row of Table 3) involving
images and text where modality features are available and readily clustered, we apply the CVX
estimator on top of discrete clusters. For the remaining 4 datasets (bottom row of Table 3) with video,
audio, and medical time-series modalities, clustering is not easy, so we use the end-to-end BATCH
estimator (see Appendix C.4 for full dataset and estimator details).

Human judgment of interactions: Real-world multimodal datasets do not have reference PID
values, and exact PID computation is impossible due to continuous data. We therefore use human
judgment as a reference. We design a new annotation scheme where we show both modalities and
the label and ask each annotator to annotate the degree of redundancy, uniqueness, and synergy on
a scale of 0-5, alongside their confidence in their answers on a scale of 0-5. We show a sample
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Table 3: Estimating PID on real-world MultiBench [60] datasets. Many of the estimated interactions
align well with human judgement as well as unimodal performance.

Task AV-MNIST ENRICO VQA 2.0 CLEVR
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.10 0.97 0.03 0.08 0.73 0.38 0.53 0.34 0.79 0.87 0 4.92 0.55 0.48 0 5.16
Human 0.57 0.61 0 0 - - - - 0 0 0 6.58 0 0 0 6.19

Task MOSEI UR-FUNNY MUSTARD MIMIC
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.26 0.49 0.03 0.04 0.03 0.04 0.01 0.08 0.14 0.01 0.01 0.30 0.05 0.17 0 0.01
Human 0.32 0.20 0.15 0.15 0.04 0.05 0.03 0.04 0.13 0.17 0.04 0.16 - - - -

user interface and annotation procedures in Appendix C.5. We give 50 datapoints from each dataset
(except MIMIC and ENRICO which require specialized knowledge) to 3 annotators each.

Results on multimodal fusion: From Table 3, we find that different datasets do require different
interactions. Some interesting observations: (1) all pairs of modalities on MUSTARD sarcasm
detection show high synergy values, which aligns with intuition since sarcasm is often due to a
contradiction between what is expressed in language and speech, (2) uniqueness values are strongly
correlated with unimodal performance (e.g., modality 1 in AV-MNIST and MIMIC), (3) datasets
with high synergy do indeed benefit from interaction modeling as also seen in prior work (e.g.,
MUSTARD, UR-FUNNY) [17, 43], and (4) conversely datasets with low synergy are those where
unimodal performance is relatively strong (e.g., MIMIC) [60].

Results on QA: We observe very high synergy values as shown in Table 3 consistent with prior work
studying how these datasets were balanced (e.g., VQA 2.0 having different images for the same
question such that the answer can only be obtained through synergy) [39] and that models trained on
these datasets require non-additive interactions [46]. CLEVR has a higher proportion of synergy
than VQA 2.0 (83% versus 75%): indeed, CLEVR is a more balanced dataset where the answer
strictly depends on both the question and image with a lower likelihood of unimodal biases.

Comparisons with human judgment: For human judgment, we cannot ask humans to give a score in
bits, so it is on a completely different scale (0-5 scale). To put them on the same scale, we normalize
the human ratings such that the sum of human interactions is equal to the sum of PID estimates. The
resulting comparisons are in Table 3, and we find that the human-annotated interactions overall align
with estimated PID: the highest values are the same for 4 datasets: both explain highest synergy on
VQA and CLEVR, image (U1) being the dominant modality in AV-MNIST, and language (U1) being
the dominant modality in MOSEI. Overall, the Krippendorff’s alpha for inter-annotator agreement is
high (0.72 for R, 0.68 for U1, 0.70 for U2, 0.72 for S) and the average confidence scores are also
high (4.36/5 for R, 4.35/5 for U1, 4.27/5 for U2, 4.46/5 for S), indicating that the human-annotated
results are reliable. For the remaining two datasets (UR-FUNNY and MUSTARD), estimated PID
matches the second-highest human-annotated interaction. We believe this is because there is some
annotator subjectivity in interpreting whether sentiment, humor, and sarcasm are present in language
only (U1) or when contextualizing both language and video (S), resulting in cases of low annotator
agreement in U1 and S: −0.14, −0.03 for UR-FUNNY and −0.08, −0.04 for MUSTARD.

Comparisons with other interaction measures: Our framework allows for easy generalization to
other interaction definitions: we also implemented 3 information theoretic measures I-min [108],
WMS [19], and CI [74]. These results are in Table 10 in the Appendix, where we explain the
limitations of these methods as compared to PID, such as over- and under-estimation, and potential
negative estimation [41]. These are critical problems with the application of information theory
for shared I(X1;X2;Y ) and unique information I(X1;Y |X2), I(X2;Y |X1) often quoted in the
co-training [8, 14] and multi-view learning [89, 94, 98] literature. We also tried 3 non-info theory
measures: Shapley values [67], Integrated gradients (IG) [91], and CCA [4], which are based on
quantifying interactions captured by a multimodal model. Our work is fundamentally different in that
interactions are properties of data before training any models (see Appendix C.6).

4.3 Quantifying Multimodal Model Predictions
We now shift our focus to quantifying multimodal models. Do different multimodal models learn
different interactions? A better understanding of the types of interactions that our current models
struggle to capture can provide new insights into improving these models.

7



Table 4: Average interactions (R/U/S) learned by models alongside their average performance on
interaction-specialized datasets (DR/DU/DS). Synergy is the hardest to capture and redundancy is
relatively easier to capture by existing models.
Model EF ADDITIVE AGREE ALIGN ELEM TENSOR MI MULT LOWER REC AVERAGE
R 0.35 0.48 0.44 0.47 0.27 0.55 0.20 0.40 0.47 0.53 0.41± 0.11
Acc(DR) 0.71 0.74 0.73 0.74 0.70 0.75 0.67 0.73 0.74 0.75 0.73± 0.02
U 0.29 0.31 0.19 0.44 0.20 0.52 0.18 0.45 0.55 0.55 0.37± 0.14
Acc(DU ) 0.66 0.55 0.60 0.73 0.66 0.73 0.66 0.72 0.73 0.73 0.68± 0.06
S 0.13 0.09 0.08 0.29 0.14 0.33 0.12 0.29 0.31 0.32 0.21± 0.10
Acc(DS) 0.56 0.66 0.63 0.72 0.66 0.74 0.65 0.72 0.73 0.74 0.68± 0.06

Setup: For each dataset, we train a suite of models on the train set Dtrain and apply it to the
validation set Dval, yielding a predicted dataset Dpred = {(x1, x2, ŷ) ∈ Dval}. Running PID on Dpred
summarizes the interactions that the model captures. We categorize and implement a comprehensive
suite of models (spanning representation fusion at different feature levels, types of interaction
inductive biases, and training objectives) that have been previously motivated to capture redundant,
unique, and synergistic interactions (see Appendix C.7 for full model descriptions).

Results: We show results in Table 4 and highlight the following observations:

General observations: We first observe that model PID values are consistently higher than dataset PID.
The sum of model PID is also a good indicator of test performance, which agrees with their formal
definition since their sum is equal to I({X1, X2};Y ), the total task-relevant information.

On redundancy: Several methods succeed in capturing redundancy, with an overall average of R =
0.41± 0.11 and accuracy of 73.0± 2.0% on redundancy-specialized datasets. Additive, agreement,
and alignment-based methods are particularly strong, and we do expect them to capture redundant
shared information [26, 82]. Methods based on tensor fusion (synergy-based), including lower-order
interactions, and adding reconstruction objectives (unique-based) also capture redundancy.

Figure 4: We find high correlation
(ρ = 0.8) between the performance
drop when Xi is missing and the
model’s Ui value: high Ui coin-
cides with large performance drops
(red), but low Ui can also lead to
performance drops. The latter can
be further explained by large S so
Xi is necessary (green).

On uniqueness: Uniqueness is harder to capture than redun-
dancy, with an average of U = 0.37±0.14. Redundancy-based
methods like additive and agreement do poorly on unique-
ness, while those designed for uniqueness (lower-order inter-
actions [115] and modality reconstruction objectives [100])
do well, with on average U = 0.55 and 73.0% accuracy on
uniqueness datasets.

On synergy: Synergy is the hardest to capture, with an av-
erage score of only S = 0.21 ± 0.10. Some of the strong
methods are tensor fusion [33], tensors with lower-order inter-
actions [115], modality reconstruction [100], and multimodal
transformer [112], which achieve around S = 0.30, acc =
73.0%. Additive, agreement, and element-wise interactions do
not seem to capture synergy well.

On robustness: Finally, we also show connections between PID
and model performance in the presence of missing modalities.
We find high correlation (ρ = 0.8) between the performance
drop when Xi is missing and the model’s Ui value. Inspecting
Figure 4, we find that the implication only holds in one direc-
tion: high Ui coincides with large performance drops (in red),
but low Ui can also lead to performance drops (in green). The
latter can be further explained by the presence of large S values:
when Xi is missing, synergy can no longer be learned which affects performance. For the subset of
points when Ui ≤ 0.05, the correlation between S and performance drop is ρ = 0.73 (in contrast, the
correlation for R is ρ = 0.01).

4.4 PID Agreement and Model Selection
Now that we have quantified datasets and models individually, the natural next question unifies both:
what does the agreement between dataset and model PID measures tell us about model performance?
We hypothesize that models able to capture the interactions necessary in a given dataset should also
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Table 5: Model selection results on unseen synthetic and real-world datasets. Given a new dataset D,
finding the closest synthetic dataset D′ with similar PID values and recommending the best models
on D′ consistently achieves 95%− 100% of the best-performing model on D.

Dataset 5 Synthetic Datasets MIMIC ENRICO UR-FUNNY MOSEI MUSTARD MAPS
% Performance 99.91% 99.78% 100% 98.58% 99.35% 95.15% 100%

achieve high performance. Given estimated interactions on dataset D and model f(D) trained on D,
we define the agreement for each interaction I ∈ {R,U1, U2, S} as:

αI(f,D) = ÎDIf(D), ÎD =
ID∑

I′∈{R,U1,U2,S} I
′
D
, (6)

which summarizes the quantity of an interaction captured by a model (If(D)) weighted by its normal-
ized importance in the dataset (ÎD). The total agreement sums over α(f,D) =

∑
I αI(f,D).

Figure 5: PID agreement α(f,D)
between datasets and models
strongly correlate with model
accuracy (ρ = 0.81).

Results: Our key finding is that PID agreement scores α(f,D)
correlate (ρ = 0.81) with model accuracy across all 10 syn-
thetic datasets as illustrated in Figure 5. This shows that PID
agreement can be a useful proxy for model performance. For
the specialized datasets, we find that the correlation between
αI and DI is 0.96 for R, 0.86 for U , and 0.91 for S, and neg-
atively correlated with other specialized datasets. For mixed
datasets with roughly equal ratios of each interaction, the mea-
sures that correlate most with performance are αR (ρ = 0.82)
and αS (ρ = 0.89); datasets with relatively higher redundancy
see ρ = 0.89 for αR; those with higher uniqueness have αU1

and αU2 correlate ρ = 0.92 and ρ = 0.85; those with higher
synergy increases the correlation of αS to ρ = 0.97.

Using these observations, our final experiment is model selec-
tion: can we choose the most appropriate model to tackle the
interactions required for a dataset?

Setup: Given a new dataset D, we first compute its difference in normalized PID values with respect
to D′ among our suite of 10 synthetic datasets, s(D,D′) =

∑
I∈{R,U1,U2,S} |ÎD − ÎD′ |, to rank the

dataset D∗ with the most similar interactions, and return the top-3 performing models on D∗. In other
words, we select models that best capture interactions that are of similar nature and degree as those in
D. We emphasize that even though we restrict dataset and model search to synthetic datasets, we
evaluate model selection on real-world datasets and find that it generalizes to the real world.

Results: We test our selected models on 5 new synthetic datasets with different PID ratios and 6
real-world datasets, summarizing results in Table 5. We find that the top 3 chosen models achieve
95% − 100% of the best-performing model accuracy, and > 98.5% for all datasets except 95.2%
on MUSTARD. For example, UR-FUNNY and MUSTARD have the highest synergy (S = 0.13,
S = 0.3) and indeed transformers and higher-order interactions are helpful (MULT: 65%, MI: 61%,
TENSOR: 60%). ENRICO has the highest R = 0.73 and U2 = 0.53, and methods for redundant and
unique interactions perform best (LOWER: 52%, ALIGN: 52%, AGREE: 51%). MIMIC has the
highest U1 = 0.17, and unimodal models are mostly sufficient [60].

4.5 Real-world Applications
Finally, we apply PID to 3 real-world case studies: pathology, mental health, and robotic perception
(see full details and results in Appendix C.9-C.11).

Case Study 1: Computational pathology. Cancer prognostication is a challenging task in anatomic
pathology that requires integration of whole-slide imaging (WSI) and molecular features for patient
stratification [21, 63, 71]. We use The Cancer Genome Atlas (TCGA), a large public data consortium
of paired WSI, molecular, and survival information [107, 96], including modalities: (1) pre-extracted
histology image features from diagnostic WSIs and (2) bulk gene mutation status, copy number
variation, and RNA-Seq abundance values. We evaluate on two cancer datasets in TCGA, lower-grade
glioma (LGG [73], n = 479) and pancreatic adenocarcinoma (PAAD [83], n = 209).
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Results: In TCGA-LGG, most PID measures were near-zero except U2 = 0.06 for genomic features,
which indicates that genomics is the only modality containing task-relevant information. This
conclusion corroborates with the high performance of unimodal-genomic and multimodal models
in Chen et al. [22], while unimodal-pathology performance was low. In TCGA-PAAD, the uniqueness
in pathology and genomic features was less than synergy (U1 = 0.06, and U2 = 0.08 and S = 0.15),
which also match the improvement of using multimodal models that capture synergy.

Case Study 2: Mental health. Suicide is the second leading cause of death among adolescents [18].
Intensive monitoring of behaviors via adolescents’ frequent use of smartphones may shed new light on
the early risk of suicidal ideations [37, 72], since smartphones provide rich behavioral markers [59].
We used a dataset, MAPS, of mobile behaviors from high-risk consenting adolescent populations
(approved by IRB). Passive sensing data is collected from each participant’s smartphone across 6
months. The modalities include (1) text entered by the user represented as a bag of top 1000 words,
(2) keystrokes that record the exact timing and duration of each typed character, and (3) mobile
applications used per day as a bag of 137 apps. Every morning, users self-report their daily mood,
which we discretized into −1, 0,+1. In total, MAPS has 844 samples from 17 participants.

Results: We first experiment with MAPST,K using text and keystroke features. PID measures
show that MAPST,K has high synergy (0.40), some redundancy (0.12), and low uniqueness (0.04).
We found the purely synergistic dataset DS has the most similar interactions and the suggested
models LOWER, REC, and TENSOR that work best on DS were indeed the top 3 best-performing
models on MAPST,K , indicating that model selection is effective. Model selection also retrieves the
best-performing model on MAPST,A using text and app usage features.

Case Study 3: Robotic Perception. MuJoCo PUSH [57] is a contact-rich planar pushing task in
MuJoCo [95], where a 7-DoF Panda Franka robot is pushing a circular puck with its end-effector
in simulation. The dataset consists of 1000 trajectories with 250 steps sampled at 10Hertz. The
multimodal inputs are gray-scaled images from an RGB camera, force and binary contact information
from a force/torque sensor, and the 3D position of the robot end-effector. We estimate the 2D position
of the unknown object on a table surface while the robot intermittently interacts with it.

Results: We find that BATCH predicts U1 = 1.79 as the highest PID value, which aligns with our ob-
servation that image is the best unimodal predictor. Comparing both estimators, CVX underestimates
U1 and R since the high-dimensional time-series modality cannot be easily described by clusters
without losing information. In addition, both estimators predict a low U2 value but attribute high
R, implying that a multimodal model with higher-order interactions would not be much better than
unimodal models. Indeed, we observe no difference in performance between these two.

5 Conclusion
Our work aims to quantify the nature and degree of feature interactions by proposing scalable
estimators for redundancy, uniqueness, and synergy suitable for high-dimensional heterogeneous
datasets. Through comprehensive experiments and real-world applications, we demonstrate the utility
of our proposed framework in dataset quantification, model quantification, and model selection. We
are aware of some potential limitations:

1. These estimators only approximate real interactions due to cluster preprocessing or unimodal
models, which naturally introduce optimization and generalization errors. We expect progress in
density estimators, generative models, and unimodal classifiers to address these problems.

2. It is harder to quantify interactions for certain datasets, such as ENRICO which displays all
interactions which makes it difficult to distinguish between R and S or U and S.

3. Finally, there exist challenges in quantifying interactions since the data generation process is never
known for real-world datasets, so we have to resort to human judgment, other automatic measures,
and downstream tasks such as estimating model performance and model selection.

Future work can leverage PID for targeted dataset creation, representation learning optimized for
PID values, and applications of information theory to higher-dimensional data. More broadly, there
are several exciting directions in investigating more applications of multivariate information theory
in modeling feature interactions, predicting multimodal performance, and other tasks involving
feature interactions such as privacy-preserving and fair representation learning from high-dimensional
data [28, 42]. Being able to provide guarantees for fairness and privacy-preserving learning can be
particularly impactful.
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Figure 6: The PID framework formalizes the nature of feature interactions for a task. Through our
proposed scalable estimators for redundancy, uniqueness, and synergy, we demonstrate their useful-
ness towards quantifying multimodal datasets and multimodal model predictions, which together
yield principles for model selection.

Appendix

A Partial Information Decomposition
Information theory formalizes the amount of information that a single variable (X) provides about
another (Y ), and is quantified by Shannon’s mutual information [86] I(X;Y ) which measures
the amount of uncertainty reduced from H(Y ) to H(Y |X) when given X as input. However, the
direct extension of information theory to 3 or more variables, such as through total correlation [106,
34, 90, 97] or interaction information [70, 93, 12, 35], both have significant shortcomings. In
particular, the three-way mutual information I(X1;X2;Y ) can be both negative and positive, leading
to considerable difficulty in its interpretation by theoreticians and practitioners.

Partial information decomposition (PID) [108] was proposed as a method to generalize information
theory to multiple variables, by positing a decomposition of the total information 2 variables provide
about a task I(X1, X2;Y ) into 4 quantities: redundancy R between X1 and X2, unique information
U1 in X1 and U2 in X2, and synergy S that should together satisfy the following consistency
equations:

R+ U1 = I(X1;Y ), (7)
R+ U2 = I(X2;Y ) (8)
U1 + S = I(X1;Y |X2), (9)
U2 + S = I(X2;Y |X1) (10)
R− S = I(X1;X2;Y ) (11)

A definition of R was first proposed by Williams and Beer [108] and was subsequently improved
by Bertschinger et al. [13], Griffith and Koch [41] giving:

R = max
q∈∆p

Iq(X1;X2;Y ) (12)

U1 = min
q∈∆p

Iq(X1;Y |X2) (13)

U2 = min
q∈∆p

Iq(X2;Y |X1) (14)

S = Ip(X1, X2;Y )− min
q∈∆p

Iq(X1, X2;Y ) (15)

where ∆p = {q ∈ ∆ : q(xi, y) = p(xi, y) ∀y, xi, i ∈ {1, 2}} and ∆ is the set of all joint
distributions over X1, X2, Y . We call this the set of marginal-matching distributions. The core
intuition of these definitions and how they enable PID lies in optimization over ∆p instead of simply
estimating information-theoretic measures for the observed distribution p. Specifically, synergy S
is the difference between total multimodal information in p and total multimodal information in
q∗ ∈ ∆p, the non-synergistic distribution (see Figure 7 for an illustration). While there have been
other definitions of PID that also satisfy the consistency equations, Bertschinger et al. [13] showed
that their proposed measure satisfies several desirable properties. Optimizing over ∆p can be seen as
going beyond purely observed data and discovering latent redundancy, uniqueness, and synergy via
representation learning.

According to Bertschinger et al. [13], it suffices to solve for q using the following max-entropy
optimization problem, the same q equivalently solves any of the remaining problems defined for
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Figure 7: We illustrate the set of marginal-matching distributions q ∈ ∆p, and an intuition behind
the definition of synergy S as the difference between total multimodal information in p and total
multimodal information in q∗ ∈ ∆p, the non-synergistic distribution.

redundancy, uniqueness, and synergy.

q∗ = argmax
q∈∆p

Hq(Y |X1, X2) (max-entropy) (16)

q∗ = argmax
q∈∆p

Iq(X1;X2;Y ) (redundancy) (17)

q∗ = argmin
q∈∆p

Iq({X1, X2};Y ) (synergy) (18)

q∗ = argmin
q∈∆p

Iq(X1;Y |X2) (unique in X1) (19)

q∗ = argmin
q∈∆p

Iq(X2;Y |X1) (unique in X2) (20)

B Scalable PID Estimators
This section provides algorithmic and implementation details on the estimation of PID values for
high-dimensional continuous datasets.

B.1 Estimator 1: CVX for Discrete Representations
Our first proposed estimator, CVX, is exact, based on convex optimization, and is able to scale to
problems where |Xi| and |Y| are around 100. We show a high-level diagram of CVX in Figure 8 and
provide several implementation details here:

Implementation Details: We implemented (5) using CVXPY [25, 1]. The transformation from
the max-entropy objective (16) to (5) ensures adherence to disciplined convex programs [40], thus
allowing CVXPY to recognize it as a convex program. All 3 conic solvers, ECOS [27], SCS [75],
and MOSEK [6] were used, with ECOS and SCS being default solvers packaged with CVXPY. Our
experience is that MOSEK is the fastest and most stable solver, working out of the box without any
tuning. However, it comes with the downside of being commercial. For smaller problems, ECOS and
SCS work just fine.

Potential Numerical Issues: Most conic solvers will suffer from numerical instability when dealing
with ill-conditioned problems, typically resulting from coefficients that are too large or small. It
is fairly common, especially in the GMM experiment that a single bin contains just one sample.
Since P is estimated from an empirical frequency matrix, it will contain probabilities of the order
1/num-samples. When the number of samples is too large (e.g., ≥ 1e8), this frequency is too small
and causes all 3 solvers to crash.

Approximating Continuous Representation using Histogramming: The number and width of
bins can affect quality of PID estimation [77]. For example, it is known that with a fixed number
of samples, making the width of bins arbitrarily small will cause KL estimates to diverge. It is
known that the number of bins should grow sub-linearly with the number of samples. Rice [84]
suggest setting the number of bins to be the cubed-root of the number of samples. In our synthetic
experiments, we sampled at least 1e6 samples and used no more than 100 bins. Note that increasing
the number of samples ad infinitum is not an option due to potential numerical issues described
above.
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Figure 8: Overview of CVX estimator. Appropriate histogramming of each Xi or clustering in
preprocessed feature space is first performed to constrain |Xi|. By rewriting the entropy objective as
a KL divergence (with auxiliary variables) which is recognized as convex, this allows us to use conic
solvers such as SCS [75], ECOS [27], and MOSEK [6] in CVXPY to solve for q∗ and obtain PID
values.

B.2 Alternate Methods for Working with Continuous X1, X2:
Another method for discretization is based on nearest neighbors [80, 11, 104], which has the ad-
vantage of performing density estimation as an intermediate step, but is ill-suited for our purposes
of approximating q∗. Pakman et al. [76] attempt to optimize q∗ directly in the space of continuous
distribution by approximating an optimal copula, which canonically captures dependencies between
X1, X2 in q. However, this is nontrivial due to the space of possible joint distributions, and the
authors restrict themselves to Gaussian copulas.

B.3 Estimator 2: BATCH for Continuous Representations
Our next estimator, BATCH, is suitable for large datasets where the support of X1 and X2 are
high-dimensional continuous vectors and not enumerable. Instead, we propose an end-to-end model
parameterizing the joint distribution and a training objective whose solution allows us to obtain
PID. Here |Xi| = |Y| =∞. However, we wish to estimate the PID values given a sampled dataset
D = {(x(j)

1 , x
(j)
2 , y(j))} of size n.

In this appendix section, we provide full details deriving our BATCH estimator, see Figure 9 for a high-
level overview. We first rewrite the optimization objective in (18) before defining neural estimators to
approximate high-dimensional variables that we cannot compute exactly, before optimizing the (18)
using learned models and obtaining the PID values.

Objective function: First, we observe that the optimization objective in (18) can be written as:

q∗ = argmin
q∈∆p

Iq({X1, X2};Y ) (21)

= argmin
q∈∆p

E
x1,x2,y∼q

[
log

q(x1, x2, y)

q(x1, x2)q(y)

]
(22)

= argmin
q∈∆p

E
x1,x2,y∼q

[
log

q(x1, x2|y)
q(x1, x2)

]
(23)

= argmin
q∈∆p

E
x1,x2,y∼q

[
log

q(x2|x1, y)q(x1|y)
q(x2|x1)q(x1)

]
(24)

= argmin
q∈∆p

E
x1,y∼q(x1,y)
x2∼q(x2|x1,y)

[
log

q(x2|x1, y)q(x1|y)∑
y′∈Y q(x2|x1, y′)q(y′|x1)q(x1)

]
(25)

Our goal is to approximate the optimal q̃ that satisfies this problem. Note that by the marginal
constraints, q(x1, y) = p(x1, y) and q(y′|x1) = p(y′|x1). The former can be obtained by sampling
from the dataset and the latter is an unimodal model independent of q.
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Figure 9: Overview of BATCH estimator: We define an end-to-end model that takes in batches
of features X1 ∈ X̃m

1 ,X2 ∈ X̃m
2 ,Y ∈ Ym and learns a matrix A ∈ Rm×m×|Y| to represent

the unnormalized joint distribution q̃. Following ideas in multimodal alignment [99] and attention
methods [103] that learn approximate distributions over input data, we parameterize A by computing
the outer-product similarity matrix over learned features. To ensure that q̃ ∈ ∆p, we use an unrolled
version of Sinkhorn’s algorithm [24] which projects A onto ∆p by iteratively normalizing all rows
and columns to sum to 1 and rescaling to satisfy the marginals p̂. We plug in the learned q̃ into
our objective in (25) and update trainable neural network parameters ϕ using projected gradient
descent. Upon convergence, we extract PID by approximating Iq̃({X1, X2};Y ) by sampling and
plugging into (1)-(3). This use of a mini-batch of size m can be seen as an approximation of full-batch
gradient descent over the entire dataset of size n≫ m. While it is challenging to obtain an unbiased
estimator of the full-batch gradient since computing the full A is intractable, we found our approach
to work in practice for large m. Our approach can also be informally viewed as performing amortized
optimization [3] by using ϕ to implicitly share information about the full batch using subsampled
batches.

Neural architecture: To scale to continuous or unseen xi’s, we define a function approximator
that takes in x1, x2 and y and outputs an unnormalized joint density q̃(x1, x2, y). Given batches
X1 ∈ X̃m

1 ,X2 ∈ X̃m
2 ,Y ∈ Ym, we define learnable encoders fϕ(1) and fϕ(2) that output a

matrix A ∈ Rm×m×|Y| to represent the unnormalized joint distribution q̃, i.e., we want A[i][j][y] =
q̃(X1[i],X2[j], y). Following ideas in multimodal alignment [99] and attention methods [103] in
deep learning that learn approximate distributions over input data, we also parameterize our neural
architecture by computing the outer-product similarity matrix over learned features:

A = exp
(
fϕ(1)(X1, y)fϕ(2)(X2, y)

⊤) (26)

Constraining A using Sinkhorn’s algorithm: To ensure that the learned A is a valid pdf and respects
the marginal constraints q̃(xi, y) = p(xi, y), we use the Sinkhorn-Knopp algorithm [24], which
projects A into the space of non-negative square matrices that are row and column-normalized to
satisfy the desired marginals p(x1, y) and p(x2, y). Sinkhorn’s algorithm enables us to perform this
projection by iteratively normalizing all rows and columns of A to sum to 1 and rescaling the rows
and columns to satisfy the marginals. Since p(xi, y) is not easy to estimate for continuous xi, we
compute the marginals using Bayes’ rule by expanding it as p(xi)p(y|xi). Note that by sampling xi

from the dataset, the rows and columns of A are already distributed as p(xi). The only remaining term
needed is p(y|xi), for which we use unimodal models p̂(y|xi) trained before running the estimator
and subsequently frozen. Finally, Sinkhorn’s algorithm is performed by normalizing each row to
p̂(y|x1) and normalizing each column to p̂(y|x2).

Optimization of the objective: We obtain the value of q̃(x2|x1, y) by marginalizing from the above
distribution q̃(x1, x2|y). Given matrix A representing q̃(x1, x2, y), the remaining terms can all be
computed in closed form through appropriate summation across dimensions in A to obtain q̃(xi),
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q̃(x1, x2), q̃(xi|y), and q̃(x1, x2|y). We now have all the terms for the objective in (25). We optimize
the objective via gradient descent.

Our final algorithm for training BATCH is outlined in Algorithm 1.

Extracting PID values from the learned q̃: To extract the PID values from a learned distribution of
q̃, we first expand the definition of mutual information under p and q̃, and calculate the PID values
from their definitions in (1)-(3):

Ip(Y ;Xi) = E
xi,y∼p

[
log

(
p̂(y|xi)

p̂(y)

)]
(27)

Ip(Y ;X1, X2) = E
x1,x2,y∼p

[
log

(
p̂(y|x1, x2)

p̂(y)

)]
(28)

Iq̃(Y ;X1, X2) = E
x1,x2,y∼q̃

[
log

(
q̃(x2|x1, y)p̂(y|x1)

p̂(y)
∑

y′ q̃(x2|x1, y′)p̂(y′|x1)

)]
(29)

R = Iq̃(Y ;X1, X2) (30)
U1 = Iq̃(Y ;X1, X2)− Ip(Y ;X2) (31)
U2 = Iq̃(Y ;X1, X2)− Ip(Y ;X1) (32)
S = Ip(Y ;X1, X2)− Iq̃(Y ;X1, X2) (33)

Algorithm 1 BATCH algorithm.

Require: Multimodal dataset X1 ∈ X̃n
1 ,X2 ∈ X̃n

2 ,Y ∈ Yn.

Initialize feed-forward networks fϕ(1), fϕ(2).
while not converged do

for sampled batch X1 ∈ X̃m
1 ,X2 ∈ X̃m

2 ,Y ∈ Ym do
h1[:, y]← fϕ(1)(x1, y), h2[:, y]← fϕ(2)(x2, y)

A[:, :, y]← exp(h1[:, y]h2[:, y]
⊤)

p̃(y|xi)← unimodal predictions.
A← SINKHORNp̂(A)
Marginalize and sample (x1, x2, y) from A.
Calculate the loss from (25) using (x1, x2, y).
Perform a gradient step on the loss.

end for
end while
return network weights in f1,j , f2,j for j ∈ [C]

Important assumptions and caveats: As a note, the above formulation assumes the existence of
unimodal models p̂(y|xi). We train these models independently and freeze them when training the
above estimator. After obtaining q̃, we extract the PID values. To do so, we need an additional
multimodal model to estimate p̂(y|x1, x2) due to (28). Because part of our goal is multimodal model
selection, we must assume that the existing multimodal model might not be expressive enough and
could underestimate (28). However, this value is only subsequently used to calculate S, leading
to a possibly underestimated S, but leaving all other PID values unaffected by the choice of the
multimodal model. In practice, the possibility of S being larger than estimated should be considered,
and more complex models should be investigated until S stops increasing. Empirically, we have
observed that measured value of S by BATCH is generally larger than that measured by CVX; the
underestimation is not as large as in the case of clustering in CVX.

In additional to the above, we note that the learned joined distribution q̃(x1, x2, y) is limited by the
expressivity of the neural network and similarity matrix method used in our model. Empirically, the
PID values are not sensitive to hyperparameters, as long as the network is trained to convergence.
Finally, our approximation using batch sampling limits the possible joined distributions to alignments
within a batch, which we alleviates by using large batch size (256 in our experiments).

Implementation Details: We separately train the unimodal and multimodal models from the dataset
using the best model from Liang et al. [60] and freeze them when running Algorithm 1. For the
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Figure 10: Results for PID decomposition under Cartesian coordinates. Within each plot: PID
values for GMMs for ∠µ in { i

40 ·
π
2 |i ∈ {0, . . . , 40}}. ✖, q, s, u, ✚ represent the R, U1, U2,

S and their sum respectively. (r, θ) corresspond to the unique information (U1, U2) respectively.
Across columns: As ||µ||2 varies from {0.1, 0.5, 1.0, 1.5, 2.0}. Top-Bottom: Soft and Hard labels
respectively. Note the scale of the y-axis for Soft. The overall trend for each PID component as
∠µ varies is similar across ||µ||2. However, the relative contribution of Synergy and Redundancy
changes significantly as ||µ||2 varies, particularly for Hard.

neural network in Algorithm 1, we use a 3-layer feedforward neural network with a hidden dimension
of 32. We train the network for 10 epochs using the Adam optimizer with a batch size of 256 and
learning rate of 0.001.

To summarize, we propose 2 scalable estimators for PID, each with their approximations for the
parameterization of q and procedure for the estimation of PID.

1. Parameterizing q explicitly via a joint probability matrix over ∆p, and optimizing convex objective
(5) with linear constraints. This can only be used for finite X1,X2, Y , or after preprocessing by
histogramming continuous domains.

2. Parameterizing q via neural networks and optimize their parameters ϕ by repeatedly subsampling
from data; for each subsample, we perform one step of projected gradient descent (using Sinkhorn’s
method) as if this subsample was the full dataset.

C Experiments
C.1 Synthetic Bitwise Features
We show results on estimating PID values for OR, AND, and XOR interactions between X1 and X2

in Table 1 and find that both our estimators exactly recover the ground truth results in Bertschinger
et al. [13].

C.2 Gaussian Mixture Models (GMM)
Extended Results: For each of Cartesian and Polar we consider two cases, Soft-labels, when
we observe Y , and Hard-labels, where we use Ŷ predicted by the optimal linear classifier
ŷ = sign (⟨(x1, x2), µ⟩). We hope this will provide additional intuition to the bitwise modality
experiments. This results are given in Figures 10, 11. Most of the trends are aligned with what we
would expect from Redundancy, Uniqueness, and Synergy. We list the most interesting observations
here.

• In all cases, total information (sum of PID values) is independent of ∠µ. This is a natural
consequence of rotational symmetry. It is also higher for higher ||µ||2, e.g., 2.0, reflecting the
fact that X1, X2 contain less information about labels when their centroids are close. Lastly,
observe, that when ||µ||2 increases, the total information approaches log(2), which is all the label
information. This perfectly aligned with our intuition: if the cluster centroids are far away, then
knowing a datapoint’s cartesian coordinates will let us predict its label accurately (which is one bit
of information).

• For Cartesian, unique information dominates when angle goes to 0 or π/2. This is sensible,
if centroids share a coordinate, then observing that coordinate yields no information about y.
Conversely, synergy and redundancy peak at π/4.
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Figure 11: Results for PID decomposition under Polar coordinates where θ ∈ [0, π] and r ∈ R,
i.e., angle is restricted to the first two quadrants but distance could be negative. Within each plot:
PID values for GMMs for ∠µ in { i

40 ·
π
2 |i ∈ {0, . . . , 40}}. ✖,q,s,u, ✚ represent the R, U1,

U2, S and their sum respectively. Across columns: As ||µ||2 varies from {0.1, 0.5, 1.0, 1.5, 2.0}.
Top-Bottom: Soft and Hard labels respectively. Note the scale of the y-axis for Soft. The overall
trend for each PID component as ∠µ varies is similar across ||µ||2, except for when ||µ||2 is small in
Soft. However, the relative contribution of Synergy and Redundancy changes significantly as ||µ||2
varies, particularly for Hard.
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Figure 12: Results for PID decomposition under Polar coordinates, using the normal parameterization
where θ ∈ [−π, π] and r ≥ 0. Within each plot: PID values for GMMs for ∠µ in { i

40 ·
π
2 |i ∈

{0, . . . , 40}}. ✖, q, s, u, ✚ represent the R, U1, U2, S and their sum respectively. (r, θ)
corresspond to the unique information (U1, U2) respectively. Across columns: As ||µ||2 varies
from {0.1, 0.5, 1.0, 1.5, 2.0}. Top-Bottom: Soft and Hard labels respectively. Note the scale of the
y-axis for Soft. Observe that PID values are independent of ∠µ, with unique information from θ
dominating.

• Redundancy dominates Synergy as ||µ||2 increases. Interestingly, synergy seems to be independent
of ||µ||2 (one has to account for the scale in the vertical axis to recognize this).

• Hard contains 0.65 ≈ log(2) nats of total information, since Y |X1, X2 is deterministic. The deficit
of 0.04 nats is due to discretization near the decision boundary, and is expected to vanish if we
increase the number of bins (though this ought to be accompanied by an increase in samples used
to approximate PID).

• However, for Soft, total information is nearly 0 for small ||µ||2 (and approaches log(2) when large).
When the two cluster centroids are close, it is difficult to glean any information about the (soft)
label, while we can predict y accurately from both x1, x2 when centroids are far apart.

• For Polar, redundancy is 0. Furthermore, θ contains no unique information, since θ shows nothing
about y unless we know r (in particular, its sign). When angle goes to π/2, almost all information
is unique in r.

Lastly, we also experimented on the more common definition of polar coordinates, with θ ∈ [−π, π]
and r ≥ 0 (that is, angle is allowed to be negative but lengths have to be nonnegative). The results
are in Figure 12. As one may expect, there is nothing exciting going on for both Softand Hard. For
Hard, the optimal classifier is precisely expressed in terms of θ only, so all the information belongs
to U2, i.e., θ. For Soft, the same trend remains: virtually all information is in U2, i.e., θ, with the
trend becoming even sharper as ||µ||2 increases. Intuitively, when the 2 centroids are extremely far
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apart, then the optimal linear classifier is extremely accurate; which may be expressed by θ alone
without any knowledge of r. Conversely, when the centroids are close, r can provide some synergy
with θ—the larger r is, the more “confident” we are in predictions based on θ.

Visualization of q∗: The following plots of q∗ are provided to provide some intuition behind the
objectives in (16). We focus on Cartesian for ease of visualization. For each ||µ||2 ∈ {0.5, 1.0, 2.0},
we vary the angle ∠µ and sample 1e7 labelled datapoints. We then compare q∗ (for both Soft and
Hard) with the empirical distribution p. To compute PID, we use 50 bins evenly spaced between
[−5, 5] for both dimensions. The results for varying ||µ||2 are shown in Figures 13-15.

When ∠µ is 0, there are few differences, barring a slightly “blockier” feel for q∗ over p. However, as
∠µ increases, q∗ gets skewed rather than rotated, becoming “thinner” in the process. The limiting
case is when ∠µ2 = π/4, i.e., 45 degrees. Here, the objective diverges to infinity, with what appears
to be a solution with nonnegative entries only along the diagonal—this observation appears to hold
even as we increase the number of bins. We hypothesize that in the truly continuous case (recall
we are performing discretization for this set of experiments), the optimum is a degenerate “one
dimensional” GMM with mass located only at q(x, x).
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Figure 13: Densities for GMMs where ||µ||2 = 2.0. Top to Bottom: Densities for p, q∗ (Soft), and
q∗ (Hard). Left to right, ∠µ in { i8 ·

π
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Figure 14: Densities for GMMs where ||µ||2 = 1.0. Top to Bottom: Densities for p, q∗ (Soft), and
q∗ (Hard). Left to right, ∠µ in { i8 ·

π
4 |i ∈ {0, . . . , 8}}

C.3 Synthetic Generative Model
Our third setting simulates a data generation process where there exists a set of latent concepts that
either redundantly, uniquely, or synergistically determine the label.

Setup: We begin with a fixed set of latent variables z1, z2, zc ∈ R50 from N (0, σ2) with σ = 0.5
representing latent concepts for modality 1, modality 2, and common information respectively. The
concatenated variables [z1, zc] are transformed into high-dimensional x1 ∈ R100 data space using a
fixed transformation matrix T1 ∈ R50×100 and likewise [z2, zc] to x2 via T2. The label y is generated
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Figure 15: Densities for GMMs where ||µ||2 = 0.5. Top to Bottom: Densities for p, q∗ (Soft), and
q∗ (Hard). Left to right, ∠µ in { i8 ·

π
4 |i ∈ {0, . . . , 8}}

as a transformation function of (1) only zc, in which case we expect redundancy in x1 and x2

with respect to y, (2) only z1 or z2 which represents uniqueness in x1 or x2 respectively, (3) the
concatenated [z1, z2] representing synergy, or (4) arbitrary ratios of each of the above. We also
introduce nonlinearity and random noises to increase data complexity. In formal notation,

y =

[
sigmoid

(∑n
i=0 f(z)i

n

)
≥ 0.5

]
where f is a fixed nonlinear transformation with dropout (p = 0.1) and z can be z1, z2, zc or any
combination according to the cases described above. These datasets are designed to test a combination
of feature learning with predefined interactions between the modalities and the label.

We generated 10 synthetic datasets as shown in Table 2. The first four are specialized datasets
denoted as Dm, m ∈ {R,U1, U2, S} for which the label y only depends on redundancy, uniqueness,
or synergy features respectively. The rest are mixed datasets with y generated from z1, z2, zc of
varying dimensions. We use z∗i ∈ R50 to denote a randomly sub-sampled feature from zi. For
example, to generate the label of one data point (x(j)

1 , x
(j)
2 ) in the mixed dataset y = (z∗1 , z

∗
2 , zc),

we sub-sampled (z∗1)
(j), (z∗2)

(j) from z1, z2 and generate y from [(z∗1)
(j), (z∗2)

(j), zc] following the
process above.

To report the ground-truth interactions for these datasets, we first train multimodal models and obtain
an estimate of test performance on them. We then convert Pacc, the test accuracy of the best model on
these datasets into the mutual information between the inputs to the label using the bound in Feder
and Merhav [29]:

I(X1, X2;Y ) ≤ logPacc +H(Y ) (34)
Since the test accuracies for Table 2 datasets range from 67-75%, this corresponds to a total MI of
0.42−0.59 bits (i.e., from log2 0.67+1 to log2 0.75+1). The information in each interaction is then
computed by dividing this total mutual information by the interactions involved in the data generation
process: if the total MI is 0.6 bits and the label depends on half from the common information
between modalities and half from the unique information in x1, then the ground truth R = 0.3 and
U1 = 0.3.

Results: In the main paper, we note the agreement between CVX and BATCH and their consis-
tency with the dataset (Table 2). In addition, we note that the sum of PID values (which sum to
Ip(Y ;X1, X2)) is generally larger in BATCH than in CVX, which accounts for the information loss
during CVX’s clustering. Moreover, in the last two cases (y = f(z∗2 , z

∗
c ) and y = f(z∗2 , zc)), CVX

predicts non-zero amount of S despite the dataset being synergy-free by construction. Because the
total mutual information is small, the spurious synergy becomes a large portion of the total PID
values. This potentially demonstrates that when the total mutual information is small, spurious
information gain could have a large impact on the results.

C.4 Quantifying Multimodal Datasets
Setup: We use a large collection of real-world datasets in MultiBench [60] which test multimodal
fusion of different input signals and requires representation learning of complex real-world interactions
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Table 6: Full results on estimating PID on real-world MultiBench [60] datasets. Many of the
estimated interactions align well with dataset construction (e.g., MUSTARD for sarcasm) and
unimodal performance (e.g., MIMIC and AV-MNIST). On QA [5] datasets, synergy is consistently
the highest.

Task AV-MNIST ENRICO VQA 2.0 CLEVR
Measure R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
CVX 0.10 0.97 0.03 0.08 0.73 0.38 0.53 0.34 0.79 0.87 0 4.92 0.55 0.48 0 5.16

Task MIMIC UR-FUNNY A,T UR-FUNNY V,T UR-FUNNY V,A
Measure R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.05 0.17 0 0.01 0.02 0 0.08 0.07 0.06 0 0.04 0.11 0.02 0.04 0 0.06

Task MOSEI A,T MOSEI V,T MOSEI V,A
Measure R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.22 0.04 0.09 0.13 0.30 0.70 0 0 0.26 0.74 0 0

Task MUSTARD A,T MUSTARD V,T MUSTARD V,A
Measure R U1 U2 S R U1 U2 S R U1 U2 S
BATCH 0.14 0.01 0.01 0.37 0.14 0.02 0.01 0.34 0.14 0.01 0.01 0.20

for different tasks. MultiBench spans 10 diverse modalities (images, video, audio, text, time-series,
various robotics sensors, sets, and tables), 15 prediction tasks (humor, sentiment, emotions, mortality
rate, ICD-9 codes, image-captions, human activities, digits, robot pose, object pose, robot contact,
and design interfaces), and 5 research areas (affective computing, healthcare, multimedia, robotics,
and HCI). These datasets are designed to test a combination of feature learning and arbitrary complex
interactions between the modalities and the label in the real world. We also include experiments on
question-answering (Visual Question Answering [5, 39] and CLEVR [53]) which test grounding of
language into the visual domain.

Details of applying CVX: For quantifying multimodal datasets with CVX, we first apply PCA
to reduce the high dimension of multimodal data. For each of the train, validation, and test split,
we then use unsupervised clustering to generate 20 clusters. We obtain a clustered version of the
original dataset D = {(x1, x2, y)} as Dcluster = {(c1, c2, y)} where ci ∈ {1, . . . , 20} is the ID of the
cluster that xi belongs to. For datasets with 3 modalities we estimate PID separately for each of the 3
modality pairs.

Details of applying BATCH: For quantifying multimodal datasets with BATCH, we first use pretrained
encoders to obtain the image and text features, and then train 2 unimodal and 1 multimodal classifiers
on those features to predict the original answer. The final PID values are computed using the
encoded features and the 3 classifiers. In our experiments we used the pretrained image and text
encoders from the CLIP-VIT-B/32 [82] model, and the unimodal and multimodal classifiers are
2-layer MLPs.

Results on multimodal fusion: We show full results on quantifying datasets in Table 6. For
multimodal fusion, we find that different datasets do require different interactions. Among interesting
observations are that (1) all pairs of modalities on sarcasm detection shows high synergy values,
which aligns with intuition on sarcasm in human communication, (2) uniqueness values are strongly
correlated with unimodal performance (e.g., AV-MNIST and MIMIC first modality), (3) datasets with
high synergy benefit from interaction modeling (e.g., sarcasm), and (4) conversely datasets with low
synergy are also those where modeling in higher-order interactions do not help (e.g., MIMIC).

To test grounding of language into the visual domain, we also run experiments on the VQA v2.0
[5, 39] dataset, which contains 443757 training and 214354 validation data with real-life images, and
the CLEVR [53] dataset, which contains 699960 training and 149991 validation data with rendered
images and generated questions. The test spilt for both datasets are not used because the labels are not
publicly available. Note that for both validation datasets, we first filter out all data instances where the
label is neither “yes” nor “no”. On the remaining data, we use the outputs from the last feature layer
of a VGG19 [87] model as image embeddings and use RoBERTa [64] to obtain the text embeddings
for questions, and then apply K-means clustering to both embeddings to obtain a clustered version
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Table 7: Estimating PID on QA [5] datasets with both CVX and BATCH estimators. Synergy is
consistently the highest and both estimators return PID values that are consistent relative to each
other.

Task VQA 2.0 CLEVR
Measure R U1 U2 S R U1 U2 S
CVX 0.79 0.87 0 4.92 0.55 0.48 0 5.16
BATCH 0.10 0.14 0.09 0.16 0.01 0.01 0.01 0.03
Human 0.23 0 0 4.80 0 0 0 5.00

Instruction:
Look at the data and provide your rating for the following questions on a 
scale of 0 (none at all) - 5 (large extent)

and score your confidence in your answer from a scale of 0 (no confidence) - 
5 (high confidence):
                                        

1. The extent to which 
both modalities enable 
you to make the same 
predictions about the 
task.

2. The extent to which 
modality 1 enables you to 
make a prediction about 
the task that you would 
not if using modality 2.

3. The extent to which 
modality 2 enables you to 
make a prediction about 
the task that you would 
not if using modality 1.

4. The extent to which 
both modalities enable 
you to make a prediction 
about the task that you 
would not otherwise 
make using either 
modality individually.

ID Modality 1 Modality 2 1 Rating 1 Confidence 2 Rating 2 Confidence 3 Rating 3 Confidence 4 Rating 4 Confidence

mosei1 video The devil deceives false Christians into thinking they are 
already safe and secure and on their way to heaven.

mosei2 video
Currently, over four-hundered thousand Americans with 
disabilities are being paid less than the minimum wage, some 
of them mere pennies per hour.

mosei3 video
So once again, we call on the regime to cease these absolutely 
senseless attacks, which are, of course, violations of the 
cessation of hostilities.

mosei4 video
hey hey hey Sherri Brown here with a super sweet and 
awesome promotion for anybody looking to take their business 
to the next level.

mosei5 video I am absolutely optimistic, I think that there is no other way to 
be.

mosei6 video In 2008, there were very serious tribal warfare in Kenya 
following a disputed election.

mosei7 video
They're not going to give this thing any floor time at all because 
they know that Donald Trump is not going to divest from his 
corporations

mosei8 video
And you saw some of the leading brands out there like 
McDonalds, like General Mills and Coca Cola, who are doing 
such a great job of tapping into those insights and bringing 
them to life in their advertising.

mosei9 video Know who's in it and follow the B2B CFO\u00ae golden rule; 
Let the Finders find, Minders mind, and Grinders grind.

mosei10 video You have been invited to a special event that includes an 
invitation, so let's take a look at how should we respond to it.

vqa1 image How many pictures are there?
vqa2 image What color is the woman's shirt on the left?
vqa3 image Is this a hospital?
vqa4 image What is the green fruit called?
vqa5 image What are these animals?
vqa6 image Is the door closed?
vqa7 image Where do these animals live?
vqa8 image What game are they playing?
vqa9 image Is it an overcast day?
vqa10 image What  2 colors are the flowers?

clevr1 image "The other small shiny thing that is the same shape as the tiny 
yellow shiny object is what color?"

clevr2 image "How many large things are either cyan metallic cylinders or 
yellow blocks?"

clevr3 image "There is a yellow thing to the right of the rubber thing on the 
left side of the gray rubber cylinder; what is its material?"

clevr4 image "Are there any large matte blocks of the same color as the 
large metal ball?"

clevr5 image "What number of cylinders are gray objects or tiny brown matte 
objects?"

clevr6 image "Are there any large blue metallic things that have the same 
shape as the small brown matte object?"

Figure 16: We show a sample user interface for annotating information decomposition into redun-
dancy, uniqueness, and synergy, which we give to 3 annotators each to obtain agreeing and reliable
judgments of each interaction for real-world multimodal datasets.

of the original dataset D = {(x1, x2, y)} as Dcluster = {(c1, c2, y)}, where ci ∈ {1, . . . , 20} are the
cluster IDs. We then calculate the PID values on the clustered dataset Dcluster.

Results on QA: As a whole, we observe consistently high synergy values on QA datasets as shown
in Table 6. This is consistent with prior work studying how these datasets were balanced (e.g., VQA
2.0 having different images for the same question such that both yes/no answers are observed in the
dataset so that the answer can only be obtained through synergy) [39] and models trained on these
datasets [46].

Comparing CVX and BATCH: We carefully compare CVX and BATCH on the 2 question answering
datasets VQA and CLEVR, showing these results in Table 7. We choose these two datasets since their
input modalities are images and text, which make them suitable for both clustering of representations
extracted from pre-trained before input into CVX, and end-to-end encoding and PID estimation
with BATCH. We also include human judgment of PID on these 2 datasets for comparison. From
Table 7, we find that all three measures agree on the largest interaction, as well as the relative order
of interaction values. We find that the absolute values of each interaction can be quite different due
to the unavoidable information loss of both input modalities to the label during clustering in CVX
or representation learning in BATCH. Hence, we emphasize that these estimated interactions are
most useful through relative comparison to judge which interaction is most dominant in a particular
dataset.

C.5 Comparisons with Human Judgment
To quantify information decomposition for real-world tasks, we investigate whether human judgment
can be used as a reliable estimator. We propose a new annotation scheme where we show both
modalities and the label and ask each annotator to annotate the degree of redundancy, uniqueness,
and synergy on a scale of 0-5 using the following definitions inspired by the formal definitions in
information decomposition:

1. R: The extent to which using the modalities individually and together gives the same predictions
on the task,

2. U1: The extent to which x1 enables you to make a prediction about the task that you would not if
using x2,

3. U2: The extent to which x2 enables you to make a prediction about the task that you would not if
using x1,

4. S: The extent to which only both modalities enable you to make a prediction about the task that
you would not otherwise make using either modality individually,

alongside their confidence in their answers on a scale of 0-5. We show a sample user interface for the
annotations in Figure 16.
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Table 8: Collection of datasets used for our study of multimodal fusion interactions covering diverse
modalities, tasks, and research areas in multimedia and affective computing.

Datasets Modalities Size Prediction task Research Area
MUSTARD [17] {text, video, audio} 690 sarcasm Affective Computing
UR-FUNNY [43] {text, video, audio} 16, 514 humor Affective Computing
MOSEI [116] {text, video, audio} 22, 777 sentiment, emotions Affective Computing
CLEVR [53] {image, question} 853, 554 QA Multimedia
VQA 2.0 [39] {image, question} 1, 100, 000 QA Multimedia

Table 9: Annotator agreement and average confidence scores of human annotations of PID values for
real-world multimodal datasets.

Task Agreement Confidence
Measure R U1 U2 S R U1 U2 S

Human 0.72 0.68 0.70 0.72 4.36 4.35 4.27 4.46

Based on direct communication with our institution’s IRB office, this line of user-study research is
aligned with similar annotation studies at our institution that are exempt from IRB. The information
obtained during our study is recorded in such a manner that the identity of the human subjects cannot
readily be ascertained, directly or through identifiers linked to the subjects. We do not collect any
identifiable information from annotators. Participation in all annotations was fully voluntary and we
obtained consent from all participants prior to annotations. Participants were not the authors nor in
the same research groups as the authors. They all hold or are working towards a graduate degree in
a STEM field and have knowledge of machine learning. None of the participants knew about this
project before their session and each participant only interacted with the setting they were involved
in.

We sample 10 datapoints with class balance from each of the 5 datasets in Table 8 and give them to 3
annotators. All the data were manually selected and do not contain offensive content. We clarified all
the confusion that the annotators may have about the instructions and the definitions above at the
beginning of the annotation process. We summarize the results and key findings:

1. General observations on interactions, agreement, and confidence: The annotated in-
teractions align with prior intuitions on these multimodal datasets and do indeed explain
the interactions between modalities. For example, VQA and CLEVR are annotated with
significantly high synergy, and language is annotated as the dominant modality in sentiment,
humor, and sarcasm (high U1 values). Overall, Table 9 shows that the Krippendorff’s alpha
for inter-annotator agreement in human annotations of the interactions is quite high and
the average confidence scores are also quite high. This indicates that the human-annotated
results are reliable.

2. Annotator subjectivity in interpreting presence vs absence of an attribute and con-
textualizing both language and video: We observe that there is some confusion between
uniqueness in the language modality and synergy in the video datasets, resulting in cases
of low agreement in annotating U1 and S: −0.09, −0.07 for MOSEI, −0.14, −0.03 for
UR-FUNNY and −0.08, −0.04 for MUSTARD respectively. We believe this is due to
annotator subjectivity in interpreting whether sentiment, humor, and sarcasm are present
only in the language modality (U1) or present when contextualizing both language and
video (S). We further investigated the agreement and confidence in the presence or absence
of an attribute (e.g., humor or sarcasm). We examined videos that show and do not show
an attribute separately and indeed found in general, humans reached higher agreement
on annotating attribute-present videos. The agreement of annotating S is 0.13 when the
attribute is present, compared to −0.10 when absent.

C.6 Comparisons with Other Interaction Measures
It is worth noting that other valid information-theoretic definitions of multimodal interactions also
exist, but are known to suffer from issues regarding over- and under-estimation, and may even
be negative [41]; these are critical problems with the application of information theory for shared
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Table 10: Estimating PID on synthetic generative model datasets. Ground truth total information is computed
based on an upper bound from the best multimodal test accuracy. Both CVX and BATCH measures agree
with each other on relative values and are consistent with ground truth interactions. We also implement 3
other definitions: I-min can sometimes overestimate synergy and uniqueness; WMS is actually synergy minus
redundancy, so can be negative and when R & S are of equal magnitude WMS cancels out to be 0; CI can also
be negative and sometimes incorrectly concludes highest uniqueness for S-only data.

Task R-only data U1-only data U2-only data S-only data
PID R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
I-MIN 0.17 0.08 0.07 0 0 0.23 0 0.06 0 0 0.25 0.08 0.07 0.03 0.04 0.17
WMS 0 0.20 0.20 −0.11 0 0.25 0.02 0.05 0 0.03 0.27 0.05 0 0.14 0.15 0.07
CI 0.34 −0.09 −0.10 0.17 0 0.23 0 0.06 0 0.01 0.25 0.07 −0.02 0.13 0.14 0.08
CVX 0.16 0 0 0.05 0 0.16 0 0.05 0 0 0.17 0.05 0.07 0 0.01 0.14
BATCH 0.29 0.02 0.02 0 0 0.30 0 0 0 0 0.30 0 0.11 0.02 0.02 0.15
Truth 0.58 0 0 0 0 0.56 0 0 0 0 0.54 0 0 0 0 0.56

I(X1;X2;Y ) and unique information I(X1;Y |X2), I(X2;Y |X1) often quoted in the co-training [14,
8] and multi-view learning [98, 94, 89] literature. We additionally compare PID with other previously
used measures for feature interactions on the synthetic generative model datasets. Both CVX and
BATCH measures agree with each other on relative values and are consistent with ground truth
interactions. We also implement 3 other definitions: I-min can sometimes overestimate synergy and
uniqueness; WMS is actually synergy minus redundancy, so can be negative and when R & S are
of equal magnitude WMS cancels out to be 0; CI can also be negative and sometimes incorrectly
concludes highest uniqueness for S-only data. These results are in Table 10. We also tried 3 non-info
theory measures: Shapley values, Integrated gradients (IG), and CCA, which are based on quantifying
interactions captured by a multimodal model. Our work is fundamentally different in that interactions
are properties of data before training any models.

C.7 Quantifying Model Predictions
Setup: For each dataset, we first train a suite of models on the train set Dtrain and apply it to
the validation set Dval, yielding a predicted dataset Dpred = {(x1, x2, ŷ) ∈ Dval}. Running PID
on Dpred summarizes the interactions that the model captures. We categorize and implement a
comprehensive suite of models (spanning representation fusion at different feature levels, types
of interaction inductive biases, and training objectives) that have been previously motivated in the
literature to capture certain types of interactions [62]. In the following, we use xi to denote data or
extracted features from unimodal models where appropriate. We include all implementation details
and hyperparameters in Table 11, 12, 13, 14, 15.

General: We first implement the most general model, which we call early fusion:

1. EF: Concatenating data at the earliest input level, essentially treating it as a single modality,
and defining a suitable prediction model y = f([x1,x2]) [62].

Redundancy: Fusion at the decision level (i.e., late fusion) is often motivated to capture redundancy
between unimodal predictors.

1. ADDITIVE: Suitable unimodal models are first applied to each modality before aggregating
the outputs using an additive average: y = 1/2(f1(x1) + f2(x2)) [44].

2. AGREE: Prediction agreement (+λ(f1(x1)− f2(x2))
2 [26]) can be added for redundancy.

3. ALIGN: Feature alignment (+λsim(x1,x2) like contrastive learning [82]) can also be added
for redundancy.

Synergy: Exemplified by methods such as bilinear pooling [33] and tensor fusion [115], researchers
have long sought to learn higher-order interactions across modalities to capture synergistic interactions.
We implement the following models:

1. ELEM: For static interactions (i.e., without trainable interaction parameters), we implement
element-wise interactions: y = f(x1 ⊙ x2) [2, 50].

2. TENSOR: We also implement outer-product interactions (i.e., higher-order tensors) y =
f
(
x1x

⊤
2

)
[33, 115, 47, 58, 65].
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3. MI: Dynamic interactions with learnable weights include multiplicative interactions W:
y = f(x1Wx2) [52].

4. MULT: Another example of dynamic interactions with learnable weights is Crossmodal
self-attention typically used in multimodal Transformers: y = f(softmax(x1x

⊤
2 )x1) [103,

99, 113].

Unique: There have been relatively fewer methods that explicitly aim to capture uniqueness, since
label information is often assumed to be shared across modalities (i.e., redundancy) [98, 94], two that
we implement are:

1. LOWER: Some approaches explicitly include lower-order terms in higher-order interactions
to capture unique information [65, 115].

2. REC: Finally, several methods include reconstruction objectives to encourage maxi-
mization of unique information (i.e., adding an objective Lrec = ∥g1(zmm)− x1∥2 +
∥g2(zmm)− x2∥2 where g1, g2 are auxiliary decoders mapping zmm to each raw input
modality [92, 100, 111].

Results: We show the full results on estimating PID for all models trained on all datasets in Table 18.
To better understand the models’ ability in capturing each type of interaction, we present a concise
overview of the full results in Table 4, focusing on the PID values of each type of interaction I for
each model on I-specialized dataset DI . We also compute the distribution of IDI

over all models.
We highlight the following observations:

General observations: We first observe that model PID measures are consistently higher than dataset
measures. The sum of model measures is also a good indicator of test performance, which agrees
with their formal definition since their sum is equal to I({X1, X2};Y ), the total explained mutual
information between multimodal data and Y .

On redundancy: Overall, several methods succeed in capturing redundancy, with an overall average of
0.41± 0.11 and accuracy of 73.0± 2.0% on redundancy-specialized datasets. Additive, agreement,
and alignment-based methods are particularly strong, but other methods based on tensor fusion
(synergy-based), including lower-order interactions, and adding reconstruction objectives (unique-
based) also capture redundancy well.

On uniqueness: Uniqueness is harder to capture than redundancy, with an average of 0.37 ± 0.14.
Certain methods like additive and agreement do poorly on uniqueness, while those designed for
uniqueness (lower-order interactions and reconstruction objectives) do well, with U = 0.55 and
73.0% accuracy on uniqueness datasets.

On synergy: On average, synergy is the hardest to capture, with an average score of only 0.21± 0.10.
The best-performing methods are tensor fusion S = 0.33, acc = 74.0% and multimodal transformer
S = 0.29, acc = 73.0%. Additive, agreement, and element-wise interactions do not seem to capture
synergy well.

On robustness: Finally, we also show empirical connections between estimated PID values with
model performance in the presence of noisy or missing modalities. Specifically, with the original
performance Acc on perfect bimodal data, we define the performance drop when Xi is missing as
Acc−i = Acc− Acci where Acci is the unimodal performance when Xi is missing. We find high
correlation (ρ = 0.8) between Acc−i and the model’s Ui value. Inspecting the graph closely in
Figure 5, we find that the correlation is not perfect because the implication only holds in one direction:
high Ui coincides with large performance drops, but low Ui can also lead to performance drops. We
find that the latter can be further explained by the presence of large S values: when Xi is missing,
these interactions can no longer be discovered by the model which decreases robustness. For the
subset of points when Ui ≤ 0.05, the correlation between S and performance drop is ρ = 0.73 while
the correlation between R and performance drop is only ρ = 0.01.
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Table 11: Table of hyperparameters for prediction on synthetic data.
Component Model Parameter Value

Encoder
Identity / /

Linear Input size [200, 200]
Hidden dim 512

Decoder Linear Input dim [200, 200]
Hidden dim 512

Fusion

Concat / /
ElemMultWithLinear Output dim 512MI-Matrix [52]

LRTF [65] Output dim 512
rank 32

MULT [99] Embed dim 512
Num heads 8

Classification head

Identity / /

2-Layer MLP
Hidden size 512
Activation LeakyReLU(0.2)
Dropout 0.1

Training

Loss Cross Entropy
EF & ADDITIVE & ELEM & TENSOR Batch size 128
MI & MULT & LOWER Num epochs 100

Optimizer/Learning rate Adam/0.0001

AGREE & ALIGN

Loss Cross Entropy
+ Agree/Align Weight

Batch size 128
Num epochs 200

Optimizer/Learning rate Adam/0.0001
Cross Entropy Weight 2.0
Agree/Align Weight 1.0

REC [100]

Loss Cross Entropy
+ Reconstruction (MSE)

Batch size 128
Num epochs 100
Optimizer Adam

Learning rate 0.0001
Recon Loss Modality Weight [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules MLP [512, 256, 256]
MLP [512, 256, 256]
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Table 12: Table of hyperparameters for prediction on affective computing datasets.
Component Model Parameter Value

Encoder
Identity / /

GRU Input size [5, 20, 35, 74, 300, 704]
Hidden dim [32, 64, 128, 512, 1024]

Decoder GRU Input size [5, 20, 35, 74, 300, 704]
Hidden dim [32, 64, 128, 512, 1024]

Fusion

Concat / /
ElemMultWithLinear Output dim [400, 512]MI-Matrix [52]
Tensor Fusion [115] Output dim 512

MULT [99] Embed dim 40
Num heads 8

Classification head

Identity / /

2-Layer MLP
Hidden size 512
Activation LeakyReLU(0.2)
Dropout 0.1

Training

Loss L1 Loss
EF & ADDITIVE & ELEM & TENSOR Batch size 32
MI & MULT & LOWER Num epochs 40

Optimizer/Learning rate Adam/0.0001

AGREE & ALIGN

Loss L1 Loss
+ Agree/Align Weight

Batch size 32
Num epochs 30

Optimizer/Learning rate Adam/0.0001
Agree/Align Weight 0.1

REC [100]

Loss L1 Loss
+ Reconstruction (MSE)

Batch size 128
Num epochs 50
Optimizer Adam

Learning rate 0.001
Recon Loss Modality Weight [1, 1]

Intermediate Modules MLP [600, 300, 300]
MLP [600, 300, 300]

Table 13: Table of hyperparameters for prediction on ENRICO dataset in the HCI domain.

Model Parameter Value
Unimodal Hidden dim 16

MI-Matrix [52] Hidden dim 32
Input dims 16, 16

MI Hidden dim 32
Input dims 16, 16

LRTF [65]
Hidden dim 32
Input dims 16, 16

Rank 20

Training

Loss Class-weighted Cross Entropy
Batch size 32
Activation ReLU
Dropout 0.2

Optimizer Adam
Learning Rate 10−5

Num epochs 30
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Table 14: Table of hyperparameters for prediction on MIMIC dataset in the healthcare domain.

Component Model Parameter Value

Static Encoder 2-layer MLP
Hidden sizes [10, 10]

Activation LeakyReLU(0.2)

Static Decoder 2-layer MLP
Layer sizes [200, 40, 5]

Activation LeakyReLU(0.2)
Time Series Encoder GRU Hidden dim 30

Time Series Decoder GRU Hidden dim 30

Classification Head 2-Layer MLP
Hidden size 40

Activation LeakyReLU(0.2)

Fusion
LRTF [65]

Output dim 100

Ranks 40

MI-Matrix [52] output dim 100

Training

TENSOR, MI

Loss Cross Entropy
Batch size 40

Num epochs 20

Optimizer RMSprop
Learning rate 0.001

REC [100]

Loss
Cross Entropy

+ Reconstruction(MSE)
Batch size 40

Num epochs 30

Optimizer Adam
Learning Rate 0.001

Recon Loss Modality Weights [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules
MLPs [200, 100, 100],

[200, 100, 100], [400, 100, 100]
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Table 15: Table of hyperparameters for prediction on MAPS.
Component Model Parameter Value

Encoder
Identity / /

Linear Input size [1000, 18, 137]
Hidden dim 512

Decoder Linear Input dim [1000, 18, 137]
Hidden dim 512

Fusion

Concat / /
ElemMultWithLinear Output dim 512MI-Matrix [52]

LRTF [65] Output dim 512
rank 32

MULT [99] Embed dim 512
Num heads 8

Classification head

Identity / /

2-Layer MLP
Hidden size 512
Activation LeakyReLU(0.2)
Dropout 0.1

Training

Loss Cross Entropy
EF & ADDITIVE & ELEM & TENSOR Batch size 128
MI & MULT & LOWER Num epochs 100

Optimizer/Learning rate Adam/0.0001

AGREE & ALIGN

Loss Cross Entropy
+ Agree/Align Weight

Batch size 128
Num epochs 200

Optimizer/Learning rate Adam/0.0001
Cross Entropy Weight 2.0
Agree/Align Weight 1.0

REC [100]

Loss Cross Entropy
+ Reconstruction (MSE)

Batch size 128
Num epochs 100
Optimizer Adam

Learning rate 0.0001
Recon Loss Modality Weight [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules MLP [512, 256, 256]
MLP [512, 256, 256]

Table 16: Table of hyperparameters for prediction on Push dataset.

Component Model Parameter Value
Pos Encoder Linear Hidden sizes [64, 64, 64 (residual)]
Sensors Encoder Linear Hidden sizes [64, 64, 64 (residual)]

Image Encoder CNN

Filter sizes [5, 3, 3, 3, 3]

Num filters [32, 32, 32, 16, 8]

Filter strides 1

Filter padding [2, 1, 1, 1, 1]

Control Encoder Linear Hidden sizes [64, 64, 64 (residual)]

Fusion
Unimodal LSTM

Hidden size 512

Num layers 2

Late Fusion LSTM
Hidden size 256

Num layers 1

Classification Head Linear Hidden size 64

Training

Loss Mean Squared Error
Batch size 32

Num epochs 20

Activation ReLU
Optimizer Adam

Learning rate 10−5
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Table 17: Table of hyperparameters for prediction on AV-MNIST dataset.

Component Model Parameter Value

Image Encoder LeNet-3

Filter Sizes [5, 3, 3, 3]

Num Filters [6, 12, 24, 48]

Filter Strides / Filter Paddings [1, 1, 1, 1] /[2, 1, 1, 1]
Max Pooling [2, 2, 2, 2]

Image Decoder DeLeNet-3
Filter Sizes [4, 4, 4, 8]

Num Filters [24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 4]/[1, 1, 1, 1]

Audio Encoder LeNet-5

Filter Sizes [5, 3, 3, 3, 3, 3]

Num Filters [6, 12, 24, 48, 96, 192]

Filter Strides / Filter Paddings [1, 1, 1, 1, 1, 1]/[2, 1, 1, 1, 1, 1]
Max Pooling [2, 2, 2, 2, 2, 2]

Audio Decoder DeLeNet-5
Filter Sizes [4, 4, 4, 4, 4, 8]

Num Filters [96, 48, 24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 2, 2, 4]/[1, 1, 1, 1, 1, 1]

Classification Head 2-Layer MLP
Hidden size 100

Activation LeakyReLU(0.2)

Training Unimodal, LF

Loss Cross Entropy
Batch size 40

Num epochs 25

Optimizer/Learning rate/weight decay SGD/0.05/0.0001
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Table 18: Results on estimating PID on model families trained on synthetic datasets with controlled
interactions.

Category GENERAL REDUNDANCY
Model EF ADDITIVE AGREE
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
(zc) 0.47 0.01 0.01 0.04 0.74 0.35 0.2 0 0.04 0.71 0.48 0.01 0.01 0.06 0.74
(z1) 0 0.41 0 0.04 0.73 0.02 0.14 0 0.03 0.61 0.02 0.15 0 0.04 0.38
(z2) 0.01 0 0.47 0.04 0.72 0.05 0 0.43 0.06 0.72 0.01 0 0.48 0.04 0.72
(z1, z2) 0.15 0.02 0 0.29 0.72 0.15 0 0.2 0.13 0.56 0.14 0 0.26 0.09 0.66
(z∗1 , z

∗
2 , z

∗
c ) 0.22 0 0.07 0.15 0.64 0.31 0.16 0 0.08 0.64 0.21 0 0.11 0.15 0.58

(z1, z
∗
2 , z

∗
c ) 0.16 0.15 0 0.15 0.71 0.06 0 0.18 0.06 0.6 0.06 0 0.08 0.08 0.53

(z1, z2, z
∗
c ) 0.16 0.05 0 0.25 0.74 0.09 0 0.23 0.11 0.52 0.02 0 0.33 0.06 0.62

(z∗1 , z
∗
2 , zc) 0.25 0.03 0 0.14 0.66 0.39 0.11 0 0.08 0.67 0.44 0.04 0 0.09 0.67

(z∗2 , z
∗
c ) 0.19 0 0.12 0.06 0.65 0.15 0 0.07 0.18 0.61 0.13 0 0.24 0.04 0.64

(z∗2 , zc) 0.26 0 0.12 0.05 0.7 0.27 0 0.18 0.08 0.71 0.1 0 0.1 0.16 0.61

Category REDUNDANCY SYNERGY
Model ALIGN ELEM TENSOR
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
(zc) 0.44 0.02 0 0.05 0.73 0.27 0 0.01 0.07 0.7 0.47 0.01 0.01 0.04 0.74
(z1) 0.03 0 0 0.05 0.48 0 0.2 0 0.05 0.66 0 0.56 0 0.02 0.74
(z2) 0.05 0 0.39 0.1 0.71 0.01 0 0.2 0.05 0.66 0.01 0 0.54 0.02 0.73
(z1, z2) 0.02 0 0.38 0.08 0.63 0.07 0.02 0 0.14 0.66 0.15 0.03 0 0.31 0.73
(z∗1 , z

∗
2 , z

∗
c ) 0.33 0.06 0 0.15 0.66 0.05 0 0.01 0.07 0.56 0.2 0.01 0.01 0.21 0.65

(z1, z
∗
2 , z

∗
c ) 0.21 0 0.05 0.14 0.66 0.04 0.05 0 0.08 0.61 0.09 0.24 0 0.13 0.71

(z1, z2, z
∗
c ) 0.14 0 0.26 0.04 0.64 0.08 0.02 0 0.12 0.66 0.17 0.06 0 0.27 0.72

(z∗1 , z
∗
2 , zc) 0.23 0 0.09 0.08 0.64 0.1 0 0.01 0.06 0.6 0.27 0.05 0.02 0.15 0.68

(z∗2 , z
∗
c ) 0.18 0.1 0 0.17 0.6 0.04 0 0.03 0.05 0.57 0.05 0 0.01 0.06 0.56

(z∗2 , zc) 0.16 0 0.2 0.06 0.69 0.15 0 0.03 0.06 0.65 0.14 0 0.03 0.05 0.65

Category SYNERGY
Model MI MULT
Measure R U1 U2 S Acc R U1 U2 S Acc
(zc) 0.2 0 0.01 0.05 0.67 0.4 0.02 0 0.06 0.73
(z1) 0.01 0.13 0 0.05 0.66 0 0.48 0 0.02 0.73
(z2) 0.01 0 0.23 0.05 0.66 0.02 0 0.42 0.06 0.71
(z1, z2) 0.05 0.04 0 0.12 0.65 0.16 0.05 0 0.29 0.72
(z∗1 , z

∗
2 , z

∗
c ) 0.07 0.01 0.01 0.08 0.55 0.21 0.11 0 0.2 0.66

(z1, z
∗
2 , z

∗
c ) 0.02 0.01 0 0.06 0.58 0.1 0.29 0 0.11 0.7

(z1, z2, z
∗
c ) 0.04 0.01 0 0.08 0.62 0.18 0.02 0 0.3 0.72

(z∗1 , z
∗
2 , zc) 0.12 0.01 0.01 0.06 0.62 0.33 0 0.03 0.14 0.68

(z∗2 , z
∗
c ) 0.02 0 0.01 0.06 0.54 0.13 0 0.39 0.04 0.67

(z∗2 , zc) 0.13 0 0.01 0.06 0.64 0.36 0 0.18 0.04 0.72

Category UNIQUE
Model LOWER REC
Measure R U1 U2 S Acc R U1 U2 S Acc
(zc) 0.53 0 0.01 0.03 0.75 0.55 0.02 0.01 0.02 0.75
(z1) 0 0.56 0 0.02 0.74 0 0.53 0 0.03 0.74
(z2) 0.01 0 0.54 0.02 0.72 0.01 0 0.55 0.02 0.73
(z1, z2) 0.15 0.03 0 0.32 0.74 0.14 0.06 0 0.34 0.74
(z∗1 , z

∗
2 , z

∗
c ) 0.21 0.01 0.01 0.2 0.65 0.19 0.03 0 0.26 0.66

(z1, z
∗
2 , z

∗
c ) 0.09 0.27 0 0.13 0.71 0.08 0.29 0 0.16 0.71

(z1, z2, z
∗
c ) 0.16 0.06 0 0.27 0.73 0.21 0.05 0 0.31 0.72

(z∗1 , z
∗
2 , zc) 0.31 0.01 0.01 0.16 0.68 0.32 0 0.06 0.21 0.68

(z∗2 , z
∗
c ) 0.13 0 0.29 0.04 0.64 0.19 0 0.36 0.04 0.66

(z∗2 , zc) 0.31 0 0.13 0.04 0.7 0.42 0 0.15 0.03 0.72
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Table 19: Results on estimating PID on model families trained on real-world multimodal datasets.
Category GENERAL REDUNDANCY
Model EF ADDITIVE AGREE
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
UR-FUNNY A,T 0.02 0 0.02 0.06 0.59 0.02 0 0.02 0.15 0.60 0.02 0 0.02 0.05 0.59
UR-FUNNY V,T 0.05 0.01 0 0.17 0.62 0.11 0.08 0 0.17 0.60 0.02 0.04 0 0.24 0.59
UR-FUNNY V,A 0.01 0.27 0 0.19 0.59 0.03 0 0.02 0.15 0.56 0.02 0 0.02 0.15 0.53
MOSEI A,T 0.16 0.27 0.03 0 0.79 0.15 0.19 0.02 0.13 0.80 0.14 0.11 0.05 0.06 0.80
MOSEI V,T 0.01 0 0 0 0.63 0.11 1.21 0 0 0.80 0.1 0.84 0 0 0.80
MOSEI V,A 0 0 0 0.01 0.63 0.59 0.62 0 0.12 0.65 0.10 1.46 0 0.24 0.61
MUSTARD A,T 0.06 0 0.03 0.04 0.42 0.17 0 0.04 0.33 0.70 0.18 0 0.05 0.31 0.68
MUSTARD V,T 0 0 0 0 0.57 0.14 0 0.07 0.33 0.69 0.19 0 0.07 0.27 0.67
MUSTARD V,A 0 0 0 0 0.57 0.25 0.12 0 0.15 0.61 0.33 0.10 0 0.16 0.58
MIMIC 0.01 0.27 0 0 0.91 0.01 0.27 0 0 0.92 0.01 0.27 0 0 0.92
ENRICO 0.71 0.34 0.44 0.38 0.50 0.69 0.28 0.39 0.35 0.30 0.40 0.30 0.52 0.75 0.51

Category REDUNDANCY SYNERGY
Model ALIGN ELEM TENSOR
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
UR-FUNNY A,T 0.02 0 0.02 0.06 0.58 0.01 0 0.03 0.05 0.64 0.01 0 0.02 0.05 0.62
UR-FUNNY V,T 0.02 0 0.02 0.15 0.60 0.02 0.01 0 0.16 0.61 0.03 0.01 0 0.14 0.62
UR-FUNNY V,A 0.12 0.05 0.01 0.19 0.53 0.03 0.13 0 0.16 0.59 0.02 0.15 0 0.15 0.60
MOSEI A,T 0.12 0.26 0.14 0.16 0.65 0.09 1.07 0 0 0.80 0.18 0.17 0.06 0 0.80
MOSEI V,T 0.21 0.61 0 0.09 0.65 0.25 0.92 0 0.15 0.81 0.12 1.23 0 0 0.81
MOSEI V,A 1.15 0 0 0.79 0.40 0.14 1.21 0 0 0.65 0.12 1.07 0 0 0.65
MUSTARD A,T 0.20 0 0.06 0.29 0.70 0.17 0.01 0.11 0.23 0.60 0.20 0 0.13 0.25 0.59
MUSTARD V,T 0.16 0 0.08 0.29 0.70 0.18 0.01 0.04 0.32 0.64 0.18 0.01 0.02 0.34 0.59
MUSTARD V,A 0.27 0.12 0 0.14 0.62 0.36 0.07 0 0.16 0.55 0.33 0.05 0 0.18 0.60
MIMIC 0.01 0.28 0 0 0.91 0.04 0.24 0 0.01 0.91 0 0.28 0 0.01 0.91
ENRICO 0.37 0.34 0.57 0.76 0.52 0.3 0.43 0.29 0.73 0.44 0.38 0.48 0.32 0.69 0.50

Category SYNERGY UNIQUE
Model MI LOWER
Measure R U1 U2 S Acc R U1 U2 S Acc
UR-FUNNY A,T 0.01 0 0.03 0.04 0.62 0.02 0 0.01 0.14 0.60
UR-FUNNY V,T 0.04 0.02 0 0.14 0.64 0.04 0 0.01 0.15 0.62
UR-FUNNY V,A 0.02 0.23 0 0.15 0.61 0.02 0.15 0 0.19 0.58
MOSEI A,T 0.13 0.05 0.01 0.19 0.81 0.20 0.92 0 0.54 0.79
MOSEI V,T 0.11 0.98 0 0 0.80 0.17 1.14 0 0.08 0.80
MOSEI V,A 0.12 1.0 0 0 0.65 1.54 0.64 0 0.13 0.65
MUSTARD A,T 0.18 0 0.08 0.29 0.63 0.21 0 0.05 0.26 0.59
MUSTARD V,T 0.20 0.01 0.03 0.25 0.63 0.17 0 0.06 0.28 0.58
MUSTARD V,A 0.28 0.04 0.02 0.18 0.56 0.24 0.08 0 0.24 0.59
MIMIC 0.02 0.26 0 0.01 0.92 0.01 0.28 0 0.01 0.91
ENRICO 0.28 0.41 0.34 0.48 0.38 0.52 0.29 0.69 0.52 0.56
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Figure 17: Model selection pipeline: (1) quantifying the interactions in different datasets, (2)
quantifying interactions captured by different model families, then (3) selecting the closest model
for a given new dataset yields models of > 96% performance as compared to exhaustively trying all
models.

C.8 Multimodal Model Selection
Setup: We show that our findings on quantifying multimodal datasets and model predictions are
generalizable, and that the PID estimations are informative for model selection on new datasets
without training all models from scratch. We simulate the model selection process on 5 new synthetic
datasets and 6 real-world multimodal datasets. Given a new dataset D, we compute their PID values
ID and normalize it to obtain ÎD:

ÎD =
ID∑

I′∈{R,U1,U2,S} I
′
D
. (35)

We select the most similar dataset D∗ from our base datasets (the 10 synthetic datasets presented in
Table 2) that has the smallest difference measure

s(D,D′) =
∑

I∈{R,U1,U2,S}

|ÎD − ÎD′ | (36)

which adds up the absolute difference between normalized PID values on D and D′. The model
selection pipeline is illustrated in Figure 17. We hypothesize that the top-3 best-performing models
on D∗ should also achieve decent performance on D due to their similar distribution of interactions.
We verify the quality of the model selection by computing a percentage of the performance of the
selected model f with respect to the performance of the actual best-performing model f∗ on D, i.e.
% Performance(f, f,∗ ) = Acc(f)/Acc(f∗).

Results: We summarize our evaluation of the model selection in Table 5, and find that the top 3
chosen models all achieve 95%− 100% of the best-performing model accuracy, and above 98.5%
for all datasets except MUSTARD. For example, UR-FUNNY and MUSTARD have the highest
synergy (S = 0.13, S = 0.3) and indeed transformers and higher-order interactions are helpful
(MULT: 0.65%, MI: 0.61%, TENSOR: 0.6%). ENRICO has the highest R = 0.73 and U2 = 0.53,
and indeed methods for redundant and unique interactions perform best (LOWER: 0.52%, ALIGN:
0.52%, AGREE: 0.51%). MIMIC has the highest U1 = 0.17, and indeed unimodal models are mostly
sufficient [60]. We hypothesize that model selection is more difficult on MUSTARD since it has the
highest synergy ratio, and it is still an open question regarding how to capture synergistic multimodal
interactions. Therefore, PID values provide a strong signal for multimodal model selection.

C.9 Real-world Case Study 1: Computational Pathology
Setup: The current standard of care for cancer prognosis in anatomic pathology is the integration
of both diagnostic histological information (via whole-slide imaging (WSI)) as well as molecular
information for patient stratifcation and therapeutic decision-making [63]. For cancer types such
as diffuse gliomas, the combination of histological subtypes (astrocytoma, oligodendroglioma)
and molecular markers (IDH1 mutation, 1p19q codeletion) determines whether patients should be
administered tumor resection, radiation therapy, adjuvant chemotherapy, or combination therapies [66,
16, 20]. Recent applications of multimodal learning in pathology have found that though fusion
confers benefit for a majority of cancer types, unimodal models can be as competitive in patient
stratification performance, which suggest potential clinical application of prognosticating using only
a single modality for certain cancers [22].
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Table 20: Results on estimating PID across the TCGA-GBMLGG and TCGA-PAAD datasets. U1, U2

correspond to pathology and genomics respectively.
Dataset TCGA-LGG TCGA-PAAD
Measure R U1 U2 S R U1 U2 S

CVX 0 0.02 0.06 0.02 0 0.06 0.08 0.15

Using The Cancer Genome Atlas (TCGA), PID was used to quantify pathology image-omic inter-
actions in downstream prognostication tasks for two cancer datasets: lower-grade glioma (TCGA-
LGG [15] (n = 479) and pancreatic adenocarcinoma (TCGA-PAAD [83], (n = 209). As mentioned
in the main text, the modalities include: (1) a sequence of pre-extracted histology image features
from diagnostic WSIs (N × 1024, where N is the number of non-overlapping 256 × 256 patches
at 20× magnification and 1024 is the extracted feature dimension of a pretrained vision encoder),
and (2) feature vector (1×D) of D bulk gene mutation status, copy number variation, and RNA-Seq
abundance values. The label space is overall survival time converted to 4 discrete bins. Following the
study design of [22], we trained an Attention-Based Multiple Instance Learning (ABMIL) model and
a Self-Normalizing Network (SNN) for the pathology and genomic modalities using a log likelihood
loss for survival analysis respectively [48, 55]. For ABMIL, a truncated ResNet-50 encoder pretrained
on ImageNet was used for patch feature extraction of WSIs [45]. Unimodal features were extracted
before the classification layer, with K-means clustering (k = 3) for each modality used to obtain
(x1, x2, y) pairs where x1 is pathology, x2 is genomics and y is the discrete bins, which can then be
used in CVX to compute PID measures.

Results: We assess these PID measures (Table 20) in the context of current scientific understanding
of pathology and genomic interactions in cancer prognostication in the literature. Specifically, we
compare against the findings [22], which previously investigated unimodal and multimodal survival
models in TCGA and observed that risk predictions were primarily driven by genomics across
most cancer types (such as TCGA-LGG), with exceptions in a few cancer types such as TCGA-
PAAD. In the evaluation of TCGA-LGG and TCGA-PAAD in [22], concordance Index performance
of unimodal-pathology, unimodal-genomic, and multimodal survival models were (0.668, 0.792,
0.808) and (0.580, 0.593, 0.653) respectively. In [22], one of the original hypotheses for the lack of
multimodal improvement for some cancer types was due to high mutual information between both
modalities. In our results, we observe the opposite effect in which there is little mutual information
between both modalities. This observation coupled with the low and high synergy values in TCGA-
LGG (S = 0.02) and TCGA-PAAD (S = 0.15) suggest that only TCGA-PAAD would benefit
from multimodal integration, which was empirically found with both the c-Index improvement and
statistical significant patient stratification results in TCGA-PAAD evaluation. The uniqueness values
of both tasks also corroborate the high amount of task-specific information in genomics with high
c-Index performance, and vice versa with pathology. Overall, we demonstrate we can use PID
measures to refine biomedical insights into understanding when multimodal integration confers
benefit.

C.10 Real-world Case Study 2: Mood Prediction from Mobile Data
Setup: Suicide is the second leading cause of death among adolescents [18]. Despite these alarming
statistics, there is little consensus concerning imminent risk for suicide [31, 56]. Intensive monitoring
of behaviors via adolescents’ frequent use of smartphones may shed new light on the early risk of
suicidal thoughts and ideations [37, 72]. Smartphones provide a valuable and natural data source
with rich behavioral markers spanning online communication, keystroke patterns, and application
usage [59]. Learning these markers requires large datasets with diversity in participants, variety in
features, and accuracy in annotations. As a step towards this goal, we partnered with several hospitals
(approved by NIH IRB for central institution and secondary sites) to collect a dataset of mobile
behaviors from high-risk adolescent populations with consent from participating groups. This data
monitors adolescents spanning (a) recent suicide attempters (past 6 months) with current suicidal
ideation, (b) suicide ideators with no past suicide attempts, and (c) psychiatric controls with no history
of suicide ideation or attempts. Passive sensing data is collected from each participant’s smartphone
across a duration of 6 months. The modalities include (1) text entered by the user represented as a
bag of top 1000 words that contains the daily number of occurrences of each word, (2) keystroke
features that record the exact timing and duration that each character was typed on a mobile keyboard
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Table 21: Results on estimating PID on the MAPS dataset with pairs of modalities text + apps
(MAPST,A) and text + keystrokes (MAPST,K).

Dataset MAPST,A MAPST,K

Measure R U1 U2 S R U1 U2 S

CVX 0.09 0 0.09 0.26 0.12 0 0.04 0.40

Table 22: Results on estimating PID on model families trained on the MAPS dataset.
Category GENERAL REDUNDANCY
Model EF ADDITIVE AGREE
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
MAPST,A 0.61 0.01 0.08 0.02 0.42 0.43 0 0.26 0 0.39 0.45 0 0.24 0 0.40
MAPST,K 0.16 0.29 0 0.08 0.51 0.09 0 0.18 0.21 0.47 0.20 0 0.24 0.17 0.42

Category REDUNDANCY SYNERGY
Model ALIGN ELEM TENSOR
Measure R U1 U2 S Acc R U1 U2 S Acc R U1 U2 S Acc
MAPST,A 0.69 0 0.11 0.03 0.39 0.42 0.04 0.05 0.13 0.41 0.42 0.10 0.03 0.11 0.45
MAPST,K 0.41 0.01 0.28 0.34 0.33 0.17 0.37 0.02 0.41 0.27 0.24 0.15 0 0.32 0.57

Category SYNERGY
Model MI MULT
Measure R U1 U2 S Acc R U1 U2 S Acc
MAPST,A 0.28 0.12 0.01 0.21 0.47 0.40 0.09 0 0.03 0.48
MAPST,K 0.25 0.24 0.02 0.40 0.36 0.10 0.27 0 0.19 0.50

Category UNIQUE
Model LOWER REC
Measure R U1 U2 S Acc R U1 U2 S Acc
MAPST,A 0.53 0.04 0.04 0.09 0.41 0.28 0.06 0.07 0.10 0.56
MAPST,K 0.12 0.24 0 0.22 0.51 0.23 0.17 0 0.18 0.52

(including alphanumeric characters, special characters, spaces, backspace, enter, and autocorrect),
and (3) mobile applications used per day, creating a bag of 137 apps for each day that are used by at
least 10% of the participants.

Every day at 8am, users are asked to respond to the following question - “In general, how have you
been feeling over the last day?” - with an integer score between 0 and 100, where 0 means very
negative and 100 means very positive. To construct our prediction task, we discretized these scores
into the following three bins: negative (0− 33), neutral (34− 66), and positive (67− 100), which
follow a class distribution of 12.43%, 43.63%, and 43.94% respectively. For our 3-way classification
task, participants with fewer than 50 daily self-reports were removed since these participants do
not provide enough data to train an effective model. In total, our dataset consists of 1641 samples,
consisting of data coming from 17 unique participants.

Results: The results are shown in Table 21, 22. We observe that both MAPST,A (text + apps) and
MAPST,K (text + keystrokes) have the highest synergy (S = 0.26, S = 0.4 respectively) and some
redundancy (R = 0.09, R = 0.12) and uniqueness in the second modality (U2 = 0.09, U2 = 0.04).
We find indeed the best-performing models are REC (acc = 0.56%) and MULT (acc = 0.48%) for
MAPST,A, and TENSOR (acc = 0.57%) and REC (acc = 0.52%) for MAPST,K , which are designed
to capture synergy and uniqueness interactions. Our model selection also successfully chooses REC
for MAPST,A and TENSOR for MAPST,K with a high agreement of α = 0.66 and α = 0.74 (98.3%
and 99.85% of the highest agreement respectively). This result further corroborates the utility and
generalizability of our PID estimations and model selection.
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Table 23: Results on estimating PID on robotic perception task.
Task PUSH I,C
Measure R U1 U2 S

CVX 0.24 0.03 0.06 0.04
BATCH 0.75 1.79 0.03 0.08

C.11 Real-world Case Study 3: Robotic Perception
Setup: MuJoCo PUSH [57] is a contact-rich planar pushing task in the MuJoCo simulation framework,
in which a 7-DoF Panda Franka robot is pushing a circular puck with its end-effector in simulation.
We estimate the 2D position of the unknown object on a table surface, while the robot intermittently
interacts with the object. The final dataset consists of 1000 trajectories with 250 steps at 10Hertz, of a
simulated Franka Panda robot arm pushing a circular puck in MuJoCo [95]. The pushing actions are
generated by a heuristic controller that tries to move the end-effector to the center of the object. The
multimodal inputs are gray-scaled images (1× 32× 32) from an RGB camera, forces (and binary
contact information) from a force/torque sensor, and the 3D position of the robot end-effector. The
task is to predict the 2-D planar object pose.

We use CNN feature extractors and LSTM as a sequence model for both unimodal and multimodal
models. We use hyperparameters from Table 16. Because both CVX and BATCH assumes discrete
classes of labels, we discretize all continuous labels into 10 bins of equal data points from the training
set, and use the same bin cutoffs at test time. The task is to predict the correct bin that contains the
original label, and we use cross entropy loss as our loss function.

Results: The results are shown in Table 23. As can be seen from the table, BATCH predicts U1

as the highest PID value (U1 = 1.79), which aligns with the fact that image is the best unimodal
predictor for this dataset [60]. Comparing both estimators, CVX underestimates U1 and R since
CVX clusters the data before processing, and the high-dimensional time-series modalities cannot
be easily described by clusters without losing information. In addition, both BATCH and CVX
predict a low U2 value but attributes some mutual information to R (redundancy), implying that a
multimodal model with both modalities would not be much better compared to an unimodal model
on modality 1, since the multimodal model would mostly get redundant information from modality 2.
In our experiments, we observe no difference in performance between the multimodal model and the
unimodal model with modality 1.

D Summary of Takeaway Messages and Future Work
From these results, we emphasize the main take-away messages and motivate several directions for
future work:

1. Dataset quantification: PID provides reliable indicators for the nature and quantity of
interactions present in both synthetic and real-world multimodal datasets, which provides a
useful tool summarizing these datasets. In our opinion, creators of new datasets focused on
modeling interactions between multiple features or modalities should report estimated PID
values on new datasets alongside justification on whether these values are to be expected
based on how the features were selected.

2. Model quantification: PID also provides reasonable indicators for the interactions captured
by trained models, but naturally there is more noise due to different model parameter counts,
training trajectories, and non-convex optimization artifacts that despite our best efforts
remain impossible to exactly control. Despite these details, we still find several consistent
patterns in the types of interactions different models capture. We suggest that researchers
developing new multimodal models explicitly state the assumptions on the underlying
multimodal distribution their models require and the interactions their models are designed
to capture, before testing exhaustively on datasets predominantly of those interactions.

3. Model selection: Our experiments on model selection for real-world datasets and applica-
tions demonstrate potential utility in a rough ‘user-guide’ for practitioners aiming to tackle
real-world multimodal datasets. Given a new dataset, estimate its PID values. If there is
high U1 and U2, just using unimodal models in the corresponding modality may be sufficient.
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Otherwise, if there is high R, methods like agreement, alignment, ensemble, or co-training
should be tried. If there is high S, it is worth spending the time on multimodal methods
that model more complex interactions based on tensors, multiplicative interactions, and
self-attention.

We believe that the intersection of PID and machine learning opens the door to several exciting
directions of future work:

1. Pointwise interaction measures: A natural extension is to design pointwise measures: how
much does a single datapoint contribute to redundancy, uniqueness, or synergy in the context
of an entire distribution? Pointwise measures could help for more fine-grained dataset and
model quantification, including error analysis of incorrect predictions or active learning of
difficult examples.

2. Representation learning for desired interactions: Can we design new model architectures or
training objectives that better capture certain interactions? Current well-performing models
like Transformers already include some notion of multiplicative interactions, so it does
seem that, heuristically, synergy between input features is playing a role in their success.
Designing models that better capture synergy, as quantified by our PID estimators, could be
a path towards learning better representations.

3. Principled approaches to fairness and invariance: Currently, PID is designed to measure
the information that 2 variables contribute towards a task Y , but conversely it can also be
used to remove information that one variable can have about Y , in the context of another
variable. These could provide formal learning objectives for fairness, privacy, and other
feature invariance tasks.

E Limitations and Broader Impact
E.1 Limitations of our Estimators
While our estimators appear to perform well in practice, each suffers from distinct limitations. For
CVX, it is rarely able to scale up to domains with more than several thousand classes. Furthermore,
if |Xi| is large—which is frequently the case in real-world applications, then empirical frequencies
will often be near 0, causing much instability in conic solvers (see Appendix B.1 for a more detailed
description).

BATCH sidesteps many of the issues with CVX by applying batch gradient descent. However, it may
suffer from approximation error depending on whether the network can sufficiently cover the space
of joint distributions (i.e., representation capacity), alongside bias resulting from mini-batch gradient
descent (as compared to full-batch gradient descent) when approximating q̃ using bootstrapped
samples. Lastly, it may suffer from the usual problems with neural estimators, such as local minima,
poor or unstable convergence (in both learning q̃ and p̂). Therefore, while BATCH scales to high-
dimensional continuous distributions, it comes with the challenges involving training and tuning
neural networks.

E.2 Broader Impact
Multimodal data and models are ubiquitous in a range of real-world applications. Our proposed
framework based on PID is our attempt to systematically quantify the plethora of datasets and models
currently in use. While these contributions will accelerate research towards multimodal datasets and
models as well as their real-world deployment, we believe that special care must be taken in the
following regard to ensure that these models are safely deployed:

Care in interpreting PID values: Just like with any approximate estimator, the returned PID values
are only an approximation to the actual interactions and care should be taken to not overfit to these
values. Other appropriate forms of dataset visualization and quantification should still be conducted
to obtain holistic understanding of multimodal datasets.

Privacy, security, and biases: There may be privacy risks associated with making predictions
from multimodal data if the datasets include recorded videos of humans or health indicators. In our
experiments with real-world data where people are involved (i.e., healthcare and affective computing),
the creators of these datasets have taken the appropriate steps to only access public data which
participants/content creators have consented for released to the public. We also acknowledge the risk
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of exposure bias due to imbalanced datasets that may cause biases towards certain genders, races,
and demographic groups. Therefore, care should be taken in understanding the social risks of each
multimodal dataset in parallel to understanding its interactions via PID.

Time & space complexity: Modern multimodal datasets and models, especially those pretrained
on internet-scale data, may cause broader impacts resulting from the cost of hardware, electricity,
and computation, as well as environmental impacts resulting from the carbon footprint required to
fuel modern hardware. Future work should carefully investigate the role of size on the interactions
learned by models through estimated PID values. Our preliminary experiments showed that smaller
models could still capture high degrees of each interaction, which may pave away towards designing
new inductive biases that enable interaction modeling while using fewer parameters.

Overall, PID offers opportunities to study the potential social and environmental issues in multimodal
datasets by obtaining a deeper understanding of the underlying feature interactions, providing a path
towards interpretable and lightweight models. We plan to continue expanding our understanding of
PID via deeper engagement with domain experts and how they use this framework in their work. Our
released datasets, models, and code will also present a step towards scalable quantification of feature
interactions for future work.
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