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ABSTRACT

In this paper, we study the representation of neural networks from the view of
kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel
(Jaakkola and Haussler, 1998) applied to neural networks. We show that NFK
can be computed for both supervised and unsupervised learning models, which
can serve as a unified tool for representation extraction. Furthermore, we show
that practical NFKs exhibit low-rank structures. We then propose an efficient
algorithm that computes a low rank approximation of NFK, which scales to large
datasets and networks. We show that the low-rank approximation of NFKs derived
from unsupervised generative models and supervised learning models gives rise to
high-quality compact representations of data, achieving competitive results on a
variety of machine learning tasks.

1 INTRODUCTION

Modern deep learning systems rely on finding good representations of data. For supervised learn-
ing models with feed forward neural networks, representations can naturally be equated with the
activations of each layer. Empirically, the community has developed a set of effective heuristics for
representation extraction given a trained network. For example, ResNets (He et al., 2016) trained on
Imagenet classification yield intermediate layer representations that can benefit downstream tasks
such as object detection and semantic segmentation. The logits layer of a trained neural network
also captures rich correlations across classes which can be distilled to a weaker model (Knowledge
Distillation) (Hinton et al., 2015).

Despite empirical prevalence of using intermediate layer activations as data representation, it is far
from being the optimal approach to representation extraction. For supervised learning models, it
remains a manual procedure that relies on trial and error to select the optimal layer from a pre-trained
model to facilitate transfer learning. Similar observations also apply to unsupervised learning models
including GANs (Goodfellow et al., 2014), VAEs (Kingma and Welling, 2014), as evident from recent
studies (Chen et al., 2020a) that the quality of representation in generative models heavily depends
on the choice of layer from which we extract activations as features. Furthermore, although that
GANs and VAEs are known to be able to generate high-quality samples from the data distribution,
there is no strong evidence that they encode explicit layerwise representations to similar quality as in
supervised learning models, which implies that there does not exist a natural way to explicitly extract
a representation from intermediate layer activations in unsupervisedly pre-trained generative models.
Additionally, layer activations alone do not suffice to reach the full power of learned representations
hidden in neural network models, as shown in recent works (Mu et al., 2020) that incorporating
additional gradients-based features into representation leads to substantial improvement over solely
using activations-based features.

In light of these constraints, we are interested in the question: is there a principled method for
representation extraction beyond layer activations? In this work, we turn to the kernel view of
neural networks. Recently, initiated by the Neural Tangent Kernel (NTK) (Jacot et al., 2018) work,
there have been growing interests in the kernel interpretation of neural networks. It was shown that
neural networks in the infinite width regime are reduced to kernel regression with the induced NTK.
Our key intuition is that, the kernel machine induced by the neural network provides a powerful and
principled way of investigating the non-linear feature transformation in neural networks using the
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linear feature space of the kernel. Kernel machines provide drastically different representations than
layer activations, where the knowledge of a neural network is instantiated by the induced kernel
function over data points.

In this work, we propose to make use of the linear feature space of the kernel, associated with the
pre-trained neural network model, as the data representation of interest. To this end, we made novel
contributions on both theoretical and empirical side, as summarized below.

• We propose Neural Fisher Kernel (NFK) as a unified and principled kernel formulation for neural
networks models in both supervised learning and unsupervised learning settings.

• We introduce a highly efficient and scalable algorithm for low-rank kernel approximation of NFK,
which allows us to obtain a compact yet informative feature embedding as the data representation.

• We validate the effectiveness of proposed approach from NFK in unsupervised learning, semi-
supervised learning and supervised learning settings, showing that our method enjoys superior
sample efficiency and representation quality.

2 PRELIMINARY AND RELATED WORKS

In this section, we present technical background and formalize the motivation. We start by intro-
ducing the notion of data representation from the perspective of kernel methods, then introduce the
connections between neural network models and kernel methods.

Notations. Throughout this paper, we consider dataset with N data examples D ≡ {(xi, yi)}, we use
p(x) to denote the probability density function for the data distribution and use pdata(x) to denote
the empirical data distribution from D.

Kernel Methods. Kernel methods (Hofmann et al., 2008) have long been a staple of practical
machine learning. At their core, a kernel method relies on a kernel function which acts as a similarity
function between different data examples in some feature space. Here we consider positive definite
kernels K : X × X → R over a metric space X which defines a reproducing kernel Hilbert space H
of function from X to R, along with a mapping function φ : X → H, such that the kernel function
can be decomposed into the inner product K(x, z) = ⟨φ(x), φ(z)⟩. Kernel methods aim to find a
predictive linear function f(x) = ⟨f, φ(x)⟩H in H, which gives label output prediction for each data
point x ∈ X . The kernel maps each data example x ∈ X to a linear feature space φ(x), which is
the data representation of interest. Given dataset D, the predictive model function f is typically
estimated via Kernel Ridge Regression (KRR), f̂ = argminf∈H

1
N

∑N
i=1 (f (xi)− yi)

2
+ λ∥f∥2H.

Neural Networks and Kernel Methods. A long line of works (Neal, 1996; Williams, 1996; Roux
and Bengio, 2007; Hazan and Jaakkola, 2015; Lee et al., 2018; de G. Matthews et al., 2018; Jacot
et al., 2018; Chen and Xu, 2021; Geifman et al., 2020; Belkin et al., 2018; Ghorbani et al., 2020),
have studied that many kernel formulations can be associated to neural networks, while most of
them correspond to neural network where being fixed kernels (e.g. Laplace kernel, Gaussian kernel)
or only the last layer is trained, e.g., Conjugate Kernel (CK) (Daniely et al., 2016), also called as
NNGP kernel (Lee et al., 2018). On the other hand, Neural Tangent Kernel (NTK) (Jacot et al., 2018)
is a fundamentally different formulation corresponding to training the entire infinitely wide neural
network models. Let f(θ;x) denote a neural network function with parameters θ, then the empirical
NTK is defined as Kntk(x, z) = ⟨∇θf(θ;x),∇θf(θ; z)⟩. (Jacot et al., 2018; Lee et al., 2018)
showed that under the so-called NTK parametrization and other proper assumptios, the function
f(x;θ) learned by training the neural network model with gradient descent is equivalent to the
function estimated via ridgeless KRR using Kntk as the kernel. For finite-width neural networks, by
taking first-order Taylor expansion of funnction f around the θ, kernel regression under Kntk can be
seen as linearized neural network model at parameter θ, suggesting that pre-trained neural network
models can also be studied and approximated from the perspective of kernel methods.

Fisher Kernel. The Fisher Kernel (FK) is first introduced in the seminal work (Jaakkola and
Haussler, 1998). Given a probabilistic generative model pθ(x), the Fisher kernel is defined as:
Kfisher(x, z) = ∇θ log pθ(x)

⊤I−1∇θ log pθ(z) = U⊤
x I−1Uz where Ux = ∇θ log pθ(x) is the

so-called Fisher score and I is the Fisher Information Matrix (FIM) defined as the covariance of
the Fisher score: I = Ex∼pθ(x)∇θ log pθ(x)∇θ log pθ(x)

⊤. Then the Fisher vector is defined
as Vx = I− 1

2∇θ log pθ(x) = I− 1
2Ux. One can utilize the Fisher Score as a mapping from the
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Figure 1: Overview of our proposed approach. Given a pre-trained neural network model, which
can be either an unsupervised generative model pθ(x) (e.g. GANs, VAEs), or a supervised learning
model pθ(y|x), we aim to extract a compact yet informative representation from it. By reinterpreting
various families of models as energy-based models (EBM), we introduce Neural Fisher Kernel (NFK)
Knfk as a principled and unified kernel formulation for neural network models (Section. 3.1). We
introduce a highly efficient and scalable kernel approximation algorithm (Section. 3.2) to obtain the
low-dimensional feature embedding ex, which serves as the extracted data representation from NFK.

data space X to parameter space Θ, and obtain representations that are linearized. As proposed
in (Jaakkola and Haussler, 1998; Perronnin and Dance, 2007), the Fisher vector Vx can be used as the
feature representation derived from probabilistic generative models, which was shown to be superior
to hand-crafted visual descriptors in a variety of computer vision tasks.

Generative Models In this work, we consider a variety of representative deep generative mod-
els, including generative adversarial networks (GANs) (Goodfellow et al., 2014), variational auto-
encoders (VAEs) (Kingma and Welling, 2014), as well we normalizing flow models (Dinh et al.,
2015) and auto-regressive models (van den Oord et al., 2016). Please refer to (Salakhutdinov, 2014)
for more technical details on generative models.

3 LEARNING REPRESENTATION FROM NEURAL FISHER KERNEL

We aim to propose a general and efficient method for extracting high-quality representation from
pre-trained neural network models. As formalized in previous section, we can describe the outline of
our proposed approach as: given a pre-trained neural network model f(x;θ) (either unsupervised
generative model p(x;θ) or supervised learning model p(y | x;θ)), with pre-trained weights θ, we
adopt the kernel formulation Kf induced by model f(x;θ) and make use of the associated linear
feature embedding φ(x) of the kernel Kf as the feature representation of data x. We present an
overview introduction to illustrate our approach in Figure. 1.

At this point, however, there exist both theoretical difficulties and practical challenges which impede
a straightforward application of our proposed approach. On the theoretical side, the NTK theory
is only developed in supervised learning setting, and its extension to unsupervised learning is not
established yet. Though Fisher kernel is immediately applicable in unsupervised learning setting,
deriving Fisher vector from supervised learning model p(y | x;θ) can be tricky, which needs the
log-density estimation of marginal distribution pθ(x) from p(y | x;θ). Note that it is a drastically
different problem from previous works (Achille et al., 2019) where Fisher kernel is applied to the
joint distribution over p(x,y). On the practical efficiency side, the dimensionality of the feature
space associated with NTK or FK is same as the number of model parameters |θ|, which poses
unmanageably high time and space complexity when it comes to modern large-scale neural network
models. Additionally, the size of the NTK scales quadratically with the number of classes in
multi-class supervised learning setting, which gives rise to more efficiency concerns.

To address the kernel formulation issue, we propose Neural Fisher Kernel (NFK) in Sec. 3.1 as
a unified kernel for both supervised and unsupervised learning models. To tackle the efficiency
challenge, we investigate the structural properties of the proposed NFK and propose a highly scalable
low-rank kernel approximation algorithm in Sec. 3.2 to extract compact low-dimensional feature
representation from NFK.

3.1 NEURAL FISHER KERNEL

In this section, we propose Neural Fisher Kernel (NFK) as a principled and general kernel formulation
for neural network models. The key intuition is that we can extend classical Fisher kernel theory
to unify the procedure of deriving Fisher vector from supervised learning models and unsupervised
learning models by using Energy-based Model (EBM) formulation.
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Figure 2: Left: The spectrum structure of NFKs from a CNN (green) and a MLP (red), trained on
MNIST binary classification task. The NFK of CNN concentrates on fewer eigen-modes compared
to the MLP. Right: The low-rankness of the NFK on a DCGAN trained on MNIST. For a trained
model, the first 100 principle components of the Fisher Vector matrix explain 99.5% of all variances.
An untrained model with the same architecture on the other hand, demonstrates a much lower degree
of low-rankness.

3.1.1 UNSUPERVISED NFK

We consider unsupervised probabilistic generative models pθ(x) = p(x;θ) here. Our proposed NFK
formulation can be applied to all generative models with tractable evaluation (or approximation) of
∇θ log pθ(x).

GANs. We consider the EBM formulation of GANs (Dai et al., 2017; Zhai et al., 2019; Che et al.,
2020). Given pre-trained GAN model, we use D(x;θ) to denote the output of the discriminator D,
and use G(h) to denote the output of generator G given latent code h ∼ p(h). As a brief recap,
GANs can be interpreted as an implementation of EBM training with a variational distribution, where
we have the energy-function E(x;θ) = −D(x;θ). Please refer to (Zhai et al., 2019; Che et al.,
2020) for more details. Thus we have the unnormalized density function pθ(x) ∝ e−E(x;θ) given by
the GAN model. Following (Zhai et al., 2019), we can then derive the Fisher kernel Knfk and Fisher
vector from standard GANs as shown below:

Knfk(x, z) = ⟨Vx, Vz⟩ Vx = (diag(I)− 1
2 )Ux

Ux = ∇θD(x;θ)− Eh∼p(h)∇θD(G(h);θ)
(1)

where x, z ∈ X , I = Eh∼p(h)

[
UG(h)U

⊤
G(h)

]
. Note that we use diagonal approximation of FIM

throughout this work for the consideration of scalability.

VAEs. Given a VAE model pre-trained via maximizing the variational lower-bound ELBO
LELBO(x) ≡ Eq(h|x)

[
log p(x,h)

q(h|x)

]
, we can approximate the marginal log-likelihood log pθ(θ) by

evaluating LELBO(x) via Monte-Carlo estimations or importance sampling techniques (Burda et al.,
2016). Thus we have our NFK formulation as

Knfk(x, z) = ⟨Vx, Vz⟩ Vx = (diag(I)− 1
2 )Ux

Ux ≈ ∇θLELBO(x)
(2)

where x, z ∈ X , I = Ex∼pθ(x)

[
UxU

⊤
x

]
.

Flow-based Models, Auto-Regressive Models. For generative models with explicit exact data
density modeling pθ(x), we can simply apply the classical Fisher kernel formulation in Sec. 2.

3.1.2 SUPERVISED NFK

In the supervised learning setting, we consider conditional probabilistic models pθ(y | x) =
p(y | x;θ). In particular, we focus on classification problems where the conditional prob-
ability is parameterized by a softmax function over the logits output f(x;θ): pθ(y | x) =
exp(fy(x;θ))/

∑
y exp(f

y(x;θ)), where y is a discrete label and fy(x;θ) denotes y-th logit
output. We then borrow the idea from JEM (Grathwohl et al., 2020) and write out a joint en-
ergy function term over (x,y) as E(x,y;θ) = −fy(x;θ). It is easy to see that joint energy
yields exactly the same conditional probability, at the same time leading to a free energy function:
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Algorithm 1 Baseline method: compute low-rank NFK feature embedding
Input dataset D; pre-train NN model f(x;θ); NFK feature dimensionality k; test data input x⋆

Output low-rank NFK feature embedding enfk(x
∗)

1: compute Fisher vector for all data examples V = [Vxi ] ∈ RN×|θ|

2: compute kernel Gram matrix K = VV⊤ ∈ RN×N

3: compute truncated eigen-decomposition K = Φdiag(Λ)Φ⊤,Φ ∈ RN×k

4: kernel function evaluations between x∗ and all data examples K(x⋆,X) ≡ [K(x⋆,xj)]
N
j=1

5: obtain enfk(x
∗) ∈ Rk via Eq. 5 and Eq. 4

E(x;θ) = − log
∑

y exp(f
y(x;θ)). It essentially reframes a conditional distribution over y given

x to an induced unconditional distribution over x, while maintaining the same conditional probability
pθ(y | x). This allows us to write out the NFK formulation as:

Knfk(x, z) = ⟨Vx, Vz⟩ Vx = (diag(I)− 1
2 )Ux

Ux =
∑
y

pθ(y | x)∇θf
y(x;θ)− Ex′∼pθ(x′)

∑
y

pθ(y | x)∇θf
y(x′;θ) (3)

where I = Ex∼pθ(x)

[
UxU

⊤
x

]
, and pθ(x) is the normalized density corresponding to the free energy

Eθ, which could be sampled from via Markov chain Monte Carlo (MCMC) algorithm. In this work,
we use empirical data distribution as practical approximation.

3.2 NFK WITH LOW-RANK APPROXIMATION

Fisher vector Vx is the linear feature embedding φ(x) given by NFK Knfk(x, z) = ⟨Vx, Vz⟩ for
neural network model f(x;θ). However, straightforward application of NFK by using Vx as feature
representation suffers from scalability issue, since Vx ∈ R|θ| shares same dimensionality as the
number of parameters |θ|. It is with that in mind that |θ| can be tremendously large considering
the scale of modern neural networks, it is unfortunately infeasible to directly leverage Vx as feature
representation.

Low-Rank Structure of NFK. Motivated by the Manifold Hypothesis of Data that it is widely
believed that real world high dimensional data lives in a low dimensional manifold (Roweis and Saul,
2000; Rifai et al., 2011a;b), we investigate the structure of NFKs and present empirical evidence that
NFKs of good models have low-rank spectral structure. Firstly, we start by examining supervised
learning models. We study the spectrum structure of the empirical NFK of trained neural networks
with different architectures. We trained a LeNet-5 (LeCun et al., 1998) CNN and a 3-layer MLP
network by minimizing binary cross entropy loss, and then compute the eigen-decomposition of
the NFK Gram matrix. We show the explained ratio plot in Figure 2. We see that the spectrum of
CNN NTK concentrates on fewer large eigenvalues, thus exhibiting a lower effective-rank structure
compared to the MLP, which can be explained by the fact that CNN has better model inductive
bias for image data domain. For unsupervised learning models, we trained a small unconditional
DCGAN (Radford et al., 2016) model on MNIST dataset. We compare the results of a fully
trained model against a randomly initialized model in Fig. 2 (note the logarithm scale of the x-axis).
Remarkably, the trained model demonstrates an extreme degree of low-rankness that top 100 principle
components explain over 99.5% of the overall variance, where 100 is two orders of magnitude smaller
than both number of examples and number of parameters in the discriminator. We include more
experimental results and discussions in appendix due to the space constraints.

Efficient Low-Rank Approximation of NFK. The theoretical insights and empirical evidence
presented above hint at a natural solution to address the challenge of high-dimensionality of
Vx ∈ R|θ|: we can turn to seek a low-rank approximation to the NFK. According to the Mer-
cer’s theorem (Mercer, 1909), for positive definite kernel K(x, z) = ⟨φ(x), φ(z)⟩ we have
K(x, z) =

∑∞
i=1 λiϕi(x)ϕi(z), x, z ∈ X , where {(λi, ϕi)} are the eigenvalues and eigenfunc-

tions of the kernel K, with respect to the integral operator
∫
p(z)K(x, z)ϕi(z) dz = λiϕi(x). The

linear feature embedding representation φ(x) can thus be constructed from the orthonormal eigen-
basis {(λi, ϕi)} as φ(x) ≡

[√
λ1ϕ1(x),

√
λ2ϕ2(x), . . .

]
≡

[√
λiϕi(x)

]
, i = 1, . . . ,∞. To obtain a

low-rank approximation, we only keep top-k largest eigen-basis {(λi, ϕi)} ordered by corresponding
eigenvalues λi to form the low-rank k-dimensional feature embedding e(x) ∈ Rk, k ≪ N, k ≪ |θ|

e(x) ≡
[√

λ1ϕ1(x),
√
λ2ϕ2(x), . . .

√
λkϕk(x)

]
≡

[√
λiϕi(x)

]
, i = 1, . . . , k (4)
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Algorithm 2 Our proposed method: compute low-rank NFK feature embedding

1: V = Φdiag(Σ)P⊤,P ∈ R|θ|×k using power iteration methods via JVP/VJP evaluations
2: compute K (x,X)

⊤
Φi ≈ Vxdiag(Σi)Pi via JVP evaluation

3: obtain enfk(x
∗) ∈ Rk via Eq. 5 and Eq. 4

By applying our proposed NFK formulation Knfk to pre-trained neural network model f(x;θ), we
can obtain a compact low-dimensional feature representation enfk(x) ∈ Rk in this way. We call it
the low-rank NFK feature embedding.

We then illustrate how to estimate the eigenvalues and eigenfunctions of NFK Knfk from data. Given
dataset D, the Gram matrix K ∈ RN×N of kernel K is defined as K(xi,xj) = K(xi,xj). We
use X ≡ [xi]

N
i=1 to denote the matrix of all data examples, and use ϕi(X) ∈ RN to denote the

concatenated vector of evaluating i-th eigenfunction ϕi at all data examples. Then by performing
eigen-decomposition of the Gram matrix K = Φdiag(Λ)Φ⊤, the i-th eigenvector Φi ∈ RN and
eigenvalue Λi can be seen as unbiased estimation of the i-th eigenfunction ϕi and eigenvalue λi of
the kernel K, evaluated at training data examples X, ϕi (X) ≈

√
NΦi, λi ≈ 1

NΛi. Based on these
estimations, we can thus approximate the eigenfunction ϕi via the integral operator by Monte-Carlo
estimation with empirical data distribution,

λiϕi(x) =

∫
p(z)K(x, z)ϕi(z) dz ≈ Exj∈pdata

K(x,xj)ϕj(xj) ≈
1

N

N∑
j=1

K(x,xj)Φji (5)

Given new test data example x⋆, we can now approximate the eigenfunction evaluation ϕi(x
⋆) by

the projection of kernel function evaluation results centered on training data examples K(x⋆,X) ≡
[K(x⋆,xj)]

N
j=1 onto the i-th eigenvector Φi of kernel Gram matrix K. We adopt this method as the

baseline approach for low-rank approximation, and present the baseline algorithm description in
Alg. 1.

However, due to the fact that it demands explicit computation and manipulation of the Fisher vector
matrix V ∈ RN×|θ| and the Gram matrix K ∈ RN×N in Alg. 1, straightforward application of the
baseline approach, as well as other off-the-shelf classical kernel approximation (Williams and Seeger,
2000; Rahimi and Recht, 2007) and SVD methods (Halko et al., 2011), are practically infeasible to
scale to larger-scale machine learning settings, where both the number of data examples N and the
number of model parameters |θ| can be extremely large.

To tackle the posed scalability issue, we propose a novel highly efficient and scalable algorithm for
computing low-rank approximation of NFK. Given dataset D and model f(x;θ), We aim to compute
the truncated SVD of the Fisher vector matrix V = Φdiag(Σ)P⊤,P ∈ R|θ|×k. Based on the idea of
power methods (Golub and Van der Vorst, 2000; Bathe, 1971) for finding leading top eigenvectors, we
start from a random vector v0 and iteratively construct the sequence vt+1 = VV⊤vt

∥VV⊤vt∥ . By leveraging

the special structure of V that it can be obtained from the Jacobian matrix Jθ(X) ∈ RN×|θ| up
to element-wise linear transformation under the NFK formulation in Sec. 3, we can decompose
each iterative step into a Jacobian Vector Product (JVP) and a Vector Jacobian Product (VJP). With
modern automatic-differentiation techniques, we can evaluate both JVP and VJP efficiently, which
only requires the same order of computational costs of one vanilla backward-pass and forward-pass
of neural networks respectively. With computed truncated SVD results, we can approximate the
projection term in Eq. 5 by K (x,X)

⊤
Φi = VxV

⊤Φi ≈ Vxdiag(Σi)Pi, which is again in the JVP
form so that we can pre-compute and store the truncated SVD results and evaluate the eigenfunction
of any test data example via one efficient JVP forward-pass. We describe our proposed algorithm
briefly in Alg. 2.

4 EXPERIMENTS

In this section, we evaluate NFK in the following settings. We first evaluate the proposed low-rank
kernel approximation algorithm (Sec. 3.2), in terms of both approximation accuracy and running
time efficiency. Next, we evaluate NFK on various representation learning tasks in both supervised,
semi-supervised and unsupervised learning settings.
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Figure 3: Top row: Running time efficiency evaluation for truncated SVD algorithm on single GPU.
We vary the number of data examples used, shown in x-axis. y-axis denotes the wall-clock running
time (in seconds). Red crosses mark the cases when it is no longer possible for the baseline method to
obtain the results in an affordable waiting time and memory consumption. Bottom left: Running time
costs with different number of GPUs used in our distributed SVD implementation. Bottom right:
Approximation errors (in blue) of our proposed implementation for each eigenmode (in descending
order of eigenvalues), v.s. the explained variance (in red). Best viewed in color.

4.1 QUALITY AND EFFICIENCY OF LOW-RANK NFK APPROXIMATIONS

We implement our proposed low-rank kernel approximation algorithm in Jax (Bradbury et al., 2018)
with distributed multi-GPU parallel computation support. For the baseline methods for comparison,
we first compute the full kernel Gram matrix using the neural-tangets (Novak et al., 2020)
library, and then use sklearn.decomposition.TruncatedSVD to obtain the truncated SVD
results. All model and algorithm hyper-parameters are included in the Appendix.

Computational Costs. We start by comparing running time costs of computing top NFK eigen-
vectors via truncated SVD. We use two models for the comparison, a DCGAN-like GAN model
in (Zhai et al., 2019) and a Wide ResNet (WRN) with 40 layers and 2 times wider than original
network (denoted as WRN-40-2). Please see appendix for the detailed description of hyper-parameters.
We observed that our proposed algorithm could achieve nearly linear time scaling, while the baseline
method would not be able to handle more than 214 data examples as the memory usage and time
complexity are too high to afford. We also see in Fig. 3 that by utilizing multi-GPU parallelism, we
achieved further speed-up which scales almost linearly with the number of GPUs. We emphasize that
given the number of desired eigenvectors, the time complexity of our method scales linearly with
the number of data examples and the demanded memory usage remains constant with adequate data
batch size, since explicit computation and storage of the full kernel matrix is never needed.

Approximation accuracy. We investigate the approximation error of our proposed low-rank approxi-
mation method. Since we did not introduce any additional approximations, our method shares the
same approximation error bound with the existing randomized SVD algorithm (Martinsson and Tropp,
2020; Halko et al., 2011) and would only expect differences compared to the baseline randomized
SVD algorithm up to numerical errors. To evaluate the quality of the low-rank kernel approximation,
we use LeNet-5 and compute its full NFK Gram matrix on MNIST dataset. Please see appendix for
detailed hyper-parameter setups. We show in Fig. 3 the approximation errors of top-128 eigenvalues
along with corresponding explained variances. We obtain less than 1e− 8 absolute error and less
than 1e− 7 relative error in top eigen-modes which explains most of the data.
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Table 1: CIFAR-10 accuracies of linear evaluation on top of representations learned with unsupervised
and self-supervised methods. NFK-128d denotes the 128 dimensional embeddings from the low-rank
approximation of the NFK (ie AFV). Remarkably, we can use 128 dimensions to exactly recover the
performance of the 5.9M dimensional Fisher Vectors.

Model Acc Category #Features
Examplar CNN (Dosovitskiy et al., 2015) 84.3 Unsupervised -
BiGAN (Mu et al., 2020) 70.5 Unsupervised -
RotNet Linear (Gidaris et al., 2018) 81.8 Self-Supervised ∼ 25K
AET Linear (Zhang et al., 2019) 83.3 Self-Supervised ∼ 25K
VAE(Mu et al., 2020) 61.5 Unsupervised -
VAE-NFK-128d (ours) 63.2 Unsupervised 128
VAE-NFK-256d (ours) 68.7 Unsupervised 256

GAN-Supervised 92.7 Supervised -
GAN-Activations 65.3 Unsupervised -
GAN-AFV (Zhai et al., 2019) 89.1 Unsupervised 5.9M
GAN-AFV (re-implementation) (Zhai et al., 2019) 89.8 Unsupervised 5.9M
GAN-NFK-128d (ours) 89.8 Unsupervised 128
GAN-NFK-256d (ours) 89.8 Unsupervised 256

4.2 LOW-RANK NFK EMBEDDING AS DATA REPRESENTATIONS

In this section we evaluate NFK to answer the following: Q1. In line with the question raised in Sec. 1,
how does our proposed low-rank NFK embedding differ from the intermediate layer activations
for data representation? Q2. How does the low-rank NFK embedding compare to simply using
gradients (Jacobians) as data representation? Q3. To what extent can the low-rank NFK embedding
preserve the information in full Fisher vector? Q4. Does the NFK embedding representation lead
to better generalization performance in terms of better sample efficiency and faster adaptation?
We conduct comparative studies on different tasks to understand the NFK embedding and present
empirical observations to answer these questions in following sections.

NFK Representations from Unsupervised Generative Models. In order to examine the effective-
ness of the low-rank NFK embeddings as data representations in unsupervised learning setting, we
consider GANs and VAEs as representative generative models and compute the low-rank NFK embed-
dings. Then we adopt the linear probing protocol by training a linear classifier on top of the obtained
embeddings and report the classification performance to quantify the quality of NFK data representa-
tion. For GANs, we use the same pretrained GAN model from (Zhai et al., 2019) and reimplemented
the AFV baseline. For VAEs, we follow the same model architecture proposed in (Child, 2020). We
then apply the proposed truncated SVD algorithm with 10 power iterations to obtain the 256 dimen-
sional embedding via projection. We present our results on CIFAR-10 (Krizhevsky et al., 2009a) in
Table. 1. We use GAN-NFK-128d (GAN-NFK-256d) to denote the NFK embedding obtained from
using top-128 (top-256) eigenvectors in our GAN model. Our VAE models (VAE-NFK-128d and
VAE-NFK-256d) follow the same notations. For VAE baselines, the method proposed in (Mu et al.,
2020) combines both gradients features and activations-based features into one linear model, denoted
as VAE in the table. For GAN baselines, we first consider using intermediate layer activations only
as data representation, referred to as the GAN-Activations model. We then consider using full
Fisher vector as representation, namely using the normalized gradients w.r.t all model parameters
as features, denoted as the GAN-AFV model as proposed in (Zhai et al., 2019). Moreover, we also
compare our results against training whole neural network using data labels in a supervised learning
way, denoted as GAN-Supervised model.

As shown in Table. 1, by contrasting against the baseline GAN-AFV from GAN-Activations, as
well as validation in recent works (Zhai et al., 2019; Mu et al., 2020), gradients provide additional
useful information beyond layer activations based features. However, it would be impractical to use
all gradients or full Fisher vector as representation when scaling up to large-scale neural network
models. For example, VAE (Child, 2020) has ∼ 40M parameters, it would not be possible to apply
the baseline methods directly. Our proposed low-rank NFK embedding approach addressed this
challenge by building low-dim vector representation from efficient kernel approximation algorithm,
making it possible to utilize all model parameters’ gradients information by embedding it into a low-
dim vector, e.g. 256-dimensional embedding in VAE-NFK-256d from ∼ 40M parameters. As our
low-rank NFK embedding is obtained by linear projections of full Fisher vectors, it naturally provides
answers for Q2 that the NFK embedding can be viewed as a compact yet informative representation
containing information from all gradients. We see from Table. 1 that by using top-128 eigenvectors,
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Table 2: Error rates of semi-supervised classification on CIFAR10 and SVHN, varying labels from 500
to 4000. NFK-128d yields extremely competitive performance, compared to other more sophisticated
baselines, Mixup (Zhang et al., 2018), VAT (Miyato et al., 2019), MeanTeacher(Tarvainen and Valpola,
2017), MixMatch (Berthelot et al., 2019), Improved GAN(Salimans et al., 2016), all are jointly learns
with labels, . Also note that the architecture used by MixMatch yields a 4.13% supervised learning
error rate, which is a much stronger than our supervised baseline (7.3%).

Model Category CIFAR-10 SVHN
500 1000 2000 4000 500 1000 2000 4000

Mixup Joint 36.17 25.72 18.14 13.15 29.62 16.79 10.47 7.96
VAT Joint 26.11 18.68 14.40 11.05 7.44 5.98 4.85 4.20
MeanTeacher Joint 47.32 42.01 17.32 12.17 6.45 3.82 3.75 3.51
MixMatch Joint 9.65 7.75 7.03 6.24 3.64 3.27 3.04 2.89
Improved GAN Joint - 19.22 17.25 15.59 18.44 8.11 6.16 -
NFK-128d (ours) Pretrained 20.68 14.77 13.82 12.95 8.74 4.47 3.82 3.19

Table 3: Supervised knowledge distillation results (classification accuracy on test dataset) on CIFAR10
against baseline methods KD (Hinton et al., 2015), FitNet (Romero et al., 2015), AT (Zagoruyko and
Komodakis, 2017), NST (Huang and Wang, 2017), VID-I (Ahn et al., 2019), numbers are from (Ahn
et al., 2019).

Teacher Student KD FitNet AT NST VID-I NFKD (ours)
ACC 94.26 90.72 91.27 90.64 91.60 91.16 91.85 92.42

the low-rank NFK embedding is able to recover the performance of full ∼ 5.9M -dimension Fisher
vector, which provides positive evidence for Q3 that we can preserve most of the useful information
in Fisher vector by taking advantage of the low-rank structure of NFK spectrum.

NFK Representations for Semi-Supervised Learning. We then test the low-rank NFK embeddings
in the semi-supervised learning setting. Following the standard semi-supervised learning benchmark
settings (Berthelot et al., 2019; Miyato et al., 2019; Laine and Aila, 2017; Sajjadi et al., 2016;
Tarvainen and Valpola, 2017), we evaluate our method on CIFAR-10 (Krizhevsky et al., 2009a) and
SVHN datasets (Krizhevsky et al., 2009b). We treat most of the dataset as unlabeled data and use
few examples as labeled data. We use the same GAN model as the unsupervised learning setting
above, and compute top-128 eigenvectors using training dataset (labeled and unlabeled) to derive the
128-dimensional NFK embedding. Then we only use the labeled data to train a linear classifier on top
of the NFK embedding features, denoted as the NFK-128d model. We vary the number of labeled
training examples and report the results in Table. 2, in comparison with other baseline methods.
We see that NFK-128d achieves very competitive performance. On CIFAR-10, NFK-128d is
only outperformed by the state-of-the-art semi-supervised learning algorithm MixMatch (Berthelot
et al., 2019), which also uses a stronger architecture than ours. The results on SVHN are mixed
though NFK-128d is competitive with the top performing approaches. The results demonstrated the
effectiveness of NFK embeddings from unsupervised generative models in semi-supervised learning,
showing promising sample efficiency for Q4.

NFK Representations for Knowledge Distillation. We next test the effectiveness of using low-rank
NFK embedding for knowledge distillation in the supervised learning setting. We include more
details of the distillation method in the Appendix. Our experiments are conducted on CIFAR10, with
a teacher set as the WRN-40-2 model and student being WRN-16-1. After training the teacher, we
compute the low-rank approximation of NFK of the teacher model, using top-20 eigenvectors. We
include more details about the distillation method setup in the Appendix. Our results are reported in
Table. 3. We see that our method achieves superior results compared to other competitive baseline
knowledge distillation methods, which mainly use the logits and activations from teacher network as
distillation target.

5 CONCLUSIONS

In this work, we propose a novel principled approach to representation extraction from pre-trained
neural network models. We introduce NFK by extending the Fisher kernel to neural networks in
both unsupervised learning and superevised learning settings, and propose a novel low-rank kernel
approximation algorithm, which allows us to obtain a compact feature representation in a highly
efficient and scalable way.
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A EXTENDED PRELIMINARIES

We extend Sec. 2 to introduce additional technical background and related work.

Kernel methods in Deep Learning. Popularized by the NTK work Jacot et al. (2018), there has
been great interests in the deep learning community around the kernel view of neural networks. In
particular, several works have studied the low-rank structure of the NTK, including (Baratin et al.,
2021; Papyan, 2020; Canatar et al., 2020), which demonstrate that empirical NTK demonstrates
low-rankness and that encourages better generalization theoretically. Our low-rank analysis of NFK
shares a similar flavor, but generalizes across supervised and unsupervised learning settings. Besides,
we make an explicit effort in proposing an efficient implementation of the low-rank approximation,
and demonstrate strong empirical performances.

Unsupervised/self supervised representation learning. Unsupervised representation learning is an
old idea in deep learning. A large body of work is dedicated to designing better learning objectives
(self supervised learning), including denoising (Vincent et al., 2010), contrastive learning (Oord et al.,
2018; Chen et al., 2020b; He et al., 2020), mutual information based methods (Hjelm et al., 2019;
Poole et al., 2019; Zhang et al., 2020) and other “pretext tasks" Jing and Tian (2020). Our attempt
falls into the same category of unsupervised representation learning, but differs in that we instead
focus on effectively extracting information from a standard probabilistic model. This makes our effort
orthogonal to many of the related works, and can be easily plugged into different family of models.

Knowledge Distillation. Knowledge distillation (KD) is generally concerned about the problem of
supervising a student model with a teacher model (Hinton et al., 2015; Ba and Caruana, 2014). The
general form of KD is to directly match the statistics of one or a few layers (default is the logits).
Various works have studied the layer selection (Romero et al., 2015) or loss function design aspects
(Ahn et al., 2019). More closely related to our work is efforts that consider the second order statistics
between examples, including (Tung and Mori, 2019; Tian et al., 2020). NFKD differs in that we
represent the teacher’s knowledge in the kernel space, which is directly tied to the kernel interpretation
of neural networks which introduces different inductive biases than layerwise representations.

Neural Tangent Kernel. Recent advancements in the understanding of neural networks have shed
light on the connection between neural network training and kernel methods. In (Jacot et al., 2018),
it is shown that one can use the Neural Tangent Kernel (NTK) to characterize the full training of a
neural network using a kernel. Let f(θ;x) denote a neural network function with parameters θ. The
NTK is defined as follows:

Kntk(x, z) = Eθ∼Pθ
⟨∇θf(θ;x),∇θf(θ; z)⟩ . (6)

where Pθ is the probability distribution of the initialization of θ. (Jacot et al., 2018) further
demonstrates that in the large width regime, a neural network undergoing training under gradi-
ent descent essentially evolves as a linear model. Let θ0 denote the parameter values at ini-
tialization. To determine how the function ft(θt;x) evolves, we may naively taylor expand
the output around θ0: ft+1(θt+1;x) ≈ ft(θt;x) − η∇θtft(θt;x)

⊤(θt+1 − θt). As the weight
updates are given by θt−1 − θt = − 1

N η
∑m

i=1 ∇θt
Lt(xi), hence we have ft+1(θt+1;x) ≈

ft(θt;x)− η 1
N

∑N
i=1 Kntk(x,xi)∇fLt(xi).

The significance of the NTK stems from two observations. 1) When suitably initialized, the NTK
converges to a limit kernel when the width tends to infinity limwidth→∞ Kntk(x, z;θ0) = K̊ntk(x, z).
2) In that limit, the NTK remains frozen in its limit state throughout training.

B ON THE CONNECTIONS BETWEEN NFK AND NTK

In Sec 3.1, we showed that our definition of NFK in the supervised learning setting bares great
similarity to the NTK. We provide more discussion here on the connections between NFK and NTK.

For the L2 regression loss function, the empirical fisher information reduces to I =
1
N

∑N
i=1 ∇θfθ(x)∇θfθ(x)

⊤. Note that the fisher information matrix I is give by a covariance
matrix of J , while the NTK matrix is defined as the Gram matrix of J , where J is the Jacobian matrix,
implying they share the same spectrum, and that the NTK and the NFK share the same eigenvectors.
The addition of I−1 in the definition of Knfk can be seen as a form of conditioning, facilitating fast
convergence in all directions spanned by J .
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Algorithm 3 Our proposed method: compute low-rank NFK feature embedding

1: V = Φdiag(Σ)P⊤,P ∈ R|θ|×k via truncated_svd(X, fθ, topk=K,
kernel_type="NFK")

2:
3: compute K (x,X)

⊤
Φi ≈ Vxdiag(Σi)Pi via JVP evaluation

4: obtain enfk(x
∗) ∈ Rk via Eq. 5 and Eq. 4

Equation 3 also has immediate connections to NTK. In NTK, the kernel Kntk(x, x̄) ∈ RN×N is
a matrix which measures the dot product of Jacobian for every pair of logits. The NFK, on the
other hand, reduces the Jacobian ∇θfθ(x) for each example x to a single vector of dimension
n (i.e., size of θ), weighted by the predicted probability of each class pθ(y|x). The other no-
table difference between NFK and NTK is the subtractive and normalize factors, represented by
Ex′∼pθ(x′)

∑
y pθ(y|x)∇θf

y
θ (x

′) and I, respectively. This distinction is related to the difference
between Natural Gradient Descent (Amari, 1998; Karakida and Osawa, 2020) and gradient descent.
In a nutshell, our definition of NFK in the supervised learning setting can be considered as a reduced
version of NTK, with proper normalization. These properties make NFK much more scalable w.r.t.
the number of classes, and also less sensitive to the scale of model’s parameters.

To better see this, we can define an “unnormalized" version of NFK as Ku(x, x̄) = [
∑

y pθ(y |
x)∇θf

y
θ (x)]

⊤ ∑
y pθ(y | x̄)∇θf

y
θ (x̄). It is easy to see that Ku has the same rank as the original

NFK K, as I−1 is full rank by definition. We can then further rewrite it as

Ku(x, x̄) =
∑
y

∑
ȳ

pθ(y | x)pθ(ȳ|x̄)∇θf
y
θ (x)

⊤∇θf
ȳ
θ (x̄) =

∑
y

∑
ȳ

pθ(y | x)pθ(ȳ | x̄)Ky,ȳ
ntk (x, x̄)

(7)
In words, the unnormalized version of NFK can be considered as a reduction of NTK, where the
weights of each element is weighte by the predicted probability for the respective class. If we further
assume that the model of interest is well trained, as is often the case in knowledge distillation, we
can approximate the Ku as Ky∗,ȳ∗

ntk (x, x̄), where y∗ = argmaxy pθ(y | x) and likewise for ȳ∗. This
suggests that the unnormalized NFK can roughly viewd as a downsampled version of NTK. As a
result, we expect the unnormalized NFK (and hence the NFK) to exhibit similar low rank properties
as demonstrated in the NTK literature.

On the low-rank structure of NTK. Consider the NTK Gram matrix Kntk ∈ RN×N of some
network Given the dataset {xi}Ni=1 (for simplicity we assume a scalar output) and its eigen decompo-
sition Kntk =

∑m
j=1 λjuju

⊤
j . Let f ∈ RN denote the concatenated outputs. Under GD in the linear

regime, the outputs ft evolves according to:

∀j , u⊤
j (ft+1 − ft) ≈ −ηλju

⊤
j ∇fL. (8)

The updates ft+1 − ft projected onto the bases of the kernel therefore converge at different speeds,
determined by the eigenvalues {λj}. Intuitively, a good kernel-data alignment means that the ∇fL is
spanned by a few eigenvectors with large corresponding eigenvalues, speeding up convergence and
promoting generalization.

C NEURAL FISHER KERNEL WITH LOW-RANK APPROXIMATION

C.1 NEURAL FISHER KERNEL FORMULATION

We provide detailed derivations of the various NFK formulations presented in Section. 3.

NFK for Energy-based Models. Consider an Energy-based Model (EBM) pθ(x) =
exp(−E(x;θ))

Z(θ) ,
where E(x) is the energy function parametrized by θ and Z(θ) =

∫
exp(−E(x;θ)) dx is the
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Algorithm 4 truncated_svd, Truncated SVD Algorithm for Low-rank Kernel Approximation.
Comments are based on NTK for simplicity.

Input Dataset X ≡ {xi}Ni=1
Input Neural network model fθ
Input Kernel type kernel, NFK or NTK
Input Low-rank embedding size K
Input Number of power iterations L = 10
Input Number of over samples U = 10
Output Truncated SVD of Jacobian Jθ(X) ≈ PkΣkQ

⊤
k

1: U = K + U ▷ Size of augmented set of vectors in power iterations
2: Draw random matrix Ω ∈ RN×U

3: Ω =matrix_jacobian_product(fθ,X,Ω,kernel) ▷ Ω = Jθ(X)Ω ∈ RM×U

4: for step = 1 to L do
5: Ω =jacobian_matrix_product(fθ,X,Ω,kernel) ▷ Ω = J⊤

θ (X)Ω ∈ RN×U

6: Ω =matrix_jacobian_product(fθ,X,Ω,kernel) ▷ Ω = Jθ(X)Ω ∈ RM×U

7: Ω =qr_decomposition(Ω)
8: end for
9: B =jacobian_matrix_product(fθ,X,Ω,kernel) ▷ B = J⊤

θ (X)Ω ∈ RN×U

10: P,Σ,Q⊤ = svd(B⊤)
11: P = ΩP
12: Keep top rank-K vectors to obtain the truncated results Pk,Σk,Q

⊤
k

13: Return Pk,Σk,Q
⊤
k

Algorithm 5 jacobian_matrix_product
Input Neural network model fθ
Input Input data X ∈ RB×D, where B is batch size
Input Input matrix M
Input Kernel type kernel, NFK or NTK
Output J⊤

θ (X)M for NTK, Fisher-vector-matrix-product V ⊤
θ (X)M for NFK

1: jmp_fn = jax.vmap(jax.jvp)
2: P =jmp_fn(fθ,X,M)
3: if kernel = "NFK" then
4: P = diag(I)− 1

2 (P− Z⊤
θ M)

5: end if
6: Return P

partition function, we could apply the Fisher kernel formulation to derive the Fisher score Ux as

Ux = ∇θ log pθ(x) = ∇θ log [exp(−E(x;θ))]−∇θ logZ(θ)

= −∇θE(x;θ)−∇θ logZ(θ)

= −∇θE(x;θ)− Ex∼pθ(x)∇θ log [exp(−E(x;θ))]

= Ex∼pθ(x)∇θE(x;θ)−∇θE(x;θ)

(9)

Then we can obtain the FIM I and the Fisher vector Vx from above results, shown as below

I = Ex∼pθ(x)

[
UxU

⊤
x

]
Vx = I− 1

2Ux

(10)

NFK for GANs. As introduced in Section 3, we consider the EBM formulation of GANs. Given
pre-trained GAN model, we use D(x;θ) to denote the output of the discriminator D, and use G(h)
to denote the output of generator G given latent code h ∼ p(h). Then we have the energy-function
defined as E(x;θ) = −D(x;θ). Based on the NFK formulation for EBMs, we can simply substitute
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Algorithm 6 matrix_jacobian_product
Input Neural network model fθ
Input Input data X ∈ RB×D, where B is batch size
Input Input matrix M
Input Kernel type kernel, NFK or NTK
Output Jθ(X)M for NTK, Fisher-vector-matrix-product Vθ(X)M for NFK

1: mjp_fn = jax.vmap(jax.vjp)
2: P =mjp_fn(fθ,X,M)
3: if kernel = "NFK" then
4: P = diag(I)− 1

2 (P− ZθM)
5: end if
6: Return P

E(x;θ) = −D(x;θ) into Eq. 9 and Eq. 10 and derive the NFK formulation for GANs as below

Ux = ∇θD(x;θ)− Eh∼p(h)∇θD(G(h);θ)

I = Eh∼p(h)

[
UG(h)U

⊤
G(h)

]
Vx = (diag(I)− 1

2 )Ux

Knfk(x, z) = ⟨Vx, Vz⟩

(11)

Note that we use diagonal approximation of FIM throughout this work for the consideration of
scalability. Also, since the generator of GANs is trained to match the distribution induced by the
discriminator’s EBM from the perspective of variational training for GANs, we could use the samples
generated by the generator to approximate x ∈ pθ(x), which is reflected in above formulation.

NFK for VAEs, Flow-based Models, Auto-Regressive Models. For models including VAEs, Flow-
based Models, Auto-Regressive Models, where explicit or approximate density estimation is available,
we can simply apply the classical Fisher kernel formulation as introduced in the main text.

NFK for Supervised Learning Models. In the supervised learning setting, we consider conditional
probabilistic models pθ(y | x) = p(y | x;θ). In particular, we focus on classification problems
where the conditional probability is parameterized by a softmax function over the logits output
f(x;θ): pθ(y | x) = exp(fy(x;θ))/

∑
y exp(f

y(x;θ)), where y is a discrete label and fy(x;θ)
denotes y-th logit output. We then borrow the idea from JEM (Grathwohl et al., 2020) and write out a
joint energy function term over (x,y) as E(x,y;θ) = −fy(x;θ). It is easy to see that joint energy
yields exactly the same conditional probability, at the same time leading to a free energy function:

E(x;θ) = − log
∑
y

exp(fy(x;θ))

∇θE(x;θ) = −
∑
y

pθ(y | x)∇θf
y(x;θ)

(12)

Based on the NFK formulation for EBMs, we can simply substitute above results into Eq. 9 and
Eq. 10 and derive the NFK formulation for GANs as below

Ux =
∑
y

pθ(y | x)∇θf
y(x;θ)− Ex′∼pθ(x′)

∑
y

pθ(y | x)∇θf
y(x′;θ) (13)

I = Ex∼pθ(x)

[
UxU

⊤
x

]
Vx = (diag(I)− 1

2 )Ux

Knfk(x, z) = ⟨Vx, Vz⟩
(14)

C.2 EFFICIENT LOW-RANK NFK/NTK APPROXIMATION VIA TRUNCATED SVD

We provide mode details on experimental observations on the low-rank structure of NFK and the
low-rank kernel approximation algorithm here.
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(a) NFK

(b) PCA

Figure 4: Inverting a DCGAN with 100d NFK embeddings (a), compared with image reconstruction
with 100d PCA embeddings (b). In either case, the left plot corresponds to real test images and the
right corresponds to the reconstructions. Note that NFK embeddings care capable of inverting a
GAN by producing high quality semantic reconstructions. With PCA, embeddings with the same
dimensionality produces more blurry reconstructions (thus less semantic).

Low-Rank Structure of NFK.

For supervised learning models, we trained a LeNet-5 (LeCun et al., 1998) CNN and a 3-layer MLP
network by minimizing binary cross entropy loss, and then compute the eigen-decomposition of
the NFK Gram matrix. For unsupervised learning models, we trained a small unconditional DC-
GAN (Radford et al., 2016) model on MNIST dataset. We deliberately selected a small discriminator,
which consists of 17K parameters. Because of the relatively low-dimensionality of θ in the discrimi-
nator, we were able to directly compute the Fisher Vectors for a random subset of the training dataset.
We then performed standard SVD on the gathered Fisher Vector matrix, and examined the spectrum
statistics. In particular, we plot the explained variance ration quantity, defined as rk =

∑k
i=1 λ2

i∑
i=1 λ2

i
where

λi is the i-th singular value. In addition, we have also visualized the top 5 principle components, by
showing example images which have the largest projections on each component in Fig. 6.

Furthermore, we conducted a GAN inversion experiment. We start by sampling a set of latent variables
from the generator’s prior h ∈ p(h), and get a set of generated example {xi},xi = G(hi), i =
1, ..., n. We then apply Algorithm 2 on the generated example {xi} to obtain their NFK embeddings
{e(xi)}, and we set the dimension of both h and e to 100. We now have a compositional mapping
that reads as h → x → e. We then learn a linear mapping W ∈ R100×100 from {e(G(hi))} to {hi}
by minimizing

∑n
i=1 ∥hi −We(G(hi))∥2. In doing so, we have constructed an auto encoder from

a regular GAN, with the compositional mapping of x → e → h → x̃, where x̃ is the reconstruction
of an input x. The reconstructions are shown in Figure 4 (a). Interestingly, the 100d SVD embedding
gives rise to a qualitatively faithful reconstruction on real images. n contrast, a PCA embedding with
the same dimension gives much more blurry reconstructions (eg., noise in the background), as shown
in Figure 4 (b). This is a good indication that the 100d embedding captures most of the information
about an input example.

Power iteration of NFK as JVP/VJP evaluations. Our proposed algorithm is based on the Power
method Golub and Van der Vorst (2000); Bathe (1971) for finding the leading top eigenvectors of
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Figure 5: The low-rankness of the NFK on a DCGAN trained on MNIST. For a trained model,
the first 100 principle components of the Fisher Vector matrix explains 99.5% of all variances. An
untrained model with the same architecture on the other hand, demonstrates a much lower degree of
low-rankness.

Figure 6: Images with the largest projections on the first five principle components. Each row
corresponds to a principle component.

the real symmetric matrix. Starting from a random vector v0 drawn from a rotationally invariant
distribution and normalize it to unit norm ∥v0∥ = 1, the power method iteratively constructs the
sequence vt+1 = Kvt

∥Kvt∥ up to q power iterations. Given the special structure of K that it’s a Gram
matrix of the Jacobian matrix Jθ(X) ∈ RD×N , to evaluate Kvt in each power iteration step we
need to evaluate Jθ(X)⊤Jθ(X)vt, which can be decomposed as: (i) evaluating zt = Jθ(X)vt, and
then (ii) Kvt = Jθ(X)⊤zt. Note that when K is in the form of NTK of neural networks, step (i) of
evaluating zt is a Vector-Jacobian-Product (VJP) and step (ii) is a Jacobian-Vector-Product (JVP).
With the help of automatic-differentiation techniques, we can evaluate both JVP and VJP efficiently,
which only requires the same order of computational costs of one backward-pass and forward-pass of
neural networks respectively. In this way, we can reduce the Kernel matrix vector product operation
in each power iteration step to one VJP evaluation and one JVP evaluation, without the need to
computing and storing the Jacobian matrix and kernel matrix explicitly.

As introduced in Section. 3.2, we include detailed algorithm description here, from Algorithm. 3
to Algorithm. 6. In Algorithm. 3, we show the algorithm to compute the low-rank NFK em-
bedding, which can be used as data representations. In Algorithm. 4, we present our proposed
automatic-differentiation based truncated SVD algorithm for kernel approximation. Note that in
Algorithm. 5 and 6, we only need to follow Equation. 3 to pre-compute the model distribution
statistics, Zθ = Ex′∼pθ(x′)

∑
y pθ(y|x)∇θf

y
θ (x

′), and FIM I = Ex′∼pθ(x′)[Ux′U⊤
x′ ]. We adopt
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Figure 7: Linear probing accuracy on CIFAR10 with different number of principle components in
embedding. We use our proposed low-rank approximation method to compute the embedding from
the teacher model on CIFAR10 for knowledge distillation.

the EBM formulation of classifier fθ(x) then replace the Jacobian matrix Jθ(X) with the Fisher
vector matrix Vθ(X) = diag(I)− 1

2 (Jθ(X)− Zθ). Note that our proposed algorithm is also readily
applicable to empirical NTK via replacing the FIM by the identity matrix.

D EXPERIMENTS SETUP

D.1 QUALITY ANDEFFICIENCY OFLOW-RANKNFK APPROXIMATIONS

Experiments on Computational Cost. We randomly sample N ∈
{
2k : 7 ≤ k ≤ 16

}
data examples

from CIFAR-10 dataset, and compute top-32 eigenvectors of the NFK Gram matrix (RN×N ) by
truncated SVD. We use same number of power iterations (10) in baseline method and our algorithm.
We show in Fig. 3 the running time of SVD for both methods in terms of number of data examples N .

Experiments on Approximation Accuracy. We randomly sample 10000 examples and compute
top-128 eigenvalues using both baseline methods and our proposed algorithm. Specifically, we
compute the full Gram matrix and perform eigen-decomposition to obtain baseline results. For our
implementation, we run 10 power iterations in randomized SVD.

D.2 NEURAL FISHER KERNEL DISTILLATION

With the efficient low-rank approximation of NFK, one can immediately obtain a compact representa-
tion of the kernel. Namely, each example can be represented as a k dimension vector. Essentially, we
have achieved a form of kernel distillation, which is a useful technique on its own.

Furthermore, we can use Q as an generalized form for teacher student styled knowledge distillation
(KD), as in (Hinton et al., 2015). In standard KD, one obtain a teacher network (e.g., deep model)
and use it to train a student network (e.g., a shallow model) with a distillation loss in the following
format:

Lkd(x,y) = α ∗ Lcls(fs(x),y) + (1− α) ∗ Lt(fs(x), ft(x)), (15)

where Lcls is a standard classification loss (e.g., cross entropy) and Lt is a teacher loss which
forces the student network’s output fs to match that of the teacher ft. We propose a straightforward
extension of KD with NFK, where we modify the loss function to be:

Lnfkd(x,y) = α ∗ Lcls(fs(x),y) + (1− α) ∗ Lt(hs(x), Qt(x)), (16)

where Qt(x) denotes the k dimensional embedding from the SVD of teacher NFK, for example x. hs

is a prediction head from the student, and Lt is overloaded to denote a suitable loss (e.g., ℓ2 distance
or cosine distance). Equation 16 essentially uses the low dimension embedding of the teacher’s NFK
as supervision, inplace of the teacher’s logits. There are arguable benefits of using Lnfkd over Lkd.
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For example, when the number of classes is small, the logit layer contains very little extra information
(measured in number of bits) than the label alone, whereas Qt can still provide dense supervision to
the student.

For the Neural Fisher Kernel Distillation (NFKD) experiments, we adopt the WideResNet-
40x2 (Zagoruyko and Komodakis, 2016) neural network as the teacher model. We train another
WideResnet with 16 layers as the student model, and keep the width unchanged. We run 10 power
iterations to compute the SVD approximation of the NFK of the teacher model, to obtain the top-20
eigenvectors and eigenvalues. Then we train the student model with the additional NFKD distillation
loss using mini-batch stochastic gradient descent, with 0.9 momentum, for 250 epochs. The initial
learning rate begins at 0.1 and we decay the learning rate by 0.1 at 150-th epoch and decay again
by 0.1 at 200-th epoch. We also show the linear probing accuracies on CIFAR10 by using different
number of embedding dimensions in Figure. 7.
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