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Abstract
We study the problem of distributed distinct el-
ement estimation, where α servers each receive
a subset of a universe [n] and aim to compute a
(1 + ε)-approximation to the number of distinct
elements using minimal communication. While
prior work establishes a worst-case bound of
Θ
(
α log n+ α

ε2

)
bits, these results rely on as-

sumptions that may not hold in practice. We
introduce a new parameterization based on the
number C = β

ε2 of pairwise collisions, i.e., in-
stances where the same element appears on multi-
ple servers, and design a protocol that uses only
O
(
α log n+

√
β

ε2 log n
)

bits, breaking previous
lower bounds when C is small. We further im-
prove our algorithm under assumptions on the
number of distinct elements or collisions and pro-
vide matching lower bounds in all regimes, es-
tablishing C as a tight complexity measure for
the problem. Finally, we consider streaming algo-
rithms for distinct element estimation parameter-
ized by the number of items with frequency larger
than 1. Overall, our results offer insight into why
statistical problems with known hardness results
can be efficiently solved in practice.

1. Introduction
Estimating the number of distinct elements in a large dataset
is a fundamental question that was first introduced by Fla-
jolet and Martin (Flajolet & Martin, 1985) and has subse-
quently received significant attention, e.g., (Cohen, 1997;
Alon et al., 1999; Bar-Yossef et al., 2002; Durand & Flajolet,
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2003; Raskhodnikova et al., 2009; Kane et al., 2010; Cor-
mode et al., 2011; Woodruff & Zhang, 2012; 2014; Braver-
man et al., 2018; Blasiok, 2020; Woodruff & Zhou, 2021;
Ajtai et al., 2022; Blocki et al., 2023; Jain et al., 2023;
Gribelyuk et al., 2024) due to both the simplicity of the
question as well as its wide range of applications. We study
the problem of distinct element estimation in a distributed
setting, so that there are α servers that each receive a sub-
set of the universe [n] := {1, . . . , n}. The goal is for the
servers to execute a protocol that can approximate the to-
tal number of distinct elements, which is the number of
coordinates j ∈ [n] that appears in at least some server.
The protocol should use as small of an amount of total
communication as possible, where the total communica-
tion is the sum of the sizes of all messages exchanged in
the protocol in the worst-case. To capture approximation,
for a prescribed accuracy parameter ε ≥ 0, the goal is to
output a (1 + ε)-approximation to the number of distinct
elements. The problem of distinct element estimation across
a distributed dataset has a large number of applications,
including database design (Finkelstein et al., 1988), data
warehousing (Acharya et al., 1999; Gibbons, 2001), network
traffic monitoring (Akella et al., 2003; Estan et al., 2003;
Liu et al., 2020), internet mapping (Palmer et al., 2001),
and online analytic processing (OLAP) (Shukla et al., 1996;
Padmanabhan et al., 2003).

In the context of machine learning, distributed distinct ele-
ment estimation plays a crucial role in many applications
where data is distributed across multiple nodes or servers.
For instance, in collaborative filtering (Resnick et al., 1994),
such as recommendation systems (Aggarwal, 2016; Koren
et al., 2009), estimating the distinct preferences or behav-
iors of users across various platforms requires efficient dis-
tributed algorithms. Similarly, in anomaly detection (Chan-
dola et al., 2009), identifying rare or novel events across
different data sources—such as network traffic or sensor
data—requires tracking unique occurrences without cen-
tralized data aggregation. Distributed distinct element es-
timation is also relevant in federated learning (McMahan
et al., 2017), where machine learning models are trained
across decentralized devices while keeping data local. Es-
timating the number of distinct features or labels across
distributed devices is essential for improving training effi-
ciency. In large-scale graph analysis (Malewicz et al., 2010;
Gonzalez et al., 2014), where nodes or edges are distributed
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across servers, this problem helps in tasks like counting
distinct subgraphs or community structures. Additionally,
in streaming data applications (Manku & Motwani, 2002),
such as real-time monitoring or natural language process-
ing, estimating the diversity of items in large data streams
is essential for efficient data summarization and decision-
making.

(Kane et al., 2010; Blasiok, 2020) gave a one-pass stream-
ing algorithm for achieving a (1 + ε)-approximation to the
number of distinct elements on a dataset from a universe
of size [n], using O

(
1
ε2 + log n

)
bits of space. This can

be transformed into a distributed protocol across α servers
that uses O

(
α
ε2 + α log n

)
bits of communication, since

each server can locally simulate the streaming algorithm
on their dataset and then pass the state of the algorithm
to the next server. On the lower bound side, (Cormode
et al., 2011) showed that distributed distinct element estima-
tion requires Ω(α) communication, while (Arackaparambil
et al., 2009; Chakrabarti & Regev, 2012) showed a lower
bound of Ω

(
1
ε2

)
. These lower bounds were then subse-

quently strengthened by (Woodruff & Zhang, 2012) and
finally (Woodruff & Zhang, 2014) for all parameter regimes
to Ω

(
α
ε2 + α log n

)
, seemingly resolving the problem by

showing that the protocol of (Kane et al., 2010; Blasiok,
2020) is optimal.

However, the lower bound instance of (Woodruff & Zhang,
2014) requires a constant fraction of coordinates to appear
across a constant fraction of servers, which may be unreal-
istic in many applications. For example, in traffic network
monitoring, suppose each server oversees a flow of commu-
nication, corresponding to messages from individuals, so
that the coordinates of the universe would correspond to IP
addresses of the senders of the messages. Then the lower
bound instance of (Woodruff & Zhang, 2014) would require
that a constant fraction of IP addresses send messages to a
constant fraction of the servers, i.e., it requires a constant
fraction of all senders to be high volume. In reality, previous
studies have shown that internet traffic patterns (Adamic &
Huberman, 2002) often follow a Zipfian distribution, i.e., a
polynomial decay law, c.f., Definition A.1.

More generally, it has long been observed that many large
datasets across other domains follow a Zipfian distribu-
tion. For example, the distribution of words in a natu-
ral language (Zipf, 2013), e.g., user passwords (Wang &
Wang, 2016; Wang et al., 2017; Blocki et al., 2018; Hou
& Wang, 2023), the distribution of degrees in the internet
graph (Kleinberg et al., 1999), and the distribution of pop-
ulation sizes (Gabaix, 1999; Rhodes, 2023) have all been
commonly observed to follow a Zipfian distribution. Indeed,
(Mitzenmacher, 2003) claims that “power law distributions
are now pervasive in computer science”. Thus it seems
natural to ask

Does the distributed distinct element estimation
problem still require Ω

(
α
ε2 + α log n

)
communi-

cation across more “realistic” distributions?

1.1. Our Contributions

In this paper, we give a resounding negative answer to the
above question, translating to positive algorithmic results
that break previous impossibility barriers. We introduce a
novel parameterization of the distributed distinct element
estimation problem, showing that although previous upper
and lower bounds show optimality for the worst-case input,
these hardness of approximation results do not necessar-
ily apply across various regimes of our parameterization.
Namely, we show that the complexity of the problem can
be characterized by the number of pairwise collisions in
the dataset. Formally, for vectors v(1), . . . , v(α) ∈ {0, 1}n,
we define the number of pairwise collisions to be the num-
ber of ordered triplets (a, b, i) such that 1 ≤ a < b ≤ α,
i ∈ [n], and v

(a)
i = v

(b)
i = 1. We remark that the as-

sumption that the vectors v(i) are binary is without loss
of generality, as it turns out the resulting protocols and
reductions will behave the same regardless of whether a
server has a single instance or multiple instances of a coor-
dinate. Nevertheless for the sake of completeness, for vec-
tors v(1), . . . , v(α) ∈ {0, 1, . . . ,m}n, we define the number
of pairwise collisions to be the number of ordered triplets
(a, b, i) such that 1 ≤ a < b ≤ α, i ∈ [n], and v

(a)
i ≥ 1 and

v
(b)
i ≥ 1.

We first show a general protocol for the distributed distinct
element estimation problem across general ranges of F0(S),
the number of distinct elements in the dataset S that is the
union of all items given to all servers.

Theorem 1.1. Given a dataset S on a universe of size n
with C = β ·O

(
min

(
F0(S),

1
ε2

))
pairwise collisions for a

parameter β ≥ 1, distributed across α players, there exists
a protocol that computes a (1 + ε)-approximation to F0(S)
with probability at least 2

3 that uses

O (α log n) +O

(
min

(
F0(S),

1

ε2

))
·
√
β log n

bits of communication.

Theorem 1.1 shows that the Ω
(

α
ε2

)
lower bound of

(Woodruff & Zhang, 2014) need not apply when the num-
ber of pairwise collisions is in the range of o(α2 · F0(S)).
That is, the lower bound of (Woodruff & Zhang, 2014) only
applies when there is a constant fraction of coordinates that
appear across a constant fraction of servers.

In the case where the number of pairwise collisions is less
than the number of distinct elements, e.g., C < F0(S),
we can further improve the guarantees of our protocol as
follows:
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Theorem 1.2. Given a dataset S on a universe of size n
with the promise that there are at most C ≤ F0(S) pair-
wise collisions, distributed across α players, there exists a
protocol that uses total communication

Õ

(
α log n+max

(
1

F0(S)
, ε2
)
· C
ε2

log n

)
bits, and with probability at least 2

3 , outputs a (1 + ε)-
approximation to F0(S).

Theorem 1.2. Given a dataset S on a universe of size n
with the promise that there are at most C ≤ F0(S) pair-
wise collisions, distributed across α players, there exists a
protocol that uses total communication

Õ

(
α log n+max

(
1

F0(S)
, ε2
)
· C
ε2

log n

)
bits, and with probability at least 2

3 , outputs a (1 + ε)-
approximation to F0(S).

Proof. Consider Algorithm 2. Recall that with probabil-
ity at least 0.99, (1 − O (ε))F0(S) ≤ F0(Si) · 2i ≤
(1 +O (ε))F0(S). Thus it suffices to achieve a (1 +O (ε))
approximation to F0(Si). For each j ∈ [n], let fj be the
number of times j appears in Si. Then we have

F0(Si) = F1(Si)−min(0, f1− 1)− . . .−min(0, fj − 1).

Let tj = min(0, fj − 1) for all j ∈ [n] be the excess mass
of j, so that

F0(Si) = F1(Si)− (t1 + . . .+ tn).

Let E be the event that X is a 4-approximation to F0(Si).
Since Z = F1(Si) in the context of Algorithm 2 and X is a
4-approximation to F0(Si) conditioned on E , then it suffices
to achieve an additive η ·X = O (ε) ·F0(Si) approximation
to (t1 + . . .+ tn) for η = ε

10 .

Observe that the expected value of W · 1p satisfies

E
[
W · 1

p

]
=

1

p
·
∑
j∈[n]

p · tj = t1 + . . .+ tn.

Moreover, we can upper bound the variance

V
[
W · 1

p

]
≤ 1

p2
·
∑
j∈[n]

p · (tj)2.

Since p = min
(
1, 100C

η2X2

)
and (t21 + . . .+ t2n) ≤ C, then

V
[
W · 1

p

]
≤ η2X2

100C

(
t21 + . . .+ t2n

)2 ≤ η2X2

100
.

Hence by Chebyshev’s inequality, we have that with proba-
bility at least 0.99, W · 1p provides an additive η ·X error
to (t1 + . . . + tn), conditioned on E . By Lemma 2.4, we
have that Pr [E ] ≥ 0.99. Thus by a union bound, with
probability at least 0.98, Algorithm 2 outputs a (1 + ε)-
approximation to F0. Observe that conditioned on the event
E , we have X ≤ O

(
1
ε2

)
. Since the number of pairwise col-

lisions is at most C, then F1(Si) ≤ X + C. Let Y denote
the number of items from T sent across all players. Then
we have E [Y ] ≤ p(X + C). We have p = min

(
1, 100C

η2X2

)
for η = ε

10 . Note that then for F0(S) = Ω
(

1
ε2

)
, we have

E [Y ] ≤ O

(
C

ε2X
+

C2

ε2X2

)
.

Since C ≤ F0(S) = O (X), then E [Y ] = O
(

C
ε2·F0(S)

)
.

Otherwise for F0(S) = O
(

1
ε2

)
, we have E [Y ] = O (C).

The desired claim then follows from Markov’s inequality.

While ascertaining the number of pairwise collisions itself
may be a difficult challenge and possibly lead to a chicken-
and-egg problem, we remark that computing a loose upper
bound C on the number of collisions can be performed much
easier, particularly given distributional or other a priori side
information about the number of collisions. For example,
additional knowledge about the number of collisions can be
collected using previous datasets from a similar source, in
a similar vein to the auxiliary input that is often utilized by
learning-augmented algorithms (Mitzenmacher, 2018; Bal-
can, 2020; Mitzenmacher & Vassilvitskii, 2020). We also
remark that the number of pairwise collisions is an important
statistic in other problems, such as uniformity testing (Di-
akonikolas et al., 2018; Fischer et al., 2018; Acharya et al.,
2019; Meir et al., 2019) and closeness testing (Diakonikolas
et al., 2019).

We remark that for the case when the number of servers
for each item follows a Zipfian distribution across the α
servers, then the total number of pairwise collisions is
C = O (α) · F0(S), provided that the Zipfian exponent
is a constant larger than 1. On the other hand, the num-
ber of distinct elements can be substantially larger than 1

ε2 ,
where ε is the desired accuracy for the output estimate for
the number of distinct elements. Our results indicate that in
this regime, only Õ (α log n) bits of communication suffice,
which bypasses the known Ω

(
α
ε2 + α log n

)
lower bounds.

In particular, if the number of distinct elements is O (n)
and ε is around 1√

n
, then the lower bounds indicate Ω(n)

communication is necessary, which is substantially worse
than our protocol that achieves Õ (α log n) communication.

We complement Theorem 1.1 and Theorem 1.2 with a pair
of lower bounds matching in β and 1

ε :
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Theorem 1.3. Let β ∈ [1, α2]. Given a dataset S
with C = Ω(β · F0(S)) pairwise collisions, distributed
across α players, any protocol that computes a (1 + ε)-
approximation to F0(S) with probability at least 2

3 uses√
β · Ω

(
min

(
F0(S),

1
ε2

))
communication.

Theorem 1.4. Given a dataset S with the promise that
there are at most C ∈ [ε ·F0(S), F0(S)] pairwise collisions
distributed across α players, any protocol that computes a
(1 + ε)-approximation to F0(S) with probability at least 2

3

uses Ω
(

C
ε2·F0(S)

)
communication.

We remark that Theorem 1.3 follows immediately as a pa-
rameterization of a lower bound from (Woodruff & Zhang,
2014), while Theorem 1.4 is perhaps our most technically
involved contribution. We recall that well-known results,
e.g., (Cormode et al., 2011) additionally show that regard-
less of the number of pairwise collisions and regardless
of F0(S), any protocol that estimates F0(S) to a constant
factor requires Ω(α) communication. Thus, Theorem 1.3
and Theorem 1.4 together imply the lower bound results in
Table 1.

Moreover, we remark that for the regime where C < ε ·
F0(S), then F1(S) =

∑
i∈[α] ∥v(i)∥1 becomes an additive

ε · F0(S) approximation to F0(S), and so the players can
use O (α log n) bits of communication to deterministically
compute a (1 + ε)-multiplicative approximation to F0(S).

Our results can be viewed as a first step toward analyz-
ing standard statistical problems with known lower bounds,
e.g., (Woodruff & Zhang, 2012; 2014) through the lens of
parameterized complexity. Thus our work makes important
progress toward a better understanding of natural parame-
ters that explain why these problems are not challenging
in practice. We summarize our results for the distributed
distinct elements estimation problem in Table 1.

In proving Theorem 1.4, we first show the hardness of ap-
proximation for the closely related distributed duplication
detection problem, in which the goal is for the α servers to
approximate the total number of duplicates, where a dupli-
cate is defined to be a coordinate j ∈ [n] that appears on
at least two distinct servers. For discussion on the applica-
tions of the distributed duplication detection problem, see
Appendix C.
Theorem 1.5. Let C be an input parameter for the number
of duplicates and ε ∈ (0, 1) be an accuracy parameter.
Suppose there are α players, each receiving a set of at
most s items from a universe of size N = Ω(s). Then
any protocol Π that with probability at least 2

3 , identifies
whether there are fewer than (1− ε) ·C duplicates or more
than (1 + ε) · C duplicates requires Ω(αs) communication
for C < 4

ε2 and Ω
(

αs
Cε2

)
communication for C ≥ 4

ε2 .

We remark that for ε = 0, the lower bound of Ω(αs) follows

via a simple reduction from previous work on non-promise
set disjointness in the coordinator model (Braverman et al.,
2013). Thus, the main contribution in Theorem 1.5 is to
show that even the problem of approximating the number of
duplicates requires a substantial amount of total communica-
tion. We also give a simple protocol that uses O

(
αs logα
Cε2

)
bits of communication, showing that Theorem 1.5 is near-
optimal.

Further, we remark that given Theorem 1.2, a natural ques-
tion would be to ask whether the promise of the upper bound
on C must be known in advance in order to achieve im-
proved communication bounds, perhaps through a prelim-
inary subroutine to estimate C. However, Theorem 1.5
shows that in general, one cannot estimate C using “small”
total communication when C is small.

Finally, we complement our theoretical results with a num-
ber of empirical evaluations in Section 3. We show that the
standard CAIDA dataset, often used to analyze statistics on
virtual traffic networks, is surprisingly skewed, allowing our
algorithm to outperform the previous worst-case theoretical
bounds by several orders of magnitude. While this may
be an extreme case, it demonstrates that our algorithm can
achieve significantly better performance in practice, align-
ing with our theoretical guarantees and serving as a proof-
of-concept that illustrates the accuracy-vs-communication
tradeoffs in real-world scenarios.

Paper organization. The remainder of this paper is struc-
tured as follows. In Section 2.1, we present a parameterized
lower bounds for the distributed distinct element estimation
problem, assuming the communication complexity of the
so-called GapSet problem. We then show a correspond-
ing upper bound in Section 2.2. We defer the proof of
the GapSet problem to Appendix B and Appendix C. We
provide our experimental results in Section 3. Finally, we
show in Appendix D that both distinct element estimation
and norm estimation can similarly be parameterized in the
streaming model. To a discussion of the notation as well
as relevant background statements, we refer the reader to
Appendix A.

2. Distributed Distinct Element Estimation
In this section, we study the problem of F0 approximation.
In Section 2.1, we prove Theorem 1.3, showing that the
communication complexity for the distributed distinct el-
ement estimation problem is a function of the number of
pairwise collisions distributed across the players. In Sec-
tion 2.2, we give an algorithm for the distributed distinct
element estimation problem that uses total communication
which is function of the number of pairwise collisions, i.e.,
the algorithm corresponding to Theorem 1.2.
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C = β · F0(S), β ≥ 1
F0(S) <

1
ε2 F0(S) ≥ 1

ε2

Theorem 1.1 O
(
α log n+

√
β · F0(S) · log n

)
O
(
α log n+

√
β

ε2 log n
)

Theorem 1.3 Ω(α+
√
β · F0(S)) Ω

(
α+

√
β

ε2

)
C = β · F0(S), β < 1, C > ε · F0(S)

F0(S) <
1
ε2 F0(S) ≥ 1

ε2

Theorem 1.2 O
(
α log n+ β

ε2 log n
)

O (α log n+ β · F0(S) · log n)

Theorem 1.4 Ω
(
α+ β

ε2

)
Ω(α+ β · F0(S))

Table 1: A summary of our results for the distributed distinct elements estimation problem on a universe of size n across α
servers, parameterized by the number C of collisions across the α servers, and the accuracy parameter ε ∈ (0, 1).

Distinct elements estimation. We now formally define
the distributed distinct element estimation problem in the
coordinator model of communication, which was intro-
duced by (Dolev & Feder, 1992). There exist α servers
with vectors v(1), . . . , v(α) ∈ {0, 1}n on a universe of size
[n]. The vectors define an underlying frequency vector
v = v(1)+. . .+v(α). We interchangeably refer to the servers
as either players or parties, including a specific server that is
designated as the coordinator for the protocol. Each of the
servers have access to private sources of randomness. There
is a private channel between every server and the coordi-
nator, but there are no channels between the other players,
so all communication must be performed through the co-
ordinator. We assume without loss of generality that the
protocol is sequential and round-based, i.e., in each round
the coordinator speaks to some number of players and await
their responses before initiating the next round. Therefore,
the protocol must be self-delimiting so that all parties must
know when each message has been completely sent.

Given an accuracy parameter ε, the goal is to perform
a protocol Π so that the coordinator outputs a (1 + ε)-
approximation to F0(v) after the protocol has completed.
The communication cost of the protocol Π is the total num-
ber of bits sent by all parties in the worst-case output. Thus,
we remark that up to constants, we obtain the same results
for the message-passing model, where servers are allowed
to communicate directly with each other.

For both our algorithms and lower bounds, the assumption
that each local vector is binary is without loss of generality,
because the resulting protocols and reductions will behave
the same regardless of whether a server has a single instance
or multiple instances of a coordinate.

2.1. Lower Bounds for Distributed Distinct Element
Estimation

To show Theorem 1.3, our starting point is the lower bound
instance of (Woodruff & Zhang, 2014), which first defines a

problem called SUM− DISJ, in which there are α players
P1, . . . , Pα with inputs X1, . . . , Xk ∈ {0, 1}tL and a coor-
dinator C and Y ∈ {0, 1}tL. The vectors X1, . . . , Xα, Y

are organized into t blocks X
(j)
i , Y (j) for i ∈ [α] and

j ∈ [t], each with L coordinates. The inputs to each block of
X1 and Y are randomly generated instances of two-player
set disjointness, i.e., there are t instances of set disjointness,
each with universe size L, generated as follows. For each
i ∈ [L], one of the following events occurs:

• With probability 1
4 , i is given to X1.

• With probability 1
4 , i is given to Y .

• With probability 1
2 , i is not given to either X1 or Y .

After this process is performed for each i ∈ [L], a special
coordinate c ∈ [L] is then chosen uniformly at random and
the allocations of c are reset, so that initially, c is not given
to either X1 or Y . Then, one of the following events occurs:

• With probability 1
2 , c is given to both players.

• With probability 1
2 , c is given to neither player.

The inputs X2, . . . , Xα are then similarly generated,
but conditioned on the value of Y , so that each
pair (Xi, Y ) forms an input to two-player set disjoint-
ness. Let DISJ(X

(j)
i , Y (j)) = 0 if the special coor-

dinate c is given to neither player, i.e., the instance
is disjoint, and let DISJ(X

(j)
i , Y (j)) = 1 otherwise.

We then define SUM − DISJ(X1, . . . , Xα, Y ) to be∑α
i=1

∑t
j=1 DISJ(X

(j)
i , Y (j)).

(Woodruff & Zhang, 2014) proved that computing an ad-
ditive O

(√
αt
)

error to SUM − DISJ(X1, . . . , Xα, Y ) re-
quires Ω(αtL) communication. They then reduced the prob-
lem of F0 approximation from SUM− DISJ as follows.

Given an instance X1, . . . , Xα, Y of SUM− DISJ, the co-
ordinator creates the indicator vector Z corresponding to
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[tL] \Y . Observe that for t = O
(

1
ε2α

)
and tL = Θ

(
1
ε2

)
, a

(1 + ε)-approximation to F0(X1 + . . .+Xα + Z) suffices
for the coordinator to compute an additive O

(√
αt
)

error
to SUM− DISJ(X1, . . . , Xα, Y ), given Y .

Crucially, a constant fraction of the items are given to a
constant fraction of the players, with constant probability
due to the distribution of set disjointness, where each coor-
dinate is given to each player Xi with probability at least
1
4 . Therefore, Ω

(
1
ε2

)
coordinates in the frequency vector

X1 + . . .+Xα +Z have frequency Ω(α), with probability
at least 0.99. Thus we have the following:
Lemma 2.1. (Woodruff & Zhang, 2014) Given a dataset
S with F0(S) = Ω

(
1
ε2

)
and C = Ω(α2 · F0(s)) pairwise

collisions, distributed across α players, any protocol that
computes a (1+ε)-approximation to F0(S) with probability
at least 2

3 uses Ω
(

α
ε2

)
communication.

In fact, for β < α, we can embed the same problem across
β players to obtain the following:
Corollary 2.2. Let β ∈ [1, α2]. Given a dataset S with
F0(S) = Ω

(
1
ε2

)
and C = Ω(β ·F0(s)) pairwise collisions,

distributed across α players, any protocol that computes a
(1 + ε)-approximation to F0(S) with probability at least 2

3

uses Ω
(√

β
ε2

)
communication.

Similarly, for F0(s) = O
(

1
ε2

)
with F0(s) = Ω(α), it fol-

lows that for t = O
(

F0(s)
α

)
and tL = Θ(F0(s)), a (1+ ε)-

approximation to F0(X1 + . . .+Xα + Z) suffices for the
coordinator to determine SUM− DISJ(X1, . . . , Xα, Y ) up
to additive error O

(√
αt
)
, given Y . Hence, we have:

Corollary 2.3. Let β ∈ [1, α2]. Given a dataset S with
F0(s) = O

(
1
ε2

)
and C = Ω(β · F0(s)) pairwise colli-

sions, distributed across α players, any protocol that com-
putes a (1 + ε) to F0(S) with probability at least 2

3 uses
Ω
(√

β · F0(S)
)

communication.

Putting together Corollary 2.2 and Corollary 2.3, we have:
Theorem 1.3. Let β ∈ [1, α2]. Given a dataset S
with C = Ω(β · F0(S)) pairwise collisions, distributed
across α players, any protocol that computes a (1 + ε)-
approximation to F0(S) with probability at least 2

3 uses√
β · Ω

(
min

(
F0(S),

1
ε2

))
communication.

We now give the proof of Theorem 1.4, assuming the cor-
rectness of Theorem 1.5, which we defer to Section C.
Theorem 1.4. Given a dataset S with the promise that
there are at most C ∈ [ε ·F0(S), F0(S)] pairwise collisions
distributed across α players, any protocol that computes a
(1 + ε)-approximation to F0(S) with probability at least 2

3

uses Ω
(

C
ε2·F0(S)

)
communication.

Proof. Suppose α = O (1). Note that a multiplicative

(1 + ε)-approximation to F0(S) is an additive ε · F0(S)
approximation to F0(S). Consider the hard instance of The-
orem 1.5 and recall that it places the C pairwise collisions
across unique coordinates, so that F0(S) = F1(S) − C.
Thus an additive ε · F0(S) approximation to F0(S) is an
additive ε · F0(S) approximation to C, which is also a mul-
tiplicative

(
1 + ε·F0(S)

C

)
-approximation to C. Observe that

the α players can use O
(
log 1

ε

)
= O (C) bits of communi-

cation to compute F1(S) exactly. By Theorem 1.5, a multi-
plicative

(
1 + ε·F0(S)

C

)
-approximation to C approximation

requires Ω
(

C
ε2·F0(S)

)
communication.

2.2. Upper Bounds for Distributed Distinct Element
Estimation

In this section, we present upper bounds for the distributed
distinct element estimation problem. In particular, we de-
scribe our algorithm that guarantees Theorem 1.2, which
shows that the communication complexity of the problem
is paraemterized by the number of pairwise collisions. We
first recall the following guarantees for a constant-factor
approximation to F0(S).
Theorem 2.4. (Kane et al., 2010; Blasiok, 2020) There
exists an algorithm that outputs a 4-approximation to the
number of distinct elements and uses O (α log n) bits of
communication.

Now, we prove Theorem 1.1 through Algorithm 1.

Algorithm 1 (1 + ε)-approximation to F0

Input: Items given to α players from a universe of size [n],
accuracy parameter ε ∈ (0, 1)

Output: (1 + ε)-approximation to the number of distinct
items

1: Let X be a 4-approximation to F0 ▷Lemma 2.4
2: Let i0 be the largest integer such that X

2i0
> 1000

ε2

3: i← max(0, i0)
4: Let Ti be a subset of [n] where each item is subsampled

with probability 1
2i

5: Each player sends their items in Ti

6: Let Z be the number of unique sent items
7: Return Z · 2i

We now show the parameterized complexity of the dis-
tributed distinct elements estimation problem.
Theorem 1.1. Given a dataset S on a universe of size n
with C = β ·O

(
min

(
F0(S),

1
ε2

))
pairwise collisions for a

parameter β ≥ 1, distributed across α players, there exists
a protocol that computes a (1 + ε)-approximation to F0(S)
with probability at least 2

3 that uses

O (α log n) +O

(
min

(
F0(S),

1

ε2

))
·
√
β log n

6
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bits of communication.

Proof. Consider Algorithm 1. Let F0(S) be the num-
ber of distinct items across all players. Note that we
have E

[
Z · 2i

]
= F0(S) and V

[
Z · 2i

]
= F0(S) · 2i ≤

(ε·F0(S))2

250 . Hence conditioned on the correctness of X , by
Chebyshev’s inequality, we have that with probability at
least 0.99,

(1− ε) · F0(S) ≤ Z · 2i ≤ (1 + ε) · F0(S).

It remains to show that the total communication used by the
protocol is O (α log n) + O

(
min

(
F0(S),

1
ε2

))
·
√
β log n

bits. Conditioned on the correctness of X , we have by the
definition of i that E [Z] ≤ 800

ε2 . Hence by Markov’s in-
equality, we have that Z ≤ 106

ε2 with probability at least

0.99. Let E be the event that Z ≤ min
(

106

ε2 , F0(S)
)

.

Let N = min
(

106

ε2 , F0(S)
)

and for i ∈ [N ], let Hi be
the number of players with item i, so that 0 ≤ Hi ≤ α.
Then conditioned on E , the number of pairwise collisions
is C =

(
H1

2

)
+ . . . +

(
HN

2

)
. Note that

(
H
2

)
≥ H2

4 −
1
4 , so

that C ≥ H2
1+...+H2

N

4 − N . By the Root-Mean Square-
Arithmetic Mean Inequality, we have that if there are
C = β ·O

(
min

(
F0(S),

1
ε2

))
pairwise collisions, then

H1 + . . .+HN = O
(√

βN
)

= O

(
min

(
F0(S),

1

ε2

))
·
√

β.

Thus the α players have at most O
(
min

(
F0(S),

1
ε2

))
·√

β items in Si, from a universe of size [n], so the
communication for sending these items is O (α log n) +
O
(
min

(
F0(S),

1
ε2

))
·
√
β log n bits. Finally, recall from

Lemma 2.4 that O (α log n) bits of communication suf-
fices to compute a constant-factor approximation to F0(S).
Thus, the total communication is at most O (α log n) +
O
(
min

(
F0(S),

1
ε2

))
·
√
β log n bits.

The guarantees of Theorem 1.2 then follow from Algo-
rithm 2:

Theorem 1.2. Given a dataset S on a universe of size n
with the promise that there are at most C ≤ F0(S) pair-
wise collisions, distributed across α players, there exists a
protocol that uses total communication

Õ

(
α log n+max

(
1

F0(S)
, ε2
)
· C
ε2

log n

)
bits, and with probability at least 2

3 , outputs a (1 + ε)-
approximation to F0(S).

Algorithm 2 (1 + ε)-approximation to F0, given an upper
bound on the number of collisions
Input: Items given to α players from a universe of size [n],

accuracy parameter ε ∈ (0, 1), upper bound C on the
number of pair-wise collisions

Output: (1 + ε)-approximation to the number of distinct
items

1: Let X be a 4-approximation to F0 ▷Lemma 2.4
2: Let i0 be the largest integer such that X

2i0
> 1000

ε2

3: i← min(0, i0)
4: Let Si be a subset of [n] where each item is subsampled

with probability 1
2i

5: Assume without loss of generality each player i has a
binary vector v(i) ∈ {0, 1}n

6: Each player sends their total number of items in Si

7: Let Z be the sum of these numbers
8: η ← ε

10 , p← min
(
1, 100C

η2X2

)
9: Let T be a subset of Si where each item is subsampled

with probability p
10: Each player sends their items in T
11: Let W =

∑
j∈T max(0, vj−1), where v =

∑
i∈[α] v

(i)

be the excess mass in T
12: Return Z · 2i −W · 1p

Proof. Consider Algorithm 2. Recall that with probabil-
ity at least 0.99, (1 − O (ε))F0(S) ≤ F0(Si) · 2i ≤
(1 +O (ε))F0(S). Thus it suffices to achieve a (1 +O (ε))
approximation to F0(Si). For each j ∈ [n], let fj be the
number of times j appears in Si. Then we have

F0(Si) = F1(Si)−min(0, f1− 1)− . . .−min(0, fj − 1).

Let tj = min(0, fj − 1) for all j ∈ [n] be the excess mass
of j, so that

F0(Si) = F1(Si)− (t1 + . . .+ tn).

Let E be the event that X is a 4-approximation to F0(Si).
Since Z = F1(Si) in the context of Algorithm 2 and X is a
4-approximation to F0(Si) conditioned on E , then it suffices
to achieve an additive η ·X = O (ε) ·F0(Si) approximation
to (t1 + . . .+ tn) for η = ε

10 .

Observe that the expected value of W · 1p satisfies

E
[
W · 1

p

]
=

1

p
·
∑
j∈[n]

p · tj = t1 + . . .+ tn.

Moreover, we can upper bound the variance

V
[
W · 1

p

]
≤ 1

p2
·
∑
j∈[n]

p · (tj)2.

7
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Since p = min
(
1, 100C

η2X2

)
and (t21 + . . .+ t2n) ≤ C, then

V
[
W · 1

p

]
≤ η2X2

100C

(
t21 + . . .+ t2n

)2 ≤ η2X2

100
.

Hence by Chebyshev’s inequality, we have that with proba-
bility at least 0.99, W · 1p provides an additive η ·X error
to (t1 + . . . + tn), conditioned on E . By Lemma 2.4, we
have that Pr [E ] ≥ 0.99. Thus by a union bound, with
probability at least 0.98, Algorithm 2 outputs a (1 + ε)-
approximation to F0. Observe that conditioned on the event
E , we have X ≤ O

(
1
ε2

)
. Since the number of pairwise col-

lisions is at most C, then F1(Si) ≤ X + C. Let Y denote
the number of items from T sent across all players. Then
we have E [Y ] ≤ p(X + C). We have p = min

(
1, 100C

η2X2

)
for η = ε

10 . Note that then for F0(S) = Ω
(

1
ε2

)
, we have

E [Y ] ≤ O

(
C

ε2X
+

C2

ε2X2

)
.

Since C ≤ F0(S) = O (X), then

E [Y ] = O

(
C

ε2 · F0(S)

)
.

Otherwise for F0(S) = O
(

1
ε2

)
, we have E [Y ] = O (C).

The desired claim then follows from Markov’s inequality.

3. Empirical Evaluations
In this section, we describe our empirical evaluations for
evaluating our distributed protocol for distinct element esti-
mation. We used the CAIDA dataset (CAIDA, 2016), which
consists of anonymized passive traffic traces collected from
the high-speed monitor at the “equinix-nyc” data center.
This dataset is widely used for statistical analyses for traffic
network monitoring, in particular empirical analyses of algo-
rithms for distinct element estimation, norm and frequency
moments, and heavy-hitters (Hsu et al., 2019; Chen et al.,
2022; Lin et al., 2022; Ivkin et al., 2022). From 12 minutes
of internet flow data totaling approximately 40 million total
events, we extracted the first 1 million events, each repre-
senting an interaction between a sender IP address and a
receiver IP address.

Experimental setup. We estimate the total number of
distinct sender IP addresses. As the events are partitioned
across different receiver IP addresses, each receiver holds
a different set of users from the total collection of active
sender IP addresses. To show our setting is valid for our
theoretical assumptions, we considered two different distri-
butions. First, we computed the number of unique senders
per receiver and plotted a logarithmic scale of the result-
ing distribution in Figure 1a. We then isolated the receiver

with the most activity and computed the number of inter-
actions per sender to that IP address, plotting the resulting
distribution in Figure 1b.

We then evaluate our distributed protocol in Algorithm 1.
In particular, we consider the total communication of our
algorithm compared to the total communication given by the
analysis of the standard protocol, which sends a sketch of
size O

(
1
ε2

)
for each of the α servers. Correspondingly, we

set our algorithm to also have accuracy O (ε) and compare
the communication, across various values of ε = 1

2p , with
p ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. These results appear in
Figure 2a. Finally, we studied the accuracy of our distributed
protocol. We evaluated the output of our algorithm for
ε = 1

2p , across p ∈ {0, 1, 2, 3, 4, 5} and computed the
error with respect to the true number of unique sender IP
addresses, which totaled 42200. We give these results in
Figure 2b.

Our empirical evaluations were performed with Python
3.11.5 on a 64-bit operating system on an Intel(R) Core(TM)
i7-3770 CPU, with 16GB RAM and 4 cores with base
clock 3.4GHz. The code is publicly available at https:
//github.com/samsonzhou/DKLPWZ25.

Results and discussion. As virtual traffic is generally
known to be dominated by a few heavy-hitters, it was not
altogether surprising that the distributions of activity for
both receiver IP addresses and sender IP addresses were
skewed. However, it was a bit surprising that when fit
to a Zipfian power law so that the frequency of the i-th
most common interaction is roughly C

is , the receiver IP
address distribution returned roughly s ≈ 0.743 and C ≈
1404.68, which indicated a highly skewed distribution. By
comparison, the activity distribution returned a more modest
s ≈ 0.344 and C ≈ 43.93. Indeed, we emphasize that
although both graphs in Figure 1 appear linear, the scale for
the receiver distribution is actually logarithmic.

Because the distribution is so skewed, the number of pair-
wise collisions is quite small, as most of the receiver IP
addresses only receive a small amount of activity. There-
fore, our protocol vastly outperforms the theoretical bounds
for the standard benchmark by several orders of magnitude,
as evident in Figure 2a. Moreover, our algorithm quickly
converges to the optimal solution as ε decreases, achiev-
ing 70% error for ε = 1, quickly up to more than 95%
error for ε = 1

16 in Figure 2b. This matches our theoreti-
cal guarantees, thus serving as a simple proof-of-concept
demonstrating the accuracy-vs-communication tradeoffs.

4. Conclusion
In conclusion, this paper addresses the distributed distinct
element estimation problem, where previous results indi-
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(a) Histogram of Receivers (b) Histogram of Activity

Figure 1: Histogram of unique senders per receiver in Figure 1a. Histogram of activity per sender in most active receiver
Figure 1b.

(a) Communication vs. Sampling Probability (b) Sampling Probability vs. Accuracy

cate that Θ
(
α log n+ α

ε2

)
bits of communication are both

necessary and sufficient in the worst case. However, the
assumption of large input sizes across many servers can
be unrealistic in practical scenarios. To address this, we
introduce a new parameterization based on the number C of
pairwise collisions distributed across the α players. Our al-
gorithm, which uses O

(
α log n log logn+

√
C
ε log n

)
bits

of communication, demonstrates that small values of C can
break existing lower bounds. We also establish matching
lower bounds for all regimes of C, showing that it provides
a tight characterization of the communication complexity
for this problem. Ultimately, our work offers new insights
into why standard statistical problems, despite known im-
possibility results, can be efficiently tackled in real-world
scenarios.
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A. Preliminaries
For a positive integer n > 0, we use the notation [n] to represent the set {1, 2, . . . , n}. We use polylog(n) to denote a fixed
polynomial in log n.

For a vector v ∈ Rn, we define F0(v) = |{i ∈ [n] | vi ̸= 0}| and F1(v) = |v1|+ . . .+ |vn|. For a random variable X , we
use E [X] to denote its expectation and V [X] to denote its variance.

Definition A.1 (Zipfian distribution dataset). We say a sequence X = {x1, . . . , xn} follows a Zipfian distribution with
exponent s if there exist parameters C1, C2 > 0 such that for any index i, we have C1

is ≤ xi ≤ C2

is .

Recall the following definition of the squared Hellinger distance.

Definition A.2 (Squared Hellinger distance). For two distributions P and Q with probability density functions f and g,
respectively, defined on a space X , their squared Hellinger distance is defined by

h2(P,Q) =
1

2

∫
X

(√
f(x)−

√
g(x)

)2
dx

It can be shown, c.f., Lemma B.3 in Section B, that the squared Hellinger distance between a function on two random
variables is a lower bound on informally the mutual information between one of the random variables and the corresponding
value of the function on that random variable.

Communication complexity. We now recall some preliminaries from communication and information complexity.

Definition A.3 (Entropy, conditional entropy, mutual information). Given a pair of random variables X and Y with joint
distribution p(x, y) and marginal distributions p(x) and p(y), the entropy of X is defined as H(X) := −

∑
x p(x) log p(x).

The conditional entropy is H(X|Y ) := −
∑

x,y p(x, y) log
p(y)
p(x,y) . The mutual information is I(X;Y ) := H(X) −

H(X|Y ) =
∑

x,y p(x, y) log
p(x,y)

p(x)p(y) .

Definition A.4 (Information cost). Let Π be a randomized protocol that produces a (possibly random) transcript
Π(X1, . . . , XT ) on inputs X1, . . . , XT drawn from a distribution µ. The information cost of Π with respect to µ is
I(P1, . . . , PT ; Π(P1, . . . , PT )).

Fact A.5 (Information cost to communication complexity). For any distribution µ and failure probability δ ∈ (0, 1), the
communication cost of any randomized protocol for µ on a problem f that fails with probability δ is at least the information
cost of f under distribution µ and failure probability δ.

Definition A.6 (Conditional information cost). Let Π be a protocol on ((x,y), R) ∼ η for x ∼ X and y ∼ Y , where η is a
mixture of product distributions on Xn × Y n ×R and R ∼ R is a source of randomness. Then we define the conditional
information cost of Π with respect to η by I(x,y; Π(x,y)|R).

Definition A.7 (Conditional information complexity). Given a failure probability δ ∈ (0, 1) and a mixture η of product
distributions, we define the conditional information complexity of f with respect to η as the minimum conditional information
cost of a protocol for f with failure probability at most δ, with respect to η, i.e.,

CICη,δ(f) = min
Π

I(x,y; Π(x,y)|R),

where the minimum is taken over all protocols Π with failure probability at most δ on the distribution η.

Lemma A.8 (Proposition 4.6 in (Bar-Yossef et al., 2004)). Let µ be a distribution on Xn × Y n×. If η is a mixture of
product distributions on Xn × Y n ×R such that the marginal distribution on Xn × Y n is µ, then the information cost of a
function f with success probability 1− δ on µ is at least CICη,δ(f).

Fact A.9 (Chain rule). Given discrete random variables X,Y, Z, then

I(X,Y ;Z) = I(X;Z) + I(X;Y |Z).

Fact A.10 (Maximum likelihood estimation principle). Let X ∈ X and Y ∈ Y be randomly selected from some underlying
distribution µ. Then there exists a deterministic function g : Y → X with error δ ≤ 1− 1

2H(X|Y ) .

Definition A.11. For a vector y ∈ Xn, let j ∈ [n] and x ∈ X . We define Embed(y, j, x) to be the n-dimensional vector y
with its j-th coordinate replaced by x, i.e., for z = Embed(y, j, x), we have zi = yi for i ̸= j and zj = x.
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Definition A.12 (Decomposable function). Let f : Xn → {0, 1} be a function. Then we say f is g-decomposable with prim-
itive h if there exist functions g : {0, 1}n → {0, 1} and h : X → {0, 1} such that f(x,y) = g(h(x1, y1), . . . , h(xn, yn)).
Definition A.13 (Collapsing distribution). Let f : Xn → {0, 1} be g-decomposable with primitive h. We say that (w, z) ∈
Xn is a collapsing input for f if for every j ∈ [n] and x, y ∈ X , we have f(Embed(w, j, x),Embed(z, j, y)) = h(x, y).
We call a distribution µ on Xn a collapsing distribution for f if every (w, z) in the support of µ is a collapsing input.
Theorem A.14 (Direct sum, Theorem 5.6 in (Bar-Yossef et al., 2004)). Let f : Xn → {0, 1} be a decomposable function
with primitive h and let ζ be a mixture of product distributions on X × D. Let η = ζn and ((x,y),D) ∼ η. Then if the
distribution of (x,y) is a collapsing distribution for f , we have CICn,δ(f) ≥ n · CICζ,δ(h).

A.1. Technical Overview

In this section, we describe the intuition behind our algorithms and lower bounds for the distributed distinct elements
estimation problem.

A.1.1. PROTOCOLS FOR DISTRIBUTED DISTINCT ELEMENT ESTIMATION

We first describe our general protocol for the distributed distinct element estimation problem across general ranges of F0(S),
the number of distinct elements in the dataset S that is the union of all items given to all servers, i.e., Theorem 1.1.

Constant-factor approximation. As a standard subroutine, our algorithm first computes a constant factor approximation
to the number of distinct elements. Recall that this is done by subsampling the universe [n] at less and less aggressive
rates. The α servers jointly set S0 = [n] and for each i ≥ 1, the servers use public randomness to jointly sample each
element of Si−1 into Si with probability 1

2 . For example, the expected number of elements in S1 is n
2 and so forth. The

servers initialize i = ⌈log n⌉ and send all of their local items that are contained within Si to a designated server, which is
marked as a coordinator. They then send all of their items that are contained in Si−1 and so forth, until the coordinator
sees Θ(1) distinct elements across the entire set of items sent from all servers. Using a standard expectation and variance
technique, it follows that rescaling the number of distinct elements seen by the coordinator by 1

p , where p is the sampling
probability of the universe induced by Si, is a constant-factor approximation to F0(S). The total communication used by
this protocol is O (α log n) for the α parties to report the identities of O (1) items across the sets Si, Si−1, . . . before the
algorithm terminates, combined with an additional log log n overhead to handle a naı̈ve union bound over at most O (log n)
possible such sets, i.e., requiring the coordinator to see Θ(log log n) distinct elements.

(1 + ε)-approximation. We note that a similar approach can be used to achieve a protocol with O
(

α
ε2 · log n log log n

)
total communication. Specifically, instead of stopping at a level where the coordinator sees Θ(1) unique items, the servers
can choose to abort at a later time, in particular when the protocol samples down to a level where the coordinator sees
Θ
(

1
ε2

)
distinct elements. We show that the resulting estimator that rescales the number of distinct elements by the inverse

of the sampling probability is an unbiased estimate to the number of distinct elements, and moreover that the variance
is sufficiently small due to the number of samples. Hence by a standard Chebyshev argument, it follows that we can
achieve a (1 + ε)-approximation to the number of distinct elements. We emphasize that both the constant-factor and
(1 + ε)-approximation subsampling approach is standard among the distinct elements estimation literature, e.g., (Bar-Yossef
et al., 2002; Kane et al., 2010; Woodruff & Zhang, 2014; Braverman et al., 2018; Blasiok, 2020).

However, the concern is that each of the α parties can send Ω
(

1
ε2

)
items, resulting in Ω

(
α
ε2

)
items being sent across all

parties. Indeed, in the hard instance of (Woodruff & Zhang, 2014), a constant fraction of items appear on a constant fraction
of servers, so the protocol would actually use Ω

(
α
ε2

)
communication.

On the other hand, when the number of pairwise collisions is smaller than α2 · F0(S), then the number of items that are
redundant across multiple servers must also be smaller. We show this intuition translates to improved bounds for the same
algorithm. That is, we show that when the number of pairwise collisions is β · F0(S) for some parameter β ∈ [1, α], then
on average, each coordinate can appear across

√
β servers. Thus, the above protocol would send the identities of O

(√
β

ε2

)
items, resulting in total communication O

(
α log n+

√
β

ε2 log n
)

.

Finally, we remark that when the total number of items is less than 1
ε2 , i.e., F0(S) <

1
ε2 , then the same analysis suffices

without any sampling at all. Moreover, since the algorithm will eventually terminate at a level where no sampling is
performed if there are no previous levels with Θ

(
1
ε2

)
distinct elements given to the coordinator, then the same algorithm
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suffices for this case. That is, our algorithm can obliviously handle all regimes of F0(S), i.e., it does not need the promise of
whether F0(S) ≥ 1

ε2 or F0(S) <
1
ε2 as part of the input.

Handling a smaller number of collisions. We now describe how the guarantees of Theorem 1.1 can be further improved
when the number of pairwise collisions is small. Note that F0(S) = F1(S) −D, where D is the excess mass across all
servers, which we define the excess mass of a coordinate j ∈ [n] in a vector v ∈ Rn to be max(0, vj − 1) and the excess
mass of v to be the sum of the excess masses across all of its coordinates. Note that D is upper bounded by the number of
pairwise collisions C. Thus as a simple example, if we were promised C ≤ εF0(S), then it would suffice for the α parties
to compute F1(S), which can be done in O (α log n) bits of communication.

More generally, for C < 1
ε2 , it is possible to efficiently estimate D without needing to send all items. In particular, given the

promise that there are at most C pairwise collisions, we can estimate D by sampling the universe at a rate 100C
ε2X2 , where X

is a constant-factor approximation to F0(S). Again by a standard expectation and variance argument, it follows that the
excess mass observed by the coordinator across the items sent at this level by all players, scaled inversely by the sampling
probability, is an additive ε · F0(S) approximation to D. Since F0(S) = F1(S)−D and the players can compute F1(S)
exactly, then this provides a (1 + ε)-approximation to F0(S), as desired. The expected number of items sent by all items is
then O

(
C

ε2·F0(S)

)
, which can then be translated into a concentration bound using Markov’s inequality.

A.1.2. LOWER BOUNDS FOR PAIRWISE COLLISIONS

We now describe our techniques for showing that the number of pairwise collisions is an inherent characteristic for the
complexity of the distributed distinct elements estimation problem. We first describe our lower bound in Theorem 1.3 for a
large number of pairwise collisions. We then conclude with brief intuition for our lower bound for the distributed duplication
detection problem in Theorem 1.5, which immediately gives our lower bound in Theorem 1.4 for a small number of pairwise
collisions.

Large number of pairwise collisions. The starting point for our lower bound in Theorem 1.3 is a problem called
SUM − DISJ, introduced by (Woodruff & Zhang, 2014) in the coordinator model. We note that the coordinator model
of communication requires messages to go from a server to the coordinator or from the coordinator to a server. Up to
small factors, this can model arbitrary point-to-point communication. Indeed, if server i wishes to communicate to server j,
then server i can send its message to the coordinator and have the coordinator forward it to server j. This increases the
communication by at most a multiplicative factor of 2 and an additive logα bits per message to indicate the identity of the
recipient server.

In the SUM − DISJ problem, there exist α players P1, . . . , Pα with inputs X1, . . . , Xα ∈ {0, 1}tL and a coordinator C
and Y ∈ {0, 1}tL. The vectors X1, . . . , Xα, Y are grouped into t blocks X(j)

i , Y (j) for i ∈ [α] and j ∈ [t], each with L
coordinates. The input to each block of X1 and Y are first generated as an instance of two-player set disjointness, so that
there are t blocks of set disjointness, each with universe size L. Recall that on a universe of size L, the two-player input
of set disjointness is as follows. First, for each i ∈ [L], i is given to X1 with probability 1

4 , otherwise i is given to Y with
probability 1

4 , otherwise i is not given to X1 or Y with probability 1
2 . Then for a special coordinate c chosen uniformly

at random from [L], the allocations of c are reset. Then with probability 1
2 , c is given to both players and otherwise with

probability 1
2 , c is given to neither player. The inputs X2, . . . , Xα are then generated conditioned on the value of Y , so that

each pair (Xi, Y ) forms an input to two-player set disjointness. We define DISJ(X
(j)
i , Y (j)) = 0 if the instance is disjoint

and DISJ(X
(j)
i , Y (j)) = 1 otherwise. The output to SUM− DISJ(X1, . . . , Xα, Y ) is then

∑α
i=1

∑t
j=1 DISJ(X

(j)
i , Y (j)).

(Woodruff & Zhang, 2014) show that approximating SUM− DISJ(X1, . . . , Xα, Y ) up to additive error O
(√

αt
)

requires
Ω(αtL) communication.

The reduction of F0 approximation from SUM−DISJ is then as follows. Given an instance X1, . . . , Xα, Y of SUM−DISJ,
the coordinator creates the indicator vector Z corresponding to [tL] \ Y . It then follows that for t = O

(
1

ε2α

)
and

tL = Θ
(

1
ε2

)
, a (1 + ε)-approximation to F0(X1 + . . . + Xα + Z) suffices for the coordinator to determine SUM −

DISJ(X1, . . . , Xα, Y ) up to additive error O
(√

αt
)
, given Y .

Moreover, we observe that due to the distribution of set disjointness where each coordinate is given to each player Xi with
probability at least 1

4 , then with constant probability, a constant fraction of the items are given to a constant fraction of the
players. That is, with probability at least 0.99, we have that Ω

(
1
ε2

)
coordinates in the frequency vector X1 + . . .+Xα +Z
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have frequency Ω(α).

In turns out that for β < α, we can embed the same problem across β players. Similarly, for F0(s) = O
(

1
ε2

)
with

F0(s) = Ω(α), it follows that for t = O
(

F0(s)
α

)
and tL = Θ(F0(s)), a (1 + ε)-approximation to F0(X1 + . . .+Xα +Z)

suffices for the coordinator to determine SUM − DISJ(X1, . . . , Xα, Y ) up to additive error O
(√

αt
)
, given Y . Putting

these observations together, we obtain Theorem 1.3.

Small number of pairwise collisions. We first observe that our hardness result for the distributed duplication detection
problem implies that any protocol that identifies whether there are fewer than (1− ε) ·C duplicates or more than (1 + ε) ·C
duplicates requires Ω

(
F0(s)
Cε2

)
communication for C ≥ 4

ε2 . Moreover, the hard instance of Theorem 1.5 places the C

pairwise collisions across unique coordinates, so that F0(S) = F1(S) − C. The α players can use O
(
log 1

ε

)
= O (C)

bits of communication to compute F1(S) exactly. Thus, we observe that a multiplicative (1 + ε)-approximation to F0(S)

ultimately translates to a multiplicative
(
1 + ε·F0(S)

C

)
-approximation to C in the hard instance of Theorem 1.5. We then

reparameterize the hardness statement to show that a multiplicative
(
1 + ε·F0(S)

C

)
-approximation to C approximation

requires Ω
(

C
ε2·F0(S)

)
communication. It thus remains to show Theorem 1.5, which we now describe.

A.1.3. DISTRIBUTED DUPLICATION DETECTION

Our starting point for the proof of Theorem 1.5 is noting that for C = 1, ε = 0, and α = 2, the problem becomes the
decision problem of whether there exists at least a single coordinate that is duplicated or not across two sets. Thus, a natural
candidate to consider is the set disjointness communication problem, e.g., (Chakrabarti et al., 2003; Bar-Yossef et al., 2004),
where two players each have a subset of [n] and their goal is to determine whether the intersection of their sets is empty or
non-empty. See Figure 3 for an example of possible set disjointness inputs for each case. Set disjointness requires total
communication Ω(n) when the sets of each player have size Ω(n), and by a simple padding argument on a smaller universe,
i.e., adding dummy elements that are never included in the players’ sets, it follows that Ω(s) communication is a lower
bound when each set has size Ω(s).

Handling general α. We first generalize to α players, achieving a qualitatively similar statement to that obtained via a
simple reduction from set disjointness in the coordinator model, which is a problem studied in (Braverman et al., 2013). It
turns out for the approximate version of the problem we will not be able to use (Braverman et al., 2013) because we will
need multiple instances of a variant of promise set disjointness to argue about the number of duplicates created.

The usual notion of promise multiparty set disjointness is that there are α players who each have a subset of [n] of size s
and their goal is to determine whether or not there exists a common element shared across all α sets. Furthermore, the
generalization of existing lower bound techniques (Chakrabarti et al., 2003; Bar-Yossef et al., 2004) requires that if there
is not a common element shared across all α sets, then the players have the promise that all of their subsets have empty
pairwise intersections. That is, no element is even shared across two sets. Unfortunately for the purposes of the lower bound,
there exists a simple protocol that only requires O (s log n) bits of communication: two of the α players simply exchange
their sets (and in fact there is a more efficient way to determine if their sets are disjoint (Håstad & Wigderson, 2007)).
If there is no intersection in their sets, then the intersection across all α sets is empty. Otherwise, if their intersection is
non-empty, then by the promise of the multiparty set disjointness input, the intersection across all α sets must be non-empty.
Thus, it would be impossible to achieve the desired Ω(αs) lower bound using the usual notion of promise multiparty set
disjointness.

Observe that the simple protocol results from the promise that if there is not a common element shared across all α sets,
then the players have the promise that all of their subsets have empty pairwise intersections. For the purposes of duplication
detection, this requirement is not necessary. Instead, consider a variant of multiparty set disjointness where either all α
sets are pairwise disjoint, or there exists a single pair of sets that have non-empty intersection. In fact, we shall require our
variant to be inherently distributional, uniform on each half of the universe (but not uniform on all pairs of elements of the
universe), for the purposes of ultimately composing with a distributional communication problem to have an embedding
from two players to α players while still retaining a sufficiently high entropy.

Then, intuitively, for each coordinate j ∈ [n], the α parties must determine whether their input vector for j is 0α, the
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elementary vector ei for some i ∈ [α], or the sum of two elementary vectors ea + eb for some 1 ≤ a < b < α. By
comparison, the previous version of promise multiparty set disjointness simply required differentiating between 0α, ei for
some i ∈ [α], or 1α, which has a much larger gap, i.e., larger by a multiplicative factor of Ω(α). Formally, this translates to
a smaller gap by a multiplicative factor of Ω(α) in the squared Hellinger distance of the protocol between the inputs of
the YES and NO cases. We can then use similar arguments as in (Bar-Yossef et al., 2004) to relate the squared Hellinger
distance to the information cost of a correct protocol. Our argument thus achieves tight bounds, avoiding the extraneous
multiplicative factor of Ω(α) overhead that would have resulted from using promise multiparty set disjointness.

Handling general C and ε. Handling general C and ε seems significantly more challenging. A standard approach for
achieving lower bounds with a 1

ε2 dependence is to utilize the Gap-Hamming communication problem (Indyk & Woodruff,
2005), in which two players Alice and Bob receive vectors x,y ∈ {0, 1}t, respectively, for t = Θ

(
1
ε2

)
. Their goal is to

determine whether ∆(x,y) ≤ t
2 −
√
t or ∆(x,y) ≥ t

2 +
√
t, where ∆(x,y) denotes the Hamming distance between x and

y. It is known that the Gap-Hamming problem requires Ω
(

1
ε2

)
bits of communication (Chakrabarti & Regev, 2012).

Unfortunately, it is not known how to extend the Gap-Hamming problem or its variants (Pagh et al., 2014; Braverman
et al., 2016) to the multiplayer communication setting. To circumvent this issue, previous works, e.g., (Woodruff & Zhang,
2012), that require Gap-Hamming-type lower bounds for multiplayer communication protocols used a composition of
Gap-Hamming with a multiplayer communication problem. Although using this approach (Woodruff & Zhang, 2012)
achieves a hardness of approximation for the number of distinct elements, which is the total number of items minus the
number of duplicates if there are no k-wise collisions for k > 2, these results (Woodruff & Zhang, 2012; 2014) do not
translate to a hardness of approximation in our case. Nevertheless, we can use the composition approach – in our case, the
natural candidate is the multiplayer pairwise disjointness problem.

To that end, we define the composition problem GapSet as follows. The “outer” problem will be the GapAnd variant of
Gap-Hamming while the “inner” problem will be the multiplayer pairwise disjointness problem. We first generate two
vectors x,y ∈ {0, 1}t for t = Θ

(
1
ε2

)
. In the YES case, we have ⟨x,y⟩ ≥ t

4 + c ·
√
t for some constant c > 0. In the NO

case, we have ⟨x,y⟩ ≥ t
4 − c ·

√
t. However, the vectors x,y will not be given to any of the players. Using x,y, we instead

generate vectors u(1), . . . ,u(α) ∈ {0, 1}nt to give to the α players. Each vector u(i) is partitioned into t blocks of size n.
For j ∈ [n], the j-th block of all vectors u(1), . . . ,u(α) will encode a separate instance of multiplayer pairwise disjointness.
If xj = yj = 1, then there will be some “special” coordinate that is shared among two parties across the j-th block of the
input vectors to the α players, i.e., j-th instance of multiplayer pairwise disjointness. Otherwise, if xj = 0 or yj = 0 (or
both), then no coordinate is shared among multiple parties in the j-th instance of multiplayer pairwise disjointness. The goal
of the α players is to distinguish whether (1) there exist at least t

4 + c ·
√
t blocks that have some pairwise intersection, or

(2) there are at most t
4 + c ·

√
t blocks that have some pairwise intersection.

Intuitively, the GapAnd lower bounds show that Ω(t) communication is needed to solve GapAnd. However, to recover each
coordinate of x and y, the players must essentially solve an instance of multiplayer pairwise disjointness, which requires
Ω(n) communication, leading to a lower bound of Ω(nt) overall communication for the GapSet problem.

The reduction to duplication detection is then relatively straightforward. For C = O
(

1
ε2

)
, we choose t to be Θ(C) and n to

be Ω
(
αs
C

)
, so that Ω(nt) = Ω(αs). For the case where C = Ω

(
1
ε2

)
, we instead set t = 1

ε2 and n = Ω
(
αs
C

)
, which gives

the desired Ω(nt) = Ω
(

αs
Cε2

)
communication lower bound. However, the number of duplicates in this distribution is not

correct. Thus, we copy the instance Θ
(
C
t

)
times to account for this. It then remains to prove the hardness of the GapSet

problem.

Hardness of GapSet. A natural approach for showing that the information cost of multiple instances of a communication
problem is the sum of the information costs of each instance of the communication problem, is the direct sum approach.
The approach generally proceeds by embedding multiple independent instances of the inner problem into coordinates of an
outer problem to show the hardness of the composition. For example, (Bar-Yossef et al., 2004) views set disjointness as the
n-wise OR of the AND problem across α players and uses the direct sum framework to show that since each AND problem
requires Ω(1) information, then set disjointness requires Ω(n) information. However, the direct sum approach is generally
used for composition problems where the outer problem is sensitive to changes in the input – in the example above, the OR
problem has different values for 0n and for any elementary vector ej with j ∈ [n]. Our outer problem GapAnd does not
necessarily satisfy this condition and so it does not seem that we can apply a direct sum argument.

Instead, we take the reverse approach by starting with the outer problem in the composition and using it to solve the inner
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problem, which is an approach used in (Woodruff & Zhang, 2012) but for a very different multiplayer communication
problem.

For each j ∈ [t], we let Dj = |xj ∩ yj |, so that the GapAnd problem is simply to determine whether |Dj | ≥ t
4 + c ·

√
t or

|Dj | ≤ t
4 − c ·

√
t. It is known that any protocol Π that solves GapAnd must reveal Ω(t) information about D1, . . . , Dt. In

particular, this implies that there exist Ω(t) coordinates j ∈ [t] such that conditioned on the previous values D1, . . . , Dj−1,
the protocol reveals Ω(1) information about Dj ; we call such a coordinate an informative index. The goal is then to show
that for any informative index, the protocol Π must reveal Ω(n) information, due to the hardness of the multiplayer pairwise
disjointness problem.

Consider a hard-wiring of a specific instance V of the multiplayer pairwise disjointness problem on an informative index
j ∈ [t]. The α players can fix the other coordinates of the GapSet before the j-th block and then plant V on the j-th block.
Because the protocol reveals Ω(1) information about Dj , this translates to an Ω(1) additive advantage over random guessing
by using the maximum likelihood estimator. Moreover, note that the conditioning of the special coordinate in the multiplayer
pairwise disjointness can only change the conditional information cost by an additive logarithmic factor. Hence, we obtain a
protocol Π′ that can be used to solve multiplayer pairwise disjointness, which requires Ω(n) information. Then summing
over the Ω(t) informative indices, it follows that the information cost of Π for GapSet is Ω(nt).

A.2. Extension to Streaming Algorithms

Motivated by the connection between distributed algorithms and streaming algorithms, we also consider parameterized
algorithms for the distinct elements problem in the streaming setting. In the streaming setting, a low memory algorithm is
given a single pass or a small number of passes over a stream of items, and should output a (1± ε)-approximation to the
number F0 of distinct items at the end of the stream with constant probability. We consider insertion-only streams.

We choose to parameterize the complexity in terms of C, the number of coordinates i ∈ [n] with frequency fi > 1. In
situations in which the data is Zipfian, it may be the case that C is small compared to F0, as only a few items may occur more
than once. We note that without parameterizing by C, there is an Ω

(
1
ε2 + log n

)
bit lower bound for any constant number

of passes (Jayram & Woodruff, 2013). We, however, are able to give a two-pass streaming algorithm using O(C + 1/ε)
memory, up to logarithmic factors, and we also prove a matching Ω

(
C + 1

ε

)
lower bound for any constant number of passes.

For one-pass algorithms we are able to achieve O
(
C
ε

)
bits of space, up to logarithmic factors, also showing that one can

bypass the Ω
(

1
ε2

)
lower bound for C < 1/ε. In fact, in all of our results, we can replace C with the number of items with

frequency strictly larger than 1, times the minimum of 1 and 1
ε2F0

, which is especially useful if F0 ≫ 1
ε2 .

Our two-pass streaming algorithm is based on computing the ℓ1-norm of the underlying vector, which is just the stream
length since we only consider insertions of items, and then subtracting off an estimate to the contribution of items with
frequency strictly larger than 1, which we call outliers. We then add back in an estimate to the total number of outliers.
We can assume F0 = Θ

(
1
ε2

)
by subsampling the universe items at O (log n) scales to reduce F0 to value in Θ

(
1
ε2

)
and

preserve its value up to 1± ε (for this discussion let us assume F0 is at least 1/ε2 to begin with). We observe that for items
that have frequency smaller than 1

εC , their total contribution to the ℓ1-norm is 1
ε , so they can be ignored as F0 = Θ

(
1
ε2

)
. For

items with frequency sufficiently large, we can identify them all using a CountSketch data structure (Charikar et al., 2002)
with O

(
C + 1

ε

)
buckets, and thus this amount of memory up to logarithmic factors. Further, we can obtain an unbiased

estimate to their sum with small enough variance by adding their individual CountSketch estimates. Finally, there are items
with “intermediate frequencies” for which we cannot find them with CountSketch - for these we instead subsample the
universe elements, making the surviving universe elements with intermediate frequencies “heavier”, since the total F0 has
gone down and thus the noise in each CountSketch bucket is smaller while the frequency of an item with intermediate
frequency has remained the same (note that we subsample universe elements rather than stream items). We identify the
surviving universe elements with intermediate frequency and scale back up by the inverse of the sampling probability to
estimate their contribution to the ℓ1-norm.

One issue is that for items with intermediate frequencies, we need to subsample at multiple geometric rates, and in order to
avoid over-counting we need to learn their frequency counts exactly, which we accomplish with a second pass. However,
if we were to instead increase the number of hash buckets of CountSketch from O

(
C + 1

ε

)
to O

(
C
ε

)
, we could find

all heavy hitters in a single pass. Interestingly, for our single pass algorithm, we can also use methods for robust mean
estimation (Prasad et al., 2019) applied to the values of our CountSketch buckets to estimate F0. Indeed, we can view the
few CountSketch buckets which contain an outlier as the corrupted samples in a robust mean estimation algorithm. This
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allows us to save a log n factor from the number of CountSketch tables. We give these results in Appendix D.

B. Communication Game Lower Bound
In this section, we define and analyze the communication complexity of the GapSet problem. Recall that GapSet is the
composition of the GapAnd problem on t coordinates with the multiplayer pairwise disjointness problem on n coordinates.
The intuition is that GapSet requires Ω(nt) communication because the outer problem GapAnd requires Ω(t) communication
and each inner problem of the multiplayer pairwise disjointness problem requires Ω(n) communication. The formal proof is
significantly more involved. For starters, communication complexity is not additive but information costs are, so we require
a number of preliminaries for information theory, which we recall in part in Section A.

We first formally define the GapAnd problem, which serves as the “outer” problem in the composition problem GapSet, as
follows:

Definition B.1 (GapAnd). In the distributional t-coordinate GapAnd problem GapAndt, Alice and Bob receive vectors
x,y ∈ {0, 1}t generated uniformly at random. Let c > 0 be a constant. Bob’s goal is to determine whether the input falls
into the cases:

• In the YES case, for at least t
4 + 1

16 ·
√
t coordinates j ∈ [t], we have xj = yj = 1.

• In the NO case, for at most t
4 −

1
16 ·
√
t coordinates j ∈ [t], we have xj = yj = 1.

• Otherwise if neither the YES case nor the NO case occurs, then Bob’s output may be arbitrary.

It is known that any protocol that obtains a constant advantage over random guessing reveals Ω(t) information about the
input vectors.

Lemma B.2. (Chakrabarti et al., 2012; Pagh et al., 2014; Braverman et al., 2016) There exists a sufficiently small constant
δ > 0 for which any private randomness protocol Π for GapAndt that succeeds with probability at least 1

2 + Ω(1) over
inputs x,y, the private randomness of Π and public randomness R satisfies

I(Π(x,y);x,y|R) = Ω (t) .

Recall that in the set disjointness communication problem, e.g., (Chakrabarti et al., 2003; Bar-Yossef et al., 2004), two
players each have a subset of [n] and their goal is to determine whether the intersection of their sets is empty or non-empty.
We define a variant of set disjointness as our “inner” problem. See Figure 3 for an example of possible set disjointness
inputs for each case.

1 1 0 0 1 0 0

0 0 1 0 0 0 1

(a) YES instance

1 0 0 0 1 1 0

0 1 0 0 0 1 0

(b) NO instance

Figure 3: Examples of YES and NO instances of the set disjointness problem for α = 2 players.

We show that any protocol for GapSetn,k with constant k requires Ω(n) communication. To that end, we first recall the
following structural properties from (Bar-Yossef et al., 2004):

Lemma B.3 (Lemma 6.2 in (Bar-Yossef et al., 2004)). Let f(X) and f(Y ) be two random variables and let Z be a random
variable with uniform distribution in {X,Y }. If Z is independent of both f(X) and f(Y ), then I(Z; f(Z)) ≥ h2(fX , fY ),
where fX denotes the distribution of f on X .

Lemma B.4 (Cut-and-Paste, e.g., Lemma 6.3 in (Bar-Yossef et al., 2004)). Let Π be a randomized protocol, x, x′ ∈ X , and
y, y′ ∈ Y for some domains X,Y . Then h(Πxy,Πx′y′) = h(Πxy′ ,Πx′y).

Lemma B.5 (Pythagorean Lemma, e.g., Lemma 6.4 in (Bar-Yossef et al., 2004)). Let Π be a randomized protocol, x, x′ ∈ X ,
and y, y′ ∈ Y for some domains X,Y . Then h2(Πxy,Πx′y) + h2(Πxy′ ,Πx′y′) ≤ 2h2(Πxy,Πx′y′).
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Lemma B.6 (Lemma 6.5 in (Bar-Yossef et al., 2004)). Let Π be a randomized protocol with failure probability δ ∈ (0, 1) for
a function f . Then for any two input pairs (x, y) and (x′, y′) with f(x, y) ̸= f(x′, y′), we have h2(Πxy,Πx′y′) ≥ 1− 2

√
δ.

Lemma B.7. Let α ≥ 2 be an integer and let k ∈ [α]. Let Π be a randomized α-party communication protocol with inputs
from {0, 1}α for determining whether exactly ℓ coordinates are one and let π : [α]→ [α] be any permutation. Then,

α∑
i=1

h2(Π0α ,Πei) ≥
1

2k

⌊α/k⌋∑
j=1

h2(Π0α ,ΠIj ),

where Ij =
[
α(j−1)

2k + 1, αj
2k

]
.

Proof. Similar to the proof of Lemma 7.2 in (Bar-Yossef et al., 2004), we prove the claim by using an induction argument
on a tree. Let α′ be the smallest power of two such that α ≤ α′ and let ϕ be any mapping that extends a permutation
π : [α] → [α] in the natural way to α′ coordinates, i.e., ϕ(i) = π(i) for i ∈ [α] and ϕ(i) = i for i ∈ (α, α′]. Let T be a
complete binary tree of height log(α′) with leaves labeled from ϕ(1) to ϕ(α′) and internal nodes labeled with the leaves in
their corresponding rooted subtrees.

For a, b ∈ [α] with b− a+ 1 = k, let c =
⌊
a+b
2

⌋
. Let u = eπ([a,b]), v = eπ([a,c]), and w = eπ([c+1,b]). By an analogue of

Lemma B.4 for α′-player communication games, we have that

h(Π0α′ ,Πu) = h(Πv,Πw).

On the other hand, since the last α′ − α input coordinates are known by all players, we have

h(Π0α ,Πu) = h(Πv,Πw).

By the triangle inequality,
h(Π0α ,Πv) + h(Π0α ,Πw) ≥ h(Πv,Πw).

Thus by the Cauchy-Schwarz inequality,

h2(Πv,Πw) ≤ 2(h2(Π0α ,Πv) + h2(Π0α ,Πw)).

Then by induction,

2(b− a+ 1)

b∑
i=a

h2(Π0α ,Πei) ≥ h2(Π0α ,Πe[a,b]
).

For k = b− a+ 1, we can split the interval [0, α] into at least
⌊
α
k

⌋
disjoint intervals of length k. Therefore,

α∑
i=1

h2(Π0α ,Πei) ≥
1

2k

⌊α/k⌋∑
j=1

h2(Π0α ,ΠIj ),

where Ij =
[
α(j−1)

2k + 1, αj
2k

]
.

We now show that any protocol for GapSetn,k requires Ω(n) communication for constant k > 0.

Lemma B.8. The conditional information cost of any algorithm for SetDisjn,k that succeeds with probability 1
2 +Ω(1) is

Ω(n).

Proof. We first use the direct sum paradigm by defining the NO distribution ζ for the single coordinate SetWtn,k problem,
which implicitly forms the NO distribution µ0 for SetDisjn,k. We use a random variable Q ∈ [α] chosen uniformly at
random, so that conditioned on the value of Q = i ∈ [α], we have that u is chosen from {0α, ei} uniformly at random,
implicitly defining the distribution ζ. Then ζn is the collapsing distribution that matches the distribution of µ0 and so by
Theorem A.14, it suffices to show that the conditional information cost of Π with respect to ζ is Ω(1).
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To that end, we have

I(Π(u);u|Q) =
1

α

α∑
i=1

I(Π(u);u|Q = i).

By Lemma B.3 and Lemma B.7

I(Π(u);u|Q) ≥ 1

α

α∑
i=1

h2(Π0α ,Πei)

≥ 1

2α

⌊α/k⌋∑
j=1

h2(Π0α ,Πe2j−1+e2j ),

By the correctness of the protocol on µ and Lemma B.6, we have that I(Π(u);u|Q) = Ω(1). Hence, the conditional
information cost of any algorithm for SetDisjn,k that succeeds with probability 1

2 + Ω(1) under the mixture distribution
µ = 1

2µ0 +
1
2µ1 is Ω(n).

We now define the composition communication problem GapSet.

Definition B.9 (GapSet). In GapSett,α,n,k, the distribution ϕ for the GapSet problem over t blocks each with n coordinates
and k collisions for α players is defined as follows. The α players receive input vectors u(1), . . . ,u(α) ∈ {0, 1}nt such that
the i-th player receives vector u(i), for all i ∈ [α]. Let β =

⌊
α
2

⌋
and ℓ =

⌊
k
2

⌋
. The input is generated by first drawing

x,y ∈ {0, 1}t from GapAndt and creating input vectors {u(i,j)}i∈[α],j∈[t].

• For each j ∈ [t], a special coordinate Zj ∈ [n] is selected uniformly at random.

◦ If xj = 1, then the coordinate Zj is given to ℓ random players, i.e., the protocol selects ℓ indices that are at most

β, i.e., ij1 , . . . , ijℓ ≤ β, and sets u(ij1 ,j)

Zj
= . . . = u

(ijℓ ,j)

Zj
= 1.

◦ If yj = 1, then the coordinate Zj is given to k − ℓ random players, i.e., the protocol selects k − ℓ indices that are

at least β + 1, i.e., ijℓ+1
, . . . , ijk ≥ β + 1, and sets u

(ijℓ+1
,j)

Zj
= . . . = u

(ijk ,j)

Zj
= 1.

• For all coordinates w ∈ [n] with w ̸= Zj , with probability 1
2 , the protocol assigns w to a random player wj ∈ [α], i.e.,

it sets u(wj ,j)
w = 1.

Each vector u(j) = u(1,j) ◦ u(2,j) ◦ . . . ◦ u(α,j) and the α players’ goal to determine whether the input falls into the cases:

• In the YES case, the input is generated from vectors x,y ∈ {0, 1}t that are in the YES case for GapAndt.

• In the NO case, the input is generated from vectors x,y ∈ {0, 1}t that are in the NO case for GapAndt.

• Otherwise if the input is generated from vectors x,y ∈ {0, 1}t that are neither in the YES or NO cases for GapAndt,
then the α players’ output may be arbitrary.

See Figure 4 for examples of possible inputs to GapSet.

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 1 0 1 0 1 0 0 0 1 0 1

(a) Small number of collisions instance

1 1 0 0 1 0 1 1 1 1 1 0 0 1 0

0 1 1 0 1 0 0 0 0 0 1 0 1 0 1

(b) Large number of collisions instance

Figure 4: Examples of input instances for GapSet problem for α = 2 players, t = 5 blocks, and n = 3 coordinates on each
block.

We first show the mutual information between a successful protocol for GapSet and a set of auxiliary variables.
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Lemma B.10. Let Π be a protocol that solves GapSett,α,n,k with probability at least 0.99. Let {u(i)}i∈[α] be an input for
GapSett,α,n,k, generated from vectors x,y drawn from GapAndt. Let M be the transcript of Π on input {u(i)}i∈[α] and R
be a fixing of auxiliary random bits. For each j ∈ [t], let Dj = |xj ∩ yj |. Then

I(M ;D1, . . . , Dt|R) = Ω(t).

Proof. Since the vectors x,y are an instance drawn from GapAndt, then we have xj = yj = 1 if and only if Dj = 1. Thus
M any message produced by a protocol Π that solves the distributional problem GapSett,α,n,k with probability at least 0.99
also solves GapAndt with probability at least 0.99,

By Lemma B.2,
I(M ;D1, . . . , Dt|R) ≥ I(Π(A,B);A,B|R) = Ω(t).

We define the following “guess” variant of the set disjointness problem, along with the input distributions D1 and D2. In the
GUESS problem, there exists a fixed coordinate Z ∈ [n]. We define the distribution D = (D1, . . . , Dn) as follows. For
each i ∈ [n], Di is a random integer in [α]. All sites not equal to Di have their i-th coordinate set to zero. With probability
1
2 , the site Di has its i-th coordinate set to one; otherwise it is set to zero. We define D1 to be this distribution.

We then achieve the distribution D2 by making the following modifications to D1. For coordinate Z, with probability 1
2 , we

set the Z-th coordinate of ℓ =
⌊
k
2

⌋
random servers of index at most β =

⌊
α
2

⌋
to one and the remaining to zero. In this case,

we say X = 1. Otherwise, we set all of those coordinates to be zero and we say X = 0. Similarly for coordinate Z, with
probability 1

2 , we set the Z-th coordinate of k − ℓ random servers of index larger β =
⌊
α
2

⌋
to one and the remaining to zero.

In this case, we say Y = 1. Otherwise, we set all of those coordinates to be zero and we say Y = 0. In the GUESS variant,
there is an additional party that observes the transcript of the communication protocol between Alice and Bob and must
guess the values of X and Y . By a similar argument to Theorem 5 in (Woodruff & Zhang, 2012), we have:

Theorem B.11. Let Π be the transcript of any randomized protocol for GUESS on input V ∼ D2 with success probability
1
4 +Ω(1). Then for k = Θ(1), we have I(V ; Π | D,Z) = Ω(n), where information is measured with respect to D2.

The only difference is that the input distributionD2 is slightly different than the input distribution for Theorem 5 in (Woodruff
& Zhang, 2012), where all α servers have ones in the case the set disjointness input is a NO instance. By comparison, we
only have k servers for k = O (1), so that the mutual information is Ω(1) times the Hellinger distance between the all zeros
vector and an elementary vector.

We now lower bound the mutual information for any protocol that solves GapSet. The proof follows exactly the same
structure as Theorem 7 of (Woodruff & Zhang, 2012).

Lemma B.12. Let R be a source of fixed randomness and U = {u(i)}i∈[α] be an instance of GapSett,α,n,k. For each
j ∈ [t], let D(j) and Z(j) denote the outcomes of D and Z for the j-th block, respectively and let D⃗ and Z⃗ denote the
outcomes across all j ∈ [t]. Then for any protocol Π that produces transcript M(U) on input U that solves GapSett,α,n,k
with probability at least 3

4 +Ω(1) satisfies I(M(U);U|D⃗, Z⃗) ≥ Ω(nt).

Proof. Let {u(i)}i∈[α] be generated from vectors x,y drawn from GapAndt. For each j ∈ [t], let X(j) and Y (j) denote the
outcomes of X and Y for the j-th block, respectively, and define X⃗ and Y⃗ similarly. By Lemma B.10 and the chain rule,
i.e., Fact A.9, there exist Ω(t) coordinates j ∈ [t] such that I(X(j), Y (j);M | D(<j), X(<j), Y (<j), Z(<j)) = Ω(1). We
define such an index j ∈ [t] to be informative.

Now, we can write I(U(<j);M | D,X(<j), Y (<j), Z) as∑
Pr

(d,x,y,z)

[
(D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z)

]
× I(U(<j);M | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z)).

By definition of an informative index i, we have with constant fraction of the summands (d, x, y, z) that

I(U(<j);M | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z)) = Ω(1).
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We say such ordered tuplets are good for an informative index j.

Observe that by independence of the distribution across the coordinates j ∈ [n], we have

H(U(<j) | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z)) = 2.

Now for an informative index j and (d, x, y, z) that is good for j,

H(U(<j) | M,Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z))

= H(U(<j) | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z))

− I(U(<j);M | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z))

= 2− Ω(1).

For a good (d, x, y, z) for an informative j, we build a protocol Πj,d,x,y,z that computes the GUESS problem on input D2

with probability 1
4 +Ω(1). Let A1, . . . , Aα be the inputs to the α sites and let {Q,R} be the input for the predictor, where Q

is a realization of D and R is a realization of Z. Then Πj,d,x,y,z has (j, d, x, y, z) hard-coded so that the k sites construct an
input B for GapSet using the distribution ϕ. In particular, they set B(j) = {A1, . . . , Aα} and then use private randomness
to independently generate blocks j′ ̸= j, given the values of (d, x, y, z). Then by setting D(j) = Q and Z(j) = R for the
predictor, the sites can run Π on input B.

Hence by Theorem B.11, we have

I(M(U);U|D⃗, Z⃗) ≥
∑

informative j

I(M(U);U(j)|D⃗, Z⃗,U(<j))

≥
∑

informative j

∑
good (d,x,y,z)

Pr
(d,x,y,z)

[
(D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z)

]
× I(U(<j);M | Dj , Zj , (D(<j), X(<j), Y (<j), Z(<j)) = (d, x, y, z))

= Ω(t) · Ω(n) = Ω(nt).

Finally, we show the communication complexity of GapSet.

Theorem B.13. Any protocol Π that solves GapSett,α,n,k with probability at least 3
4 +Ω(1) uses Ω(nt) bits of communica-

tion.

Proof. The proof follows immediately from Lemma B.12, Fact A.5, and Lemma A.8.

Using Lemma B.12, we ultimately show Theorem 1.5 by designing a reduction with the appropriate values of n and t; we
defer the proof to Section C.

C. Applications to Duplication Detection
In this section, we prove Theorem 1.5 as well as describe additional applications to the duplication detection problem.
Recall that in the duplication detect problem, the goal for the α servers is to approximate the total number of duplicates,
where a duplicate is defined to be a coordinate j ∈ [n] that appears on at least two distinct servers. We first show that our
communication game lower bound in Section B gives a hardness of approximation to estimating the number of duplicates.
We then give an algorithm that shows that our lower bound is in fact, tight.

C.1. Motivation and Related Work

Database cleaning. The detection and elimination of repeated data is an important task for data cleaning and data quality
in database management. Due to data entry errors, multiple accounts, varying conventions, or a number of other reasons,
the same concept or real-world entity may correspond to multiple entries in a database, which can often be the source of
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significant challenges for users of the database. For example, duplicated entries in a database can lead to increased direct
mailing costs because duplicated consumers may be sent multiple copies of the same catalog. (Chaudhuri et al., 2005)
observes that duplicates can also induce incorrect outputs for analytic queries, such as the size of the overall consumer base,
and thus lead to erroneous data mining models downstream. Therefore, significant effort and costs are spent on identifying
and removing repeated items in a database.

The duplication detection problem is also known as the merge/purge, deduping, and record linkage problem (Fellegi &
Sunter, 1969; Kilss & Alvey, 1986; Bitton & DeWitt, 1983; Monge & Elkan, 1997; Hernández & Stolfo, 1998; Sarawagi &
Bhamidipaty, 2002; Bilenko & Mooney, 2003) and in fact, a more general version of the duplication detection problem,
known as fuzzy duplication detection (Ananthakrishna et al., 2002; Chaudhuri et al., 2005), is often studied. In the fuzzy
duplication problem, the goal is not only to identify the duplicated entries in a database, but also to identify sufficiently close
entries in a database, which among other things can help account for human errors such as typos or missing information.

Techniques for the fuzzy duplication problem can largely be separated into supervised and unsupervised approaches.
Supervised approaches generally use training data containing known duplicates to find characteristics that are then used
to identify future duplicates (Cohen & Richman, 2002; Bilenko & Mooney, 2003). However, such approaches not only
lack theoretical guarantees but also often encounter difficulties in finding effective training data that display the same
distribution of duplicates observed in practice (Chaudhuri et al., 2005). (Sarawagi & Bhamidipaty, 2002; Tejada et al., 2002)
addressed this shortcoming by using active learning to interactively update the training data, but the drawback is that their
approaches require manual guidance to perform the updates. Unsupervised approaches generally use global thresholds for
distance functions, such as the edit distance or the cosine distance, to detect duplicates, which induces poor recall-precision
tradeoffs (Hernández & Stolfo, 1998; Monge & Elkan, 1997; Chaudhuri et al., 2005) since individual fuzzy duplications
may not follow the general global trends. For the standard duplication detection problem, one simple approach (Metwally
et al., 2005) is to use Bloom filters (Bloom, 1970) to avoid communicating the full information of each entry. However, this
generally requires communication linear in the size of the entire dataset.

Advertising commissions. As noted by (Metwally et al., 2005), a related application of duplicate detection is to the task
of advertising commissions by the middle party between advertisers and publishers. In a typical scenario, an advertiser and
a publisher generally arrange an agreement for a specified commission for each user interaction with an advertisement, such
as clicking or watching an advertisement, completing a form, bidding on an item, or making a transaction. The publisher
will then display advertisements, forms, or text links on its products, while using tracking information, e.g., referral codes,
to monitor the traffic it directs to the advertiser’s materials. Similarly, the advertiser will also use tracking information to
monitor the traffic directed from each publisher to its site. Inconsistencies between the statistics claimed by the advertiser
and the publisher are then resolved by an arbiter, a third-party tracking entity called the advertising commissioner, who
serves as a middle party who receives the traffic from the publisher and forwards it to the advertiser.

Because the publisher receives revenue proportional to the traffic that they direct to the advertising site, they can be
incentivized to falsely increase the number of hits produced by their referral link, a process called click inflation (Anupam
et al., 1999; Metwally et al., 2005). On the other hand, the advertising commissioner must report the true traffic directed
to the advertising site and thus detect any click inflation that has occurred. By simplifying the traffic information to an
identification number such as the IP address, the problem for the advertising commissioner reduces to duplication detection.

Duplication detection in the streaming model. Duplication detection has also been extensively studied in other big data
models, in particular the streaming model (Metwally et al., 2005; Gopalan & Radhakrishnan, 2009; Jowhari et al., 2011). In
fact, (Muthukrishnan, 2005) explicitly ask the question of whether duplication detection could be performed in polylog(m)
space, where m is the size of the data, e.g., the length of the data stream. The problem can be solved in O (logm) space
in the random access model. For deterministic algorithms, (Tarui, 2007) showed that even if the streaming algorithm is
allowed k passes over the data, Ω

(
m1/k

)
memory is necessary. (Gopalan & Radhakrishnan, 2009) answered the question

of (Muthukrishnan, 2005) in the affirmative by giving a randomized algorithm that uses O
(
log3(m)

)
bits of space for the

duplication detection problem when the stream length is larger than the universe size. Without such a condition there is a
strong Ω(m) memory lower bound. (Jowhari et al., 2011) finally gave tight upper and lower bounds, showing that the space
complexity of the duplication detection problem is Θ(log2(m)) bits.
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C.2. Hardness of Duplication Detection Problem

In this section, we give our lower bound for the communication complexity of the duplication detection problem, which we
recall is defined as follows: let C be an input parameter for the number of collisions and k be an input parameter for the
number of players with mutual collisions. Let ε ∈ (0, 1) be an accuracy parameter. Suppose there exist α players, each with
s samples. The goal is to identify whether there are fewer than C coordinates or more than (1 + ε) · C coordinates shared
among exactly k players.

Our approach is to reduce the problem of duplication detection from the GapSet problem. We split the analysis into casework
depending on whether C = O

(
1
ε2

)
or C = Ω

(
1
ε2

)
. However, we first require the following structural properties to argue

distribution matching.

Fact C.1 (Stirling’s approximation). For any integer k > 0, we have

√
2πkk+

1
2 e−k ≤ k! ≤ ekk+

1
2 e−k.

Lemma C.2. Let c > 0 be a constant. Let X be a random variable drawn from the binomial distribution on t trials with
probability 1

4 . Then we have

Pr

[∣∣∣∣X − t

4

∣∣∣∣ < c ·
√
t

]
≤ c.

Proof. We assume that t is divisible by 4 and define the interval

I =

{
i ∈ N | t

4
− c ·

√
t < i <

t

4
+ c ·

√
t

}
.

Note that if t is not divisible by 4, we can perform a similar analysis on 4
⌈
t
4

⌉
.

Let X be a random variable drawn from the binomial distribution on t trials with probability 1
4 . We bound the probability

Pr [X ∈ I] =
∑

i∈I Pr [X = i]. Observe that we have

Pr [X = i] =

(
1

4

)i(
3

4

)t−i(
t

i

)
.

Hence,
Pr [X = i]

Pr [X = i− 1]
=

1

3

(i− 1)!(t− i+ 1)!

i!(t− i)!
=

1

3

t− i+ 1

i
,

so that Pr[X=i]
Pr[X=i−1] < 1 for i > t

4 and Pr[X=i]
Pr[X=i−1] > 1 for i ≤ t

4 . Therefore, Pr [X = i] is maximized at i = t
4 .

We now upper bound
(

t
t/4

)
using Stirling’s approximation in Fact C.1 to handle the binomial coefficients. We have(

t

t/4

)
=

t!

(3t/4)!(t/4)!

≤ ett+
1
2 e−t(√

2π(3t/4)3t/4+1/2e−3t/4
) (√

2π(t/4)t/4+1/2e−t/4
)

=
e

2π
√
t (3/4)

3t/4
(1/4)

t/4
.

Hence, we have

Pr

[
X =

t

4

]
≤
(
1

4

)t/4(
3

4

)3t/4
e

2π
√
t (3/4)

3t/4
(1/4)

t/4

=
e

2π
√
t
<

1

2
√
t
.
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Therefore,

Pr [X ∈ I] ≤
∑
i∈I

Pr [X = i] <
∑
i∈I

1

2
√
t
=
|I|
2
√
t
≤ 2c

√
t

2
√
t
= c.

We first consider the case where C < 4
ε2 .

Lemma C.3. Let C be an input parameter for the number of collisions and k be an input parameter for the number of
players with mutual collisions. Let ε ∈ (0, 1) be an accuracy parameter such that C < 4

ε2 . Suppose there exist α players,
each with s samples from some universe of size N = Ω(s). Then any protocol Π that with probability at least 0.99, identifies
whether there are fewer than (1− ε) · C coordinates or more than (1 + ε) · C coordinates shared among exactly k players
requires Ω(αs) communication.

Proof. We first consider the setting where C < 4
ε2 . Let t = 4C and n = Ω

(
αs
C

)
. Let {u(i)}i∈[α] be an instance of

GapSett,α,n,k. Recall that {u(i)}i∈[α] is generated from x,y ∈ {0, 1}t drawn from GapAndt. For each j ∈ [t], let Dj

denote the indicator random variable for whether xj = yj = 1, so that Dj = 1 if xj = yj = 1 and Dj = 0 otherwise. Note
that Dj is a Bernoulli random variable with parameter 1

4 . Let D =
∑

j∈[t] Dj , so that D is a binomial random variable with
t trials and parameter 1

4 .

Observe that 1
16

√
t ≥ ε t

4 , so that a (1 + ε)-approximation algorithm to the number of k-wise collisions will also determine
the number of coordinates j ∈ [t] such that Dj = 1. We have that Pr

∣∣D − t
4

∣∣ ≥ 1
16

√
t ≥ 0.2. Thus we have that

with probability at least 3
4 , Π will be able to solve GapSett,α,n,k. Hence by Theorem B.13, Π must use Ω(nt) = Ω(αs)

communication.

We next consider the case where C ≥ 4
ε2 . The proof follows similarly to Lemma C.3 but also uses a padding argument to

account for the number of collisions.

Lemma C.4. Let C be an input parameter for the number of collisions and k be an input parameter for the number of
players with mutual collisions. Let ε ∈ (0, 1) be an accuracy parameter such that C ≥ 4

ε2 . Suppose there exist α players,
each with s samples from some universe of size N = Ω(s). Then any protocol Π that with probability at least 0.99, identifies
whether there are fewer than (1− ε) · C coordinates or more than (1 + ε) · C coordinates shared among exactly k players
requires Ω

(
αs
Cε2

)
communication.

Proof. Let t = 1
ε2 and n = Ω

(
αs
C

)
. Let {v(i)}i∈[α] be an instance of GapSett,α,n,k. We then set u(i) to be C

t copies of v(i)

for each i ∈ [α], so that u(i) = v(i) ◦ v(i) ◦ . . . ◦ v(i). For each j ∈ [t], we define Dj to be the indicator random variable
for whether xj = yj = 1, so that Dj = 1 if xj = yj = 1 and Dj = 0 otherwise. Since {v(i)}i∈[α] is generated from
x,y ∈ {0, 1}t drawn from GapAndt, then Dj is a Bernoulli random variable with parameter 1

4 . Hence for D =
∑

j∈[t] Dj ,
we have that D is a binomial random variable with t trials and parameter 1

4 .

Observe that 1
16

√
t ≥ ε t

4 , so that a (1 + ε)-approximation algorithm to the number of k-wise collisions will also determine
the number of coordinates j ∈ [t] such that Dj = 1. By Lemma C.2, we have that Pr

[∣∣D − t
4

∣∣ ≥ 1
16

√
t
]
≥ 0.2. Thus

we have that with probability at least 3
4 , Π will be able to solve GapSett,α,n,k. Hence by Theorem B.13, Π must use

Ω(nt) = Ω
(

αs
Cε2

)
communication.

Putting Lemma C.3 and Lemma C.4 together, we have:

Theorem C.5. Let C be an input parameter for the number of collisions, k be an input parameter for the number of players
with mutual collisions, and ε ∈ (0, 1) be an accuracy parameter. Suppose there exist α players, each with s samples from
some universe of size N = Ω(s). Then any protocol Π that with probability at least 0.99, identifies whether there are
fewer than (1− ε) · C coordinates or more than (1 + ε) · C coordinates shared among exactly k players requires Ω(αs)
communication for C < 4

ε2 and Ω
(

αs
Cε2

)
communication for C ≥ 4

ε2 .

Theorem 1.5 then follows from setting k = 2.
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(1) For each player i ∈ [α], let Si be the set of items given to player i.

(2) For each j ∈ [N ], sample j into a set U with probability p = Θ
(

1
Cε2

)
. This is done by all players using public

randomness.

(3) For each i ∈ [α], let Ti = Si ∩ U .

(4) Let v be a bit vector of size ξαs
Cε2 , for a sufficiently large constant ξ > 0.

(5) While there are multiple items in ∪Ti that hash to the same position of v:

(a) All players hash Ti into v and communicate the non-zero entries of their hash.
(b) For any x that does not map to a position of v communicated by multiple players, remove x from the

remaining items, i.e., Ti = Ti \ {x} for all i ∈ [α].

(6) Let D′ be the number of positions that are communicated by multiple players.

(7) Output D′

p for the estimated number of collisions.

Figure 5: Distributed protocol for duplication estimation

C.3. Upper Bounds for Duplication Detection

In this section, we provide a short sketch of a distributed protocol for the duplication detection problem. The protocol uses
standard techniques and is summarized in Figure 5. Given C > 0 and an accuracy parameter ε ∈ (0, 1), the α parties must
determine whether there exist at least C · (1 + ε) duplicates or at most C · (1− ε) duplicates.

The protocol proceeds as follows. The parties first sample each item from the universe at a rate p = Θ
(

1
Cε2

)
. That is,

instead of considering the universe [N ], they consider a universe U where for each i ∈ [N ], we have i ∈ U with probability
p. Then each player only considers the subset of their items that are contained in U .

By standard calculations on the expectation and variance, it can be shown that if D′ is the number of duplicates across the
subsampled universe U , then 1

D′ is an additive O (ε) · C approximation to the actual number D of duplicates. That is, with

probability 0.99, we have
∣∣∣D′

p −D
∣∣∣ ≤ O (ε) · C. It thus remains to compute the number of duplicates in the universe U .

By Markov’s inequality, with probability at least 0.99, the total number of items in the universe U is at most γαs
Cε2 for some

sufficiently large constant γ. Let E be the event that the total number of items in the universe U is at most γαs
Cε2 , so that

Pr [E ] ≥ 0.99. The players first hash their items into a bit vector v of size ξαs
Cε2 , for a sufficiently large constant ξ > 0. We

call an item i ∈ [N ] isolated if it is hashed into a coordinate of v that no other item is hashed to. Note that conditioned on E ,
the probability that each item is isolated is at least 0.999, for sufficiently large ξ.

The players then succinctly communicate the hashes of all their items as follows. For each i ∈ [α], let Ni be the number
of samples that player i has that is contained in the universe U . To communicate their items, it suffices to use total
communication

α∑
i=1

log

(
γαs/Cε2

Ni

)
= log

α∏
i=1

(
γαs/Cε2

Ni

)
≤ log

α∏
i=1

(
γαs/Cε2

γs/Cε2

)
,

where the last inequality holds due to the constraint that conditioned on E , we have

N1 + . . .+Nα ≤
γαs

Cε2
.

Thus the total communication is at most
α∑

i=1

log

(
γαs/Cε2

γs/Cε2

)
= α logα ·O

( γs

Cε2

)
= O

(
γαs logα

Cε2

)
.

Note that the central server will immediately observe that any isolated item cannot be duplicated. On the other hand,
there could be multiple items that are not duplicated, yet are sent to the same coordinate in the bit vector v. By Markov’s
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inequality, we have that with probability at least 0.99, half of the items that are not duplicates are isolated. It then suffices to
recurse.

That is, in each iteration ℓ, suppose we have γℓαs
Cε2 remaining items that are not duplicated. Then running the above protocol,

the total communication in round ℓ is O
(

γℓαs logα
Cε2

)
. We have that E [γℓ] ≤ 1

2E [γℓ−1]. Thus, in expectation, the total

communication is a geometric series that sums to O
(

γαs logα
Cε2

)
. Then again by Markov’s inequality and the fact that γ is a

constant, we have that the total communication is O
(

αs logα
Cε2

)
.

Theorem C.6. Given C > 0 and an accuracy parameter ε ∈ (0, 1), there exists a distributed protocol for α parties that
determine whether there exist at least C · (1 + ε) duplicates or at most C · (1− ε) duplicates with probability at least 2

3 and

uses O
(

αs logα
Cε2

)
communication.

Proof. Let D be the number of duplicates across the α parties and D′ be the number of duplicates in the subsampled
universe. Let D be the set of duplicates among the α parties, so that |D| = D. Let p be the probability that each coordinate
in the universe is sampled. Then we have

E [D′] =
∑
i∈D

p = Dp,

so that E
[
D′

p

]
= D. Moreover, we have

V
[
D′

p

]
≤ 1

p2

∑
i∈D

p =
D

p
= O

(
Cε2D

)
,

so that by Chebyshev’s inequality, we have

Pr

[∣∣∣∣D′

p
−D

∣∣∣∣ ≤ ε ·O
(√

CD
)]
≥ 0.99.

Now we note that if D < C
1000 or D > 1000C, then a simple 100-approximation to D suffices to distinguish whether

D > C · (1 + ε) or D < C · (1− ε). Thus we assume C
1000 ≤ D ≤ 1000C, so that

Pr

[∣∣∣∣D′

p
−D

∣∣∣∣ ≤ O (ε) · C
]
≥ 0.99.

It thus remains to compute the number of duplicates in the universe U . To that end, the players first hash their items into a
bit vector v of size ξαs

Cε2 , for a sufficiently large constant ξ > 0.

We call an item i ∈ [N ] isolated if it is hashed into a coordinate of v that no other item is hashed to. Note that conditioned on
E , the probability that each item is isolated is at least 0.999, for sufficiently large ξ. By Markov’s inequality, with probability
at least 0.99, the total number of items in the universe U is at most γαs

Cε2 for some sufficiently large constant γ. Let E be the
event that the total number of items in the universe U is at most γαs

Cε2 , so that Pr [E ] ≥ 0.99.

The players then succinctly communicate the hashes of all their items as follows. For each i ∈ [α], let Ni be the number
of samples that player i has that is contained in the universe U . To communicate their items, it suffices to use total
communication

α∑
i=1

log

(
γαs/Cε2

Ni

)
= log

α∏
i=1

(
γαs/Cε2

Ni

)
≤ log

α∏
i=1

(
γαs/Cε2

γs/Cε2

)
,

where the last inequality holds due to the constraint that conditioned on E , we have

N1 + . . .+Nα ≤
γαs

Cε2
.

Thus the total communication is at most
α∑

i=1

log

(
γαs/Cε2

γs/Cε2

)
= α logα ·O

( γs

Cε2

)
= O

(
γαs logα

Cε2

)
.

29



On Fine-Grained Distinct Element Estimation

Note that the central server will immediately observe that any isolated item cannot be duplicated. On the other hand,
there could be multiple items that are not duplicated, yet are sent to the same coordinate in the bit vector v. By Markov’s
inequality, we have that with probability at least 0.99, half of the items that are not duplicates are isolated.

The protocol is then performed recursively. Specifically, in each iteration ℓ, suppose there remain γℓαs
Cε2 items that are not

duplicated. Then running the above protocol, the total communication in iteration ℓ is at most τγℓαs logα
Cε2 for some constant

τ > 0. Call an iteration successful if γℓ ≤ 1
2γℓ−1, so that the above argument implies that each iteration is successful with

probability at least 0.99. Thus we have

E [γℓ] ≤
99

100

1

2
γℓ−1 +

1

100
γℓ−1 ≤

2

3
γℓ−1.

Then the expected communication Λℓ of iteration ℓ+ 1 is at most

E [Λℓ] ≤
τγℓαs logα

Cε2
≤
(
2

3

)ℓ
τγαs logα

Cε2
.

Thus, in expectation, the total communication Λ is a geometric series that sums to O
(

γαs logα
Cε2

)
:

E [Λ] =
∑
ℓ

E [Λℓ] ≤ O

(
γαs logα

Cε2

)
.

Then again by Markov’s inequality and the fact that γ is a constant, we have that the total communication is O
(

αs logα
Cε2

)
.

D. Parameterized Streaming for Distinct Elements
In this section, we consider distinct elements estimation in the streaming model. Namely, there exists an underlying vector
x ∈ Rn and each update in a stream of length m = poly(n) can increase or decrease a coordinate of x. The goal is to
estimate ∥x∥0 within a multiplicative factor of (1+ε) at the end of the stream using space polylogarithmic in n. Moreover, it
is known that ω

(
1
ε2

)
bits of space is generally needed to solve this problem. We now show that if the number of coordinates

with frequency more than one is small, this lower bound need not hold.

We first require the following guarantees of the well-known COUNTSKETCH data structure from streaming.

Theorem D.1. (Charikar et al., 2002) Let x ∈ Rn and let y with the vector x with the b coordinates largest in magnitude
set to zero. Then with high probability, for each i ∈ [n], COUNTSKETCH outputs an estimate x̂i such that

|x̂i − xi| ≤
1√
b
∥y∥2.

Moreover, COUNTSKETCH uses O
(
b log2 n

)
bits of space.

D.1. Robust Statistics

In this section, we present a streaming algorithm for distinct element estimation based on robust statistics. We first recall the
following statement from robust mean estimation.

Theorem D.2. (Prasad et al., 2019) Let P be any 2k-moment bounded distribution over R with mean µ and variance
bounded by σ2. Let Q be an arbitrary distribution and the mixture Pε = (1− ε)P + εQ. Given n samples from Pε, there
exists an algorithm ROBUSTMEANEST that returns an estimate µ̂ such that with probability at least 1− δ,

|µ̂− µ| ≤ O (σ)

(
max

(
ε,

log(1/δ)

n

)1− 1
2k

+

(
log n

n

)1− 1
2k

+

√
log 1/δ

n

)
.

We next present the algorithm in Algorithm 3.

We show that sampling with probability p so that there are Θ
(

1
ε2

)
items in S implies that 1

p · |S| is roughly a (1 +O (ε))-
approximation to the total number of distinct elements. The statement is well-known; we include the proof for completeness.
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Algorithm 3 Parameterized streaming algoritihm for distinct element estimation using robust statistics

Input: Accuracy parameter ε ∈ (0, 1), number C of coordinates that are greater than 1
Output: (1 + ε)-approximation to the number of distinct elements

1: Let X ∈
[
F0

100 , F0

]
2: Let S ⊂ [n] be formed by sampling each item of [n] with probability p = min

(
1, 1

100ε2X

)
3: B ← O

(
C
ε

)
4: for b ∈ [B] do
5: Let Sb sample each item of S with probability 1

B
6: Let fb = F1(Sb) be the total number of updates to items in Sb

7: end for
8: Z ← B · ROBUSTMEANEST(f1, . . . , fb)
9: Return 1

p · Z

Lemma D.3. With probability at least 0.99, we have(
1− ε

4

)
· F0 ≤

1

p
· |S| ≤

(
1 +

ε

4

)
· F0.

Proof. Let N be the set of distinct elements in the stream. Then we have

E [|S|] = 1

p

∑
i∈N

p = |N |,

and

E
[
|S|2

]
≤ 1

p2

∑
i∈N

p ≤ |N |
p
≤ ε2

106
· |N |2,

for p ≥ 106|N |
ε2 . Therefore, by Chebyshev’s inequality, we have with probability at least 0.99,∣∣∣∣1p · |S| − |N |

∣∣∣∣ ≤ ε

4
· F0.

We now justify the correctness of Algorithm 3.

Lemma D.4. If F0(S) ≥ 1
ε2 and C ≤ 1

4ε , then Algorithm 3 provides a (1 + ε)-approximation to the number of distinct
elements in the stream with probability at least 0.98.

Proof. Let f be the frequency vector defined over the stream and let Z be defined as in Algorithm 3. Let N1 be the set of
items with frequency one in S and N>1 be the set of items with frequency larger than 1 in S. For any fixed b ∈ [B], let
Sb(N1) denote the subset of N1 sampled into Sb and similarly, let Sb(N>1) denote the subset of N>1 sampled into Sb. The
probability that |Sb(N>1)| = 0 is

(
1− 1

B

)C ≤ ε
4 for sufficiently large B = O

(
C
ε

)
. Moreover, the distribution of |Sb(N1)|

is a binomial random variable with N1 trials and 1
B success rate. Hence, E [|Sb(N1)|] = 1

B · (|N1|), V [|Sb(N1)|] ≤ 1
B · |N1|,

and all moments of |Sb(N1)| are finite. Therefore, by the guarantees of ROBUSTMEANEST in Theorem D.2, we have that
with high probability,

|Z − |N1|| ≤ B

√
|N1|
B
· ε
4
≤
√

C

ε
· F0(S) ·

ε

4
≤ ε

4
· F0(S).

Since F0(S) ≥ 1
ε2 and C ≤ 1

4ε , then |N1| is a
(
1 + ε

4

)
-approximation to F0(S). Thus,

|Z − F0(S)| ≤
ε

2
· F0(S).
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Finally by Lemma D.3, we have with probability at least 0.99,(
1− ε

4

)
· F0 ≤

1

p
· F0(S) ≤

(
1 +

ε

4

)
· F0,

so that with probability at least 0.98, ∣∣∣∣1p · Z − ∥f∥0
∣∣∣∣ ≤ ε · ∥f∥0.

Next, we analyze the space complexity of Algorithm 3.

Lemma D.5. For a stream with length polynomially bounded in n, Algorithm 3 uses O
(
C
ε log n

)
bits of space.

Proof. Note that Algorithm 3 maintains B = O
(
C
ε

)
buckets, each represented by a counter using O (log n) bits of space

for a stream with length polynomially bounded in n.

Putting together the correctness of approximation and the space bounds, we have the following:

Theorem D.6. Given an accuracy parameter ε ∈ (0, 1), a parameter C ≤ 1
4ε for the number of coordinates with frequency

more than 1, and a number of distinct elements that is at least Ω
(

1
ε2

)
, there exists a one-pass streaming algorithm that

uses O
(
C
ε log n

)
bits of space and provides a (1 + ε)-approximation to the number of distinct elements in the stream with

probability at least 0.98.

D.2. Subsampling

In this section, we present a two-pass streaming algorithm based on subsampling. We give an algorithm for when the number
of coordinates with frequency greater than one is relatively “large” in Algorithm 4 and for the case where the number of
coordinates with frequency greater than one is “small” in Algorithm 5.

Algorithm 4 Parameterized distinct element estimation over two-pass streams

Input: Accuracy parameter ε ∈ (0, 1), number C of coordinates that are greater than 1
Output: (1 + ε)-approximation to the number of distinct elements, given two passes over the data

1: L← O
(
log 1

ε

)
, B ← C · polylog

(
n
ε

)
, T ← 100

ε2 log2 n
ε

2: for ℓ ∈ [L] do
3: Form Sℓ by sampling each item of [n] with probability 1

22ℓ−2

4: Run O (log n) instances of COUNTSKETCH on Sℓ with B buckets ▷First pass
5: end for
6: for each heavy-hitter i ∈ [n] reported by COUNTSKETCH on any Sℓ do
7: Track fi exactly ▷Second pass
8: end for
9: for ℓ ∈ [L] do

10: M̂ℓ = 0
11: for j ∈ Sℓ do
12: if fj ≥ T then
13: M̂1 ← M̂1 + (fj − 1)
14: else if fj ∈

[
T
2ℓ
, T
2ℓ−1

)
then

15: β ← max
(
0, ℓ− log

(
10
(√

C
ε

)
log n

ε

))
16: M̂ℓ ← M̂ℓ + 22β · (fj − 1)
17: end if
18: end for
19: end for
20: Return F1(S1)−

∑
ℓ∈[L] M̂ℓ
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Lemma D.7. Let Z be the output of Algorithm 4. Then with probability at least 2
3 , we have that

|Z − F0(S)| ≤ εF0(S).

Proof. Let S be the data stream. For each i ∈ [n], let mi = max(0, fi − 1) so that ti is the excess mass of fi. Let
M =

∑
i∈[n] mi so that F0(S) = F1(S)−M . Thus to achieve a (1 + ε)-approximation to F0(S), it suffices to obtain an

additive ε · F0 approximation to M .

Let level set Γ1 =
{
i ∈ [n] : fi ≥ T

2

}
consist of the coordinates i ∈ [n] with frequency at least T

2 . Similarly, for ℓ > 1,
let level set Γℓ =

{
i ∈ [n] :

[
T
2ℓ
, T
2ℓ−1

)}
consist of the coordinates i ∈ [n] with frequency in the interval

[
T
2ℓ
, T
2ℓ−1

)
. Let

Mℓ =
∑

i∈Γℓ
fi be the sum of the contributions of the items in level set Γℓ. Finally, let Γ be the set of all coordinates with

value greater than 1.

For each i ∈Mℓ, we have that i is sampled with probability pℓ =
1

2βℓ
, where

βℓ = max

(
0, ℓ− log

(
10

(√
C

ε

)
log

n

ε

))
.

Hence, we consider casework on whether ℓ ≤ log
(
10
(√

C
ε

)
log n

ε

)
or whether ℓ > log

(
10
(√

C
ε

)
log n

ε

)
.

Suppose ℓ ≤ log
(
10
(√

C
ε

)
log n

ε

)
, so that pℓ = 1. Then i ∈ Sℓ for any i ∈ Γℓ. Let Gr denote the probability that i is

not hashed by the r-th instance of COUNTSKETCH to a bucket containing any of the other items in Γ, so that we have
Pr [Er] ≥ 2

3 since |Γ| ≤ C and we use B = C · polylog
(
n
ε

)
buckets in each instance of COUNTSKETCH. Then let E

denote the probability that for all items i ∈ Sℓ ∩ Γℓ, there exist O (log n) instances of COUNTSKETCH such that i is not
hashed to a bucket containing any of the other items in Γℓ ∩ Sℓ, so that we have Pr [E ] = Pr [G1 ∨ G2 ∨ . . .] ≥ 1− 1

poly(n) .
Conditioning on Gr, the variance for the estimation of fi by the r-th instance COUNTSKETCH is at most 1

B ·
100
ε2 . Since

fi ≥ T
2ℓ−1 ≥ 1

Cε2 log
n
ε then COUNTSKETCH reports fi as a heavy-hitter with probability 2

3 . Therefore, we have that with
high probability, i is reported as a heavy-hitter by some instance of COUNTSKETCH. Hence by a union bound over all
i ∈ Sℓ, we have that with high probability, M̂ℓ = Mℓ.

Next, we suppose ℓ > log
(
10
(√

C
ε

)
log n

ε

)
, so that pℓ = 1

2βℓ
, where

βℓ = max

(
0, ℓ− log

(
10

(√
C

ε

)
log

n

ε

))
.

Then for any i ∈ Γℓ, we have i ∈ Sℓ with probability pℓ. Let E1 denote the event that F0(Sℓ) ≤ (10 log n) · pℓ · F0(S) so
that Pr [E1] ≥ 1− 1

10n2 . Again, let Gr denote the event that i ∈ Sℓ is not hashed by the r-th instance of COUNTSKETCH to
a bucket containing any of the other items in Γ, so that we have Pr [Er] ≥ 2

3 since |Γ| ≤ C and we use B = C ·polylog
(
n
ε

)
buckets in each instance of COUNTSKETCH. Moreover, let E2 denote the probability that for all items i ∈ Sℓ ∩ Γℓ, there
exist O (log n) instances of COUNTSKETCH such that i is not hashed to a bucket containing any of the other items in Γℓ∩Sℓ.
Then we have Pr [E2] = Pr [G1 ∨ G2 ∨ . . .] ≥ 1− 1

poly(n) . Conditioning on E1 and Er, the variance for the estimation of fi
by the r-th instance COUNTSKETCH is at most 1

B ·
100
ε2 · (10 log n) · pℓ. Since fi ≥ T

2ℓ−1 ≥ 10
ε log n

ε then COUNTSKETCH

reports fi as a heavy-hitter with probability at least 2
3 . Therefore, we have

E
[
M̂ℓ

]
=

1

pℓ

∑
j∈Γℓ

pℓ · fj = Mℓ.

Furthermore,

E
[
(M̂ℓ)

2
]
≤ 1

p2ℓ

∑
j∈Γℓ

pℓ · f2
j ≤ C · T

2

22ℓ
· ε2 · 22ℓ

γCT 2 log2
(
n
ε

) ≤ ε2

γ log2
(
n
ε

) · F 2
0 (S),

for some large constant γ > 1. Thus by Chebyshev’s inequality, we have that with probability at least 1− 1
100 log n

ε
,

|Mℓ − M̂ℓ ≤
ε

L
· F0.

The result then follows from union bounding over all L level sets Γ1, . . . ,ΓL.
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To complete the guarantees of Algorithm 4, it remains to analyze the space complexity.

Theorem D.8. Given a stream S, an accuracy parameter ε ∈ (0, 1), a parameter C ≥ 1
ε · F0(S) for the number of

coordinates with frequency more than 1, and a number of distinct elements that is at least F0(S) = Ω
(

1
ε2

)
, there exists a

two-pass streaming algorithm that uses C · polylog
(
n
ε

)
bits of space and provides a (1 + ε)-approximation to the number

of distinct elements in the stream with probability at least 0.98.

Proof. The proof of correctness follows from Lemma D.7. The space complexity follows from the fact that we maintain B
buckets in each of the O (log n) instances of COUNTSKETCH, for B = C · polylog

(
1
ε

)
.

We now show that for C > 1
ε , any algorithm for (1 + ε)-approximation to distinct elements requires Ω(C) bits of space.

Recall that in Gap-Hamming problem, Alice is given binary vector X ∈ {0, 1}n and Bob is given binary vector Y ∈ {0, 1}n
and the goal is to determine whether the Hamming distance between X and Y is either at least n

2 +
√
n or at most n

2 −
√
n.

Theorem D.9. (Chakrabarti & Regev, 2012) Any communication protocol that solves the Gap-Hamming problem with
probability at least 2

3 requires Ω(n) bits of communication.

Theorem D.10. For any frequency vector that has the number C = Ω
(
1
ε

)
of coordinates with frequency more than 1, any

one-pass streaming algorithm for (1 + ε)-approximation of the number of distinct elements must use Ω
(
min

(
1
ε2 , C

))
bits

of space.

Proof. Consider an instance of Gap-Hamming that has n = Θ(C) coordinates, where C = Ω
(
1
ε

)
. Note that for the purposes

of the proof, it suffices to assume that C = O
(

1
ε2

)
. Namely, let X be the input vector to Alice and let Y be the input vector

to Bob. Then Z := X + Y has O (C) coordinates with frequency more than 1. Moreover, any (1 + ε)-approximation to
F0(Z) will distinguish whether the Hamming distance between X and Y is at least n

2 +
√
n or less than n

2 −
√
n, since

n = O
(

1
ε2

)
. Therefore, such an algorithm can be used to solve Gap-Hamming on Θ(C) coordinates and by Theorem D.9

must use space Ω(C).

Algorithm 5 Parameterized distinct element estimation over two-pass streams

Input: Accuracy parameter ε ∈ (0, 1), stream with small number C of coordinates with frequency larger than 1, i.e., C < 1
ε

Output: (1 + ε)-approximation to the number of distinct elements, given two passes over the data
1: L← O

(
log 1

ε

)
, B ← 1

ε · polylog
(
n
ε

)
, T ← 100

ε2 log2 n
ε

2: for ℓ ∈ [L] do
3: Form Sℓ by sampling each item of [n] with probability 1

2ℓ−1

4: Run O (log n) instances of COUNTSKETCH on Sℓ with B buckets ▷First pass
5: end for
6: for each heavy-hitter i ∈ [n] reported by COUNTSKETCH on any Sℓ do
7: Track fi exactly ▷Second pass
8: end for
9: for ℓ ∈ [L] do

10: M̂ℓ = 0
11: for j ∈ Sℓ do
12: if fj ≥ T then
13: M̂1 ← M̂1 + (fj − 1)
14: else if fj ∈

[
T
2ℓ
, T
2ℓ−1

)
then

15: β ← max
(
0, ℓ− log

(
10
ε log n

ε

))
16: M̂ℓ ← M̂ℓ + 2β · (fj − 1)
17: end if
18: end for
19: end for
20: Return F1(S1)−

∑
ℓ∈[L] M̂ℓ

We now justify the correctness of Algorithm 5.
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Lemma D.11. Let Z be the output of Algorithm 5 and suppose the number C of pairwise collisions is at most 1
ε . Then with

probability at least 2
3 , we have that

|Z − F0(S)| ≤ εF0(S).

Proof. Let S be the data stream and for each i ∈ [n], let mi = max(0, fi − 1) so that ti is the excess mass of fi. Let
M =

∑
i∈[n] mi so that F0(S) = F1(S)−M . To achieve a (1+ε)-approximation to F0(S), it suffices to obtain an additive

ε · F0 approximation to M .

Let level set Γ1 =
{
i ∈ [n] : fi ≥ T

2

}
comprise the coordinates i ∈ [n] with frequency at least T

2 . Now for integer
ℓ ∈ (1, L), we define level set Γℓ =

{
i ∈ [n] :

[
T
2ℓ
, T
2ℓ−1

)}
to consist of the coordinates i ∈ [n] with frequency in the

interval
[
T
2ℓ
, T
2ℓ−1

)
. Let Mℓ =

∑
i∈Γℓ

fi be the sum of the contributions of the items in level set Γℓ. Let Γ be the set of all
coordinates with value greater than 1.

For each coordinate i ∈Mℓ, i is sampled with probability pℓ =
1

2βℓ
, where

βℓ = max

(
0, ℓ− log

(
10

(√
C

ε

)
log

n

ε

))
.

Therefore, we consider casework on whether ℓ ≤ log
(
10
ε log n

ε

)
or whether ℓ > log

(
10
ε log n

ε

)
.

We first consider the first case, where ℓ ≤ log
(
10
ε log n

ε

)
, so that pℓ = 1. We have i ∈ Sℓ for any i ∈ Γℓ. Let Gr

denote the probability that i is not hashed by the r-th instance of COUNTSKETCH to a bucket containing any of the other
items in Γ, so that we have Pr [Er] ≥ 2

3 since |Γ| ≤ C ≤ 1
ε and we use B = 1

ε · polylog
(
n
ε

)
buckets in each instance

of COUNTSKETCH. Then let E denote the probability that for all items i ∈ Sℓ ∩ Γℓ, there exist O (log n) instances
of COUNTSKETCH such that i is not hashed to a bucket containing any of the other items in Γℓ ∩ Sℓ, so that we have
Pr [E ] = Pr [G1 ∨ G2 ∨ . . .] ≥ 1− 1

poly(n) . Conditioning on Gr, the variance for the estimation of fi by the r-th instance
COUNTSKETCH is at most 1

B ·
100
ε2 . Since fi ≥ T

2ℓ−1 ≥ 10
ε log n

ε then COUNTSKETCH reports fi as a heavy-hitter with
probability 2

3 . Thus, i is reported as a heavy-hitter by some instance of COUNTSKETCH with high probability. It follows by
a union bound over all i ∈ Sℓ that M̂ℓ = Mℓ high probability.

In the other case, we have ℓ > log
(
10
ε log n

ε

)
, so that pℓ = 1

2βℓ
, where

βℓ = max

(
0, ℓ− log

(
10

ε
log

n

ε

))
.

For any i ∈ Γℓ, we have i ∈ Sℓ with probability pℓ. Define E1 to denote the event that F0(Sℓ) ≤ (10 log n) ·pℓ ·F0(S) so that
Pr [E1] ≥ 1− 1

10n2 . Let Gr denote the event that i ∈ Sℓ is not hashed by the r-th instance of COUNTSKETCH to a bucket
containing any of the other items in Γ, so that we have Pr [Er] ≥ 2

3 since |Γ| ≤ C ≤ 1
ε and we use B = 1

ε · polylog
(
n
ε

)
buckets in each instance of COUNTSKETCH. Moreover, let E2 denote the probability that for all items i ∈ Sℓ ∩ Γℓ, there
exist O (log n) instances of COUNTSKETCH such that i is not hashed to a bucket containing any of the other items in Γℓ∩Sℓ.
Then we have Pr [E2] = Pr [G1 ∨ G2 ∨ . . .] ≥ 1− 1

poly(n) . Conditioning on E1 and Er, the variance for the estimation of fi
by the r-th instance COUNTSKETCH is at most 1

B ·
100
ε2 · (10 log n) · pℓ. Since fi ≥ T

2ℓ−1 ≥ 10
ε log n

ε then COUNTSKETCH

reports fi as a heavy-hitter with probability at least 2
3 . Hence,

E
[
M̂ℓ

]
=

1

pℓ

∑
j∈Γℓ

pℓ · fj = Mℓ.

Moreover,

E
[
(M̂ℓ)

2
]
≤ 1

p2ℓ

∑
j∈Γℓ

pℓ · f2
j ≤ |Γℓ| ·

T 2

22ℓ
· 2ℓ.

Now, we have

|Γℓ| ≤ |Γ| ≤ C ≤ 1

ε
,
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so that for some large constant γ > 1,

E
[
(M̂ℓ)

2
]
≤ 1

γε2 log2
(
n
ε

) ≤ ε2

γ log2
(
n
ε

) · F 2
0 (S).

Thus by Chebyshev’s inequality, we have that with probability at least 1− 1
100 log n

ε
,

|Mℓ − M̂ℓ ≤
ε

L
· F0.

The result then follows from union bounding over all L level sets Γ1, . . . ,ΓL.

We now give the full guarantees of Algorithm 5.

Theorem D.12. Given a stream S, an accuracy parameter ε ∈ (0, 1), a parameter C ≤ 1
ε · F0(S) for the number of

coordinates with frequency more than 1, and a number of distinct elements that is at least F0(S) = Ω
(

1
ε2

)
, there exists a

two-pass streaming algorithm that uses 1
ε · polylog

(
n
ε

)
bits of space and provides a (1 + ε)-approximation to the number

of distinct elements in the stream with probability at least 0.98.

Proof. The proof of correctness follows from Lemma D.11. The space complexity follows from the fact that we maintain B
buckets in each of the O (log n) instances of COUNTSKETCH, for B = 1

ε · polylog
(
1
ε

)
.

We now show that any algorithm for (1 + ε)-approximation to distinct elements requires Ω
(
1
ε

)
bits of space, even when

C < 1
ε .

Theorem D.13. For any frequency vector that has the number C = O
(
1
ε

)
of coordinates with frequency more than 1, any

one-pass streaming algorithm for (1 + ε)-approximation of the number of distinct elements must use Ω
(
1
ε

)
bits of space.

Proof. Consider an instance of SetDisj that has n = Θ
(
1
ε

)
coordinates. Note that for the purposes of the proof, it suffices to

assume that C = O
(

1
ε2

)
. Namely, let X be the input vector to Alice and let Y be the input vector to Bob. Then Z := X+Y

has at most single coordinate with frequency more than 1. Moreover, any (1 + ε)-approximation to F0(Z) will distinguish
whether the X and Y are disjoint, since we can also compute F1(Z). Therefore, such an algorithm can be used to solve
SetDisj on Θ

(
1
ε

)
coordinates and must use space Ω

(
1
ε

)
.
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