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ABSTRACT

A variety of analysis tasks in single-cell (SC) multi-omics are crucial for pre-
cision medicine and clinical research. To address these tasks, existing methods
are typically pre-trained on large-scale datasets to obtain general representations,
followed by fine-tuning on specific tasks and labeled datasets. However, their
task-specific heads often lack generalizability, significantly limiting performance
in zero-shot scenarios. Inspired by the success of large language models (LLMs),
we propose ZerOmics, the first zero-shot method that guides LLMs to perform
various SC tasks without relying on specific downstream data. To enable LLMs to
establish a correct and comprehensive understanding of SC data, ZerOmics em-
ploys a dual-alignment strategy. Specifically, ZerOmics aligns SC expression data
with the well-organized gene corpus, thereby generating robust SC embeddings.
These embeddings are then incorporated into instructions designed for various SC
analysis tasks to tune the LLM, achieving alignment between SC data and the
LLM. Extensive experiments across various sequencing technologies and tissues
demonstrate that ZerOmics provides a comprehensive and general solution for SC
analysis, achieving performance comparable to or even surpassing the state-of-
the-art (SOTA) supervised and fine-tuned methods.

1 INTRODUCTION

Large language models (LLMs) recently have emergent abilities in understanding and reasoning,
demonstrating the potential across a variety of applications. Increasing research shows that LLMs
achieve expert-level performance in addressing problems from the natural sciences. For instance,
LLMs have been successfully applied to drug molecule design (Li et al., 2024; Liu et al., 2024),
protein structure prediction (Madani et al., 2023; Jin et al., 2024; Xiao et al., 2024), and reasoning
about physical formulas (Ding et al., 2023). However, in the biomedical field, current LLMs are
often confined to protein sequence analysis, neglecting the rapidly expanding single-cell (SC) multi-
omics data.

As an emerging technology, SC multi-omics data provides valuable opportunities for comprehensive
analysis of biological heterogeneity at multiple levels, including transcriptomics and epigenomics,
within individual cells (Valous et al., 2024). A classic SC dataset is organized as a matrix X ∈
RN×G, where Xi,j represents the expression read counts of the j-th gene in the i-th cell, and N and
G denote the number of cells and genes, respectively. Machine learning models trained on X can
accurately identify diseased cells (Sh et al., 2022), annotate cell types (Yang et al., 2022; Cui et al.,
2024), and infer cell pathways (Subramanian et al., 2005; Fan et al., 2024), presenting unprecedented
opportunities for advancements in clinical research and targeted therapy development (Aevermann
et al., 2018).

SC data from different sources show differences caused by non-biological factors, including experi-
mental conditions and instrument errors, leading to domain shifts (Zhao et al., 2020). To achieve do-
main adaptation in SC analysis process, models based on the “pre-training & fine-tuning” paradigm
in Figure 1(a) have been widely adopted. Techniques like scBERT (Yang et al., 2022), Geneformer
(Theodoris et al., 2023), and scGPT (Cui et al., 2024) are inspired by natural language processing
workflows, treating the gene expression matrix X as a “term frequency” matrix, regarding each
cell as a sentence, and each gene as a word. These methods aim to pre-train robust models using
auxiliary tasks on abundant unlabeled SC data. However, the general cell embeddings generated
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Figure 1: Comparing (a) pre-training and fine-tuning paradigm with (b) ZerOmics paradigm.

by these methods are typically task-agnostic, necessitating fine-tuning on task-specific datasets with
high-quality labels for optimal performance. When the fine-tuning dataset is limited in size, the
capacity of these methods to tailor embeddings to particular task requirements is significantly di-
minished. Furthermore, the effectiveness of these models is undermined by inadequately designed
task-specific heads, which fail to fully exploit the potential of the general embeddings, thereby com-
promising the overall efficacy of the model.

To reduce the heavy reliance of the existing methods on downstream task-specific heads and la-
beled datasets, we propose a novel framework, ZerOmics, as shown in Figure 1(b). Inspired by the
breakthrough of LLMs in zero-shot scenario (Wei et al., 2022), ZerOmics unifies various SC tasks
with text-based question answering and directly solves them with the help of LLM’s excellent rea-
soning ability. Specifically, it employs a dual-alignment strategy: semantic alignment between SC
expression and gene corpus, and between SC embeddings and the LLM. First, the SC expression
X is integrated with text embeddings extracted from gene text summaries, resulting in robust SC
embeddings after large-scale pre-training. These embeddings are then incorporated into instructions
designed for various SC tasks to tune the LLM, aligning with the LLM semantic space. In this
way, after instruction tuning the LLM on multiple tasks, ZerOmics can successfully handle unseen
datasets and tasks without any additional training. In brief, our contributions are summarized as:

• We propose ZerOmics, a novel framework that departs from the traditional pre-training and fine-
tuning paradigm, establishing the first general model based on LLMs for SC multi-omics analysis.

• We introduce an innovative dual-alignment strategy that aligns SC gene expression data with a
structured gene corpus, and SC embeddings with the LLM, enabling LLMs to establish a compre-
hensive interpretation of SC data.

• Extensive experiments across various sequencing technologies and tissues validate that ZerOmics
achieves performance comparable to even exceeding that of state-of-the-art (SOTA) supervised
and fine-tuned methods.

2 RELATED WORK

2.1 MULTI-MODAL INSTRUCTION TUNING FOR LLMS

In recent studies, tuning LLMs with multi-modal instructions has gathered great attention as an effi-
cient strategy for enabling LLMs to comprehend information across diverse modalities. TEA-GLM
(Wang et al., 2024) and GraphGPT (Tang et al., 2024) leverage the graph instruction paradigm
to align graph representations with the LLM token embeddings, achieving zero-shot graph learn-
ing and guiding LLMs to comprehend graphs’ inherent structural information. mPLUG-Owl2 (Ye
et al., 2024) designs a modality-adaptive module to project both textual and visual information into
a shared semantic space, achieving cross-modality interaction and preserving modality-specific fea-
tures simultaneously. AnyRef (He et al., 2024) extracts features from images, bounding boxes, and
audio followed by mapping them to the LLM token space, enabling flexible referring beyond single
textual descriptions. Despite the variety of data types in biomedical scenarios (e.g., SC tabular ma-
trix, spatial transcriptomics, spatial gene expression images), none of the studies explored how to
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integrate biological information and natural language text into a unified space from the perspective
of multimodal instruction tuning, so that LLM can directly answer various SC analysis tasks.

2.2 FOUNDATION MODELS FOR SINGLE-CELL ANALYSIS

LLMs have achieved remarkable breakthroughs across various domains, exemplified by models such
as GPT-4 (Achiam et al., 2023). Inspired by them, many transformer-based foundation models such
as scBERT (Yang et al., 2022), Geneformer (Theodoris et al., 2023), scGPT (Cui et al., 2024), and
scFoundation (Hao et al., 2024) conceptualize SC gene expression as sentences within the language
model, merely mimicking LLMs’ training strategy to build non-language models for SC data. They
pre-train the robust SC embeddings on extensive unlabeled single-cell RNA sequencing (scRNA-
seq) datasets, followed by supervised fine-tuning across various downstream tasks.

However, gene expression data are often affected by the non-biological factors and the information
they present is not as stable as text (Du et al., 2019). Therefore, pioneers in SC analysis, such as
BioTranslator (Xu et al., 2023) and LangCell (Zhao et al., 2024), try to incorporate text data to make
the extracted embeddings more general and robust. Both of them integrates the textual descriptions
with biological expression data through pre-trained language models. In particular, LangCell con-
structs a cell-text dataset utilized to facilitate model pre-training via four tasks grounded in masking
and contrastive learning strategies on cell-cell, cell-text pairs, demonstrating initial “representation”
abilities in zero-shot and few-shot scenarios. Another attempt is Cell2Sentence (Levine et al., 2024),
which converts each cell into a sentence of gene names ranked by descending expression abundance,
and then directly uses the language model for representation. This approach retains only a minimal
level of expression data, resulting in insufficient recognition of cell-specific information.

Therefore, how to effectively integrate expression data that presents cell-specific information and
relatively more stable and consistent text data is still a problem that needs to be explored. In addition,
although the embeddings extracted by many foundation models are robust in the zero shot setting,
they still require task-specific heads to handle downsteam tasks.

3 METHODOLOGY

In this section, we introduce the novel framework ZerOmics, designed for zero-shot learning for
various SC data analysis tasks. As shown in Figure 2, the ZerOmics comprises two principal training
stages: (a) pre-training the SC Model to align SC expression profiles with the gene corpus, and (b)
multi-modal and multi-task instruction tuning to align SC embeddings with the LLM semantic space.
(c) After tuning, ZerOmics achieves zero-shot analysis in various SC downstream tasks without fine-
tuning on labeled SC datasets.

3.1 SINGLE-CELL MODEL PRE-TRAINING

Considering the significant non-biological domain shifts often present in single-cell multi-omics
data, and the limitations of SC expression matrices in accurately depicting cellular characteristics,
ZerOmics incorporates a multi-modal mask learning paradigm for model pre-training. Our method
synchronizes SC expression profiles with gene functions encapsulated in natural language, yield-
ing semantically enriched, robust, and more distinctly characterizable single-cell embeddings, thus
enhancing their utility in downstream analytical tasks.

Single-cell expression embedding. Single cell expression data often exhibit significant variation,
including long-tail effects and domain shifts (Perez et al., 2022). To enhance the robustness of ex-
pression embeddings against domain shifts and improve computational efficiency (Yang et al., 2022),
the elements in the expression matrix are binned into X̃ ∈ B = {0, 1, 2, · · · , Nbins}N×G based on
expression levels for tokenization, where Nbins denotes the number of bins (see Appendix A.3 for
details). Additionally, from a biological perspective, this operation emphasizes cell-specific infor-
mation. Genes that are highly expressed in most cells, such as housekeeping genes, may exhibit
lower expression levels in this context. In contrast, genes that are lowly expressed but crucial for
identifying cell states, such as transcription factors, may exhibit higher expression levels (Theodoris
et al., 2023). To improve model generalization, the random masking (RM) and random substitu-
tion (RS) strategy are employed (Kenton & Toutanova, 2019). Due to the sparsity of the expression
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Figure 2: The overall framework of ZerOmics with single-cell data instruction tuning paradigm.

matrix, the effectiveness of RM is ensured by sampling the masking matrix M ∈ {0, 1}N×G as

Mi,j =

{
1, if Xi,j = 0,

m ∼ B(1, 1− pm), otherwise,
(1)

where 0 < pm < 1 denotes the mask proportion. The RS strategy replaces a certain proportion
0 < ps < 1 of binned values with other values in B. After RM and RS, the matrix X̃ can be
transformed into tokens X̃∗, then mapped into a learnable embedding space as

fE(X̃
∗) = ZE ∈ RN×G×d, (2)

where d represents the dimension of the embeddings and fE is the learnable mapping.

Gene text embedding. Gene corpus can complement expression data and provide valuable oppor-
tunities to directly reveal cellular characteristics. Given a known gene, the corresponding item in
the corpus summarizes the associated diseases, biological processes, and other genes in natural lan-
guage (see Appendix A.2 for details). To encode the textual contents, a special item token is added
at the end of each summary item, followed by being mapped into item-level embeddings using an
autoregressive text model fT , such as LLaMA (Touvron et al., 2023). Formulaically, the textual
contents C ∈ RG×L, where L denotes the maximum length of text tokens, are encoded as

fT (C) = ZT ∈ RG×d. (3)

Multi-modal mask learning for semantic alignment. Cell expression and gene text embeddings
reveal distinct levels of biomedical information within SC data. Using multi-modal learning to
align their semantic spaces inspires the model to extract more comprehensive representations. For
computational efficiency, ZerOmics utilizes the broadcasting to directly add ZT to ZE , which is then
encoded to the contextual SC embeddings that contain the gene functional semantics, as follows:

fSC(ZE ⊕ZT ) = ZSC ∈ RN×G×d, (4)

where ⊕ denotes the addition via the broadcasting and fSC represents the encoder-only SC Model.
Effective generation of mask token embeddings should ensure they exhibit significant gene expres-
sion and textual information, enabling a single-layer network to accurately predict their original
expression bins and corresponding gene summary items. Consequently, these mask token embed-
dings are transformed into probability distributions pE ∈ [0, 1]Nbins , and pT ∈ [0, 1]G for gene
expression bins and gene summary items using two independent predictors. Given the ground truth
labels yE and yT for the bin and gene items, the loss function in mask learning is defined as

LM =
1

2
[CE(pE , yE) + CE(pT , yT )] , (5)

where CE denotes the cross-entropy loss. Finally, via freezing the pre-trained fT and optimizing
LM using gradient descent, the optimal fE and fSC can be obtained.
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3.2 MULTI-MODAL MULTI-TASK INSTRUCTION TUNING WITH SINGLE-CELL DATA

We leverage the instruction tuning paradigm (Wei et al., 2022) to enhance the adaptability of LLMs
in capturing biomedical information from SC data. Firstly, SC embeddings are generated from a pre-
trained SC Model, followed by being mapped into the LLM semantic space using a tokenizer and
incorporated into various task-related instructions. By tuning the LLM with multi-task instructions
to produce responses that increasingly resemble real sentences, the SC embeddings gradually align
with the LLM, achieving superior performance across various downstream tasks.

Single-cell token embeddings for LLM. Considering that SC embeddings and LLM token em-
beddings involve different semantic information, a linear tokenizer ftoken is employed to transform
the SC embeddings to the fixed length of SC token embeddings for LLM individually as

ftoken(zi) = hi ∈ RK×d, (6)

where zi ∈ ZSC denotes the extracted embedding of a cell by expression and gene text information,
and K is the length of tokens.

Instruction design. The instructions for various tasks in ZerOmics are uniformly constructed with
three components: (1) single-cell information about the cell to be analyzed, (2) dataset information,
and (3) task description.

First, the previously mentioned SC token embedding hi (also [SC token] in instructions) contains
comprehensive single-cell expression and gene function information, effectively representing the
cell to be analyzed and serving as the first component.

To prevent the LLM from drawing one-sided conclusions by solely focusing on the current SC to-
ken, the data source information is incorporated for each cell. Providing additional context through
dataset information enables the LLM to understand important factors, such as experimental condi-
tions, technical platforms, and species—related to cell expression, significantly enhancing its ability
to identify single-cell patterns across datasets. For simplicity, the abstracts of the papers that pro-
duced these datasets ([abstract] in instructions) serve as the second component, as they offer de-
tailed research objectives, experimental settings, and other relevant information in natural language,
effectively conveying dataset information (Tang et al., 2024).

Finally, the instruction tuning tasks encompass three representative and important SC analysis tasks:
cell type annotation, rare cell identification, and tumor cell discovery (see Appendix B.1). To en-
hance the accuracy of the model response, the task description component contains both an impera-
tive or question sentence matching the task and a set of answer candidates for the LLM. For example,
for cell type annotation, the task description is structured as follows: classify this single-cell
token into one of the following categories: [list categories]. Please only respond
with one of the categories. Here, [list categories] is answer candidates related to the
datasets. This design effectively guides LLMs to use the provided data to infer answers rather than
memorizing them based on the dataset (Wang et al., 2024). Additionally, using candidate answers
encourages the model to compare and contrast different options, strengthening its decision-making
process and reducing the likelihood of generating incoherent responses (Kim et al., 2024).

We design three different instruction templates for each task to guide the LLM to truly understand
the various tasks rather than memorize the instructions (Wei et al., 2022). Instruction examples can
be found in Appendix E.

Tuning strategy. We collect single-cell multi-omics datasets containing 91.5M cells in total and
a gene corpus containing 43.8K genes for instruction tuning, where the ground truth labels of three
tasks are artificially constructed (see Appendix A.3 for details). Given a single epoch of tuning,
each training sample is randomly assigned with one task and one corresponding instruction tem-
plate. ZerOmics performs supervised tuning for the LLM based on the LoRA (Hu et al., 2022) in
a random batch manner. To alleviate the catastrophic forgetting in the multi-task conditions (Wang
et al., 2023), the LLM is tuned with the mixture of universal and task-specific LoRAs as Figure 3.
In the forward process, the token embeddings from the pre-trained LLM and all LoRAs are summed
to produce the output. Then, the cross-entropy loss between the probability distribution of the
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Figure 3: Tuning the LLM with the mixture of
universal and task-specific LoRAs. For n instruc-
tion tasks, there are n task-specific LoRAs. Here,
we take n = 2 as an example.

output over the vocabulary and the ground truth
one-hot label is computed for backpropagation
(BP). However, only the universal LoRA and
the LoRA for the current task are updated via
gradient descent. This strategy aims to train a
universal LoRA for domain transfer from gen-
eral text to biomedical information, alongside
a series of LoRAs specialized in SC analysis
tasks. Moreover, the integration of LoRAs has
demonstrated its superiority in zero-shot sce-
narios (Zhengmao et al., 2023).

4 EXPERIMENTAL RESULTS

In this section, we extensively evaluate Ze-
rOmics compared to other supervised, fine-
tuned methods. We aim to investigate the fol-
lowing research questions: RQ1: How does ZerOmics perform in cross-dataset zero-shot learning
scenarios? RQ2: How does ZerOmics perform in cross-task zero-shot learning scenarios? RQ3:
How do the key components of ZerOmics influence the performance? RQ4: How do the parameters
of LLM in ZerOmics affect the performance?

4.1 EXPERIMENTAL SETTINGS

We collect single-cell multi-omics datasets containing 91.5M cells from different species, tissues and
diseases. To assess the performance in zero-shot setting, SC datasets are categorized into: (1) large-
scale datasets for ZerOmics pre-training and instruction tuning (2) training and fine-tuning datasets
for baseline models (unavailable for ZerOmics in zero-shot setting, partially available for ZerOmics
in few-shot settings) (3) 9 held-out evaluation datasets from various research and labs, used only
for testing performance (see Appendix A for details). On these unseen held-out datasets, three SC
tasks (cell type annotation, rare cell identification, and tumor cell discovery) are selected for evalu-
ating the performance under cross-dataset zero-shot setting; a unseen task, cell pathway inference,
are selected for evaluating the performance under cross-task zero-shot setting (see Appendix B for
details). ZerOmics employs the pre-trained LLaMA2-13B as the default LLM. Detailed information
about the benchmark methods and other implementation details can be found in Appendix C. All
experiments are conducted on 8 NVIDIA A100 (80G) GPUs.

4.2 OVERALL PERFORMANCE COMPARISON (RQ1)

Cell type annotation (CTA). We evaluate the CTA performance of ZerOmics across four datasets:
10x scRNA-seq human peripheral blood mononuclear cells (PBMC68K), Smart-Seq2 human pan-
creas (Pancreas), 10x scATAC-seq bone marrow mononuclear cells (BMMC), and MERFISH mouse
primary motor cortex (MOP). Eight competing methods are selected for comparison with ZerOmics.
Among them, LangCell is the only baseline method with zero-shot capability, and it also provides
a fine-tuned version named LangCell-CE. The overall performance is summarized in Table 1. Due
to the meticulously annotated labels, supervised methods such as Seurat demonstrate excellent per-
formance across most datasets. Nevertheless, four fine-tuning methods achieve performance com-
parable to or surpassing Seurat only on PBMC68K and Pancreas, while significant disparities are
observed in the other two datasets. This variation is attributed to the absence of 10x scATAC-seq
or MERFISH sequencing data in their pre-training datasets. Additionally, the limited generalization
ability of the pre-trained models impedes their performance even after fine-tuning on new datasets.
Among zero-shot methods, while LangCell performs comparably to the supervised method scJoint,
it also shows a rapid performance decline on BMMC, similar to its fine-tuning version, LangCell-
CE. In contrast, ZerOmics achieves the best or second-best performance across most datasets. No-
tably, even without leveraging the spatial location information in MOP, its performance is only
slightly inferior to that of Seurat. In summary, the above results not only indicate that ZerOmics,
as a zero-shot method, has achieved state-of-the-art (SOTA) in the CTA task, but also suggest that
LLMs are capable of comprehending cell-type information in SC datasets.
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Table 1: Results of cell type annotation. Acc and F1 denote the accuracy and macro F1-score (as
%) respectively. The best results are marked as bold. “–” indicates the method can’t handle the
experiment, while red indicates the method isn’t suitable for the experiment but is still used.

Paradigms Methods PBMC68K Pancreas BMMC MOP Avg.
Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

Supervised
scJoint 61.52 56.10 69.75 57.58 63.31 50.52 50.92 41.04 61.37 51.31
Spatial-ID – – – – – – 82.54 73.79 82.54 73.79
Seurat v5 74.91 73.55 79.76 70.49 78.31 80.52 85.80 82.28 79.70 76.71

Fine-tuning

scBERT 75.74 67.34 69.21 67.03 17.09 9.25 – – 54.01 47.87
Geneformer 83.94 74.05 65.71 62.36 20.21 11.38 – – 56.62 49.36
LangCell-CE 85.22 76.38 80.61 72.73 19.48 11.94 – – 61.77 53.68
scGPT 84.48 75.39 70.76 68.03 67.18 60.93 – – 74.14 68.12

Zero-shot LangCell 67.07 53.51 68.18 53.55 10.43 6.67 – – 48.56 37.91
ZerOmics 85.56 74.70 86.59 78.34 79.09 75.17 83.68 80.72 83.73 77.23

Table 2: Results of rare cell identification. F1
and κ denote the F1-score and Cohen Kappa
score (as %) respectively.

Methods PBMC68K Airway
κ↑ F1↑ κ↑ F1↑

MARS 45.33 50.65 63.20 65.12
scVI 46.36 53.13 64.98 67.29
scBalance 63.67 64.56 69.28 71.02
ZerOmics 65.46 67.52 69.61 70.97

Table 3: Results of tumor cell discovery. Acc
and F1 denote the accuracy and F1-score (as
%) respectively.

Methods CTC LungCancer
Acc↑ F1↑ Acc↑ F1↑

CopyKAT 57.06 58.69 80.16 50.96
CaSee 86.67 90.98 60.69 36.92
ikarus 89.35 92.11 91.45 74.85
ZerOmics 92.81 91.53 92.13 85.62

Rare cell identification (RCI). We assess the performance of ZerOmics in RCI on two datasets:
PBMC68K and 10x scRNA-seq mouse airway epithelium (Airway). Unlike CTA, RCI requires the
model’s sensitivity to recognize rare cells in the class imbalance scenario. Since fine-tuning models
do not support this task, we select three classic supervised methods for evaluation. The results
are reported in Table 2. We observe that ZerOmics achieves the best or second-best performance
across all metrics. Due to its vast model parameters and training data, ZerOmics exhibits relatively
balanced performance across different datasets, avoiding the scenario observed in MARS and scVI
where one dataset performs well while another performs poorly.

Tumor cell discovery (TCD). We examine the performance of ZerOmics in TCD, a task more
closely related to clinical medical research. This experiment involves two datasets: 10x scRNA-seq
human circulating tumor cells (CTC) and Lung Cancer (LungCancer). Unlike CTA, TCD requires
the model to distinguish cancer cells based on features such as mutations and gene expression het-
erogeneity inherent in the data itself. Therefore, we select three methods specialized for TCD, which
usually model with prior knowledge about tumor expression features (such as CopyKAT, CaSee), or
carcinogenic gene markers (e.g., ikarus). The comparison results are presented in Table 3. Among
all baseline methods, ikarus achieves a significant advantage, indicating that incorporating carcino-
genic gene information can effectively guide the model to recognize cancer. Coincidentally, the
gene corpus used to train ZerOmics also includes an amount of natural language text describing the
relationships between genes and corresponding diseases. Through the dual-alignment strategy, the
LLM can well understand and respond to this information, as evidenced by ZerOmics achieving the
best performance in all experiments only except for the F1-score in CTC.

4.3 CROSS-TASK ZERO-SHOT PERFORMANCE (RQ2)

We explore whether ZerOmics, as an instruction-tuned LLM, has the emergent ability to tackle the
unseen task. Specifically, we evaluate its performance on the cell pathway inference (CPI), in both
zero- and few-shot settings, comparing with the fine-tuned models, geneformer and LangCell-CE.
This experiment involves two datasets: 10x scRNA-seq human dilated and hypertrophic cardiomy-
opathy (HDHC), and liver tissue (Liver). The results are summarized in Table 4.
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Table 4: Results of cell pathway inference. AUROC and AUPRC denote the Area Under the Re-
ceiver Operating Characteristic Curve and Area Under the Precision-Recall Curve (as %) respec-
tively. Prefixes a- and f- denote metrics calculated by different strategies.

Paradigms Methods HDHC Liver
a-AUROC↑ f-AUROC↑ a-AUPRC↑ f-AUPRC↑ a-AUROC↑ f-AUROC↑ a-AUPRC↑ f-AUPRC↑

Fine-tuning Geneformer 82.80 86.27 23.25 27.56 89.15 90.47 29.79 35.28
LangCell-CE 89.33 89.45 31.23 35.08 92.15 92.53 34.65 36.63

Zero-shot

ZerOmics

80.27 83.92 12.74 19.15 85.14 86.56 21.15 27.67
One-shot 80.08 83.60 14.46 20.57 87.60 88.58 24.61 27.24
Five-shot 83.64 87.47 20.43 26.13 91.48 91.75 32.86 36.12
Ten-shot 91.28 92.61 30.89 35.83 92.36 92.81 34.99 36.07

Cell pathways typically refer to a series of biological processes occurring within a cell, guided
by interactions among genes (Subramanian et al., 2005). Coincidentally, the gene corpus used to
train ZerOmics includes natural language descriptions of the biological processes in which each
gene may be involved. Therefore, we observe that even without prior tuning on CPI, ZerOmics
demonstrates remarkable emergent abilities, with performance only slightly behind the fine-tuned
Geneformer. Subsequently, in few-shot settings, ZerOmics is instruction-tuned using 1, 5, and 10
samples on CPI, respectively. In the one-shot setting, the model’s performance does not improve
significantly and even declines in certain cases, such as the a-AUROC on HDHC. This could be due
to the model incorrectly generalizing supervisory information from a single sample to all. Notably,
after five-shot learning, ZerOmics shows a significant improvement on the Liver dataset, surpassing
Geneformer and even approaching the superior LangCell. After ten-shot learning, ZerOmics sur-
passes the current SOTA method, LangCell, across most metrics, despite it undergoing extensive
fine-tuning. These findings suggest that benefiting from the generalization capabilities of LLMs,
ZerOmics often can effectively transfer their prior knowledge to unseen datasets and tasks.

4.4 MODULE ABLATION STUDY (RQ3)

To address RQ3, we remove or replace the main components of ZerOmics to assess their effective-
ness. Specifically, we analyze the impact of gene text summaries, the SC Model, and the mixture of
tuning-specific LoRAs. Comparison results of original and variant models are presented in Table 5.
Additionally, all variant models are trained with changed settings from scratch.

Text Summary. Our primary concern is whether the model’s strong performance attributes to
memorize text summaries rather than using them to represent biological information within cells.
To investigate the role of text summaries, we replace them with non-textual gene embeddings ex-
tracted from well-pretrained models, including Gene2vec (Du et al., 2019), Geneformer (Theodoris
et al., 2023), and GeneCompass (Yang et al., 2024). While the original model outperforms all its
variants, utilizing Geneformer and GeneCompass to embed genes demonstrates relatively stronger
performance. This indicates that text summaries are not the decisive factor behind superior perfor-
mance. However, as our model employs an LLM as the task processor, representing genes as text
features often yields better results than pre-trained gene embeddings based on expression data.

SC Model. We address two primary concerns regarding the SC Model: (1) Can it be replaced with
a simpler model? (2) Given the pre-trained SC Model, whether the SC tokenizer is redundant during
the instruction tuning stage? To explore these questions, we first test GenePT (Chen & Zou, 2024),
which generates gene text embeddings using an LLM and directly represents each cell by weight-
ing these embeddings with expression values. Next, we compare the original model with a variant
without the SC tokenizer (w/o SCT). Both variants show performance degradation; however, the
change in performance for GenePT on the TCD task is insignificant. This suggests that combining
text summaries is insufficient to fully capture the specificity of individual cells, resulting in subop-
timal performance on cell-level tasks such as CTA. But this simple combination may be completely
sufficient for TCD tasks. Furthermore, our results indicate that SCT remains an indispensable com-
ponent of ZerOmics, primarily serving to align SC embeddings derived from general pre-training
with the semantic space of the LLM.
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Table 5: Module ablation study on three single-cell analysis tasks.

Gene features Extractors CTA-PBMC68K RCI-Airway TCD-CTC
Acc↑ F1↑ κ↑ F1↑ Acc↑ F1↑

Gene2vec
SC Model

65.85 59.03 60.33 63.98 82.01 80.30
Geneformer 77.37 70.69 64.18 66.22 85.29 82.60
GeneCompass 79.71 73.51 64.56 67.89 87.24 83.69

Text Summary GenePT 66.67 62.11 61.26 63.87 86.85 82.24
w/o SCT 60.43 55.10 58.47 62.70 84.74 81.88

Text Summary w/o uLoRA 76.92 67.62 65.46 67.67 84.18 79.21
w/o tLoRA 66.43 58.63 59.64 58.57 83.30 80.63

Text Summary SC Model 85.56 74.70 69.61 70.97 92.81 91.53

Figure 4: LLM scalability study on three single-cell analysis tasks.

Mixture of LoRAs. ZerOmics employs a mixture of LoRAs for tuning the LLM. To analyze their
necessity, we construct two variants by removing the universal LoRA (uLoRA) and task-specific
LoRAs (tLoRA), referred to as “w/o uLoRA” and “w/o tLoRA”, respectively. Both variants exhibit
significantly worse performance compared to the original model. Notably, in CTA and RCI tasks, the
w/o uLoRA variant significantly outperforms w/o tLoRA, while the difference is less pronounced
in the TCD task. We attribute this to the tendency of a single LoRA to prioritize optimization for
simpler tasks like TCD, leading to the forgetting of information relevant to other tasks. Although
task-specific LoRAs provide independent low-rank spaces, the resulting redundancy disrupts the
model’s overall performance.

4.5 LLM’S SCALABILITY STUDY (RQ4)

We further explore the scalability of the LLM within ZerOmics to address RQ4. Specifically, we
investigate whether the parameter size and the pre-training quality of the LLM are capable of signif-
icantly changing the model performance. We assess instruction tuning performance across several
models, including LLaMA2-7B, 13B, 70B, as well as LLaMA3-8B and 70B (Dubey et al., 2024),
with the latter being pre-trained on larger, higher-quality datasets. Results are showcased in Fig-
ure 4. Concerning the parameter size, larger models consistently yield superior results, displaying
an upward performance trend, except for the F1-score on Airway and Accuracy in the CTC task.
Reducing the parameter size does not substantially diminish the performance compared to previous
SOTA models. With regard to pre-training data, LLaMA3 does not consistently surpass LLaMA2.
indicating that ZerOmics benefits more from larger models capable of capturing complex inter-
actions between SC data and textual information rather than from merely expanding the LLM’s
knowledge base, which enables it to discern relationships within specific SC tasks effectively.

5 CONCLUSION

In this study, we introduce ZerOmics, a novel LLM-based framework designed for zero-shot single-
cell multi-omics analysis. By simply inputting data and posing queries in natural language, Ze-
rOmics intelligently addresses various biological tasks. We conduct comprehensive evaluations
of its performance across diverse tissues, sequencing technologies, and species. The results con-
firm that ZerOmics achieves state-of-the-art performance, underscoring its potential to revolutionize
single-cell multi-omics analysis.
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A DATASETS INFORMATION

A.1 SINGLE-CELL DATASETS COLLECTION

We assemble single-cell multi-omics data from Homo sapiens and Mus musculus. We collect 1,465
relevant datasets primarily from the well-organized CELLxGENE database (Megill et al., 2021) at
https://cellxgene.cziscience.com/, encompassing approximately 91.5 million cells and 900
cell types. These datasets are primarily categorized into single-cell transcriptomics and epigenomics,
utilizing various sequencing technologies.

Single-cell transcriptomics datasets sequenced with different technologies are incorporated into the
benchmark, including 10x scRNA-seq (Kolodziejczyk et al., 2015), Smart-seq (Goetz & Trimarchi,
2012), and Drop-seq (Macosko et al., 2015), etc. Additionally, spatial transcriptomics datasets at sin-
gle (or sub-single) cellular resolution, such as Slide-seq (Rodriques et al., 2019), are also included.
Single-cell epigenomics datasets are primarily sequenced with 10x scATAC-seq (Buenrostro et al.,
2013) and snmC-seq (Luo et al., 2017). All the datasets are transformed into a high-dimensional
matrix X ∈ RN×G, where Xi,j denotes the expression read counts of the j-th gene in the i-th cell,
and N and G denote the number of cells and genes, respectively. Most datasets include annotation
label files for cell types. Datasets related to diseases include annotation label files for disease types,
while those not associated with diseases are uniformly labeled as normal cells. Additionally, spatial
transcriptomics datasets are organized into the same files, omitting their unique tissue domain type
annotation and spatial coordinate annotation files.

A.2 GENE CORPUS COLLECTION

We employ GeneCards (Rebhan et al., 1997) as gene corpus. GeneCards is an extensive textual
database that offers a comprehensive view of the currently available genomic, proteomic, transcrip-
tomic, genetic, and functional information on more than 350,000 known and predicted human genes,
serving as an “encyclopedia” for biomedical research (Harel et al., 2009). The original data is avail-
able at https://www.genecards.org/. As examples, Table 6 lists some of the gene summary items
from our gene corpus. Given a known gene, the corresponding item first summarizes its type and
functional information, followed by its associated diseases, biological processes, and other genes,
respectively. Additionally, to ensure that the gene names are meaningful and understandable, the
HUGO Gene Nomenclature (Bruford et al., 2020) is uniformly used to provide the unique identifier
gene symbols, which are usually abbreviations of gene functions. Genes not included in the HUGO
Gene Nomenclature are often not studied in depth and are therefore discarded. Finally, we collect
43,850 gene summary items to constitute the gene corpus.

A.3 DATA PREPROCESSING

ZerOmics preprocesses all the single-cell multi-omics datasets with a unified pipeline as follows:

Gene list mapping. After collecting the large-scale SC datasets and gene text corpus, we first
transform their gene symbols to the HUGO Gene Nomenclature. Then we take the intersection
of the genes in the gene text corpus and the SC datasets to form the one-to-one correspondence.
Additionally, due to different sequencing protocols or different completeness, a single SC dataset
often does not contain all the genes obtained by taking the intersection here. For each SC expression
matrix, the expression values of these dropout genes are filled with zero. Thus, all the SC expression
matrics are transformed to have the same column names (gene symbols).

Quality control and normalization. Low-quality cells, such as cells expressing few genes, are
removed uniformly with Scanpy (Wolf et al., 2018). Here, we only keep the cells with over 200
genes expressed (i.e., the number of non-zero genes in expression vectors > 200) for subsequent
training and analysis. To alleviate the differences in gene expression between different datasets due
to sequencing depth, the total gene expression of each cell is normalized to 10,000 (i.e., library size).
Considering the subsequent Binning process, these datasets are not transformed by log1p.

Binning and tokenization. To map continuous gene expression values to discrete tokens, non-
zero gene expression values are divided into different bins according to their quantile values among
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all non-zero values. Here, we set the number of bins as 10. So, for example, if a non-zero SC
expression value is in the bottom 5% of all non-zero values, it’s assigned to the 1st bin; if it is in
the bottom 18%, it’s assigned to the 2nd bin, and so on. ZerOmics does not focus on the specific
SC expression value, but rather on its relative expression level. Therefore, in the pre-training stage
of SC Model, all SC expression tokens include 12 types, namely 10 bin value tokens, zero value
tokens, and the special mask token.

Dataset splitting. We categorize the SC datasets in our study based on their usages: (1) large-scale
datasets used for Zeromics’ pre-training and instruction tuning stage (2) training and fine-tuning
datasets split from evaluation datasets used for baseline methods training and fine-tuning (unavail-
able for ZerOmics in zero-shot setting, partially available for ZerOmics in few-shot settings) (3) 9
held-out evaluation datasets, which are collected from diverse studies and labs only used for testing
model performance. The detailed train-test split strategy between type 2 and type 3 datasets is simi-
lar to Langcell (Zhao et al., 2024), which can be also seen in each task description of Appendix B.1.
Therefore, type 2 and type 3 datasets are split from the same evaluation datasets, sharing the same
sampling conditions and sequencing processes, which approximately satisfy the same distribution
assumption. In contrast, type 1 datasets originate from independent studies with different research
objectives and sampling conditions, resulting in no correspondence with the held-out datasets. Con-
sequently, type 3 dataset is designated as the unseen held-out datasets for evaluation.

B EVALUATION PROTOCOLS

B.1 EVALUATION TASKS AND METRICS

Cell type annotation (CTA). CTA is the most classic multi-classification task in single-cell anal-
ysis. The conventional analysis process is to use the given SC dataset and cell type label file to train
a classifier and use it to identify cell types in the same type of test set. For ZerOmics in the zero-
shot setting, only the dataset needs to be provided, and it randomly assigns an instruction template
to generate a text response for the cell type. Since supervised and fine-tuning methods need to be
re-learned on downstream datasets, we further divide the evaluation datasets into training and test
sets according to the common 2:1. We compare the classification results of all methods on the test
set with the widely used metrics, accuracy and macro F1-score.

Rare cell identification (RCI). RCI is a special two-class classification task with imbalanced
classes. The conventional analysis process is to use the given SC dataset and cell type label file to
train a model. However, in the test set, the models compare the cells from the new dataset with the
existing samples, and those samples that are difficult to be classified into existing types are regarded
as rare cells. For ZerOmics in zero-shot setting, similar to the CTA process, the LLM directly
generates binary classification text results. The evaluation datasets are split according to 2:1, and all
methods generate results on the test set for comparison. F1-score and the Cohen Kappa score (κ)
are employed for evaluation, where κ is a metric that compares the prediction result with random
guessing and is often used to detect imbalanced class samples.

Tumor cell discovery (TCD). TCD is also a two-class classification task. Unlike CTA and RCI,
the conventional analysis process usually does not provide label files about tumor type of each cell,
and the model needs to identify cancer cells in an unsupervised or weakly supervised manner. For
ZerOmics in zero-shot setting, the LLM not only needs to respond to whether it is a tumor cell, but
also needs to respond to what subtype of tumor it is. This strategy is mainly to enable ZerOmics to
better understand and infer information related to cancer. The evaluation datasets are split according
to 2:1, and all methods generate results on the test set for comparison. In addition, to ensure the
consistency of the evaluation, the tumor subtypes predicted by ZerOmics are not considered, that is,
the predicted results are uniformly treated as binary classification. Lastly, accuracy and F1-score are
served as the evaluation metrics.

Cell pathway inference (CPI). In this study, CPI is a multi-category independent binary classifi-
cation task. Specifically, we focus on the 41 hallmark pathways from the Broad Institute’s Molecular
Signatures Database (MSigDB) (Liberzon et al., 2011). For each cell, the model needs to determine
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which one or several of these pathways it expresses. Since the ground truth of the pathway is of-
ten not directly provided, we use irGESA (Fan et al., 2024) to analyze the pathways that each cell
may express in the evaluation datasets. Note that irGESA is not a predictive model, but a one-
to-one matching model for the gene expression pattern of each cell and all known cell pathways.
Geneformer and LangCell also need to use the generated labels for supervised fine-tuning, while
ZerOmics in the zero-shot setting uses instructions to directly generate answers in a way similar
to answering multiple-choice questions. The evaluation datasets are split according to 2:1, and all
methods generate results on the test set for comparison. We employ the Area Under the Receiver
Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC) for
evaluation. Due to the complexity of the predicted labels, these two metrics are also calculated using
two different strategies, namely average and flatten. Average (a-) metrics treat the 41 prediction re-
sults of each cell as independent samples for calculation, and then averages the AUROC or AUPRC
results of each cell. While flatten (f-) metrics the 41 prediction results of all n cells as independent
samples and calculates AUROC or AUPRC on these 41*n samples.

B.2 EVALUATION DATASETS

We collect abundant benchmark datasets for evaluating the performance of ZerOmics across diverse
tasks. The following introduction of each dataset summarizes the involved cell information and its
application scenarios in this paper.

PBMC68K. The PBMC68K (Zheng et al., 2017) dataset is sourced from a healthy donor, con-
sisting of the gene profiles of 68,450 peripheral blood mononuclear cells (PBMCs). The dataset
encompasses eleven distinct cell types, including CD4+ T cells, CD8+ T cells, B cells, natural killer
(NK) cells, CD14+ Monocytes, FCGR3A+ Monocytes, dendritic cells, memory cells, helper2 cells,
and Megakaryocytes. Cells were processed on the 10x platform using the scRNA-seq technology.
This dataset is utilized for the cell type annotation task in this paper. PBMC68K is used for CTA
and RCI tasks in this study.

Pancreas. The Pancreas (Segerstolpe et al., 2016) dataset consists of 2,209 single cells compiled
from human pancreatic islets, with samples collected from six healthy and four type 2 diabetes
(T2D) donors. The dataset encompasses both endocrine and exocrine cells, a total of eight cell
types: alpha, beta, gamma, delta, and epsilon endocrine cells, as well as acinar, ductal, and pancre-
atic stellate cells (PSCs). The cells were dissociated into single-cell suspensions and sorted using
fluorescence-activated cell sorting (FACS), followed by RNA sequencing through the Smart-seq2
protocol. Pancreas is utilized for the CTA task in this study.

BMMC. The BMMC dataset referenced in (Granja et al., 2019) consists of 35,882 bone marrow
mononuclear cells (BMMCs) collected from healthy donors. The dataset contains six cell types
including progenitor cells, B cells, T cells, NK cells, monocytes, and dendritic cells. Cells were
profiled on the 10x platform utilizing the single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) technology. BMMC is utilized for the CTA task in this study.

MOP. The MOP (Zhang et al., 2023) dataset is a spatially resolved, molecularly defined cell atlas
of an entire mouse brain. This dataset provides 338 major cell types over ten million cells across
eleven major brain regions. The MOP dataset was collected by the Multiplexed Error-Robust Flu-
orescence In Situ Hybridization (MERFISH) technology, which is a spatial transcriptomics (ST)
method that allows for gene expression profiling while preserving the spatial context of the cells
within intact tissue sections. MOP is utilized for the CTA task in this paper.

Airway. The Airway (Montoro et al., 2018) dataset is profiled by scRNA-seq protocol and com-
prises 7,494 cells from mice. The dataset revealed seven cell types including basal cells, club cells,
ciliated cells, tuft cells, neuroendocrine, goblet cells, and Foxi1+ pulmonary ionocyte cells. Airway
is utilized for evaluating the RCI task in this study.

CTC. The CTC (Szczerba et al., 2019) dataset focuses on circulating tumor cells (CTCs) associ-
ated with white blood cells (WBCs), specifically neutrophils, in patients with breast cancer. This
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dataset is profiled by Smart-seq2 and contains 357 cells. There is no annotation file about cell sub-
types attached to the dataset, but it provides a binary annotation of whether it is a tumor or not. CTC
is used for evaluating the TCD task.

LungCancer. The LungCancer (Qian et al., 2020) dataset consists of scRNA-seq profiles of
93,576 cells derived from patients with lung cancer. The dataset identified ten distinct cell types
including tumors. LungCancer is used for evaluating the TCD task in this study.

HDHC. The HDHC (Chaffin et al., 2022) dataset consists of single-nucleus RNA sequencing
(snRNA-seq) profiles of nearly 600,000 nuclei derived from the left ventricle samples of patients
with hypertrophic cardiomyopathy and dilated cardiomyopathy (HDHC), and non-failing (NF)
hearts. The dataset contains twenty-one distinct cell populations. HDHC is utilized for the CPI
task in this study.

Liver. The Liver (MacParland et al., 2018) dataset is profiled by scRNA-seq technology, compris-
ing 8,444 cells isolated from healthy human liver tissues obtained from five neurologically deceased
donors. The dataset identified twenty cell types in total. Liver is used for the CPI task in this study.

C IMPLEMENTATION DETAILS

C.1 ENVIRONMENTS

All experiments are conducted on eight NVIDIA Tesla A100 GPUs, each with 80 GB of memory.
The various parameter versions of ZerOmics, along with a series of its variant models are trained
using the PyTorch framework (Paszke et al., 2019), integrated with DeepSpeed (Rasley et al., 2020)
and FlashAttention v2 (Dao, 2024) for optimized memory and computational efficiency. Gradient
checkpointing is employed by default, a widely adopted technique in the PEFT (Parameter-Efficient
Fine-Tuning) codebase (Mangrulkar et al., 2022), to further reduce memory overhead during train-
ing. Please note that eight A100 GPUs are not strictly necessary; they are mainly used to accelerate
the training process through parallelization.

C.2 BENCHMARK METHODS

In this section, we offer a concise overview of each benchmark method utilized in this study.

Spatial-ID. Spatial-ID (Shen et al., 2022) is a supervised benchmark for the CTA task, which is
tailored for ST data. It first employs transfer learning to train a deep neural network (DNN) pre-
trained on the reference scRNA-seq data. In the inference stage, it leverages a variational graph
autoencoder (VGAE) to contain spot embeddings, followed by feeding them into the DNN-based
classifier to generate pseudo-labels for each spot. The spatial embeddings are then combined with
gene expression profiles to refine cell type predictions via a self-supervised learning approach.

scJoint. scJoint (Lin et al., 2022) is designed for the CTA task for both scRNA-seq and scATAC-
seq data. Initially, it leverages annotated scRNA-seq data to guide the training process, transferring
labels to unlabeled scATAC-seq data via constructing a KNN graph based on cell-cell similarities
between two omics. scJoint simultaneously trains on labeled and unlabeled data, enabling effective
label transfer and integration across heterogeneous multi-omics datasets.

Seurat. Seurat v5 (Hao et al., 2023) serves as one of the baseline methods for the unsupervised
CTA task. It first builds a K-nearest neighbor (KNN) graph based on cell-cell similarities, followed
by community detection to annotate cells into subtypes via the Louvain algorithm.

scBERT. scBERT (Yang et al., 2022), as the pioneer of large-scale pre-trained models for SC data,
utilizes the performer (Choromanski et al., 2020) architecture with 6M parameters and pre-trained
on over 1M unlabeled, preprocessed scRNA-seq samples. At the supervised fine-tuning stage, the
pre-trained encoder is tuned with labeled task-specific scRNA-seq data to adapt distinct downstream
tasks. We employ scBERT as a baseline method for the CTA task in this study.
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Geneformer. Geneformer (Theodoris et al., 2023) is pre-trained on nearly 30M scRNA-seq data
samples, and adopts a CNN-based feature generator to learn cell representations, followed by a
transformer-based entropy model. The model employs a latent array to manage sequence length to
solve the gene compression problem. Finally, Geneformer applies transfer learning across various
biological tasks. Geneformer is included as a benchmark for the CTA and CPI tasks in this study.

scGPT. scGPT (Cui et al., 2024) serves as a benchmark method for CTA and RCI tasks in this pa-
per. The model is generatively pre-trained on over 33M scRNA-seq samples, followed by supervised
fine-tuning for specific downstream tasks, including CTA and batch integration.

LangCell. Langcell (Zhao et al., 2024) is a recent work that integrates textual information with
gene expression profiles during the pre-training stage. It builds a cell-text dataset utilized for pre-
training vis four tasks, including mask gene modeling, cell-cell contrastive learning, cell-text con-
trastive learning, and cell-text matching to recognize the intricate relationships between SC and text
modalities. We employ it as a benchmark method for the CTA task.

scVI. scVI (Lopez et al., 2018), tailored for scRNA-seq data analysis, implements a completely
probabilistic framework based on a hierarchical Bayesian model. The gene expression profiles are
firstly encoded into low-dimensional embeddings and then decoded for computing posterior esti-
mates of the distributional parameters for each gene in each cell. scVI is utilized as a benchmark for
the RCI task.

MARS. MARS (Brbić et al., 2020) is a baseline method for the RCI task. MARS firstly predefines
a set of cluster landmarks that are equal to the number of known cell types for the unannotated
dataset. Subsequently, unlabeled cells are assigned to the cluster of the closest target landmark in
the embedding space. The assigned cell clusters are matched to annotated cell-type landmarks in the
annotated dataset, identifying those with uncertain matching as rare cell types.

scBalance. scBalance (Cheng et al., 2023) is a framework specifically designed for the RCI task.
It combines weight sampling and sparse neural networks to emphasize minor cell types without dis-
rupting the annotation efficiency of the major cell populations. scBalance outperforms in handling
imbalanced datasets, thus we use it as a benchmark for the RCI task.

CopyKAT. CopyKAT (Gao et al., 2021) serves as a baseline method for the TCD task. It performs
hierarchical clustering to categorize cells into clusters according to their estimated gene copy number
profiles. Clusters that are significantly enriched in predefined highly confident normal spots in the
enrichment analysis (P-value ≤ 0.05) are designated as normal cells and others as tumors.

CaSee. CaSee (Sh et al., 2022), tailored for distinguishing tumors from normal cells, pre-training
the model on a vast of bulk RNA-seq data, followed by employing transfer learning to detect tumors
in scRNA-seq data processed by a capsule network. CaSee is a baseline method for the TCD task in
this study.

ikarus. ikarus (Dohmen et al., 2022) is designed for detecting tumors from normal cells at the
SC level. It first identifies a comprehensive tumor cell signature in the form of a gene set by con-
solidating abundant annotated datasets. It then employs a logistic regression classifier for stringent
discrimination of tumor and normal cells, supplemented by a network-based propagation of cell la-
bels using a custom-built cell-cell network. We leverage ikarus as a baseline for the TCD task in this
study.

C.3 MODEL ARCHITECTURE AND TRAINING DETAILS

In the single-cell model, the number of bins is set to 10. Therefore, the SC expression is processed
into 12 different types of tokens: 10 bin tokens, a zero value token, and a special mask token. Then,
the dimensions of SC expression embeddings are set the same as text embeddings for addition by
the broadcasting mechanism. The main network of the SC Model is a stack of multiple layers of
Transformer Encoders. We set it to 12 layers of Transformer Encoders, with 12 attention heads in
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each layer. In mask learning, we set pm = 0.15 for masking bin tokens and ps = 0.1 for randomly
replacing tokens with others.

For the LLM, ZerOmics uses LLaMA2-13B by default. Each SC embedding is mapped to 500 LLM
tokens through a linear layer (tokenizer) and inserted into the instruction. We select three repre-
sentative and important SC analysis tasks: cell type annotation, rare cell identification, and tumor
cell discovery. For each task, we also independently design three instruction templates. During
fine-tuning, each cell is randomly assigned a task and a corresponding instruction. In the mixture
of LoRAs, we design universal and three task-specific LoRAs, each with the same structure, using
r = 8 and α = r.

For both pre-training and instruction tuning stages, we set the total batch size to 64, which means the
pre-GPU batch size is 8. We use AdamW as the optimizer and the learning rate warmup and cosine
decay strategies are also used in both stages. The learning rates of the two stages are different, the
former is set to 1e-4, and the latter is set to 5e-4.

C.4 SOURCE CODE

All of the code for this paper, including ZerOmics, its variant models, and most of the pre-training
and fine-tuning weights, can be released once the paper is accepted.

D EXAMPLE ITEMS IN GENE CORPUS

Some gene text summaries are presented in Table 6.

E INSTRUCTION EXAMPLES

In the instruction tuning stage, ZerOmics employs three instruction tuning tasks. In the evaluation
(also inference) stage, ZerOmics employs these three tasks with one additional unseen task. Ze-
rOmics addresses these three shared tasks with similar instruction templates. In summary, the used
instruction templates are presented in Table 7.
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Table 6: Examples of gene summary items in the gene corpus. Text indicating the associated disease
is marked in blue, text describing the associated biological processes is marked in orange, and text
indicating associated other genes is marked in green.

Gene Symbol GeneCards Summary

NXN NXN (Nucleoredoxin) is a Protein Coding gene. Diseases associated with
NXN include Robinow Syndrome, Autosomal Recessive 2 and Autosomal
Recessive Robinow Syndrome. Gene Ontology (GO) annotations related to
this gene include oxidoreductase activity and thioredoxin-disulfide reductase
(NADPH) activity. An important paralog of this gene is NXNL2.

TNF TNF (Tumor Necrosis Factor) is a Protein Coding gene. Diseases associated
with TNF include Asthma and Malaria. Among its related pathways are MIF
Mediated Glucocorticoid Regulation and TNFR1 Pathway. Gene Ontology
(GO) annotations related to this gene include identical protein binding and cy-
tokine activity. An important paralog of this gene is TNFSF15.

MEG3 MEG3 (Maternally Expressed 3) is an RNA Gene, and is affiliated with the
lncRNA class. Diseases associated with MEG3 include Kagami-Ogata Syn-
drome and Liver Disease.

SFTA3 SFTA3 (Surfactant Associated 3) is an RNA Gene, and is affiliated with the
lncRNA class. Diseases associated with SFTA3 include Hereditary Ataxia and
Choreoathetosis And Congenital Hypothyroidism With Or Without Pulmonary
Dysfunction.

FRAXE FRAXE (Fragile Site, Folic Acid Type, Rare, Fra(X)(Q28) E) is a Functional
Element gene. Diseases associated with FRAXE include Intellectual Develop-
mental Disorder, X-Linked 109 and Fraxe Intellectual Disability.

NXF5 NXF5 (Nuclear RNA Export Factor 5) is a Pseudogene. Diseases associated
with NXF5 include Focal Segmental Glomerulosclerosis 1 and Focal Segmen-
tal Glomerulosclerosis. Gene Ontology (GO) annotations related to this gene
include RNA binding and nucleotide binding.

Table 7: Instruction examples for three instruction tuning tasks and one zero-shot task. The content
that needs to be inserted in the instruction is marked in cyan.

Task Instruction

CTA

Given a single-cell token embedding: [SC token], which is derived from the study
with the following abstract: [abstract], classify this single-cell token into one of the
following categories: [list categories].
Please only respond with one of the categories.

RCI

Given a single-cell token embedding: [SC token], which is derived from the study
with the following abstract: [abstract], identify whether this single-cell token belongs
to a rare cell type.
Please only respond with “Yes” or “No”.

TCD

Given a single-cell token embedding: [SC token], which is derived from the study with
the following abstract: [abstract], determine whether this single-cell token belongs to
the following diseases: [list diseases]. Note that it may also be a normal cell.
Please only respond with one of the diseases or “normal cell”.

CPI

Given a single-cell token embedding: [SC token], which is derived from the study with
the following abstract: [abstract], infer which one or more of the following pathways
it may be involved in: [list pathways].
Please only respond with one or more of the pathways.
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