3D Analog In-Memory Computing for Efficient Mixture of Experts Large
Language Model Inference (Extended Abstract)

Athanasios Vasilopoulos
IBM Research Furope, 8803 Rischlikon, Switzerland
E-mail: atv@zurich.ibm.com

Full paper: Bichel, J., Vasilopoulos, A. et al. Efficient scaling of large language models with mizture of experts and
3D analog in-memory computing. Nat Comput Sci 5, 13-26 (2025). hitps://doi.org/10.1038/543588-024-00755-x

Transformer-based Large Language Models (LLMs) have achieved state-of-the-art results in diverse applications,
from natural language generation to code synthesis and reasoning. The performance of these models scales predictably
with the number of parameters, prompting the development of models with hundreds of billions of parameters. A
crucial step towards the democratization of this technology across various services and products involves reducing the
hardware cost and the inference cost in terms of time and energy. The ongoing trend of ever-increasing model sizes,
however, contradicts that objective since the inflated parameter count incurs an increase in memory footprint, memory
transactions and compute latency. Moreover, the primary hardware used for serving such models, notably Graphics
Processing Units (GPUs), are power-intensive and not designed for LLM inference. This raises a key challenge: how
to reduce the energy demands of LLM inference, both from a hardware and a model architecture perspective.

An algorithmic approach to curb the ever increasing inference cost of LLM inference is embracing the paradigm
of conditional computing. In this paradigm, the trajectory of an input through a neural network is dynamically
determined, and only a fraction of the parameters is utilized to process the input. These disjoint sets of parameters
are referred to as “experts”, and models based on this concept are often called Mixture of Experts (MoE) (Fig. 1a).
MoEs have recently demonstrated superior performance over dense models, offering a scalable way to increase model
capacity without proportionally increasing Floating Point Operations (FLOPs). However, while MoEs reduce FLOP
growth, they do not fully address other bottlenecks of LLM inference on conventional Artificial Intelligence (AI)
accelerators, such as the need for large memory capacity and frequent data movement between memory and compute
units—limitations stemming from their von Neumann architecture (Fig. 1b).

A promising approach to overcome the hardware inefficiencies associated with neural network inference is the
paradigm of in-memory computing using non-volatile memory devices, commonly referred as Analog in-Memory
Computing (AIMC). AIMC accelerators leverage device characteristics and circuit laws to perform Matrix-Vector
Multiplication (MVM) operations within the memory arrays storing the weights, thus eliminating the necessity for
weight shuffling, requiring only movement and buffering of activations. Moreover, the operation is performed in
the analog domain, resulting in energy-efficient computation with O(1) time complexity. However, for AIMC to be
practical, the weights of the entire LLM must reside on-chip—a requirement unmet by current chip prototypes. The
advancement from 2D planar memories to 3D non-volatile memories offers a path forward, potentially allowing entire
large LLMs to fit on a single chip (Fig. 1c). Yet, the use of 3D memories introduces new limitations, namely that due
to constraints on memory technology or peripheral circuits only a single 2D slice (tier) of the 3D stack can be used
at a time, a constraint referred to here as One-Tier-at-a-Time (OTT) (Fig. 1d).

In our study (detailed in the full paper), we combine the conditional computing mechanism of MoEs with the
characteristics of 3D AIMC. We show that conditional computing is particularly well-suited to 3D AIMC, as it
allows only a subset of the stored parameters to be accessed per inference. This inherently mitigates the OTT
constraint by aligning computation with the capacity and selective activation characteristics of 3D AIMC (Fig. le).
We simulate the execution of dense and MoE-based LLMs in an abstract 3D AIMC system and compare their scaling
behavior. Furthermore, we study the impact of noise introduced by the analog hardware on a language modelling
task and demonstrate floating point arithmetic-equivalent accuracy (iso-performance) at noise levels comparable to
those observed in previously published AIMC hardware.

Our results demonstrate a significant advantage for MoE-based LLM inference on 3D AIMC hardware compared to
modern GPUs like the A100. We observe up to a 6x increase in throughput (tokens/s), a 20x improvement in area
efficiency (tokens/s/mm?), and up to a 1000x gain in energy efficiency (tokens/s/W), primarily due to the elimination
of weight shuffling. These findings position 3D AIMC as a highly promising post-von Neumann computing paradigm
for Al workloads and we aim to motivate further architectural exploration in this direction based on the learnings
presented in this study.
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FIG. 1. 3D AIMC-based implementation of MoEs. a. MoEs typically replace the FFN blocks in conventional Trans-
formers with multiple expert FFNs. In the forward pass, the router first determines for each token the experts that will be
used for processing this token. Here, top-2 routing is illustrated, meaning that the router identifies 2 experts that process
the token. b. As the model sizes of LLMs steadily increase, the memory requirements for stationary parameters (weights)
dominate the non-stationary memory requirements (activations). c. Illustration of the increase in storage density over the
years as a result of stacking dense Non-Volatile Memory (NVM) arrays vertically. d. Illustration of an abstract 3D AIMC
tile. The dark rectangles depict input and output circuitry. The stacked square boxes indicate the vertically stacked tiers each
comprising an analog crossbar. The purple box indicates the activated tier. The black strings illustrate vertical connections.
When computing the MVM y = - W7, the tier holding the weights W is selected and input vectors, z, are fed into the array.
The resulting output vectors, y are read out. Performing MVMs in parallel across multiple tiers is often not feasible and we
refer to this as the OTT constraint. e. The experts, which are typically a two-layer FFN, are stacked on top of each other. In
the case where the weight matrix of one of the layers of the FFN exceeds the tier dimension, it must be split into chunks which
are distributed across multiple tiles. Note that these chunks can also be stacked on top of each other.



