Representing Joint Hierarchies with Box Embeddings

Anonymous authors

Abstract

Learning representations for hierarchical and multi-relational knowledge has emerged as an active area of research. Box Embeddings [Vilnis et al., 2018, Li et al., 2019] represent concepts with hyperrectangles in \(n\)-dimensional space and are shown to be capable of modeling tree-like structures efficiently by training on a large subset of the transitive closure of the WordNet hypernym graph. In this work, we evaluate the capability of box embeddings to learn the transitive closure of a tree-like hierarchical relation graph with far fewer edges from the transitive closure. Box embeddings are not restricted to tree-like structures, however, and we demonstrate this by modeling the WordNet meronym graph, where nodes may have multiple parents. We further propose a method for modeling multiple relations jointly in a single embedding space using box embeddings. In all cases, our proposed method outperforms or is at par with all other embedding methods.

1. Introduction

Hierarchical relations, particularly hypernymy, are inherently present in natural language and useful in many common tasks. For example, in SNLI the sentence “A soccer game with multiple males playing” can be understood to entail “Some men are playing a sport” via the hypernym relation between “soccer” and “sport”. Question answering and language modeling in general can benefit from understanding these relationships, as a word can often be replaced by it’s hypernym and still yield a valid sentence or provide supporting evidence to answer a question. Vector embedding methods, where an entity is associated with a vector in \(\mathbb{R}^n\), often use symmetric measures such as the dot product between these representations which cannot capture inherently asymmetric relations such as hypernymy.

Vendrov et al. [2016] provides such an asymmetric measure on vectors in the form of the reversed product order on \(\mathbb{R}_+^n\). This amounts to associating with each entity a cone with apex \(x\), that is the set \(\{y : \bigwedge_{i=1}^n y_i \geq x_i\}\). A useful property of this embedding is that the intersection of two cones is another cone, and therefore the intersection of two concepts (say, ”dog” and ”playing”) already has a naturally available representation in the space. Lai and Hockenmaier [2017] provided a probabilistic interpretation of order embeddings (POE) by using the negative exponential measure or, equivalently, representing concepts as
a cone in $[0,1]^n$. With this parameterization the volume of a cone could be interpreted as the marginal (resp. joint) probability of the entity (resp. intersection) which it represents. This allowed for training and evaluation using conditional probabilities which mapped very naturally onto hypernym relations, eg. $P(\text{mammal}|\text{dog}) = 1$.

Representing entities with cones has a serious deficit, however, in that it cannot represent negative correlation, that is $P(X|Y) \geq P(X)$ in POE. Box embeddings, introduced in Vilnis et al. [2018], solved this issue by introducing another vector, effectively associating each entity with an n-dimensional hyperrectangle. Box embeddings are a compressed representation of a joint probability distribution over binary random variables, where the probability of any particular setting of the variables is represented by a (perhaps degenerate) volume bounded by these hyperrectangles, and have been shown to effectively model hypernymy by training on a large subset of the transitive closure of the WordNet hypernym graph.

In this work, we explore the extent to which the edges from the transitive closure are necessary. Hyperbolic entailment cones [Ganea et al., 2018], which associate entities to cones in hyperbolic space 1 were shown to model the hypernymy graph of WordNet more effectively than order embeddings when using 10, 25, and 50% of the transitive closure edges. In this work we demonstrate that box embeddings achieve state-of-the-art performance in this task, as well as when restricted to train on the transitive reduction (0% transitive closure edges).

We further explore the meronymy relation from WordNet, which differs qualitatively from the hypernymy graph in that it is not as tree-like, comprised of many connected components where some nodes have multiple parents while others have no parents. Box embeddings have not been used in this setting before, but their inductive bias does not restrict them to use in tree-like graphs, and we demonstrate their superior performance in modeling the transitive closure of this graph when including 0-50% of the transitive closure edges.

Finally, we introduce a method of modeling these two relations in the same space by introducing two representations for each entity. Our method is not specific to box embeddings, but rather can be thought of as a graph augmentation procedure which is general enough to allow for modeling with all existing baselines. In this multi-relational embedding settings we also compare against knowledge base completion baselines and demonstrate that box embeddings can outperform TransE [Bordes et al., 2013] and ComplEx [Trouillon et al., 2016] in this setting as well.

2. Method

We first present box embeddings as they were introduced in [Vilnis et al., 2018], briefly touch on the “soft” volume calculation presented in [Li et al., 2019], and then discuss some learning adaptations present in our version of the model.

1 These can be thought of as the hyperbolic analog to order embeddings. The motivation for considering hyperbolic space is the inductive bias it demonstrates for modeling tree-like graphs [Nickel and Kiela, 2017, Chamberlain et al., 2017].
2.1 Representation

The box-space [Vilnis et al., 2018] is the set of all \(n \)-dimensional hyperrectangles. Formally, if \(\mathbb{B} = \{[a, b] \mid a, b \in \mathbb{R}, b \geq a\} \) is the set of all closed intervals of \(\mathbb{R} \), then an \(n \)-dimensional box-space is \(\mathbb{B}^n \). Just as in vector embedding models where each entity is represented by a vector in the euclidean space, in box-space each entity \(e \) is represented by a box \(\alpha_e \in \mathbb{B}^n \) as shown in figure 1. We parametrize a box using the minimum and maximum coordinates in each dimension, \((\alpha_m, \alpha_M)\), where \(\alpha_m, \alpha_M \in \mathbb{R}^n \) and \(\alpha_{m,i} \leq \alpha_{M,i} \) for each \(i \in \{1, \ldots, n\} \).

Boxes provides a natural way to embed a partial order using containment.

![Figure 1: An element of box-space.](image)

2.2 Probabilistic Interpretation

In addition to the natural containment operation, we can consider the volume of boxes. If we normalize the space to have volume 1 (by dividing by the smallest containing box, say) the boxes can be interpreted as a parameterization of a joint probability distribution over binary random variables, where the marginal probability of a given entity is given by the volume of it’s box. Intersections of boxes yield either another box or the empty set, and in either case we can compute the volume of the intersection as

\[
\text{Vol}(\alpha \cap \beta) := \prod \max(\min(\alpha_{M,i}, \beta_{M,i}) - \max(\alpha_{m,i}, \beta_{m,i}), 0).
\]

(1)

We can interpret this volume as the joint probability for concepts \(\alpha \) and \(\beta \), and furthermore calculate (for example) \(^2\)

\[
\Pr(\alpha | \beta) = \frac{\text{Vol}(\alpha \cap \beta)}{\text{Vol}(\beta)}.
\]

(2)

[Vilnis et al. 2018] uses these conditional probabilities to model the hypernym graph of WordNet. For example, given an edge from MAN to PERSON (indicating that a man is a person) we first convert this to a conditional probability between binary random variables, \(\Pr(\text{PERSON}|\text{MAN}) = 1 \), which is then trained using binary cross-entropy loss and stochastic gradient descent. Figure 2 shows the corresponding boxes capturing this edge.

\(^2\) Note that when calculating conditional probabilities it is not necessary to normalize the volume of the space to size 1.
2.3 Softplus Volume

Boxes which should overlap may become disjoint, either due to initialization or during training, and the currently described model has no training signal in this instance. Vilnis et al. [2018] made use of a surrogate loss function to handle this case, however Li et al. [2019] introduced a new method which replaces the ReLU from (1) with the softplus function, \(\text{softplus}_t(x) = t \log(1 + e^{x/t}) \), which smoothed the loss landscape and resulted in easier training. The volume calculation under this approximation becomes

\[
\text{Vol}(\alpha \cap \beta) := \prod \text{softplus}_t(\min(\alpha_{M,i}, \beta_{M,i}) - \max(\alpha_{m,i}, \beta_{m,i})).
\]

We note that (3) is always positive, which means all boxes “intersect” one another under this volume calculation. The temperature parameter \(t \) can be tuned, and as \(t \to 0 \) we recover the original box model. We will exclusively use this soft volume calculation when computing box volumes, and in our experiments we always select the temperature based on dev set performance.

2.4 Absence of explicit probability labels and use of regularization

Previous work on box embeddings [Vilnis et al., 2018] uses pre-computed unary marginals \(\Pr(A) \) and pairwise conditionals \(\Pr(A \mid B) \) as labels while training the box embedding model. These marginal probabilities were calculated using the graph structure - leaves were given marginal probability equal to 1/#nodes, and parents were assigned marginal probability equal to the sum of their children plus 1/#nodes. How “tight” the parent boxes are to their children can be seen as a form of regularization. In general, setting marginal probabilities can help to set a scale for the overall model.

For our model, however, we avoid pre-computing marginal probabilities and simply use the conditional probability targets with binary cross-entropy loss. Without any global scale, however, this can result in poor training, so we introduce a new regularization measure by penalizing the size of boxes when they become greater than a fixed volume. This provides a weak scale to the boxes in the embedding space and results in a significant performance improvement over unregularized training without the need to precompute unary marginals.
2.5 Modeling joint hierarchy

Inter-relational semantics implicit in multi-relational knowledge graphs can be used to learn coherent representations for the entities present in the graph. In particular, the relations discussed in this work, i.e., the IsA and HasPart relations should obey the following rules.

\[
\text{IsA}(a, b) \land \text{HasPart}(b, c) \Rightarrow \text{HasPart}(a, c) \tag{4}
\]

\[
\text{IsA}(a, b) \land \text{HasPart}(c, a) \Rightarrow \text{HasPart}(c, b) \tag{5}
\]

For instance, every Man IsA Person and every Person HasPart Eye. Hence, every Man HasPart Eye. Similarly, Eye IsA Organ and Person HasPart Eye implies Person HasPart Organ. Figure 3 shows the subgraph describing this example. The red edges and the dotted red edges are implied HasPart edges which might be missing in the original knowledge graph. We show that boxes can model these two relations in a single space by using two boxes per node while preserving the semantics described above.

For each node \(x \) we embed two boxes, one which represents “Things which are \(x \)” and one which represents “Things which \(x \) is a part of”. This is depicted in figure 4, where the entity “Man” is represented by the green Man box and the red HasPart-Man box. The edges 3,4,5 and 7, in figure 3 are captured by the inclusion of Man and Person boxes inside the HasPart-Eye and HasPart-Organ boxes, while the edges 1 and 2 are captured by the inclusion of Man inside the Person Box, and Eye inside the Organ box, respectively.

This form of modeling multiple relations using augmentation is not limited to the box embedding model. The main idea is to create a new graph with twice as many nodes and edges from the IsA hierarchy, with additional PartOf edges so as to make the semantics coherent. Any model capable of modeling a DAG can be evaluated on its ability to model this graph.
3. Experiments

In order to demonstrate the efficacy of the box embeddings model on hierarchical structured data we evaluate on the hypernymy and meronymy relations of Wordnet. Following the recent works of [Nickel and Kiela, 2017, Ganea et al., 2018], we train on the transitive reduction, using increasing amounts of edges from the transitive closure of the those lexical relations. We pose the problem as a binary classification task on the unseen test edges which include the remaining edges from the transitive closure along with a fixed set of random negatives for the respective relations.

3.1 Datasets

1. Hypernymy (IsA)
 For hypernymy we used the dataset from [Ganea et al., 2018]. The WordNet noun hypernymy dataset contains 82,114 nodes (omitting the root). The transitive reduction of the hypernymy hierarchy is used for training. Additionally, there are training datasets with 10%, 25%, and 50% of the transitive closure edges. For dev and test datasets, 10% of the edges (5% each) are sampled from the rest of transitive closure. For each test and validation edge a fixed set of negative samples of size 10 was generated.

2. Meronymy (HasPart)
 We created a meronomy dataset in exactly the same way. Out of the 82,114 nodes in WordNet only 11,235 of them have meronym relations associated with them. We note that this graph is not nearly as tree-like - there are 2,083 connected components, 2,860 nodes with no parents and 1,013 nodes with multiple parents. Again, following [Ganea et al., 2018], we start with the transitive reduction and add 0%, 10%, 25%, and 50% of the transitive closure to the training data in order to observe the generalisation performance of the model. Dev and Test datasets were created in the same way as for hypernymy. Please refer to Table 1 for the details of the dataset.
3. Joint Hierarchy (IsA and HasPart) For the joint hierarchy we start with the transitive reduction of meronymy and hypernymy, however we create a new graph as described in section 2.5. Formally, this involves duplicating the nodes X into a new set of nodes X' and adding the transitive reduction of IsA edges within both copies of the nodes. For every $\text{HasPart}(a,b)$ edge we add an edge from a to b'. These encompass the green and purple edges from figure 3, and forms the training data of size 178405 edges. The test data is comprised of the implied edges, i.e. those in red from 3. These edges are of the form

$$\underbrace{\text{IsA} \circ \text{IsA} \cdots \text{IsA}}_{\text{m times}} \circ \text{HasPart} \circ \underbrace{\text{IsA} \circ \text{IsA} \cdots \text{IsA}}_{\text{n times}} = \text{HasPart}. \quad (6)$$

We create a test and validation set with 94807 and 94806 positive edges respectively which include all HasPart edges as described in (6) for all $m, n \in \{0, 1, 2\}$.

3.2 Baselines

We compared our model with the recent strong baseline models such as:

1. Order Embeddings [Vendrov et al., 2016]: As mentioned in the introduction, this method embeds entities as cones in \mathbb{R}^d. Representationally, order embeddings are equivalent to box embeddings where the min coordinate is fixed to the origin, however learning differs in that the objective function optimizes an order-violation penalty. (See [Vendrov et al., 2016] for more details.)

2. Poincaré Embeddings [Nickel and Kiela, 2017]: In this work, the authors learn embeddings in an n-dimensional Poincaré ball which naturally captures the tree-like structure due via the constant negative curvature of hyperbolic geometry. This work uses a symmetric distance function which is not ideal for asymmetric relational data, however. We use the same heuristics followed by [Ganea et al., 2018] to mitigate this problem.

3. Hyperbolic Entailment Cones [Ganea et al., 2018]: This work models hierarchical relations as partial orders defined using a family of nested geodesically convex cones in hyperbolic space.

4. TransE and ComplEx [Bordes et al., 2013, Trouillon et al., 2016]: The joint hierarchy can be also considered as multi-relational data with two relations. We use the most popular translational distance based and matrix factorization based models, TransE and ComplEx respectively.

<table>
<thead>
<tr>
<th></th>
<th>Transitive Closure</th>
<th>Transitive Reduction</th>
<th>Validation (pos:neg)</th>
<th>Test (pos:neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>84363</td>
<td>661127</td>
<td>28838/288380</td>
<td>28838/288380</td>
</tr>
<tr>
<td>Meronym</td>
<td>9678</td>
<td>30333</td>
<td>5164/51640</td>
<td>5164/51640</td>
</tr>
</tbody>
</table>

Table 1: Dataset Details of the Hypernymy and Meronymy Hierarchies.
Table 2: Test F1 scores of various methods for predicting the transitive closure of WordNet’s hypernym meronym relations when training on increasing amounts of edges from the transitive closure. Baselines for hypernymy are as-reported in [Ganea et al., 2018].

<table>
<thead>
<tr>
<th>Transitive Closure Edges</th>
<th>Hyponym</th>
<th>Meronym</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Order Embedding</td>
<td>43.6%</td>
<td>69.7%</td>
</tr>
<tr>
<td>Poincaré Embedding</td>
<td>28.9%</td>
<td>71.4%</td>
</tr>
<tr>
<td>Hyperbolic Entailment Cones</td>
<td>32.2%</td>
<td>85.9%</td>
</tr>
<tr>
<td>Box Embeddings (Our Method)</td>
<td>60.2%</td>
<td>90.0%</td>
</tr>
</tbody>
</table>

3.3 Training details

In all our experiments, we keep the embedding dimension as 10 for all the baseline models, while for our model we use embedding dimension as 5. This results in having 10 parameters per node and ensures a fair comparison. For the task of learning the joint hierarchy with multi-relation prediction models like TransE and ComplEx, we keep their embedding dimension as 20 to account for the doubling of parameters due the introduction of two embeddings per node in Order embeddings, Poincaré embeddings, Hyperbolic entailment cones and our model.

We use the validation set to find the best threshold for the classification and obtain the F1 score on the test set using this threshold. Our best performing models have softbox temperature of between 0.2 and 0.5. We obtain the best learning rate for every model using random search and performance the validation set.

4. Results

The F1 score for hyponym and meronym predictions are presented in table 2. We note that our box embedding method outperforms all baselines by a large margin in the single hierarchy settings. Particularly in the transitive reduction (0%) setting for hyponymy performance, we achieve 40% relative improvement compared to the most competitive baseline (order embeddings). This demonstrates the capability of box embeddings to reconstruct the whole transitive closure graph given only the transitive reduction. We observe a similar performance boost when modeling meronymy. When transitive closure edges are added to the training data (10%, 25%, 50%) this gap closes, however boxes remain superior to other methods.

In Table 3 we report the F1 scores for the test edges of the joint hierarchy, which are the composite edges created by the rules (6) mentioned in section 3.1. While order embeddings slightly outperform our model, box embeddings are essentially at par, and have demonstrated superior performance in the prior tasks. We outperform the traditional knowledge base embedding methods TransE and ComplEx by a significant margin. We hypothesize that these knowledge base embedding methods may be constrained by lack of a region-based representation. The hyperbolic models (Poincaré and hyperbolic entailment cones) may struggle with this task due to the non-tree-like nature of the graph.
Table 3: Test F1 scores of various methods for predicting the implied HasPart edges

<table>
<thead>
<tr>
<th>Embedding Model</th>
<th>F1 score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poincaré Embeddings</td>
<td>43.80%</td>
</tr>
<tr>
<td>Hyperbolic Entailment Cones</td>
<td>44.00%</td>
</tr>
<tr>
<td>TransE</td>
<td>57%</td>
</tr>
<tr>
<td>ComplEx</td>
<td>60.61%</td>
</tr>
<tr>
<td>Order Embeddings</td>
<td>68.50%</td>
</tr>
<tr>
<td>Box embeddings</td>
<td>68.10%</td>
</tr>
</tbody>
</table>

4.1 Qualitative analysis

In order to visualize the effect of using “soft” boxes, we train a 2-dimensional box embedding model on the hypernym relation of WordNet. Due to the softening of the boxes, the model does not require the `dog.n.01` box to be completely contained inside the `domestic_animal.n.01` box to produce high score for the edge between them. Figure 5 shows the visualization obtained by plotting the hard edges using the minimum and maximum coordinates of the soft boxes.

![Image of 2-dimensional boxes for a subset of entities from the WordNet hypernym hierarchy after training on the entire WordNet reduction.](image)

Figure 5: Visualization of 2-dimensional boxes for a subset of entities from the WordNet hypernym hierarchy after training on the entire WordNet reduction.
In order to model a hierarchy, the embedding model has to accommodate the exponential growth in the number of nodes while moving down the hierarchy. The loss function for box embedding model encourages the embedding of the head node to contain the embedding of the tail node. Hence the number of embeddings having low volume should be high. This intuition is confirmed by figure 6.

Figure 6: Histogram of the log-volume of 5-dimensional box embeddings for the hypernym relation of WordNet

5. Conclusion

In this paper we have explored the capability of box embeddings to model hierarchical data. We demonstrated that it provides superior performance compared to alternative methods and requires less of the transitive closure. We also demonstrated that boxes are capable of learning data which is less tree-like, and introduced a method of embedding a joint hierarchy in a single space by augmenting the graph. In future work it would be of interest to expand the number of relations which are modeled in a single space and extend to non-transitive settings.

Acknowledgments

Omitted for blind review.
References

