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Abstract—Learned image compression has emerged as a
promising alternative to traditional codec standards, achieving
superior rate-distortion performance by leveraging deep neu-
ral networks. However, balancing computational efficiency and
compression performance remains a critical challenge in entropy
modeling. While autoregressive models capture rich context, they
suffer from slow sequential decoding. Parallel models improve
speed but underutilize spatial and channel dependencies. To
address this trade-off, we propose a learned image compression
framework with quad-prior entropy model based on a quadtree-
inspired partitioning strategy. Our method divides the latent
representation into four groups along the channel dimension
and partitions each group into non-overlapping 2x2 spatial
patterns. Entropy coding proceeds in four sequential steps,
where each step encodes one position within the block using
progressively accumulated context from previous steps. This
design enables the model to utilize up to 8 spatial neighbors
on average—twice that of prior parallel models—and exploits
cross-channel correlations through inter-group context sharing.
Moreover, all positions within each step are encoded in parallel,
ensuring high computational efficiency. When integrated into an
end-to-end compression framework with a main autoencoder net-
work and quantization parameter (QP) embedding for variable
bitrate control, the proposed method achieves state-of-the-art
performance on benchmark datasets.

Index Terms—Learned image compression, entropy modeling,
variable bitrate.

I. INTRODUCTION

Image compression is a fundamental technology in digital
media systems that enables the efficient storage and trans-
mission of visual data. Traditional codecs such as JPEG [1],
HEVC [2], and VVC [3] rely on handcrafted transforms and
entropy coding schemes. In contrast, learned image compres-
sion leverages deep neural networks to jointly optimize the
entire pipeline—from feature extraction to entropy model-
ing—resulting in improved rate-distortion (R-D) performance.

A key component in learned compression is the entropy
model, which estimates the probability distribution of quan-
tized latent variables for arithmetic coding [4]. Spatial au-
toregressive models achieve high accuracy by conditioning
each symbol on its spatial predecessors, but suffer from slow
sequential decoding [5], [6]. To improve efficiency, parallel
models [7] such as, channel-wise autogressive [8], checker-
board [9] and dual Spatial entropy model [10] have been
proposed. However, these methods use limited context, leading
to suboptimal compression.
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In this paper, we present Quad-Prior, a practical learned
image compression framework that integrates a fine-grained
contextual entropy model with a QP-aware main codec net-
work. Inspired by quadtree partitioning, Quad-Prior introduces
a four-step coding scheme that divides the latent space into
four channel groups and processes 2x2 spatial patterns in a
structured order. This design progressively accumulates spatial
and channel context, significantly enhancing entropy modeling
accuracy while maintaining intra-step parallelism for efficient
coding. We further embed the quantization parameter (QP)
directly into both the encoder and decoder, enabling flexible
variable bitrate (VBR) control at inference time with a single
model. Experimental results demonstrate state-of-the-art rate-
distortion performance on standard benchmarks, outperform-
ing existing methods in both objective metrics (PSNR, MS-
SSIM) and perceptual quality.

II. METHODOLOGY
A. Overview

The proposed framework consists of two main components:
(1) a main coding network for feature transformation and
reconstruction, and (2) a Quad-Prior contextual entropy model
for efficient entropy coding. The overall architecture follows
an encoder-decoder structure with side hyperpriors for entropy
modeling, as shown in Fig. 1.

B. Main Coding Network

Encoder. Given input image x&€ R¥*Wx3 the encoder first
applies a Patchify 8] operation to downsample the spatial
resolution by 8x and extract local patches. The resulting
feature map passes through a Depthwise Convolution Block
(DCBIlock) for initial feature extraction. The DCBlock consists
of two stacked residual blocks, each incorporating depthwise
convolutions [5] instead of vanilla convolutions; these depth-
wise convolutions reduce computational complexity while
preserving local spatial information. A quantization parameter
Q. is then embedded via element-wise multiplication:
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enabling variable bitrate control. Six stacked DCBlock(M, M)
layers refine the features, followed by Conv(M, N) 2| for final
downsampling. The output y is scalar-quantized to produce
discrete code g.



Go 1)1/

i

(=)
ST\ NN

Patchfy 8|
[
Conv(M, N) 2|

DCBIlock(192, M
DCBlock(M, M) x6

Q¢| Encoder

~

Fig. 1.

Conv(Cin, Cmid,1)
LeakyReLU
DepthwiseConv
(Cmid, Cmid, 3)
Conv(Cin, Cmid,1)
LeakyReLU
DepthwiseConv
(Cmid, Cmid, 3)

) El
i=3 i=}
&} &)
=) =
E E
e e
Z z
i=} i=}
O &)

DCBlock

Fig. 2. The structure of Depthwise Convolution Block (DCBlock).

Decoder. The decoder reverses the process: Conv(N, M) 21
upsamples the latent code, followed by multiplication with Q4.

Ya =19 Qa 2

Twelve DCBlock(M, M) layers recover fine details, then
DCBlock(M, 192) maps to patch-level features. Finally, Un-
patchify 871 reconstructs the full-resolution image .

C. Quad-Prior Entropy Model

Latent Space Partitioning. To achieve high compression
efficiency, accurate entropy modeling of the quantized latent
representation jj € R"*“*Nig essential. In quad-prior entropy
model, g is divided into four groups Gy, G1, G2, G3, along
the channel dimension (N/4 channels per group). Within each
group, the spatial map is divided into non-overlapping 2 x 2
blocks, including 9o, 91, y2 and g3, which form the basis for
fine-grained entropy coding. The core idea of Quad-Prior is
to encode these blocks in four sequential steps, where each
step processes one relative position (e.g., top-left, bottom-
right, top-right, bottom-left) across all spatial locations and
channel groups.

Structured Encoding/Decoding Order. In Step 0, the top-
left positions are encoded using only a global hyperprior
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The overall flowchart of the proposed image compression network.

as context. In Step 1, the top-right positions are predicted
conditioned on the already-decoded top-left symbols within
the same block. Step 2 encodes bottom-left positions using
both previously decoded horizontal neighbors, and finally, in
Step 3, the bottom-right positions are modeled with full access
to the other three positions in the block—enabling up to
8 contextual neighbors (including spatial and cross-channel
dependencies). This hierarchical accumulation of context sig-
nificantly increases the average number of available neigh-
bors to 4 per symbol, doubling that of conventional parallel
models like Checkerboard or Dual Spatial, and matching the
context density of autoregressive approaches. Crucially, all
positions within each step are encoded in parallel, ensuring
high throughput and decoding speed. Furthermore, our model
exploits cross-group dependencies: during Step 3, channels
from other groups that have been partially decoded serve as
additional inter-channel context, enhancing probability estima-
tion accuracy.

For each step 7, a dedicated Prior Adaptor network takes the
hyperprior features y3,, and the already-decoded symbols §;
to predict location-adaptive gaussian parameters, like means
w; and scales o;, which are then fused with the current
latent features in a Prior Fusion module to form the final
conditional distribution p(9;|J<i, Ynp). This dynamic, context-
aware prior generation enables precise entropy coding and
minimizes bitrate. Overall, Quad-Prior achieves an optimal
trade-off between modeling power and efficiency, making it
highly effective for learned image compression.

D. Loss Functions

For the objective quality stage, similar to most existing
learned image compression methods, we optimize the model



by minimizing the joint rate-distortion trade-off. The loss
function is formulated as:

L=R(y)+ R(z2)+ X D(z,z), (3)

where R(gy) and R(Z) denote the bitrates of the quantized
latent representation g and the hyperprior 2, respectively. The
distortion D(x, &) measures the reconstruction error between
the original image « and the decoded image &, using either
MSE or MS-SSIM as the quality metric. The hyperparameter
A controls the trade-off between compression rate and recon-
struction fidelity.

For the perceptual quality stage, we adopt a multi-
objective loss function to improve visual realism and mitigate
common compression artifacts such as color distortion, over-
smoothing, and structural blurring. The overall loss is defined
as:

L=R(Y)+R(Z)+A- (1 - D1+ p2- Do+ pz-D3), (4)

where D; denotes the pixel-wise reconstruction error mea-
sured by MSE, D5 represents the negative MS-SSIM (serving
as a structural similarity loss), and Ds is the perceptual loss
based on deep features, such as LPIPS (Learned Perceptual
Image Patch Similarity) [11]. The hyperparameters p1, 2, and
w3 control the relative importance of each term, allowing the
model to prioritize perceptual fidelity over pixel-wise accuracy,
especially in low-bitrate regimes. This combined loss enables
the network to generate visually pleasing reconstructions with
preserved textures and natural appearance.

III. IMPLEMENTATION DETAILS

Dataset. Our model is trained on a large-scale dataset
comprising over 30,000 high-resolution images, including both
natural photographs and screen content (e.g., text, graphics, Ul
elements). The natural image subset is selected from widely
used benchmarks including DIV2K [12], Flickr2K [13], and
Flickr2W [14], ensuring diverse scenes, textures, and lighting
conditions. The screen content portion consists of self-captured
screenshots and synthetic screen-like images, enhancing the
model’s generalization to mixed-content compression scenar-
ios. All training images have resolutions exceeding 512 x 512.
To mitigate potential artifacts from JPEG compression present
in some sources, we apply a randomized downsampling strat-
egy, ensuring the shorter side of each image falls within the
range [512,584] pixels before cropping.

Training Setup. The framework is implemented in PyTorch
and built upon the CompressAl library, which provides opti-
mized operations for learned image compression. We use the
Adam optimizer with momentum parameters 5; = 0.9 and
B2 = 0.999, and an initial learning rate of 1 X 104, All
models are trained on a single NVIDIA Tesla A100 GPU
with 40GB memory. The batch size is fixed at 32 throughout
training. Input images are randomly cropped into 256 x 256
patches during the first 1.2 million steps to facilitate faster
convergence. After this warm-up phase, we switch to 512x 512
crops to better exploit long-range spatial dependencies and
improve the model’s ability to learn global context, which is

particularly beneficial for high-resolution reconstruction and
texture preservation.

Single-Rate Training. In the first stage, we train three
individual models corresponding to low, medium, and high
bitrates respectively, so as to obtain well-optimized check-
points across the rate-distortion (R-D) curve, where distor-
tion (D) only considers MSE. Each model corresponds to
a specific A value targeting a desired operating point, with
A€ (5x 10732 x 1072,1 x 1071). The learning rate is
decayed at predefined milestones: reduced to 3x 10~° at 1.5M
steps, 1 x 107° at 1.8M steps, 3 x 1076 at 1.9M steps, and
1x 1075 at 1.95M steps. Training runs for a total of 2 million
iterations, ensuring convergence. These single-rate models
serve as strong initialization points for subsequent variable-
rate fine-tuning.

Variable-Rate Training with QP Embedding. Building
upon the single-rate models, we introduce quantization pa-
rameter (QP) embedding to enable flexible variable-bitrate
(VBR) control within a single unified network. The QP embed-
ding is injected into both the main encoder and decoder, allow-
ing dynamic adaptation to different bitrates at inference time
without retraining. To densely sample the R-D curve, we select
A based on target bitrate regimes: for low-bitrate compression
at approximately 0.075 BPP, A € (5 x 1073,1 x 10~2); for
medium-bitrate around 0.15 BPP, \ € (1 x 1073,2 x 1072);
and for high-bitrate near 0.3 BPP, A € (1 x 1072,1 x 1071).
Three models spanning distinct rate ranges are trained across
these A interval, with the QP-aware network undergoing fine-
tuning to enable continuous bitrate adaptation. Specifically,
interpolation is performed over the A interval based on the
number of QPs, such that each QP is mapped to a unique
A value. In each iteration, a randomly selected QP-\ pair is
employed to optimize the network. During inference, the target
QP is provided as input, enabling seamless switching across
bitrates.

Perceptual Quality Training. For models targeting high
perceptual quality—particularly at low bitrates—we adopt the
multi-objective loss defined in Eq. (4), which combines rate,
distortion, and perceptual metrics. Specifically, D; is the MSE
loss, D> is the negative MS-SSIM (i.e., 1 —MS-SSIM), and D5
is the LPIPS loss computed using a pre-trained VGG network.
The hyperparameters p1, p2, and p3 are set to 1.2, 0.08,
and 0.02, respectively. This weighting emphasizes pixel-level
accuracy while leveraging structural and semantic similarity
to preserve fine textures, reduce blurriness, and suppress color
artifacts. The perceptual models are trained using the same
optimization and data pipeline, with a focus on low-bitrate
regimes where visual fidelity is most challenging.
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