

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMAL ATTENTION TEMPERATURE ENHANCES IN-CONTEXT LEARNING UNDER DISTRIBUTION SHIFT

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretrained Transformers excel at in-context learning (ICL), inferring new tasks from only a handful of examples. Yet, their ICL performance can degrade sharply under distribution shift between pretraining and test data—a regime increasingly common in real-world deployments. While recent empirical work hints that adjusting the attention temperature in the softmax can enhance Transformer performance, the attention temperature’s role in ICL under distribution shift remains unexplored. This paper provides the first theoretical and empirical study of attention temperature for ICL under distribution shift. Using a simplified but expressive “linearized softmax” framework, we derive closed-form generalization error expressions and prove that shifts in input covariance or label noise substantially impair ICL, but that an optimal attention temperature exists which minimizes this error. We then validate our predictions through extensive simulations on linear regression tasks and large-scale experiments with GPT-2 and LLaMA2-7B on question-answering benchmarks. Our results establish attention temperature as a principled and powerful mechanism for improving the robustness of ICL in pretrained Transformers—advancing theoretical understanding and providing actionable guidance for selecting attention temperature in practice.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as the foundational architecture of contemporary AI systems, underpinning state-of-the-art models such as ChatGPT, Gemini, and DeepSeek. Central to their remarkable success is *in-context learning* (ICL)—the capability to adapt to novel tasks directly from prompts without any gradient-based weight updates (Brown et al., 2020). This property, often described as emergent, has catalyzed a surge of research aimed at uncovering the underlying mechanisms of ICL (Akyürek et al., 2023; Von Oswald et al., 2023) and at characterizing how factors such as task diversity and model scale shape its performance (Wei et al., 2022; Wu et al., 2024).

Yet, despite its transformative potential, ICL exhibits pronounced sensitivity to distributional shifts between pretraining and downstream tasks. Both empirical and theoretical investigations demonstrate that even mild shifts can substantially degrade performance (Zhang et al., 2024), underscoring unresolved questions about the robustness, generalization, and adaptability of pretrained Transformer models. Addressing these limitations is crucial for realizing the full promise of ICL in reliable, deployable AI systems.

At the core of the Transformer architecture is the self-attention mechanism, defined as

$$\text{Attention}(\mathbf{Z}) := \mathbf{V} \mathbf{Z} \cdot \text{softmax} \left(\frac{(\mathbf{K} \mathbf{Z})^T (\mathbf{Q} \mathbf{Z})}{\tau} \right), \quad (1)$$

where \mathbf{Z} denotes the input representation and \mathbf{Q} , \mathbf{K} , and \mathbf{V} are the query, key, and value weight matrices, respectively. The parameter $\tau > 0$, referred to as the *attention temperature*, controls the variance of the softmax outputs and hence the selectivity of attention weights. This quantity is distinct from the “sampling temperature” commonly used to adjust the output distribution of generative models such as large language models (LLMs) (Renze & Guven, 2024). Throughout this work, we exclusively focus on the attention temperature as an intrinsic component of the attention mechanism.

While the original Transformer fixes $\tau = \sqrt{d_k}$ (Vaswani et al., 2017), where d_k is the key dimension, subsequent empirical studies have demonstrated that adjusting the attention temperature can enhance performance across diverse NLP and computer vision benchmarks (Lin et al., 2018; Zhang et al., 2022; Peng et al., 2024; Lee et al., 2021; Chen et al., 2023; Zou et al., 2024). Yet, to the best of our knowledge, its role within *in-context learning* (ICL) remains unexplored. Because the attention temperature directly governs how sharply the model concentrates on specific inputs, it is poised to critically influence ICL behavior under distributional shift—a setting of central practical relevance, where mismatches between training and inference distributions are ubiquitous.

This work — In this paper, we present a unified theoretical and empirical study of the *attention temperature* in the context of in-context learning (ICL). We focus on how adjusting this parameter can systematically improve the ICL performance of pretrained Transformers under distributional shift. We address this question in the setting of linear regression tasks, which offer a well-controlled yet expressive framework for dissecting the mechanisms of ICL (Garg et al., 2022; Zhang et al., 2024). Departing from prior work restricted to linear attention, we analyze a Transformer with *linearized softmax* attention—an architecture that preserves the essential temperature-dependent behavior of standard attention while remaining mathematically tractable.

Our analysis yields a closed-form characterization of the *optimal temperature*—the value of τ that minimizes generalization error during inference. We show that this optimal temperature depends explicitly on the nature of the distribution shift and that setting it appropriately can recover or even surpass baseline ICL performance. We validate our theoretical predictions through extensive experiments on both synthetic (linear regression) and real-world (question answering with LLMs) tasks, demonstrating that temperature selection constitutes a simple yet powerful mechanism for improving robustness.

Contributions — Our work makes the following key contributions:

1. We provide, to our knowledge, the first theoretical characterization of the optimal attention temperature for pretrained Transformers with *linearized softmax attention* in ICL tasks.
2. We analyze the generalization behavior of such models under a broad spectrum of distributional shifts, employing weaker assumptions than prior studies.
3. We establish a clear theoretical and empirical link between distribution shift and attention temperature, showing that principled temperature selection can substantially enhance ICL performance across diverse tasks.

Taken together, these results offer new insights into the interplay between temperature, distribution shift, and generalization in in-context learning, and highlight a practical avenue for improving the robustness of pretrained Transformers.

2 RELATED WORK

Theory of in-context learning — Simplified Transformer variants—particularly those using linear attention—have proven useful for gaining analytical insights about ICL (Garg et al., 2022; Zhang et al., 2024; Raventós et al., 2023). Notably, Zhang et al. (2024) showed that linear Transformers approximate Bayes-optimal inference in linear regression tasks, even under distribution shift. We build on this line of research but focus explicitly on the role of the *attention temperature*. In contrast to Zhang et al. (2024), we (i) employ *linearized softmax attention* to isolate the effect of temperature, (ii) study how temperature adjustments can mitigate the impact of distribution shifts, and (iii) derive and empirically evaluate the *optimal temperature* for improving ICL performance. These advances extend prior analyses and yield a deeper theoretical and empirical understanding of how principled temperature selection enhances the robustness of Transformers under distributional shift.¹

Linear vs. softmax attention — Although linear attention has gained traction for its computational efficiency, it typically lags behind softmax-based counterparts in predictive performance, spurring efforts to narrow this gap (Choromanski et al., 2021; Qin et al., 2022). A pivotal advance in this direction is due to Han et al. (2024), who showed that a *linearized variant of softmax attention* can closely approximate the performance of standard softmax attention. Building on this insight, we adopt the *linearized softmax* formulation, which preserves the essential temperature-dependent behavior of standard attention while enabling tractable theoretical analysis. This choice provides a

¹Due to space limitations, additional related work is discussed in Appendix L.

108 principled framework for investigating how attention-temperature selection shapes ICL performance
 109 in pretrained Transformers.
 110

111 **Attention temperature** — Research on attention temperature remains limited. Veličković et al.
 112 (2025) recently proposed an adaptive temperature scheme to sharpen softmax outputs, and several
 113 empirical studies in natural language processing and computer vision (Lin et al., 2018; Zhang et al.,
 114 2022; Peng et al., 2024; Lee et al., 2021; Chen et al., 2023; Zou et al., 2024) suggest that adjusting the
 115 attention temperature can enhance Transformer performance. However, these works do not examine
 116 ICL under distributional shift. To our knowledge, no prior study has systematically analyzed how
 117 attention temperature influences ICL in such settings—a gap our work directly addresses.

118 3 SETTING

120 We describe the setup for analyzing ICL in linear regression using pretrained Transformers, covering
 121 the data model, linearized attention with reparameterization, evaluation metrics, and the Bayes-
 122 optimal benchmark.
 123

124 **Notation** — We follow standard notation from Goodfellow et al. (2016). The spectral norm of
 125 matrix M is denoted by $\|M\|$, and the trace by $\text{Tr}(M)$. Matrix entries and slices are denoted as
 126 $M_{i,j}$, $M_{:,j}$, and $M_{i,:}$.

127 3.1 PROBLEM SETUP: IN-CONTEXT LEARNING FOR LINEAR REGRESSION

128 We study the ICL abilities of pretrained Transformers on linear regression tasks. Given a sequence of
 129 tokens, i.e., input-label pairs, $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_{l-1}, y_{l-1}), (\mathbf{x}_l, ?)\}$ where each input vector
 130 $\mathbf{x}_i \in \mathbb{R}^d$ and corresponding label $y_i \in \mathbb{R}$ are independently sampled from an unknown joint
 131 distribution, the model must predict y_l using only the context $\{(\mathbf{x}_i, y_i)\}_{i=1}^{l-1}$ and the query \mathbf{x}_l , where
 132 $l-1$ is referred as the “context length”. Each (\mathbf{x}_i, y_i) pair is sampled i.i.d. from a joint distribution
 133 defined by:
 134

$$135 \quad \mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x), \quad y_i = \mathbf{w}^T \mathbf{x}_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2), \quad (2)$$

136 where the task vector $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$ is fixed within a context but varies across tasks.
 137

138 **Assumption 3.1** (Well-Behaved Data Distributions). There exist constants $c_1, c_2, c_3 > 0$ such that:

$$139 \quad \|\boldsymbol{\mu}_x\|, \|\boldsymbol{\mu}_w\| \leq c_1, \quad \lambda_{\min}(\boldsymbol{\Sigma}_x), \lambda_{\min}(\boldsymbol{\Sigma}_w) \geq c_2, \quad \lambda_{\max}(\boldsymbol{\Sigma}_x), \lambda_{\max}(\boldsymbol{\Sigma}_w) \leq c_3.$$

140 This assumption ensures that the input and task distributions have bounded means and covariances,
 141 offering greater flexibility than the more restrictive setup of Zhang et al. (2024).
 142

143 **Assumption 3.2** (High-Dimensional Regime). The context length l and input dimension d diverge
 144 jointly: $l, d \rightarrow \infty$.
 145

146 This assumption reflects realistic settings where both context length and input dimension grow si-
 147 multaneously, aligning with modern ML trends and enabling analysis of generalization in high-
 148 dimensional regimes.
 149

150 Under this set of assumptions, we define ICL for linear regression tasks as follows:
 151

152 **Definition 3.3** (In-Context Learning (ICL)). A model succeeds at ICL for linear regression if its
 153 generalization error nearly matches that of the Bayes-optimal linear model (defined in Section 3.6).
 154

155 3.2 MODELING ATTENTION WITH TRANSFORMERS

156 Following the convention established by Zhang et al. (2024), we represent the input sequence by an
 157 embedding matrix:
 158

$$159 \quad \mathbf{Z} := \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_{l-1} & \mathbf{x}_l \\ y_1 & \cdots & y_{l-1} & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times l}, \quad (3)$$

160 where the last column corresponds to the query input with no label.
 161

162 Given this embedding, the softmax self-attention output is
 163

$$164 \quad \mathbf{S} := \mathbf{Z} + \mathbf{V}\mathbf{Z} \cdot \text{softmax} \left(\frac{(\mathbf{K}\mathbf{Z})^T(\mathbf{Q}\mathbf{Z})}{\tau} \right), \quad (4)$$

166 where \mathbf{K} , \mathbf{Q} , and \mathbf{V} are the key, query, and value matrices, respectively, and τ is the temperature.
 167

168 Here, we denote the model's prediction as $S_{d+1,l}$ — the last element in the final row.
 169

170 3.3 LINEARIZED ATTENTION APPROXIMATION

171 To analytically characterize the effect of temperature on ICL, we employ a linearized approximation
 172 of softmax attention (see Appendix B for the derivation and formal definition):
 173

$$174 \quad \mathbf{E} := \mathbf{Z} + \frac{1}{l}\mathbf{V}\mathbf{Z} \left(\frac{(\mathbf{K}\mathbf{Z})^T(\mathbf{Q}\mathbf{Z})}{\tau} + \mathbf{1} - \frac{1}{l} \sum_{j=1}^l \frac{(\mathbf{K}\mathbf{Z}_{:,j})^T(\mathbf{Q}\mathbf{Z})}{\tau} \right), \quad (5)$$

177 where $\hat{y} := E_{d+1,l}$ represents the predicted label. In contrast to linear attention (Zhang et al., 2024),
 178

$$179 \quad \mathbf{Z} + \frac{1}{l}\mathbf{V}\mathbf{Z}(\mathbf{K}\mathbf{Z})^T(\mathbf{Q}\mathbf{Z}), \quad (6)$$

180 our formulation in (5) explicitly preserves normalization, which is essential for both interpretability
 181 and robustness. This difference is described in the following remark.
 182

183 *Remark 3.4* (Linear vs. linearized attention). Linearized attention maintains row-wise normalization,
 184 making it inherently more robust to shifts in input means — a critical failure mode of linear
 185 attention in ICL. Appendix C provides an illustrative comparison.
 186

187 Another key distinction between linear case and linearized softmax case is that linear (with temper-
 188 ature scaling) fails to capture the temperature behavior of softmax. However, while this may not
 189 be immediately apparent, linearized softmax closely mirrors the behavior of softmax with respect
 190 to temperature variation. A detailed explanation together with an illustrative example is provided in
 191 Appendix D.
 192

193 3.4 REPARAMETERIZATION OF LINEARIZED ATTENTION

194 To streamline analysis, we reparametrize the matrices \mathbf{V} and $\mathbf{M} := \mathbf{K}^T\mathbf{Q}$ as:
 195

$$196 \quad \mathbf{V} = \begin{bmatrix} * & * \\ \mathbf{v}_{21}^T & v_{22} \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} \mathbf{M}_{11} & * \\ \mathbf{m}_{21}^T & * \end{bmatrix}, \quad (7)$$

197 where only v_{21} , v_{22} , \mathbf{m}_{21} , and \mathbf{M}_{11} influence the prediction $\hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M})$. The remaining terms
 198 are denoted by * as they are not relevant for predicting y_l in this context. The prediction from the
 199 Transformer model (5) can thus be expressed as a function of \mathbf{M} and \mathbf{V} , i.e., $\hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}) :=$
 200 $E_{d+1,l}$. This form parallels the approach by Zhang et al. (2024), allowing for tractable theoretical
 201 analysis.
 202

203 By analyzing this reparameterization, we gain a deeper understanding of how the model parameters
 204 interact with the data to address the ICL problem effectively. This foundational insight will provide
 205 the necessary basis for discussing the pretraining of these parameters in Section 4.1.
 206

207 3.5 EVALUATING GENERALIZATION PERFORMANCE

208 We focus on evaluating the performance of our attention model by assessing its generalization error,
 209 measuring the ICL performance. For a given set of parameters (\mathbf{V}, \mathbf{M}) , the model's generalization
 210 (ICL) error is defined as:
 211

$$212 \quad \mathcal{G}(\mathbf{V}, \mathbf{M}) := \mathbb{E}_{(\mathbf{Z}, y_l) \sim \mathcal{D}^{test}} \left[(y_l - \hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}))^2 \right], \quad (8)$$

213 where \mathcal{D}^{test} denotes the distribution of the test set, which includes input-output pairs generated
 214 with tasks that the model has not encountered during training. Since the task vectors in the test set
 215 differ from those encountered during training, the model is required to infer these new vectors based
 216 solely on the provided context. Therefore, the ICL/generalization error (8) assesses the genuine ICL
 217 capabilities of the model.
 218

216 3.6 BAYES-OPTIMAL RIDGE ESTIMATOR
217218 The Bayes-optimal ridge estimator provides a principled framework for estimating the task vector
219 w given a prior distribution and a set of $l - 1$ samples. It is defined as:

220
221
$$\hat{w}_{Bayes} = \left(\frac{\bar{X}^T \bar{X}}{\sigma^2} + \Sigma_w^{-1} \right)^{-1} \left(\frac{\bar{X}^T \bar{y}}{\sigma^2} + \Sigma_w^{-1} \mu_w \right), \quad (9)$$

222

223 where \bar{X} is the centered input matrix and \bar{y} is the centered label vector. This estimator combines
224 information from observed data with prior knowledge of the distribution of w , thereby balancing
225 bias and variance. It serves as the gold standard against which we benchmark model predictions.
226 The terms involving Σ_w^{-1} introduce a regularization effect, which is particularly advantageous in
227 high-dimensional regimes.228 The derivation, provided in Appendix A, illustrates how Bayesian principles inform regression by
229 integrating data evidence with prior distributions to yield more reliable predictions. In our setting,
230 the inputs and labels are derived from the prompt matrix Z , and the Bayes-optimal linear model
231 predicts any input x as $\hat{w}_{Bayes}^T x$.
232233 4 THEORETICAL RESULTS
234235 In this section, we present our main theoretical results on the ICL under distribution shifts for the
236 Transformer with a linearized attention without MLP layers, denoted by (5). We begin by showing
237 how to pretrain the model to approximate the Bayes-optimal linear predictor, thereby grounding its
238 predictive performance. We then identify specific conditions under which the model fails to gener-
239 alize under distribution shifts at test time, revealing key limitations of the model in ICL. Following
240 this, we provide a detailed characterization of its generalization error, offering a principled frame-
241 work for analyzing performance. Finally, we investigate the role of the temperature parameter and
242 demonstrate that adjusting it appropriately can substantially improve generalization—especially in
243 cases where the model initially fails to perform effective in-context learning.244 4.1 MODEL PRETRAINING
245246 We begin our pretraining analysis by observing that the prediction generated by the Transformer (5)
247 can be reduced to the following form (see Appendix E for the derivation):

248
249
$$\hat{y}(Z; V, M) := E_{d+1, l} = \frac{1}{\tau} \hat{w}_{Att}(C_{xx}, C_{xy}, C_{yy}; M, V)^T x_l + b_{Att}(s_x, s_y; V), \quad (10)$$

250

251 where $\hat{w}_{Att}(C_{xx}, C_{xy}, C_{yy}; M, V) \in \mathbb{R}^d$ and $b_{Att}(s_x, s_y; V) \in \mathbb{R}$. s_x and s_y denote the sample
252 means of the input x and the label y , respectively, and C_{xx} and C_{xy} are the sample covariances
253 corresponding to $\text{Cov}(x)$ and $\text{Cov}(x, y)$. These statistics are computed from the prompt matrix Z .254 For pretraining, we optimize the parameters V and M using m samples of (Z, y_l) drawn from
255 the distribution \mathcal{D}^{train} , where each Z contains $l - 1$ (x, y) pairs intended for ICL. Building upon
256 prior work that connects ICL in linear regression to the Bayes-optimal ridge estimator (Zhang et al.,
257 2024; Raventós et al., 2023), we configure M and V to emulate Bayes-optimal ridge regression.
258 Specifically, we aim for $\hat{w}_{Att}(C_{xx}, C_{xy}; M, V) \approx \hat{w}_{Bayes}$ and $b_{Att}(s_x, s_y; V) \approx 0$.259 **Lemma 4.1** (Pretrained Parameters). *When the temperature parameter is set to $\tau = 1$ during pre-
260 training, the following parameter configuration approximates the Bayes-optimal estimator in (9):*

261
262
$$M_{11} = d \left(\frac{\hat{X}^T \hat{X}}{ml} + \frac{\sigma^2}{l} \Sigma_w^{-1} \right)^{-1}, \quad m_{21} = \mathbf{0}, \quad (11)$$

263
264
$$v_{21} = \frac{\sigma^2}{dl} \left(\frac{\hat{X}^T \hat{X}}{ml} \right)^{-1} \Sigma_w^{-1} \mu_w, \quad v_{22} = \frac{1}{d},$$

265
266

267 where $\hat{X} \in \mathbb{R}^{ml \times d}$ is the centered input matrix formed from ml samples of x . This configura-
268 tion aligns the our model with Bayes-optimal ridge regression. The quantities μ_w and Σ_w can be
269 estimated from the pretraining data. A detailed derivation is provided in Appendix F.

270 This lemma establishes a theoretical connection between the pretrained parameters and the Bayes-
 271 optimal estimator, reinforcing the foundation of our approach.

273 Moreover, specific instances of Lemma 4.1 recover settings explored in prior studies. For example,
 274 under the assumptions $\Sigma_x = \Sigma_w = \mathbf{I}$, $\mu_w = \mathbf{0}$, and $\sigma = 0$, Von Oswald et al. (2023) employ
 275 $\mathbf{M}_{11} = \text{Cov}(x)^{-1}$ and $\mathbf{v}_{21} = \mathbf{0}$ within a linear attention framework. Our formulation generalizes
 276 this by allowing $\mathbf{v}_{21} \neq \mathbf{0}$, which reflects our assumption that $\mu_w \neq \mathbf{0}$ —a departure from earlier
 277 works. Indeed, our analysis reveals that \mathbf{v}_{21} encodes information related to task vector bias μ_w .
 278 Additionally, our choice of \mathbf{M}_{11} explicitly accounts for label noise (σ^2), thereby enhancing the
 279 model’s adaptability and maintaining a Bayesian interpretation.

280 We conclude this section with two remarks on task diversity and parameter optimality:

281 *Remark 4.2.* A high degree of task diversity (i.e., the number of distinct tasks) is essential for en-
 282 abling effective in-context learning (Wu et al., 2024). Within our framework, task diversity directly
 283 impacts the accuracy of estimating μ_w and Σ_w during pretraining.

284 *Remark 4.3.* While the pretrained parameters specified in Lemma 4.1 are not guaranteed to be
 285 optimal in all settings, they are analytically useful for examining the effects of distribution shifts and
 286 the role of the temperature parameter in ICL. Importantly, our characterization of ICL performance
 287 and temperature optimality does not depend on these particular parameter choices.

288 Based on Lemma 4.1, we arrive at the following corollary:

289 **Corollary 4.4.** *Suppose there is no distribution shift between training and inference. Then, under
 290 the parameter configuration of Lemma 4.1, the Transformer model (5) emulates the Bayes-optimal
 291 linear model, implying that it is capable of in-context learning according to Definition 3.3.*

292 Since the pretrained model succeeds in ICL for $\mathcal{D}^{test} = \mathcal{D}^{train}$, we next investigate how distribution
 293 shifts affect its ICL performance.

295 4.2 EFFECT OF DISTRIBUTION SHIFT

296 In this section, we explore scenarios where $\mathcal{D}^{test} \neq \mathcal{D}^{train}$, indicating a shift in the input, task,
 297 or noise distribution after pretraining the model. We consider three cases: (1) a shift in the input
 298 distribution (altered mean or covariance), (2) a shift in the task distribution, and (3) a change in the
 299 noise levels.

300 To evaluate the impact of these distribution shifts on ICL performance, we assess whether adjust-
 301 ments to \mathbf{M} and/or \mathbf{V} are necessary to match the Bayes-optimal linear model under the new distri-
 302 bution. If so, the model is considered sensitive to the shift. Otherwise, it is deemed robust.

304 **Case I: Shift in input distribution** — Recall that inputs are drawn as $\mathbf{x}_i \sim \mathcal{N}(\mu_x, \Sigma_x)$, as
 305 defined in (2). Let $\mu_x^{train}, \Sigma_x^{train}$ and $\mu_x^{test}, \Sigma_x^{test}$ denote the input means and covariances for
 306 pretraining and testing, respectively. We consider two subcases:

- 307 (i) Mean shift ($\mu_x^{train} \neq \mu_x^{test}$): Centering renders the linearized model invariant to mean shifts,
 308 but the uncentered linear attention model remains sensitive, as noted in Remark 3.4.
- 309 (ii) Covariance shift ($\Sigma_x^{train} \neq \Sigma_x^{test}$): Since \mathbf{M}_{11} is fitted to the pretraining covariance, a mismatch
 310 drives the estimator away from Bayes-optimality, echoing prior results on linear attention (Zhang
 311 et al., 2024).

312 **Case II: Shift in Task Distribution** — The task vectors follow $\mathbf{w} \sim \mathcal{N}(\mu_w, \Sigma_w)$. Let
 313 $\mu_w^{train}, \Sigma_w^{train}$ and $\mu_w^{test}, \Sigma_w^{test}$ be the mean and covariance of the task distribution during pre-
 314 training and testing, respectively. The Transformer model can incorporate μ_w^{train} and Σ_w^{train} via the
 315 pretrained parameters \mathbf{M}_{11} and \mathbf{v}_{21} (see Lemma 4.1). However, as the context length l increases,
 316 the model’s dependence on the task distribution diminishes. Thus, shifts in the task distribution
 317 primarily affect ICL performance for small l .

318 **Case III: Shift in noise distribution** — Finally, consider a change in the noise distribution: $\epsilon_i \sim
 319 \mathcal{N}(0, \sigma^2)$, with σ_{train}^2 and σ_{test}^2 denoting pretraining and testing noise variances. If $\sigma_{train}^2 \neq \sigma_{test}^2$,
 320 the parameters \mathbf{M}_{11} and \mathbf{v}_{21} become suboptimal relative to the Bayes-optimal linear model. How-
 321 ever, as with the task distribution, the impact of noise shift diminishes as $l \rightarrow \infty$.

323 **Summary** — The Transformer model is robust to shifts in input mean but sensitive to input co-
 324 variance changes. Shifts in task or noise distribution reduce ICL performance at small l , though

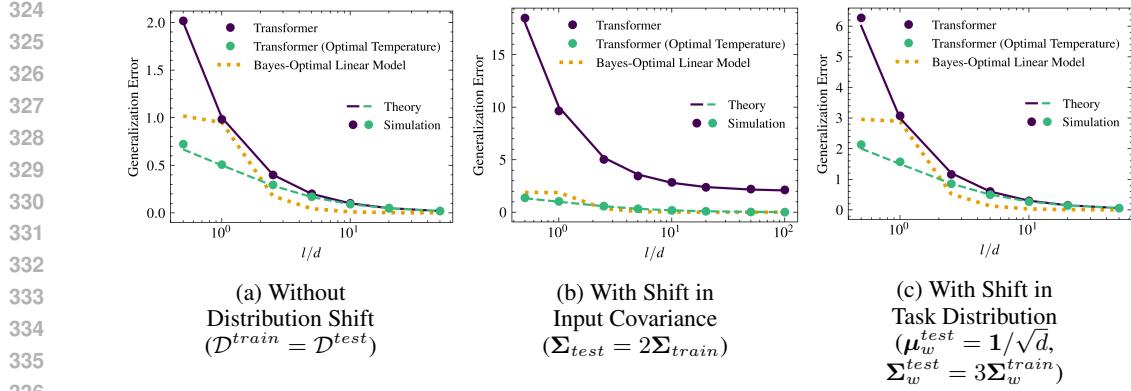


Figure 1: Experiments with Transformer (5) on ICL under distribution shifts. Parameters are set using (11) while the optimal temperature is calculated by Theorem 4.7. Here, $d = 50$, $m = 5000$ (with a new task per sample), $\sigma = 0.1$, $\mu_x^{train} = \mu_w^{train} = \mathbf{0}$, and $\Sigma_x^{train} = \Sigma_w^{train} = \mathbf{I}$.

increasing l mitigates these effects. In Section 4.4, we explore optimal temperature selection as a way to enhance robustness. Before that, we analyze the generalization error of the model in the next section.

4.3 IN-CONTEXT LEARNING PERFORMANCE

We analyze the in-context learning (ICL) performance of the Transformer model (5) by evaluating the generalization error defined in (8). To establish a general setting for the subsequent results, we impose the following assumption on the pretrained parameters:

Assumption 4.5. There exists a constant $c > 0$ such that

$$\|\mathbf{M}_{11}\| \leq cd, \quad \|\mathbf{m}_{21}\| = 0, \quad \|\mathbf{v}_{21}\| \leq \frac{c}{dl}, \quad |v_{22}| \leq \frac{c}{d}.$$

Note that the pretrained parameters obtained in Lemma 4.1 satisfy Assumption 4.5 with high probability under Assumptions 3.1–3.2. However, the generalization error result stated below holds for any parameters \mathbf{M}, \mathbf{V} that satisfy Assumption 4.5.

Theorem 4.6 (Generalization error for ICL). *Suppose Assumptions 3.1–3.2 and 4.5 hold. At test time, assume the input, task, and noise distributions are given by $\mathcal{N}(\mu_x, \Sigma_x)$, $\mathcal{N}(\mu_w, \Sigma_w)$, and $\mathcal{N}(0, \sigma^2)$, respectively. Define*

$$\mathbf{A} := \Sigma_x + \mu_x \mu_x^T, \quad \mathbf{B} := \Sigma_w + \mu_w \mu_w^T.$$

Then, the generalization error is

$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \frac{1}{\tau^2} \text{Tr}(\mathbf{A} \mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11}) - \frac{1}{\tau} \text{Tr}(\mathbf{A} (\mathbf{F}_2 \mathbf{M}_{11} + \mathbf{M}_{11}^T \mathbf{F}_2^T)) + \text{Tr}(\mathbf{AB}) + \sigma^2, \quad (12)$$

where

$$\mathbf{F}_1 := \left(\Sigma_x \hat{\mathbf{B}} + \frac{1}{l} (v_{22}^2 \sigma^2 + \text{Tr}(\hat{\mathbf{B}} \Sigma_x)) \mathbf{I} \right) \Sigma_x, \quad \mathbf{F}_2 := (\mu_w \mathbf{v}_{21}^T + v_{22} \mathbf{B}) \Sigma_x, \quad (13)$$

$$\hat{\mathbf{B}} := v_{22} \mu_w \mathbf{v}_{21}^T + v_{22} \mathbf{v}_{21} \mu_w^T + v_{22}^2 \mathbf{B}. \quad (14)$$

Proof. The generalization error is derived using Isserlis' theorem (Isserlis, 1918) to compute higher-order moments. See Appendix G for the full derivation. \square

Theorem 4.6 illustrates how the parameters \mathbf{M} , \mathbf{V} , and the test-time data distribution affect the generalization error. Notably, the temperature parameter τ plays a critical role.

Although temperature can be implicitly encoded in \mathbf{M} during pretraining, it becomes especially important under distribution shifts that the model is not equipped to handle. In such cases, one can optimize generalization performance by choosing the temperature τ_{optimal} that minimizes the generalization error, as discussed next.

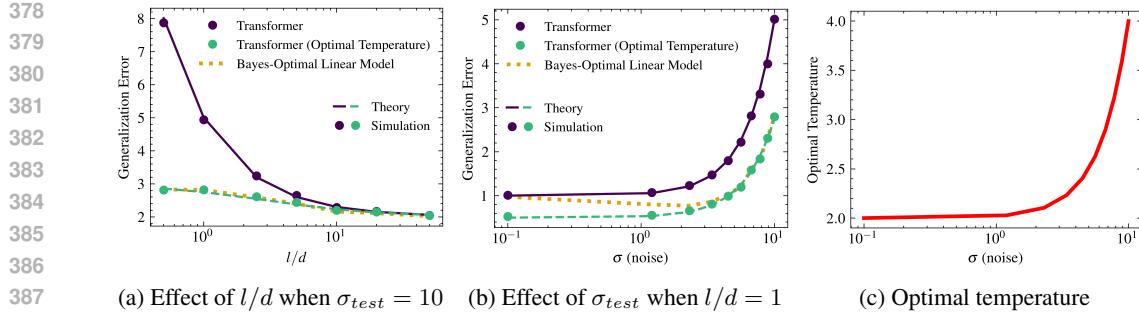


Figure 2: Effect of noise shift on Transformer (5). The pretraining noise is $\sigma_{train} = 0.1$, while σ_{test} varies across plots. The optimal temperature is set by Theorem 4.7. This setting matches Figure 1a, except for changes in test-time noise σ_{test} .

4.4 OPTIMAL ATTENTION TEMPERATURE IMPROVES PERFORMANCE

To address distribution shifts, we define the optimal attention temperature as follows:

Theorem 4.7 (Optimal attention temperature). *Suppose Assumptions 3.1, 3.2, and 4.5 hold. To minimize the generalization error, the optimal attention temperature for inference is given by*

$$\tau_{optimal} = \frac{2\text{Tr}(\mathbf{A}\mathbf{M}_{11}^T\mathbf{F}_1\mathbf{M}_{11})}{\text{Tr}(\mathbf{A}(\mathbf{F}_2\mathbf{M}_{11} + \mathbf{M}_{11}^T\mathbf{F}_2^T))}, \quad (15)$$

provided that $\text{Tr}(\mathbf{A}(\mathbf{F}_2\mathbf{M}_{11} + \mathbf{M}_{11}^T\mathbf{F}_2^T)) > 0$ and $\text{Tr}(\mathbf{A}\mathbf{M}_{11}^T\mathbf{F}_1\mathbf{M}_{11}) > 0$.

Proof. We minimize the generalization error from Theorem 4.6 with respect to τ (Appendix I). \square

Consider the optimal temperature $\tau_{optimal}$ from Theorem 4.7. When $\tau_{optimal} \neq 1$, using an unadjusted temperature leads to suboptimal generalization error. Thus, incorporating the optimal temperature improves generalization in in-context learning under distribution shift.

A natural question is whether the optimal temperature can completely mitigate the adverse effects of distribution shifts. This depends on both the pretraining and test distributions. In some settings, the adjustment can entirely compensate for the shift. For example, if the task distribution is fixed as $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the noise variance is $\sigma = 0$, and the input distribution changes from $\mathbf{x}_{train} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ to $\mathbf{x}_{test} \sim \mathcal{N}(\mathbf{0}, c\mathbf{I})$, then the optimal temperature $\tau_{optimal} = c$ fully counteracts the shift. In more complex scenarios, it may only partially mitigate the impact, yet still yields improved ICL. See Appendix M for an extended discussion of the closed-form optimal temperature (15).

5 EXPERIMENTAL RESULTS

In this section, we empirically validate our theory and show that optimal attention temperature consistently enhances generalization. We begin with controlled linear regression experiments using (i) the simplified Transformer model with linearized attention (5) and (ii) GPT-2 (Radford et al., 2019), which combines multi-head softmax attention with MLP layers². These experiments confirm that our theoretical insights transfer from simplified to expressive architectures. Finally, we evaluate Llama2-7B (Touvron et al., 2023) on SCIQ in-context learning tasks (Welbl et al., 2017), demonstrating that temperature selection is a principled and effective lever for improving robustness in large language models.

5.1 EXPERIMENTS ON LINEAR REGRESSION TASKS

We consider a Transformer architecture with linearized attention and no MLP layers, as analyzed in our theoretical development. Figures 1 and 2 illustrate its behavior on linear regression tasks (2). Theoretical predictions closely match empirical performance across a range of conditions, confirming the robustness of our analysis. In Figure 1, we compare the ICL performance of the model with and without applying the optimal temperature. As context length l increases (Figure 1a), the model’s

²GPT-2 results are in Appendix K.

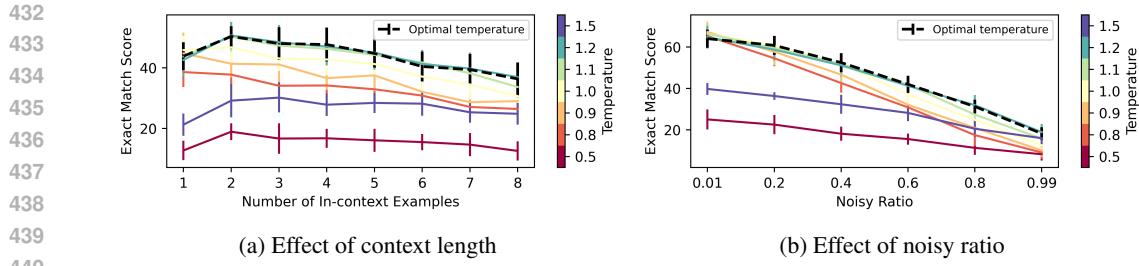


Figure 3: Effect of attention temperature on the ICL performance of LLaMA-2-7B (Touvron et al., 2023) on the SCIQ dataset (Welbl et al., 2017). Distribution shift is induced by injecting noisy yet “relevant” labels into in-context demonstrations following Gao et al. (2024). Panel (a) fixes the noisy ratio at 0.6; panel (b) fixes the number of in-context examples at 6. Results (averaged over 12 Monte Carlo runs) include error bars showing one standard deviation. Attention temperature of all the layers is set to $\tau\sqrt{d_k}$ for dimension independence, where d_k denotes the key dimension of the corresponding layer. Furthermore, the dashed black line marks the “optimal temperature” computed from the variance-to-mean ratio of pre-softmax scores, which is an insight derived from Theorem 4.7, as explained in Appendix J. Full experimental details appear in Appendix K.

predictions converge to those of the Bayes-optimal linear model, validating its ICL capability. Figure 1b shows that under an input covariance shift, model performance degrades—but applying the optimal temperature restores alignment with the Bayes-optimal solution. Additionally, Figure 1c shows that the influence of task distribution shift decreases as l increases.

We further evaluate robustness to label noise in Figure 2. In Figure 2a, we observe that noise effects diminish as the context length increases, consistent with our theoretical predictions. However, at small l , temperature adjustment becomes critical. In Figure 2b (for $l = d$), the Transformer increasingly diverges from the Bayes-optimal model as noise grows, yet optimal temperature correction closes this gap. Figure 2c shows that the optimal temperature increases with noise level, indicating a principled relationship between noise and temperature under limited context.

5.2 EXPERIMENTS WITH LLMs FOR IN-CONTEXT QUESTION ANSWERING TASKS

To assess the practical relevance of our theoretical framework, we investigate how attention temperature impacts the ICL behavior of LLMs. Since the optimal temperature in Theorem 4.7 is not directly applicable here due to setting differences, we derive insights regarding temperature choice in other settings based on the optimal temperature in Theorem 4.7. Specifically, the insight is that the temperature choice should be proportional to the ratio of the variance of pre-softmax scores to the mean of those, which is described in Appendix J in detail.

Following Gao et al. (2024), we generate SCIQ-based (Welbl et al., 2017) ICL tasks that introduce distribution shift via noisy labels, with prompt examples and label construction detailed in Appendix K. We evaluate Llama2-7B (Touvron et al., 2023) using exact-match score.

Figure 3 shows the results. **In (a) and (b), optimal attention temperature enhances the ICL performance for various context lengths and noisy ratios (analogous to Figures 2a and 2b).** Furthermore, in (b), higher noise ratios push the optimal temperature upward, matching our theoretical prediction (cf. Figure 2c). Together, these experiments demonstrate that the optimal temperature is not only theoretically motivated but also an effective tool for improving ICL robustness in real-world LLMs.

6 CONCLUSION

This work provides a unified theoretical and empirical account of how attention temperature governs the in-context learning (ICL) performance of pretrained Transformers under distribution shift. Using a simplified yet expressive framework based on *linearized softmax attention*, we analytically show how shifts in input covariance and label noise degrade ICL and derive an *optimal temperature* that provably minimizes generalization error. Extensive experiments on synthetic regression tasks, GPT-2, and LLaMA-2 validate our predictions, demonstrating that temperature selection is not a mere heuristic but a principled mechanism for improving robustness. Taken together, our results advance the theoretical understanding of Transformer behavior under distribution shift and establish attention temperature as a powerful, practical lever for building more adaptive and generalizable foundation models.

486 ETHICS STATEMENT
487488 Our research, as presented in the paper, conforms with the Code of Ethics. As the work is mostly of
489 a theoretical nature, it does not involve any component that can be subject to ethical concerns.
490491 REPRODUCIBILITY STATEMENT
492493 All results and settings are explained in detail to streamline reproducibility. Derivations of the theo-
494 retical results can be found in the appendix. The settings used to generate the figures are explained in
495 Section 3, in the corresponding captions, and in the appendix. Finally, the code for the experimental
496 results will be released with the camera-ready version of this work.
497498 THE USE OF LARGE LANGUAGE MODELS (LLMs)
499500 During the writing of the paper, we utilize LLMs in order to sharpen the presentation language. In
501 doing so, we provide a sentence or a paragraph that we wrote before, instruct an LLM model to
502 rewrite it in a better tone, and use the produced sentence/paragraph whenever it clearly describes
503 what we aim to describe. This approach has been repeatedly applied to multiple parts of the paper
504 to refine the writing. Overall, we take full responsibility for the contents written.
505506 REFERENCES
507508 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
509 preconditioned gradient descent for in-context learning. In *Thirty-seventh Conference on Neural*
510 *Information Processing Systems*, 2023.511 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
512 algorithm is in-context learning? investigations with linear models. In *The Eleventh International*
513 *Conference on Learning Representations*, 2023.515 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
516 Provable in-context learning with in-context algorithm selection. In *Thirty-seventh Conference*
517 *on Neural Information Processing Systems*, 2023.518 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
519 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
520 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
521522 Xiangyu Chen, Qinghao Hu, Kaidong Li, Cuncong Zhong, and Guanghui Wang. Accumulated
523 trivial attention matters in vision transformers on small datasets. In *Proceedings of the IEEE/CVF*
524 *winter conference on applications of computer vision*, pp. 3984–3992, 2023.525 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
526 Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
527 David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
528 formers. In *International Conference on Learning Representations*, 2021.529 Deqing Fu, Tianqi CHEN, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimiza-
530 tion methods for in-context learning: A study with linear models, 2024.532 Hongfu Gao, Feipeng Zhang, Wenyu Jiang, Jun Shu, Feng Zheng, and Hongxin Wei. On the noise
533 robustness of in-context learning for text generation. In *The Thirty-eighth Annual Conference on*
534 *Neural Information Processing Systems*, 2024.535 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
536 in-context? a case study of simple function classes. *Advances in Neural Information Processing*
537 *Systems*, 35:30583–30598, 2022.538 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. <http://www.deeplearningbook.org>.

540 Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and
 541 Gao Huang. Bridging the divide: Reconsidering softmax and linear attention. In *The Thirty-eighth*
 542 *Annual Conference on Neural Information Processing Systems*, 2024.

543 L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
 544 distribution in any number of variables. *Biometrika*, 12(1/2):134–139, 1918. ISSN 00063444,
 545 14643510.

546 Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
 547 datasets. *arXiv preprint arXiv:2112.13492*, 2021.

548 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
 549 as algorithms: Generalization and stability in in-context learning. In *International Conference on*
 550 *Machine Learning*, pp. 19565–19594. PMLR, 2023.

551 Yingcong Li, Ankit Singh Rawat, and Samet Oymak. Fine-grained analysis of in-context linear
 552 estimation: Data, architecture, and beyond. In *The Thirty-eighth Annual Conference on Neural*
 553 *Information Processing Systems*, 2024.

554 Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li, and Qi Su. Learning when to concentrate or divert
 555 attention: Self-adaptive attention temperature for neural machine translation. In *Proceedings of*
 556 *the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2985–2990,
 557 2018.

558 Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
 559 What makes good in-context examples for gpt-3? In *Proceedings of Deep Learning Inside Out*
 560 (*DeeLIO 2022*): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
 561 Architectures, pp. 100–114, 2022.

562 Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
 563 ably the optimal in-context learner with one layer of linear self-attention. In *The Twelfth Interna-
 564 tional Conference on Learning Representations*, 2024.

565 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 566 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 567 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 568 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 569 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 570 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

571 Core Francisco Park, Ekdeep Singh Lubana, Itamar Pres, and Hidenori Tanaka. Competition dy-
 572 namics shape algorithmic phases of in-context learning. *arXiv preprint arXiv:2412.01003*, 2024.

573 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
 574 dow extension of large language models. In *The Twelfth International Conference on Learning*
 575 *Representations*, 2024.

576 Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
 577 Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In *International Conference*
 578 *on Learning Representations*, 2022.

579 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 580 models are unsupervised multitask learners. *OpenAI*, 2019.

581 Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
 582 emergence of non-bayesian in-context learning for regression. *Advances in Neural Information*
 583 *Processing Systems*, 2023.

584 Matthew Renze and Erhan Guven. The effect of sampling temperature on problem solving in large
 585 language models. In *Findings of the association for computational linguistics: EMNLP*, 2024.

586 Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
 587 models a mirage? In *Thirty-seventh Conference on Neural Information Processing Systems*,
 588 2023.

594 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 595 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 596 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

597

598 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 599 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 600 tion processing systems*, 2017.

601 Petar Veličković, Christos Perivolaropoulos, Federico Barbero, and Razvan Pascanu. Softmax is not
 602 enough (for sharp size generalisation). *International Conference on Machine Learning*, 2025.

603

604 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvint-
 605 sev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient de-
 606 scent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
 607 and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learn-
 608 ing*, volume 202 of *Proceedings of Machine Learning Research*, pp. 35151–35174. PMLR, 23–29
 609 Jul 2023.

610 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 611 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
 612 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
 613 *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856.

614 Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
 615 In *Proceedings of the 3rd Workshop on Noisy User-generated Text*, pp. 94–106, 2017.

616

617 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
 618 Moi, Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
 619 Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
 620 vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-
 621 the-art natural language processing. In Qun Liu and David Schlangen (eds.), *Proceedings of
 622 the 2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
 623 strations*, pp. 38–45, Online, October 2020. Association for Computational Linguistics. doi:
 624 10.18653/v1/2020.emnlp-demos.6.

625 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
 626 How many pretraining tasks are needed for in-context learning of linear regression? In *The
 627 Twelfth International Conference on Learning Representations*, 2024.

628 Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiagtao Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu.
 629 Openicl: An open-source framework for in-context learning. *arXiv preprint arXiv:2303.02913*,
 630 2023.

631 Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
 632 context. *Journal of Machine Learning Research*, 25(49):1–55, 2024.

633

634 Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and Furu Wei. Attention temperature matters in
 635 abstractive summarization distillation. In *Proceedings of the 60th Annual Meeting of the Associa-
 636 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 127–141, 2022.

637 Yixiong Zou, Ran Ma, Yuhua Li, and Ruixuan Li. Attention temperature matters in vit-based cross-
 638 domain few-shot learning. In *Neural Information Processing Systems*, 2024.

639

640

641

642

643

644

645

646

647

648 A DERIVATION OF BAYES-OPTIMAL RIDGE ESTIMATOR FOR \mathbf{w}
649650 We derive the Bayes-optimal ridge estimator for \mathbf{w} given a set of context samples. We place a
651 Gaussian prior on \mathbf{w} , assumed to be a random vector $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ with prior mean $\boldsymbol{\mu}_0$ and
652 covariance $\boldsymbol{\Sigma}_0$. Let the observed (centered) inputs and labels be

653
$$\bar{\mathbf{X}} = [\bar{x}_1, \dots, \bar{x}_{l-1}]^T, \quad \bar{\mathbf{y}} = [\bar{y}_1, \dots, \bar{y}_{l-1}]^T,$$

654

655 and assume i.i.d. Gaussian noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. The likelihood of $\bar{\mathbf{y}}$ given \mathbf{w} is
656

657
$$p(\bar{\mathbf{y}} | \bar{\mathbf{X}}, \mathbf{w}) = \prod_{i=1}^{l-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\bar{y}_i - \mathbf{w}^T \bar{\mathbf{x}}_i)^2}{2\sigma^2}\right] \quad (16)$$

658

659
$$\propto \exp\left[-\frac{1}{2\sigma^2}(\bar{\mathbf{y}} - \bar{\mathbf{X}}\mathbf{w})^T(\bar{\mathbf{y}} - \bar{\mathbf{X}}\mathbf{w})\right], \quad (17)$$

660

661 where \propto denotes proportionality.
662663 By Bayes' rule, the posterior of \mathbf{w} is proportional to the product of likelihood and prior:
664

665
$$p(\mathbf{w} | \bar{\mathbf{y}}, \bar{\mathbf{X}}) \propto p(\bar{\mathbf{y}} | \bar{\mathbf{X}}, \mathbf{w}) p(\mathbf{w}). \quad (18)$$

666

667 Substituting the Gaussian prior yields
668

669
$$p(\mathbf{w} | \bar{\mathbf{y}}, \bar{\mathbf{X}}) \propto \exp\left[-\frac{1}{2\sigma^2}(\bar{\mathbf{y}} - \bar{\mathbf{X}}\mathbf{w})^T(\bar{\mathbf{y}} - \bar{\mathbf{X}}\mathbf{w})\right] \exp\left[-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}_0^{-1}(\mathbf{w} - \boldsymbol{\mu}_0)\right]. \quad (19)$$

670

671 To determine the form of the posterior distribution, we complete the square in the exponent by
672 collecting all terms involving \mathbf{w} . Expanding the exponent in the joint expression from above, we
673 obtain:
674

675
$$-\frac{1}{2\sigma^2}(\bar{\mathbf{y}}^T \bar{\mathbf{y}} - 2\bar{\mathbf{y}}^T \bar{\mathbf{X}}\mathbf{w} + \mathbf{w}^T \bar{\mathbf{X}}^T \bar{\mathbf{X}}\mathbf{w}) - \frac{1}{2}(\mathbf{w}^T \boldsymbol{\Sigma}_0^{-1}\mathbf{w} - 2\boldsymbol{\mu}_0^T \boldsymbol{\Sigma}_0^{-1}\mathbf{w} + \boldsymbol{\mu}_0^T \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0). \quad (20)$$

676

677 Grouping the quadratic and linear terms in \mathbf{w} , we arrive at:
678

679
$$-\frac{1}{2}\mathbf{w}^T \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\right) \mathbf{w} + \mathbf{w}^T \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0\right) + \text{terms independent of } \mathbf{w}. \quad (21)$$

680

681 Defining the posterior precision and linear coefficient terms as $\boldsymbol{\Sigma}_l^{-1} = \frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}$ and $b_l =$
682 $\frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0$, the exponent can be rewritten as
683

684
$$-\frac{1}{2}\mathbf{w}^T \boldsymbol{\Sigma}_l^{-1}\mathbf{w} + \mathbf{w}^T b_l = -\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu}_l)^T \boldsymbol{\Sigma}_l^{-1}(\mathbf{w} - \boldsymbol{\mu}_l) + \text{const}, \quad (22)$$

685

686 where $\boldsymbol{\mu}_l = \boldsymbol{\Sigma}_l b_l$ denotes the posterior mean. Expanding this expression gives:
687

688
$$\boldsymbol{\mu}_l = \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\right)^{-1} \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0\right). \quad (23)$$

689

690 Hence, the posterior distribution of \mathbf{w} given the observed data is Gaussian:
691

692
$$\mathbf{w} | \bar{\mathbf{y}}, \bar{\mathbf{X}} \sim \mathcal{N}(\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l), \quad (24)$$

693

694 where $\boldsymbol{\mu}_l$ is the posterior mean and $\boldsymbol{\Sigma}_l$ is the posterior covariance matrix.
695696 Under squared-error loss, the Bayes-optimal estimator coincides with the posterior mean, yielding
697 the Bayes-optimal ridge estimator:
698

699
$$\hat{\mathbf{w}}_{\text{Ridge}} = \mathbb{E}[\mathbf{w} | \bar{\mathbf{y}}, \bar{\mathbf{X}}] = \boldsymbol{\mu}_l = \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\right)^{-1} \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{\sigma^2} + \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0\right). \quad (25)$$

700

701 This expression provides the Bayes-optimal ridge estimate of \mathbf{w} under a Gaussian prior and additive
702 Gaussian noise—minimizing expected squared error with respect to the posterior.
703

702 B DERIVATION OF LINEARIZED SOFTMAX
703704 The function $\text{softmax} : \mathbb{R}^l \rightarrow \mathbb{R}^l$ is defined component-wise as
705

706
$$\text{softmax}(\mathbf{z})_i := \frac{e^{z_i}}{\sum_{j=1}^l e^{z_j}} \quad \forall i \in \{1, \dots, l\}. \quad (26)$$

707

708 To obtain a linear approximation, we expand around the origin $\mathbf{z} = \mathbf{0}$ using a first-order Taylor
709 series:
710

711
$$\text{softmax}(\mathbf{z}) \approx \text{softmax}(\mathbf{0}) + J_{\text{softmax}}(\mathbf{0})\mathbf{z}, \quad (27)$$

712

713 where $J_{\text{softmax}}(\mathbf{0})$ is the Jacobian matrix of the softmax function evaluated at $\mathbf{z} = \mathbf{0}$.
714715 We first compute the zeroth-order term:
716

717
$$\text{softmax}(\mathbf{0}) = \frac{e^0}{\sum_{j=1}^l e^0} \mathbf{1} = \frac{1}{l} \mathbf{1}. \quad (28)$$

718

719 Next, we evaluate the Jacobian entries at $\mathbf{z} = \mathbf{0}$:
720

721
$$J_{\text{softmax}}(\mathbf{0})_{ii} = \text{softmax}(\mathbf{0})_i (1 - \text{softmax}(\mathbf{0})_i) = \frac{l-1}{l^2}, \quad \forall i, \quad (29)$$

722

723
$$J_{\text{softmax}}(\mathbf{0})_{ij} = -\text{softmax}(\mathbf{0})_i \cdot \text{softmax}(\mathbf{0})_j = -\frac{1}{l^2}, \quad \forall i \neq j. \quad (30)$$

724

725 This yields the compact matrix form:
726

727
$$J_{\text{softmax}}(\mathbf{0}) = \frac{1}{l} \mathbf{I} - \frac{1}{l^2} \mathbf{1} \mathbf{1}^T. \quad (31)$$

728

729 Substituting back, we obtain the linearized softmax:
730

731
$$\text{softmax}(\mathbf{z}) \approx \frac{1}{l} \mathbf{1} + \left(\frac{1}{l} \mathbf{I} - \frac{1}{l^2} \mathbf{1} \mathbf{1}^T \right) \mathbf{z}, \quad (32)$$

732

733
$$= \left(\frac{1}{l} - \frac{1}{l^2} \sum_{j=1}^l z_j \right) \mathbf{1} + \frac{1}{l} \mathbf{z}, \quad (33)$$

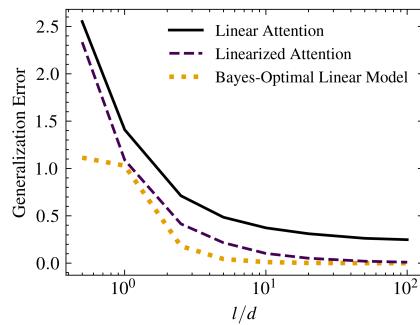
734

735
$$=: \text{linearized_softmax}(\mathbf{z}). \quad (34)$$

736

737 This derivation yields the linearized attention formulation in (5). From a practical standpoint, linearized
738 attention mechanisms have been empirically evaluated and shown to achieve performance
739 comparable to standard softmax attention (Han et al., 2024).
740741 C LINEAR VS. LINEARIZED ATTENTION FOR IN-CONTEXT LEARNING
742743 Here, we highlight the distinction between linear attention and linearized attention in the context of
744 the linear regression problem defined in (2). Analytically, the key difference lies in the fact that the
745 linearized attention model operates on centered input data, whereas the linear attention model uses
746 raw data without centering. Apart from this centering step, both mechanisms are equivalent, except
747 that linearized attention includes an additional bias term (b_{Att} in (10)). However, this bias term is
748 inconsequential in our linear regression setting and does not affect the predictive outcome.
749750 Thus, the data-centering operation is the principal differentiator in our analysis. Specifically, linear
751 attention’s omission of centering makes it sensitive to shifts in the input mean, whereas linearized
752 attention remains robust under such transformations. We illustrate this phenomenon in Figure 4,
753 where we simulate a shift in the input mean at test time. The results demonstrate that linear attention
754 fails to recover Bayes-optimal performance under mean shift, indicating its limitations for in-context
755 learning in this setting. In contrast, linearized attention successfully compensates for the mean shift
756 and achieves Bayes-optimal performance as the number of context points l increases.
757758 Therefore, in the presence of possible distributional shifts—particularly in the input
759 mean—linearized attention offers a more robust and theoretically grounded alternative to linear
760 attention for in-context learning.
761

756
757
758
759
760
761
762
763
764
765
766



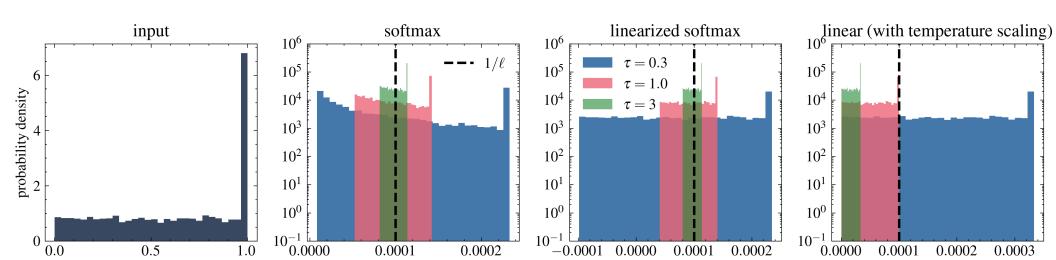
767
768
769
770
771
772
773
774 Figure 4: Comparison of linear and linearized attention under a shift in input mean. The plot il-
775 lustrates the impact of a test-time shift in input mean on the performance of linear attention and
776 linearized attention. While linear attention degrades under the distribution shift and fails to recover
777 the Bayes-optimal performance, linearized attention remains robust and asymptotically matches the
778 Bayes-optimal predictor as the number of context length l increases.

D TEMPERATURE EFFECTS FOR SOFTMAX AND LINEARIZED SOFTMAX

777 The temperature parameter in softmax directly controls the variance of the output distribution. At
778 higher temperatures, the variance across components decreases, and in the limit $\tau \rightarrow \infty$, all elements
779 converge to $1/l$ with zero variance. Conversely, lower temperatures increase variance, and as $\tau \rightarrow 0^+$,
780 the output approaches a one-hot vector, achieving maximal variance.

781 In the linearized case, temperature similarly acts as an inverse scaling of the variance of the output
782 components, capturing the limit $\tau \rightarrow \infty$ (all elements equal to $1/l$). For $\tau \rightarrow 0^+$, linearized
783 softmax also reflects the maximal variance, but it does not produce a true one-hot distribution. Thus,
784 linearized softmax closely mirrors the temperature behavior of softmax, except in the degenerate
785 limit $\tau \rightarrow 0^+$, which is not of practical relevance in this work.

786 To further illustrate these effects, Figure 5 compares softmax and linearized softmax across different
787 temperatures. The figure demonstrates that linearized softmax faithfully captures the variance effect
788 of temperature: the variance of the output components is inversely proportional to τ . Moreover, as
789 $\tau \rightarrow \infty$, both softmax and linearized softmax concentrate around $1/l$, whereas linear attention with
790 temperature scaling does not. Overall, the output distributions of softmax and linearized softmax
791 are highly similar, except at very small values of τ , where linearized softmax may yield negative
792 components while softmax tends toward sparsity with many zeros. By contrast, linear attention with
793 temperature scaling produces qualitatively different distributions. This comparison highlights the
794 advantage of linearized softmax as a faithful surrogate for analyzing temperature effects relevant to
795 softmax.



805
806
807
808
809 Figure 5: Comparison of temperature effects of softmax, linearized softmax, and linear (with
805 temperature scaling) cases. We consider an input vector $x \in \mathbb{R}^l$ whose histogram is illustrated
806 on the left-most plot. Rest of the plots illustrates histograms of the elements of $\text{softmax}(x/\tau)$,
807 $\text{linearized_softmax}(x/\tau)$ defined in (34) and $x/(l\tau)$ from left to right, respectively.

810 E EXPANDED FORM OF LINEARIZED ATTENTION
811812 Using block matrix notation, the prediction from the linearized attention model can be expanded as:
813

814
$$\hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}) = A_{d+1,l}, \quad (35)$$

815
$$= \frac{1}{l} \mathbf{V}_{d+1,:} \mathbf{Z} \left(\frac{(\mathbf{KZ})^T (\mathbf{QZ}_{:,l})}{\tau} - \frac{1}{l} \sum_{j=1}^l \frac{(\mathbf{KZ}_{:,j})^T (\mathbf{QZ}_{:,l})}{\tau} + \mathbf{1} \right), \quad (36)$$

816
$$= \frac{1}{l} [\mathbf{v}_{21}^T \ v_{22}] \mathbf{Z} \left(\frac{\mathbf{Z}^T \mathbf{M} \mathbf{Z}_{:,l}}{\tau} - \frac{1}{l} \sum_{j=1}^l \frac{(\mathbf{Z}_{:,j})^T \mathbf{M} \mathbf{Z}_{:,l}}{\tau} + \mathbf{1} \right), \quad (37)$$

817
$$= \frac{1}{l} [\mathbf{v}_{21}^T \ v_{22}] [\mathbf{X} \ \mathbf{y}]^T \left(\frac{[\mathbf{X} \ \mathbf{y}] \mathbf{M} [\mathbf{x}_l^T \ 0]^T}{\tau} - \frac{1}{l} \sum_{j=1}^l \frac{[\mathbf{x}_i^T \ y_i] \mathbf{M} [\mathbf{x}_l^T \ 0]^T}{\tau} + \mathbf{1} \right), \quad (38)$$

818
$$= \frac{1}{l} [\mathbf{v}_{21}^T \ v_{22}] [\mathbf{X} \ \mathbf{y}]^T \left(\frac{1}{\tau} [\mathbf{X} - \mathbf{1} \mathbf{s}_x^T \ \mathbf{y} - s_y \mathbf{1}] \begin{bmatrix} \mathbf{M}_{11} & * \\ \mathbf{m}_{21}^T & * \end{bmatrix} [\mathbf{x}_l^T \ 0]^T + \mathbf{1} \right), \quad (39)$$

819
$$= \frac{1}{l} [\mathbf{v}_{21}^T \ v_{22}] [\mathbf{X} \ \mathbf{y}]^T \left(\frac{1}{\tau} (\mathbf{X} - \mathbf{1} \mathbf{s}_x^T) \mathbf{M}_{11} \mathbf{x}_l + \frac{1}{\tau} (\mathbf{y} - s_y \mathbf{1}) \mathbf{m}_{21}^T \mathbf{x}_l + \mathbf{1} \right), \quad (40)$$

820
$$= \frac{1}{l} (\mathbf{v}_{21}^T \mathbf{X}^T + v_{22} \mathbf{y}^T) \left(\frac{1}{\tau} (\mathbf{X} - \mathbf{1} \mathbf{s}_x^T) \mathbf{M}_{11} \mathbf{x}_l + \frac{1}{\tau} (\mathbf{y} - s_y \mathbf{1}) \mathbf{m}_{21}^T \mathbf{x}_l + \mathbf{1} \right), \quad (41)$$

821
$$= \frac{1}{\tau} \left(\mathbf{v}_{21}^T \left(\frac{\mathbf{X}^T \mathbf{X}}{l} - \mathbf{s}_x \mathbf{s}_x^T \right) + v_{22} \left(\frac{\mathbf{y}^T \mathbf{X}}{l} - s_y \mathbf{s}_x^T \right) \right) \mathbf{M}_{11} \mathbf{x}_l,$$

822
$$+ \frac{1}{\tau} \left(\mathbf{v}_{21}^T \left(\frac{\mathbf{X}^T \mathbf{y}}{l} - s_y \mathbf{s}_x \right) + v_{22} \left(\frac{\mathbf{y}^T \mathbf{y}}{l} - s_y^2 \right) \right) \mathbf{m}_{21}^T \mathbf{x}_l + \mathbf{v}_{21}^T \mathbf{s}_x + v_{22} s_y, \quad (42)$$

823
$$= \frac{1}{\tau} (\mathbf{v}_{21}^T \mathbf{C}_{xx} + v_{22} \mathbf{C}_{xy}^T) \mathbf{M}_{11} \mathbf{x}_l + \frac{1}{\tau} (\mathbf{v}_{21}^T \mathbf{C}_{xy} + v_{22} \mathbf{C}_{yy}) \mathbf{m}_{21}^T \mathbf{x}_l + \mathbf{v}_{21}^T \mathbf{s}_x + v_{22} s_y, \quad (43)$$

824
$$= \frac{1}{\tau} ((\mathbf{v}_{21}^T \mathbf{C}_{xx} + v_{22} \mathbf{C}_{xy}^T) \mathbf{M}_{11} + (\mathbf{v}_{21}^T \mathbf{C}_{xy} + v_{22} \mathbf{C}_{yy}) \mathbf{m}_{21}^T) \mathbf{x}_l + \mathbf{v}_{21}^T \mathbf{s}_x + v_{22} s_y, \quad (44)$$

825 where the summary statistics are defined as:
826

827
$$\mathbf{s}_x := \frac{1}{l} \sum_{i=1}^l \mathbf{x}_i, \quad s_y := \frac{1}{l} \sum_{i=1}^{l-1} y_i,$$

828
$$\mathbf{C}_{xx} := \frac{1}{l} \sum_{i=1}^l \mathbf{x}_i \mathbf{x}_i^T - \mathbf{s}_x \mathbf{s}_x^T, \quad \mathbf{C}_{xy} := \frac{1}{l} \sum_{i=1}^{l-1} y_i \mathbf{x}_i - s_y \mathbf{s}_x, \quad \mathbf{C}_{yy} := \frac{1}{l} \sum_{i=1}^{l-1} y_i^2 - s_y^2.$$

829 Then, we define
830

831
$$\hat{w}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V}) = \mathbf{M}_{11}^T (\mathbf{C}_{xx} \mathbf{v}_{21} + v_{22} \mathbf{C}_{xy}) + (\mathbf{v}_{21}^T \mathbf{C}_{xy} + v_{22} \mathbf{C}_{yy}) \mathbf{m}_{21}, \quad (45)$$

832
$$b_{Att}(\mathbf{s}_x, s_y; \mathbf{V}) = \mathbf{v}_{21}^T \mathbf{s}_x + v_{22} s_y, \quad (46)$$

833 which allows us to write
834

835
$$\hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}) = \frac{1}{\tau} \hat{w}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V})^T \mathbf{x}_l + b_{Att}(\mathbf{s}_x, s_y; \mathbf{V}). \quad (47)$$

836 F DERIVATION OF THE PRETRAINING FOR ICL BY MIMICKING THE
837 BAYES-OPTIMAL ESTIMATOR
838839 Here, we derive the pretraining of the linearized attention model by mimicking the Bayes-optimal
840 ridge estimator (9). Recall that the prediction of the linearized attention model is
841

842
$$\hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}) = \frac{1}{\tau} \hat{w}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V})^T \mathbf{x}_l + b_{Att}(\mathbf{s}_x, s_y; \mathbf{V}), \quad (48)$$

which is derived in Appendix E. Furthermore, the Bayes-optimal ridge regression model's prediction is

$$\hat{y}_{Bayes} = \hat{\mathbf{w}}_{Bayes}^T \mathbf{x}_l. \quad (49)$$

Therefore, we select the parameters \mathbf{M} and \mathbf{V} such that

$$\hat{\mathbf{w}}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V}) \approx \hat{\mathbf{w}}_{Bayes}, \quad b_{Att}(\mathbf{s}_x, \mathbf{s}_y; \mathbf{V}) \approx 0, \quad (50)$$

which makes the prediction of the linearized attention model approximately equal to that of the Bayes-optimal regression. Furthermore, we consider $\tau = 1$ for the pretraining. Let's first focus on $\hat{\mathbf{w}}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V})$ as follows

$$\begin{aligned} \hat{\mathbf{w}}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V}) \\ = (\mathbf{M}_{11}^T (\mathbf{C}_{xx} \mathbf{v}_{21} + v_{22} \mathbf{C}_{xy}) + (\mathbf{v}_{21}^T \mathbf{C}_{xy} + v_{22} \mathbf{C}_{yy}) \mathbf{m}_{21}), \end{aligned} \quad (51)$$

$$= \left(\mathbf{M}_{11}^T \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{l} \mathbf{v}_{21} + v_{22} \frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{l} \right) + \left(\mathbf{v}_{21}^T \frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{l} + v_{22} \frac{\bar{\mathbf{y}}^T \bar{\mathbf{y}}}{l} \right) \mathbf{m}_{21} \right). \quad (52)$$

To reach the last line, we use the fact that $\mathbf{C}_{xx} := \mathbf{X}^T \mathbf{X} / l - \mathbf{s}_x \mathbf{s}_x^T = \bar{\mathbf{X}}^T \bar{\mathbf{X}} / l$, $\mathbf{C}_{xy} := \mathbf{X}^T \mathbf{y} / l - \mathbf{s}_y \mathbf{s}_x = \bar{\mathbf{X}}^T \bar{\mathbf{y}} / l$ and $\mathbf{C}_{yy} = \bar{\mathbf{y}}^T \bar{\mathbf{y}} / l$, where $\bar{\mathbf{X}} := \mathbf{X} - \mathbf{s}_x^T$ and $\bar{\mathbf{y}} := \mathbf{y} - \mathbf{s}_y$ denote centered input matrix and centered label vector. Now, recall that the Bayes-optimal ridge estimator is

$$\hat{\mathbf{w}}_{Bayes} = \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \Sigma_w^{-1} \right)^{-1} \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{y}}}{\sigma^2} + \Sigma_w^{-1} \mu_w \right), \quad (53)$$

as derived in Appendix A. Looking at equations (53) and (52) together, we can see that setting the parameters as follows would make $\hat{\mathbf{w}}_{Att} = \hat{\mathbf{w}}_{Bayes}$ hold

$$\mathbf{M}_{11} = \frac{l}{\sigma^2} \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{\sigma^2} + \Sigma_w^{-1} \right)^{-1}, \quad \mathbf{v}_{21} = \frac{\sigma^2}{l} \left(\frac{\bar{\mathbf{X}}^T \bar{\mathbf{X}}}{l} \right)^{-1} \Sigma_w^{-1} \mu_w, \quad \mathbf{m}_{21} = \mathbf{0}, \quad v_{22} = 1. \quad (54)$$

However, while Bayes-optimal estimator $\hat{\mathbf{w}}_{Bayes}$ is different for each sample, the attention model should be pretrained and fixed. Thus, we replace $\bar{\mathbf{X}}^T \bar{\mathbf{X}}$ in (54) with $\hat{\mathbf{X}}^T \hat{\mathbf{X}} / m$ as follows, where $\hat{\mathbf{X}} \in \mathbb{R}^{ml \times d}$ is the centred input matrix including all the (pre)training data consisting of ml samples.

$$\mathbf{M}_{11} = \frac{l}{\sigma^2} \left(\frac{\hat{\mathbf{X}}^T \hat{\mathbf{X}}}{m\sigma^2} + \Sigma_w^{-1} \right)^{-1}, \quad \mathbf{v}_{21} = \frac{\sigma^2}{l} \left(\frac{\hat{\mathbf{X}}^T \hat{\mathbf{X}}}{ml} \right)^{-1} \Sigma_w^{-1} \mu_w, \quad \mathbf{m}_{21} = \mathbf{0}, \quad v_{22} = 1. \quad (55)$$

In practice, the variance of noise σ^2 , the mean μ_w , and covariance Σ_w of the task vectors are unknown. Yet, we can use their estimates based on the (pre)training data.

Now, we can focus on making $b_{Att}(\mathbf{s}_x, \mathbf{s}_y; \mathbf{V}) \approx 0$ hold as follows

$$b_{Att}(\mathbf{s}_x, \mathbf{s}_y; \mathbf{V}) = \mathbf{v}_{21}^T \mathbf{s}_x + v_{22} \mathbf{s}_y, \quad (56)$$

where \mathbf{s}_x and \mathbf{s}_y are based on data so we have no control over them. Instead, by using Assumptions 3.1 and 3.2, we can choose \mathbf{v}_{21} and v_{22} such that $b_{Att} \rightarrow 0$ as $l, d \rightarrow \infty$. Note that Assumption 3.1 makes $\mathbf{v}_{21}^T \mathbf{s}_x + v_{22} \mathbf{s}_y$ bounded with high probability for \mathbf{v}_{21} and v_{22} given in (55). Therefore, multiplying \mathbf{v}_{21}, v_{22} given in (55) with $1/d$ would make $b_{Att} \rightarrow 0$ as $d \rightarrow \infty$. To fix the impact of the multiplication for $\hat{\mathbf{w}}_{Att}$, we can multiply \mathbf{M}_{11} with d as well. So, by applying the mentioned multiplications, we reach the following pretrained parameters mimicking the Bayes-optimal regression model

$$\mathbf{M}_{11} = \frac{dl}{\sigma^2} \left(\frac{\hat{\mathbf{X}}^T \hat{\mathbf{X}}}{m\sigma^2} + \Sigma_w^{-1} \right)^{-1}, \quad \mathbf{v}_{21} = \frac{\sigma^2}{dl} \left(\frac{\hat{\mathbf{X}}^T \hat{\mathbf{X}}}{ml} \right)^{-1} \Sigma_w^{-1} \mu_w, \quad \mathbf{m}_{21} = \mathbf{0}, \quad v_{22} = \frac{1}{d}. \quad (57)$$

918 **G CHARACTERIZATION OF GENERALIZATION ERROR FOR ICL UNDER**
919 **DISTRIBUTION SHIFT**
920

921 Here, we characterize the generalization error for in-context learning under distribution shift, given
922 that \mathbf{M} and \mathbf{V} are pretrained and fixed. So, the impact of pretraining distribution \mathcal{D}^{train} is captured
923 by \mathbf{M} and \mathbf{V} . Suppose that \mathcal{D}^{test} denotes the test distribution. To avoid additional notations, here,
924 we again use $\mu_x, \mu_w, \Sigma_x, \Sigma_w, \sigma^2$ to denote means and covariances for input and task vectors and
925 noise variance for the inference (test). However, note that these can be different from those used for
926 pretraining. We begin studying the generalization error defined in (8) as follows
927

928
$$\mathcal{G}(\mathbf{V}, \mathbf{M}) := \mathbb{E}_{(\mathbf{Z}, y_l) \sim \mathcal{D}^{test}} \left[(y_l - \hat{y}(\mathbf{Z}; \mathbf{V}, \mathbf{M}))^2 \right], \quad (58)$$
929

930
$$= \mathbb{E}_{(\mathbf{Z}, y_l) \sim \mathcal{D}^{test}} \left[\left(\frac{1}{\tau} \hat{\mathbf{w}}_{Att}(\mathbf{C}_{xx}, \mathbf{C}_{xy}, \mathbf{C}_{yy}; \mathbf{M}, \mathbf{V})^T \mathbf{x}_l + b_{Att}(\mathbf{s}_x, \mathbf{s}_y; \mathbf{V}) - y_l \right)^2 \right], \quad (59)$$
931

932
$$= \mathbb{E}_{(\mathbf{Z}, y_l) \sim \mathcal{D}^{test}} \left[\left(\frac{1}{\tau} (\mathbf{M}_{11}^T (\mathbf{C}_{xx} \mathbf{v}_{21} + v_{22} \mathbf{C}_{xy}))^T \mathbf{x}_l - y_l \right)^2 \right], \quad (60)$$
933

934 where we use the parameters from pretraining (57) together with Assumptions 3.1 and 3.2 to reach
935 the last line. Then,
936

937
$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \mathbb{E}_{(\mathbf{Z}, y_l) \sim \mathcal{D}^{test}} \left[\left(\frac{1}{\tau} (\mathbf{M}_{11}^T (\mathbf{C}_{xx} \mathbf{v}_{21} + v_{22} \mathbf{C}_{xy}))^T \mathbf{x}_l - y_l \right)^2 \right], \quad (61)$$
938

939
$$= \mathbb{E} \left[\left(\frac{1}{\tau} \left(\mathbf{M}_{11}^T \left(\frac{1}{l} \sum_{i \leq l} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i (\bar{\mathbf{x}}_i^T \mathbf{w} + \epsilon_i) \right) \right)^T \mathbf{x}_l - \mathbf{w}^T \mathbf{x}_l - \epsilon_l \right)^2 \right], \quad (62)$$
940

941
$$= \mathbb{E} \left[\left(\frac{1}{\tau} \left(\mathbf{M}_{11}^T \left(\frac{1}{l} \sum_{i \leq l} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i (\bar{\mathbf{x}}_i^T \mathbf{w} + \epsilon_i) \right) \right)^T \mathbf{x}_l - \mathbf{w}^T \mathbf{x}_l \right)^2 \right] + \sigma^2 \quad (63)$$
942

943 where $\bar{\mathbf{x}}_i := \mathbf{x}_i - \mathbf{s}_x = \mathbf{x}_i - \frac{1}{l} \sum_{i \leq l} \mathbf{x}_i$ and we use $\epsilon_l \sim \mathcal{N}(0, \sigma^2)$ to reach the final line. We
944 continue by defining
945

946
$$\mathbf{w}_{diff} := \frac{1}{\tau} \mathbf{M}_{11}^T \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i (\bar{\mathbf{x}}_i^T \mathbf{w} + \epsilon_i) \right) - \mathbf{w}, \quad (64)$$
947

948 which allows us to write
949

950
$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \mathbb{E} \left[(\mathbf{w}_{diff}^T \mathbf{x}_l)^2 \right] + \sigma^2, \quad (65)$$
951

952
$$= \mathbb{E} [\mathbf{w}_{diff}^T \mathbb{E}_{\mathbf{x}_l} [\mathbf{x}_l \mathbf{x}_l^T] \mathbf{w}_{diff}] + \sigma^2, \quad (66)$$
953

954
$$= \mathbb{E} [\mathbf{w}_{diff}^T (\mu_x \mu_x^T + \Sigma_x) \mathbf{w}_{diff}] + \sigma^2, \quad (67)$$
955

956 by the law of total expectation since \mathbf{w}_{diff} is independent of \mathbf{x}_l . Note that when writing (65), we
957 safely ignore terms with $(1/l) \bar{\mathbf{x}}_l \bar{\mathbf{x}}_l^T \mathbf{v}_{21}$ in (63) since they vanish as $l \rightarrow \infty$ by Assumptions 3.1-3.2
958 and 4.5. Letting $\mathbf{A} := \mu_x \mu_x^T + \Sigma_x$, we write
959

960
$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \mathbb{E} [\mathbf{w}_{diff}^T \mathbf{A} \mathbf{w}_{diff}] + \sigma^2, \quad (68)$$
961

962
$$= \mathbb{E} [\text{Tr} (\mathbf{w}_{diff}^T \mathbf{A} \mathbf{w}_{diff})] + \sigma^2, \quad (69)$$
963

964
$$= \mathbb{E} [\text{Tr} (\mathbf{A} \mathbf{w}_{diff} \mathbf{w}_{diff}^T)] + \sigma^2, \quad (70)$$
965

966
$$= \text{Tr} (\mathbf{A} \mathbb{E} [\mathbf{w}_{diff} \mathbf{w}_{diff}^T]) + \sigma^2, \quad (71)$$
967

972 where we first apply the cyclic property of trace and then use the linearity of expectation and trace to
 973 reach the last line. Now, we need to calculate $\mathbb{E}[\mathbf{w}_{diff}\mathbf{w}_{diff}^T]$, for which we first take the expectation
 974 over \mathbf{w} . To do so, we rewrite \mathbf{w}_{diff} as
 975

$$977 \mathbf{w}_{diff} = \underbrace{\frac{1}{\tau} \mathbf{M}_{11}^T \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \epsilon_i \right)}_e + \underbrace{\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T - \mathbf{I} \right)}_D \mathbf{w}, \quad (72)$$

$$982 = \mathbf{e} + \mathbf{D}\mathbf{w}, \quad (73)$$

984 where we define
 985

$$987 \mathbf{e} := \frac{1}{\tau} \mathbf{M}_{11}^T \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \epsilon_i \right), \quad (74)$$

$$990 \mathbf{D} := \left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T - \mathbf{I} \right). \quad (75)$$

994 Since \mathbf{e} and \mathbf{D} are independent of \mathbf{w} , we can easily calculate $\mathbb{E}_{\mathbf{w}}[\mathbf{w}_{diff}\mathbf{w}_{diff}^T]$ as follows
 995

$$997 \mathbb{E}[\mathbb{E}_{\mathbf{w}}[\mathbf{w}_{diff}\mathbf{w}_{diff}^T]] = \mathbb{E}[\mathbb{E}_{\mathbf{w}}[(\mathbf{e} + \mathbf{D}\mathbf{w})(\mathbf{e} + \mathbf{D}\mathbf{w})^T]], \quad (76)$$

$$998 = \mathbb{E}[\mathbf{e}\mathbf{e}^T] + \mathbb{E}[\mathbf{e}\mu_w^T \mathbf{D}^T] + \mathbb{E}[\mathbf{D}\mu_w \mathbf{e}^T] + \mathbb{E}[\mathbf{D}(\mu_x \mu_x^T + \Sigma_w) \mathbf{D}^T], \quad (77)$$

$$1000 = \mathbb{E}[\mathbf{e}\mathbf{e}^T] + \mathbb{E}[\mathbf{D}\mu_w \mathbf{e}^T]^T + \mathbb{E}[\mathbf{D}\mu_w \mathbf{e}^T] + \mathbb{E}[\mathbf{D}\mathbf{B}\mathbf{D}^T], \quad (78)$$

1002 where we first apply the law of total expectation, then take the expectation over \mathbf{w} and finally, we
 1003 define $\mathbf{B} := \mu_x \mu_x^T + \Sigma_w$ to reach the last line. Note that μ_w and \mathbf{B} are fixed while \mathbf{e} and \mathbf{D} are
 1004 random in the last line. Therefore, we are required to calculate the three expectations that appeared
 1005 in (78).

1006 Before getting into the calculations of the aforementioned expectations, we provide the following
 1007 lemma that is useful for the calculation of the expectations.
 1008

1009 **Lemma G.1.** *Let $\bar{\mathbf{x}} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, where $\bar{\mathbf{x}} \in \mathbb{R}^d$. Let $\bar{\mathbf{x}}_i$ be $l-1$ independent samples of $\bar{\mathbf{x}}$ for
 1010 $i = 1, \dots, l-1$. Furthermore, let \mathbf{A} be a fixed $d \times d$ matrix. Then, the following holds*

$$1012 \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{A} \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] = \frac{l-1}{l} \Sigma \mathbf{A} \Sigma + \frac{1}{l} \Sigma \mathbf{A}^T \Sigma + \frac{1}{l} \text{Tr}(\mathbf{A} \Sigma) \Sigma. \quad (79)$$

1016
 1017
 1018
 1019 *Proof.* This is proven by using Isserlis' theorem (Isserlis, 1918) in Appendix H. □
 1020

1021
 1022
 1023
 1024 Note that our inputs $\bar{\mathbf{x}}_i$ are centered, i.e., $\bar{\mathbf{x}}_i = \mathbf{x}_i - \frac{1}{l} \sum_{i \leq l} \mathbf{x}_i$, so their distribution is $\mathcal{N}(\mathbf{0}, \Sigma_x)$ as
 1025 $l \rightarrow \infty$. Therefore, Lemma G.1 is directly applicable in our setting.

1026 Next, we start the calculations of the expectations in (78) with $\mathbb{E} [ee^T]$ as follows
 1027

$$\begin{aligned} 1028 \mathbb{E} [ee^T] &= \frac{1}{\tau^2} \mathbf{M}_{11}^T \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \epsilon_i \right) \right. \\ 1029 &\quad \cdot \left. \left(\frac{1}{l} \sum_{i \leq l-1} \mathbf{v}_{21}^T \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i^T \epsilon_i \right) \right] \mathbf{M}_{11}, \end{aligned} \quad (80)$$

$$\begin{aligned} 1031 \mathbb{E} [ee^T] &= \frac{1}{\tau^2} \mathbf{M}_{11}^T \left(\mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{v}_{21} \right) \left(\frac{1}{l} \sum_{i \leq l-1} \mathbf{v}_{21}^T \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right. \right. \\ 1032 &\quad \left. \left. + \left(v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \epsilon_i \right) \left(v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i^T \epsilon_i \right) \right] \right] \mathbf{M}_{11}, \end{aligned} \quad (81)$$

$$\begin{aligned} 1034 \mathbb{E} [ee^T] &= \frac{1}{\tau^2} \mathbf{M}_{11}^T \left(\mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{v}_{21} \mathbf{v}_{21}^T \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) + \left(v_{22}^2 \frac{\sigma^2}{l^2} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \right] \mathbf{M}_{11}, \end{aligned} \quad (82)$$

$$\begin{aligned} 1037 \mathbb{E} [ee^T] &= \frac{1}{\tau^2} \mathbf{M}_{11}^T \left(\Sigma_x \mathbf{v}_{21} \mathbf{v}_{21}^T \Sigma_x + \frac{1}{l} \text{Tr} (\mathbf{v}_{21} \mathbf{v}_{21}^T \Sigma_x) \Sigma_x + v_{22}^2 \frac{\sigma^2 (l-1)}{l^2} \Sigma_x \right) \mathbf{M}_{11}, \end{aligned} \quad (83)$$

$$\begin{aligned} 1041 \mathbb{E} [ee^T] &= \frac{1}{\tau^2} \mathbf{M}_{11}^T \left(v_{22}^2 \frac{\sigma^2}{l} \Sigma_x \right) \mathbf{M}_{11}, \end{aligned} \quad (84)$$

1045 where we first use the independence of the random variables and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ to simplify the
 1046 equation. Then, we apply Lemma G.1 and use the fact that $\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \Sigma_x$ to get the penultimate
 1047 line. Finally, we drop the vanishing terms and simplify the result using Assumptions 3.1-3.2 and 4.5
 1048 in order to reach the last line.

1049 We continue with the calculation of $\mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T]$ as
 1050

$$\begin{aligned} 1051 \mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T] &= \frac{1}{\tau} \mathbb{E} \left[\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T - \mathbf{I} \right) \boldsymbol{\mu}_w \left(\frac{1}{l} \sum_{i \leq l-1} \mathbf{v}_{21}^T \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T + v_{22} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i^T \epsilon_i \right) \right] \mathbf{M}_{11}, \end{aligned} \quad (85)$$

$$\begin{aligned} 1055 \mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T] &= \frac{1}{\tau} \mathbb{E} \left[\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T - \mathbf{I} \right) \boldsymbol{\mu}_w \left(\frac{1}{l} \sum_{i \leq l-1} \mathbf{v}_{21}^T \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \mathbf{M}_{11}, \end{aligned} \quad (86)$$

$$\begin{aligned} 1059 \mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T] &= \frac{1}{\tau} \frac{v_{22}}{\tau} \mathbf{M}_{11}^T \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \boldsymbol{\mu}_w \mathbf{v}_{21}^T \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \mathbf{M}_{11} \\ 1060 &\quad - \boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbb{E} \left[\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right] \mathbf{M}_{11}, \end{aligned} \quad (87)$$

$$\begin{aligned} 1064 \mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T] &= \frac{1}{\tau} \frac{v_{22}}{\tau} \mathbf{M}_{11}^T \left(\Sigma_x \boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x + \frac{1}{l} \Sigma_x \mathbf{v}_{21} \boldsymbol{\mu}_w^T \Sigma_x + \frac{1}{l} \text{Tr} (\boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x) \Sigma_x \right) \mathbf{M}_{11} \\ 1065 &\quad - \frac{1}{\tau} \frac{l-1}{l} \boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x \mathbf{M}_{11}, \end{aligned} \quad (88)$$

$$\begin{aligned} 1068 \mathbb{E} [\mathbf{D}\boldsymbol{\mu}_w e^T] &= \frac{v_{22}}{\tau^2} \mathbf{M}_{11}^T \left(\Sigma_x \boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x + \frac{1}{l} \text{Tr} (\boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x) \Sigma_x \right) \mathbf{M}_{11} - \frac{1}{\tau} \boldsymbol{\mu}_w \mathbf{v}_{21}^T \Sigma_x \mathbf{M}_{11}, \end{aligned} \quad (89)$$

1071 where we again first use the independence of the random variables and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. Then, we
 1072 apply basic algebraic manipulations. To reach the penultimate line, we utilize Lemma G.1 together
 1073 with the fact that $\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \Sigma_x$. Using Assumptions 3.1-3.2 and 4.5, we reach the last line.

1080 Finally, we calculate $\mathbb{E} [\mathbf{DBD}^T]$ as follows
1081

$$\begin{aligned} 1082 \mathbb{E} [\mathbf{DBD}^T] \\ 1083 &= \mathbb{E} \left[\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T - \mathbf{I} \right) \mathbf{B} \left(\frac{v_{22}}{\tau} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{M}_{11} - \mathbf{I} \right) \right], \\ 1084 &= \mathbb{E} \left[\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{B} \left(\frac{v_{22}}{\tau} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{M}_{11} \right) \right] \\ 1085 &\quad - \mathbb{E} \left[\left(\frac{v_{22}}{\tau} \mathbf{M}_{11}^T \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{B} \right] - \mathbb{E} \left[\mathbf{B} \left(\frac{v_{22}}{\tau} \frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{M}_{11} \right) \right] + \mathbf{B}, \end{aligned} \quad (90)$$

$$\begin{aligned} 1086 \\ 1087 \\ 1088 \\ 1089 \\ 1090 \\ 1091 \\ 1092 \\ 1093 \\ 1094 \\ 1095 \\ 1096 \\ 1097 \\ 1098 \\ 1099 \\ 1100 \\ 1101 \\ 1102 \\ 1103 \\ 1104 \\ 1105 \\ 1106 \end{aligned} \quad \begin{aligned} &= \frac{v_{22}^2}{\tau^2} \mathbf{M}_{11}^T \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{B} \left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \mathbf{M}_{11} \\ &\quad - \frac{v_{22}}{\tau} \mathbf{M}_{11}^T \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \mathbf{B} - \frac{v_{22}}{\tau} \mathbf{B} \mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l-1} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] \mathbf{M}_{11} + \mathbf{B}, \end{aligned} \quad (91)$$

$$\begin{aligned} &= \frac{v_{22}^2}{\tau^2} \mathbf{M}_{11}^T \left(\mathbf{\Sigma}_x \mathbf{B} \mathbf{\Sigma}_x + \frac{1}{l} \text{Tr}(\mathbf{B} \mathbf{\Sigma}_x) \mathbf{\Sigma}_x \right) \mathbf{M}_{11} - \frac{v_{22}}{\tau} \frac{l-1}{l} \mathbf{M}_{11}^T \mathbf{\Sigma}_x \mathbf{B} \\ &\quad - \frac{v_{22}}{\tau} \frac{l-1}{l} \mathbf{B} \mathbf{\Sigma}_x \mathbf{M}_{11} + \mathbf{B}, \end{aligned} \quad (92)$$

$$\begin{aligned} &= \frac{v_{22}^2}{\tau^2} \mathbf{M}_{11}^T \left(\mathbf{\Sigma}_x \mathbf{B} \mathbf{\Sigma}_x + \frac{1}{l} \text{Tr}(\mathbf{B} \mathbf{\Sigma}_x) \mathbf{\Sigma}_x \right) \mathbf{M}_{11} - \frac{v_{22}}{\tau} \mathbf{M}_{11}^T \mathbf{\Sigma}_x \mathbf{B} - \frac{v_{22}}{\tau} \mathbf{B} \mathbf{\Sigma}_x \mathbf{M}_{11} + \mathbf{B}, \end{aligned} \quad (93)$$

1107 where we first do basic algebraic manipulations. Then, we use Lemma G.1 and $\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \mathbf{\Sigma}_x$ to
1108 get the penultimate line. For the final line, we utilize $l \rightarrow \infty$ by Assumption 3.2.

1109 Putting the found expectation results into (78), we get
1110

$$\mathbb{E} [\mathbb{E}_{\mathbf{w}} [\mathbf{w}_{diff} \mathbf{w}_{diff}^T]] = \mathbb{E} [\mathbf{e} \mathbf{e}^T] + \mathbb{E} [\mathbf{D} \boldsymbol{\mu}_w \mathbf{e}^T]^T + \mathbb{E} [\mathbf{D} \boldsymbol{\mu}_w \mathbf{e}^T] + \mathbb{E} [\mathbf{DBD}^T], \quad (95)$$

$$= \frac{1}{\tau^2} \mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11} - \frac{1}{\tau} \mathbf{F}_2 \mathbf{M}_{11} + \frac{1}{\tau} \mathbf{M}_{11}^T \mathbf{F}_2^T + \mathbf{B}. \quad (96)$$

1115 where matrices \mathbf{F}_1 and \mathbf{F}_2 are defined as

$$\mathbf{F}_1 := v_{22}^2 \frac{\sigma^2}{l} \mathbf{\Sigma}_x + v_{22} \left(\mathbf{\Sigma}_x \boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbf{\Sigma}_x + \frac{1}{l} \text{Tr}(\boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbf{\Sigma}_x) \mathbf{\Sigma}_x \right) \quad (97)$$

$$\begin{aligned} &\quad + v_{22} \left(\mathbf{\Sigma}_x \boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbf{\Sigma}_x + \frac{1}{l} \text{Tr}(\boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbf{\Sigma}_x) \mathbf{\Sigma}_x \right)^T + v_{22}^2 \left(\mathbf{\Sigma}_x \mathbf{B} \mathbf{\Sigma}_x + \frac{1}{l} \text{Tr}(\mathbf{B} \mathbf{\Sigma}_x) \mathbf{\Sigma}_x \right), \\ &= \left(\mathbf{\Sigma}_x \hat{\mathbf{B}} + \left(v_{22}^2 \frac{\sigma^2}{l} + \frac{1}{l} \text{Tr}(\hat{\mathbf{B}} \mathbf{\Sigma}_x) \right) \mathbf{I} \right) \mathbf{\Sigma}_x, \end{aligned} \quad (98)$$

$$\mathbf{F}_2 := \boldsymbol{\mu}_w \mathbf{v}_{21}^T \mathbf{\Sigma}_x + v_{22} \mathbf{B} \mathbf{\Sigma}_x = (\boldsymbol{\mu}_w \mathbf{v}_{21}^T + v_{22} \mathbf{B}) \mathbf{\Sigma}_x, \quad (99)$$

1125 with $\hat{\mathbf{B}} := v_{22} \boldsymbol{\mu}_w \mathbf{v}_{21}^T + v_{22} \mathbf{v}_{21} \boldsymbol{\mu}_w^T + v_{22}^2 \mathbf{B}$.
1126

1127 Going back to generalization error in (71), we have

$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \text{Tr}(\mathbf{A} \mathbb{E}[\mathbf{w}_{diff} \mathbf{w}_{diff}^T]) + \sigma^2, \quad (100)$$

$$= \text{Tr} \left(\mathbf{A} \left(\frac{1}{\tau^2} \mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11} - \frac{1}{\tau} \mathbf{F}_2 \mathbf{M}_{11} + \frac{1}{\tau} \mathbf{M}_{11}^T \mathbf{F}_2^T + \mathbf{B} \right) \right) + \sigma^2, \quad (101)$$

1132 where $\mathbf{F}_1 = \left(\mathbf{\Sigma}_x \hat{\mathbf{B}} + \frac{1}{l} \left(v_{22}^2 \sigma^2 + \text{Tr}(\hat{\mathbf{B}} \mathbf{\Sigma}_x) \right) \mathbf{I} \right) \mathbf{\Sigma}_x$, and $\mathbf{F}_2 = (\boldsymbol{\mu}_w \mathbf{v}_{21}^T + v_{22} \mathbf{B}) \mathbf{\Sigma}_x$. Furthermore,
1133 $\hat{\mathbf{B}}$ is defined as $\hat{\mathbf{B}} := v_{22} \boldsymbol{\mu}_w \mathbf{v}_{21}^T + v_{22} \mathbf{v}_{21} \boldsymbol{\mu}_w^T + v_{22}^2 \mathbf{B}$.

1134 **H PROOF OF LEMMA G.1**
11351136 We first restate the lemma as follows.
11371138 Let $\bar{\mathbf{x}} \sim \mathcal{N}(0, \Sigma)$, where $\bar{\mathbf{x}} \in \mathbb{R}^d$. Let $\bar{\mathbf{x}}_i$ be l independent samples of $\bar{\mathbf{x}}$ for $i = 1, \dots, l$. Let \mathbf{A} be
1139 a fixed $d \times d$ matrix. Then, the following holds

1140
$$\mathbb{E} \left[\left(\frac{1}{l} \sum_{i \leq l} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \mathbf{A} \left(\frac{1}{l} \sum_{i \leq l} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \right) \right] = \Sigma \mathbf{A} \Sigma + \frac{1}{l} \Sigma \mathbf{A}^T \Sigma + \frac{1}{l} \text{Tr}(\mathbf{A} \Sigma) \Sigma. \quad (102)$$

1141
1142
1143

1144 *Proof.* Let $\mathbf{S}_x = \frac{1}{l} \sum_{i=1}^l \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T$. First, note that $E[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \Sigma$ since $\bar{\mathbf{x}}_i \sim \mathcal{N}(0, \Sigma)$.
11451146 Thus, $\mathbb{E}[\mathbf{S}_x] = \frac{1}{l} \sum_{i=1}^l \mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \frac{1}{l} \sum_{i=1}^l \Sigma = \Sigma$. We have
1147

1148
$$\mathbf{S}_x \mathbf{A} \mathbf{S}_x = \frac{1}{l^2} \sum_{i=1}^l \sum_{j=1}^l \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_j \bar{\mathbf{x}}_j^T \quad (103)$$

1149
1150

1151 Taking the expectation, we get

1152
$$\mathbb{E}[\mathbf{S}_x \mathbf{A} \mathbf{S}_x] = \frac{1}{l^2} \sum_{i=1}^l \sum_{j=1}^l \mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_j \bar{\mathbf{x}}_j^T] \quad (104)$$

1153
1154

1155 When $i \neq j$, $\bar{\mathbf{x}}_i$ and $\bar{\mathbf{x}}_j$ are independent, so

1156
$$\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_j \bar{\mathbf{x}}_j^T] = \mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] \mathbf{A} \mathbb{E}[\bar{\mathbf{x}}_j \bar{\mathbf{x}}_j^T] = \Sigma \mathbf{A} \Sigma \quad (105)$$

1157
1158

1159 When $i = j$,

1160
$$\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \mathbb{E}[\bar{\mathbf{x}} \bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}} \bar{\mathbf{x}}^T] \quad (106)$$

1161

1162 Let $\bar{\mathbf{x}} = [x_1, x_2, \dots, x_d]^T$. Then, from Isserlis' theorem (Isserlis, 1918), we have

1163
$$\mathbb{E}[x_i x_j x_k x_l] = \Sigma_{ij} \Sigma_{kl} + \Sigma_{ik} \Sigma_{jl} + \Sigma_{il} \Sigma_{jk} \quad (107)$$

1164

1165 Let $\mathbf{A} = [a_{ij}]$. Then, $\bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}} = \sum_{i,j} a_{ij} x_i x_j$. Thus, we reach

1166
$$\bar{\mathbf{x}} \bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}} \bar{\mathbf{x}}^T = \bar{\mathbf{x}} \bar{\mathbf{x}}^T \sum_{i,j} a_{ij} x_i x_j, \quad (108)$$

1167
1168

1169
$$\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T] = \text{Tr}(\mathbf{A} \Sigma) \Sigma + \Sigma \mathbf{A} \Sigma + \Sigma \mathbf{A}^T \Sigma. \quad (109)$$

1170

1171 There are l^2 terms in the double sum. l terms are of the form $\mathbb{E}[\bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T \mathbf{A} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i^T]$ and $l^2 - l$ terms are
1172 of the form $\Sigma \mathbf{A} \Sigma$. Therefore, we can write

1173
$$\mathbb{E}[\mathbf{S}_x \mathbf{A} \mathbf{S}_x] = \frac{1}{l^2} [l(\text{Tr}(\mathbf{A} \Sigma) \Sigma + \Sigma \mathbf{A} \Sigma + \Sigma \mathbf{A}^T \Sigma) + l(l-1) \Sigma \mathbf{A} \Sigma], \quad (110)$$

1174

1175
$$= \frac{1}{l} (\text{Tr}(\mathbf{A} \Sigma) \Sigma + \Sigma \mathbf{A} \Sigma + \Sigma \mathbf{A}^T \Sigma) + \frac{l-1}{l} \Sigma \mathbf{A} \Sigma, \quad (111)$$

1176

1177
$$= \Sigma \mathbf{A} \Sigma + \frac{1}{l} \Sigma \mathbf{A}^T \Sigma + \frac{1}{l} \text{Tr}(\mathbf{A} \Sigma) \Sigma, \quad (112)$$

1178

1179 which completes the proof. \square
11801181 **I ANALYSIS OF OPTIMAL TEMPERATURE FOR ICL UNDER DISTRIBUTION
1182 SHIFT**
11831184 Here, we find the optimal temperature minimizing the generalization error. First, recall that we have
1185 the following generalization error.
1186

1187
$$\mathcal{G}(\mathbf{V}, \mathbf{M}) = \frac{1}{\tau^2} \text{Tr}(\mathbf{A} \mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11}) - \frac{1}{\tau} \text{Tr}(\mathbf{A} (\mathbf{F}_2 \mathbf{M}_{11} + \mathbf{M}_{11}^T \mathbf{F}_2^T)) + \text{Tr}(\mathbf{A} \mathbf{B}) + \sigma^2, \quad (113)$$

1188

1188 as specified in Theorem 4.6. So, we can express the generalization error as,
 1189

$$1190 \quad \mathcal{G}(\tau; \mathbf{V}, \mathbf{M}) = \frac{a}{\tau^2} - \frac{b}{\tau} + c, \quad (114)$$

1192 where $a := \text{Tr}(\mathbf{A}\mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11})$, $b := \text{Tr}(\mathbf{A}(\mathbf{F}_2 \mathbf{M}_{11} + \mathbf{M}_{11}^T \mathbf{F}_2^T))$, and $c = \text{Tr}(\mathbf{A}\mathbf{B}) + \sigma^2$.
 1193 Therefore, we have the following optimization problem
 1194

$$1195 \quad \tau_{optimal} := \arg \min_{\tau} \mathcal{G}(\tau; \mathbf{V}, \mathbf{M}), \quad (115)$$

$$1197 \quad = \arg \min_{\tau} \left\{ \frac{a}{\tau^2} - \frac{b}{\tau} + c \right\}. \quad (116)$$

1199 To find the optimal value of τ that minimizes the given function, we can take the derivative of the
 1200 expression with respect to τ and set it to zero. From now on, we consider generalization error as a
 1201 function of τ , written as $\mathcal{G}(\tau)$.
 1202

1203 Next, find the derivative of $\mathcal{G}(\tau)$ with respect to τ as

$$1204 \quad \mathcal{G}'(\tau) = -2a\tau^{-3} + b\tau^{-2}. \quad (117)$$

1206 To find the critical points, set $\mathcal{G}'(\tau) = 0$ as follows
 1207

$$1208 \quad \mathcal{G}'(\tau) = -2a\tau^{-3} + b\tau^{-2} = 0, \quad (118)$$

1210 Solving this equation for τ , we reach the following critical point
 1211

$$1212 \quad \tau = \frac{2a}{b}. \quad (119)$$

1214 Now, we need to check if this is a minimum by taking the second derivative, which is
 1215

$$1216 \quad \mathcal{G}''(\tau) = 6a\tau^{-4} - 2b\tau^{-3}. \quad (120)$$

1217 Evaluate $\mathcal{G}''(\tau)$ at $\tau = \frac{2a}{b}$ as follows
 1218

$$1219 \quad \mathcal{G}''\left(\frac{2a}{b}\right) = 6a\left(\frac{2a}{b}\right)^{-4} - 2b\left(\frac{2a}{b}\right)^{-3} = 6a\left(\frac{b^4}{16a^4}\right) - 2b\left(\frac{b^3}{8a^3}\right) = \frac{b^4}{8a^3}. \quad (121)$$

1222 Since $a, b > 0$, we reach $\mathcal{G}''\left(\frac{2a}{b}\right) = \frac{b^4}{8a^3} > 0$, which means the function has a minimum at $\tau = \frac{2a}{b}$.
 1223 Therefore, $\tau_{optimal} = \frac{2a}{b}$ is the solution minimizing the generalization error $\mathcal{G}(\tau)$. Writing a, b back
 1224 into the optimal solution, we get
 1225

$$1226 \quad \tau_{optimal} = \frac{2\text{Tr}(\mathbf{A}\mathbf{M}_{11}^T \mathbf{F}_1 \mathbf{M}_{11})}{\text{Tr}(\mathbf{A}(\mathbf{F}_2 \mathbf{M}_{11} + \mathbf{M}_{11}^T \mathbf{F}_2^T))}, \quad (122)$$

1229 which concludes our derivation of the optimal temperature $\tau_{optimal}$.
 1230

1231 J AN INSIGHT DRIVEN FROM OPTIMAL TEMPERATURE FOR OTHER SETTINGS

1233 In this section, we extract a mathematical heuristic from the optimal temperature in Theorem 4.7 that
 1234 can be applied to ICL settings beyond our existing setting involving linearized attention and regres-
 1235 sion tasks. Specifically, we consider Transformers employing standard softmax attention. Recall
 1236 that the attention temperature scales the pre-softmax scores (i.e., $(\mathbf{K}\mathbf{Z})^\top (\mathbf{Q}\mathbf{Z})$ in (1)), thereby con-
 1237 trolling the variance of the final scores. Since the optimal temperature depends on the distribution
 1238 of these scores, it can be naturally characterized by the moments of that distribution. Our central
 1239 intuition is that the optimal temperature identified in Theorem 4.7 relates directly to the first two
 1240 moments of the pre-softmax scores. Although this optimal temperature was derived for *linearized*
 1241 *softmax* attention, the insight remains relevant for softmax attention because the two mechanisms
 1242 behave similarly in the regime considered (see Appendix D).

We now illustrate how the optimal temperature in Theorem 4.7 can be related to the first two moments of the pre-softmax scores. For simplicity, we consider the case $\mu_x = \mu_w = \mathbf{m}_{21} = \mathbf{0}$ and $\Sigma_w = \mathbf{I}$, under which the optimal temperature reduces to

$$\tau_{\text{optimal}} = \frac{v_{22} \text{Tr}(\Sigma_x \mathbf{M}_{11} \Sigma_x \mathbf{M}_{11}^\top \Sigma_x)}{\frac{1}{2} \text{Tr}(\Sigma_x (\Sigma_x \mathbf{M}_{11} + \mathbf{M}_{11}^\top \Sigma_x^\top))}. \quad (123)$$

We next show how this expression connects to the first two moments of $(\mathbf{KZ})^\top (\mathbf{QZ})$. Let \mathbf{z}_i denote the i -th column of \mathbf{Z} from (3) and recall $\mathbf{K}^\top \mathbf{Q} = \mathbf{M}$. We therefore compute $\mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j]$ and $\mathbb{E}[(\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j)^2]$ for $i, j \in \{1, \dots, l\}$. Starting with the first moment for $i = j$:

$$\mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_i] = \text{Tr}(\mathbb{E}[\mathbf{z}_i \mathbf{z}_i^\top] \mathbf{M}) = \text{Tr}(\Sigma_x \mathbf{M}_{11}), \quad (124)$$

where the block structure (and zero entries) of \mathbf{M} is used in the last step. For $i \neq j$,

$$\mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j] = \text{Tr}(\mathbf{M} \mathbb{E}[\mathbf{z}_i \mathbf{z}_j^\top]) = 0, \quad (125)$$

by independence of \mathbf{z}_i and \mathbf{z}_j . For the second moment with $i \neq j$:

$$\mathbb{E}[(\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j)^2] = \mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j \mathbf{z}_j^\top \mathbf{M}^\top \mathbf{z}_i] \quad (126)$$

$$= \mathbb{E}[\mathbf{x}_i^\top \mathbf{M}_{11} \mathbf{x}_j \mathbf{x}_j^\top \mathbf{M}_{11}^\top \mathbf{x}_i] \quad (127)$$

$$= \mathbb{E}_{\mathbf{x}_i} [\mathbf{x}_i^\top \mathbf{M}_{11} \mathbb{E}_{\mathbf{x}_j} [\mathbf{x}_j \mathbf{x}_j^\top] \mathbf{M}_{11}^\top \mathbf{x}_i] \quad (128)$$

$$= \mathbb{E}_{\mathbf{x}_i} [\mathbf{x}_i^\top \mathbf{M}_{11} \Sigma_x \mathbf{M}_{11}^\top \mathbf{x}_i] \quad (129)$$

$$= \text{Tr}(\mathbf{M}_{11} \Sigma_x \mathbf{M}_{11}^\top \mathbb{E}_{\mathbf{x}_i} [\mathbf{x}_i \mathbf{x}_i^\top]) \quad (130)$$

$$= \text{Tr}(\mathbf{M}_{11} \Sigma_x \mathbf{M}_{11}^\top \Sigma_x), \quad (131)$$

where we again exploit the block structure of \mathbf{M} and apply straightforward manipulations.

We observe a parallel between the numerator of (123) and the computed second moment (for $i \neq j$), and between the denominator and the first moment (for $i = j$). This motivates the heuristic that the optimal temperature should be roughly proportional to the ratio of the second moment (for $i \neq j$) to the first moment (for $i = j$). Accordingly, in our LLM experiments (Figure 3), we select the temperature proportional to this ratio while taking care to avoid numerical issues.

Finally, we note an important caveat: in order to obtain an insight of practical relevance, we intentionally relaxed the rigor applied in our main theoretical results. Consequently, the heuristic derived here—and the accompanying empirical findings—should be viewed as preliminary, intended to inspire future work on principled selection of attention temperature in practice.

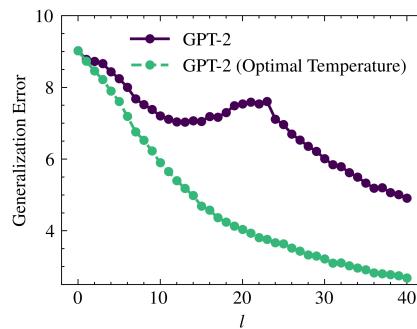
K EXPERIMENTAL DETAILS AND GPT-2 EXPERIMENTS

This section describes our experimental setups for GPT-2 and large language models (LLMs), including the motivation for our distribution-shift scenarios.

K.1 GPT-2: TRANSFORMER WITH MLP LAYERS

Building on the linearized-attention experiments, we investigate whether the optimal temperature also benefits more complex Transformer models on linear regression tasks. We evaluate GPT-2 (Radford et al., 2019) under a shift in input covariance (Figure 6). Consistent with prior work (Garg et al., 2022; Zhang et al., 2024), such shifts substantially degrade performance and can even induce non-monotonic generalization error with respect to context length l . Remarkably, applying the optimal temperature mitigates this nonmonotonicity and improves in-context generalization.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306



1307
1308 Figure 6: GPT-2 (Radford et al., 2019) under an input-covariance shift. GPT-2 exemplifies the
1309 Transformer architecture (Vaswani et al., 2017), combining multi-layer perceptrons with multi-head
1310 softmax self-attention. The model here is pretrained by Garg et al. (2022) on the linear regression
1311 tasks defined in (2). We consider a shift from $\Sigma_x^{\text{train}} = \mathbf{I}$ to $\Sigma_x^{\text{test}} = 3\mathbf{I}$. The attention temperature
1312 at each layer is scaled as $\tau\sqrt{d_k}$ (where d_k is the key dimension) to ensure dimension-independent τ
1313 values.

1314 1315 K.2 DETAILS OF THE GPT-2 EXPERIMENTS IN FIGURE 6

1316
1317 We use the standard GPT-2 architecture (Radford et al., 2019) as implemented in HuggingFace (Wolf
1318 et al., 2020), leveraging the pretrained model of Garg et al. (2022). Training data match ours, while
1319 their training procedure differs slightly: the loss is auto-regressive, i.e., the average over the entire
1320 context sequence of length $l = 40$. We adopt the same embedding method as in Garg et al. (2022).
1321 The input dimension is $d = 20$, with 12 layers and 8 heads. All GPT-2 experiments run on an
1322 NVIDIA Tesla V100 GPU and complete in approximately 10 minutes.

1323 1324 K.3 DETAILS OF THE LLM EXPERIMENTS IN FIGURE 3

1325
1326 For our large language model experiments, we employ LLaMA2-7B (Touvron et al., 2023) and the
1327 SCIQ dataset (Welbl et al., 2017), which contains science questions with supporting information.
1328 We generate ICL problems following Gao et al. (2024), selecting in-context demonstrations using
1329 the TopK retrieval technique (Liu et al., 2022) to ensure relevance. An example ICL sample from
1330 SCIQ appears in Table 1. To simulate distribution shift, we follow Gao et al. (2024) and introduce
1331 noisy labels—incorrect but semantically related—to the in-context demonstrations (Appendix K.4).
1332 Table 2 gives an example. The noisy ratio denotes the fraction of demonstrations with noisy
1333 labels (e.g., 0.6 means 60% noisy). We modify and use the codebase of Gao et al. (2024), built on
1334 HuggingFace (Wolf et al., 2020) and OpenICL (Wu et al., 2023). All LLM experiments run on an
1335 NVIDIA A40 GPU; a single Monte Carlo run per plot in Figure 3 takes a few hours.

1336 1337 K.4 WHY IN-CONTEXT DEMONSTRATIONS WITH NOISY LABELS AS AN EXAMPLE OF 1338 DISTRIBUTION SHIFT?

1339
1340 The link between noisy labels in demonstrations and distribution shift may not be immediately ob-
1341 vious. Quantifying pretraining–test shifts for pretrained LLMs is inherently difficult because their
1342 pretraining data are complex mixtures of sources (Touvron et al., 2023). However, we hypothe-
1343 size—following Gao et al. (2024)—that high perplexity can serve as an empirical indicator of
1344 distribution shift. Inputs aligned with the training distribution tend to yield low perplexity (high-
1345 confidence generation), whereas contradictory or out-of-distribution inputs induce high perplexity.
1346 Since noisy demonstrations are expected to contradict training-set patterns, they yield high perplex-
1347 ity and thereby act as a proxy for distribution shift. Consequently, introducing noisy labels into
1348 in-context demonstrations constitutes a principled way to test the robustness of in-context learning
1349 under distribution shift.

1350	In-context demonstration 1
1351	
1352	Support: Cells are organized into tissues, tissues are organized into organs.
1353	Question: What is considered the smallest unit of the organ?
1354	Answer: Cells
1355	In-context demonstration 2
1356	Support: ... four basic types of tissue: connective, muscle, nervous , and epithelial.
1357	Question: The four basic types of tissue are epithelial, muscle, connective, and what?
1358	Answer: nervous
1359	:
1360	
1361	Test example
1362	
1363	Support: All forms of life are built of at least one cell. A cell is the basic unit of life.
1364	Question: What are the smallest structural and functional units of all living organisms?
1365	Output: ???

Table 1: A sample illustration of in-context learning on the SCIQ dataset.

Setting	In-context demonstration
True Label	Support: Cells are organized into tissues, tissues are organized into organs. Question: What is considered the smallest unit of the organ? Label: Cells
Noisy Label	Support: Cells are organized into tissues, tissues are organized into organs. Question: What is considered the smallest unit of the organ? Label: tissues

Table 2: An example of a true label vs. a relevant but noisy label. A relevant label is related to the question but is not necessarily true. Therefore, relevant labels can be considered noisy labels.

L REST OF THE RELATED WORK

ICL by Transformers — The ICL capability of Transformers was first brought to prominence by Brown et al. (2020), leading to a surge of empirical and theoretical investigations. Several works have demonstrated that ICL performance improves with model scale Wei et al. (2022); Olsson et al. (2022); Schaeffer et al. (2023), underscoring its importance in modern AI systems. To better understand this phenomenon, synthetic tasks such as linear regression have served as controlled testbeds for analyzing ICL in Transformers (Garg et al., 2022; Zhang et al., 2024; Raventós et al., 2023). A prevailing hypothesis in recent theoretical work is that Transformers implicitly learn algorithms during pretraining, which they subsequently execute during inference (Bai et al., 2023; Li et al., 2023; Akyürek et al., 2023; Ahn et al., 2023; Von Oswald et al., 2023; Mahankali et al., 2024; Fu et al., 2024; Zhang et al., 2024; Li et al., 2024; Park et al., 2024). There remains ongoing debate over the precise nature of these learned procedures. However, our work focuses on a fundamentally different question, which is how attention temperature affects the ICL performance of pretrained Transformers under distribution shifts.

M INTERPRETING THE CLOSED-FORM OPTIMAL TEMPERATURE: ANALYTICAL REDUCTIONS AND EMPIRICAL VALIDATION

This section provides an expanded and more interpretable discussion of the optimal attention temperature derived in Theorem 4.7. Our goal is to illustrate how the closed-form expression behaves

under concrete distribution shifts and to clarify its relationship to the moment-ratio heuristic introduced in Appendix J.

M.1 ANALYTICAL SPECIALIZATION OF THEOREM 4.7

To obtain a simplified expression, we consider a simple but representative family of shifts as follows. The training distributions are

$$(\text{input}) \mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (\text{task}) \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (\text{noise}) \epsilon_i \sim \mathcal{N}(0, 0.1^2).$$

We then introduce three independent shift parameters for the test distribution:

$$(\text{input}) \mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, a\mathbf{I}), \quad (\text{task}) \mathbf{w} \sim \mathcal{N}(\mathbf{0}, b\mathbf{I}), \quad (\text{noise}) \epsilon_i \sim \mathcal{N}(0, \sigma^2),$$

where $a > 0$ controls the input variance shift, $b > 0$ controls the task-parameter variance shift, and $\sigma > 0$ controls the noise-variance shift. This setting preserves isotropy, which makes it possible to derive a clean closed-form expression while still connecting directly to realistic distribution shifts.

Substituting these shifted distributions into the optimal-temperature expression in (15) yields

$$\tau_{\text{optimal}} = \frac{2\text{Tr}(\mathbf{a}\mathbf{I}\mathbf{M}_{11}^T (ab\mathbf{I} + \frac{1}{l}(\sigma^2 + abd)\mathbf{I})\mathbf{a}\mathbf{I}\mathbf{M}_{11})}{\text{Tr}(\mathbf{a}\mathbf{I}(ab\mathbf{I}(\mathbf{M}_{11} + \mathbf{M}_{11}^T)))}, \quad (132)$$

$$= \left(a + \frac{1}{l} \left(\frac{\sigma^2}{b} + ad \right) \right) \frac{\text{Tr}(\mathbf{M}_{11}^T \mathbf{M}_{11})}{\text{Tr}(\mathbf{M}_{11})}. \quad (133)$$

This concrete formula makes several effects fully explicit:

- *Input shift* — Increasing input variance a directly scales τ_{optimal} upward. This aligns with our earlier results (Figure 1) and the heuristic derived in Appendix J, which suggests that a greater variance of pre-softmax scores requires a higher temperature to maintain robustness to input shifts.
- *Noise shift* — Increasing noise variance σ^2 also increases τ_{optimal} , but only through the $\frac{1}{l}$ term, reflecting the diminishing effect of noise when more in-context examples are available.
- *Task shift* — Increasing task variance b reduces the effect of noise (via σ^2/b), slightly lowering the optimal temperature.
- *Context length* — As $l \rightarrow \infty$, the $\frac{1}{l}$ term vanishes, giving a simplified asymptotic rule:

$$\tau_{\text{optimal}} \rightarrow a \cdot \frac{\text{Tr}(\mathbf{M}_{11}^T \mathbf{M}_{11})}{\text{Tr}(\mathbf{M}_{11})}.$$

Note that under the considered training distribution, we have $\text{Tr}(\mathbf{M}_{11}^T \mathbf{M}_{11})/\text{Tr}(\mathbf{M}_{11}) \approx 1$, which implies that $\tau_{\text{optimal}} \rightarrow a$ as $l \rightarrow \infty$. Thus, even in this simplified scenario, the optimal temperature explicitly tracks the magnitude and nature of the distribution shifts.

M.2 CONNECTION TO THE MOMENT-RATIO HEURISTIC

Recall that Appendix J proposed a practical heuristic based on the ratio of the second and first moments of pre-softmax attention scores. The expression in (133) provides further theoretical justification for that heuristic.

Indeed, for some $i \neq j$,

$$\tau_{\text{optimal}} = a \frac{\text{Tr}(\mathbf{M}_{11} \mathbf{M}_{11}^T)}{\text{Tr}(\mathbf{M}_{11})} + \frac{1}{l} \left(\frac{\sigma^2}{b} + ad \right) \frac{\text{Tr}(\mathbf{M}_{11} \mathbf{M}_{11}^T)}{\text{Tr}(\mathbf{M}_{11})}, \quad (134)$$

$$= \frac{\mathbb{E}[(\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j)^2]}{\mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_i]} + \frac{1}{l} \left(\frac{\sigma^2}{b} + ad \right) \frac{\text{Tr}(\mathbf{M}_{11} \mathbf{M}_{11}^T)}{\text{Tr}(\mathbf{M}_{11})}, \quad (135)$$

where we used the moments calculated in Appendix J to reach the final line. Here, since $\text{Tr}(\mathbf{M}_{11}^T \mathbf{M}_{11})/\text{Tr}(\mathbf{M}_{11}) \approx 1$ for the considered training distribution, this gives the approximation:

$$\tau_{\text{optimal}} \approx \underbrace{\frac{\mathbb{E}[(\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_j)^2]}{\mathbb{E}[\mathbf{z}_i^\top \mathbf{M} \mathbf{z}_i]}}_{\text{moment-ratio}} + \underbrace{\frac{1}{l} \left(\frac{\sigma^2}{b} + ad \right)}_{\text{correction for small } l}. \quad (136)$$

1458 This demonstrates that the moment-ratio heuristic is not an ad-hoc rule, but a theoretically grounded
 1459 approximation of the exact closed-form optimal temperature.
 1460

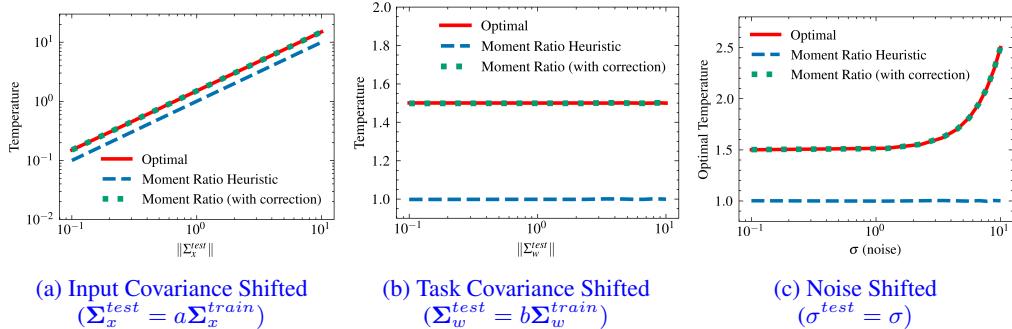
1461 **M.3 NUMERICAL ILLUSTRATION OF THE OPTIMAL TEMPERATURE AND ITS
 1462 GENERALIZATION BEHAVIOR**

1464 To complement the analytical reductions above, we now present numerical experiments illustrating
 1465 how the optimal attention temperature varies under different types of distribution shift. These simu-
 1466 lations closely follow the structure predicted by the closed-form expression in Theorem 4.7 and its
 1467 simplified forms in (133) and (136).

1468 Figure 7 shows the optimal temperature as a function of (i) input covariance shift, (ii) task covariance
 1469 shift, and (iii) noise-variance shift. In each subplot, a single shift parameter (a , b , or σ) is varied
 1470 while the others remain fixed. The closed-form optimal temperatures (15) align closely with the
 1471 moment-ratio heuristic with correction (136). As anticipated:

- higher input variance a or noise level σ increases the optimal temperature, while
- task variance b does not significantly change the optimal temperature.

1472 Figure 8 presents the corresponding generalization errors. These results demonstrate that the closed-
 1473 form characterization accurately captures the key dependencies of the optimal temperature under a
 1474 range of distribution shifts.



1475 Figure 7: Optimal temperature under different types of distribution shift. The moment-ratio heuristic
 1476 (Appendix J) is derived from the closed-form optimal temperature, with its corrected form given
 1477 in (136). During training, we use $m = 5000$ tasks, noise level $\sigma^{train} = 0.1$, means $\mu_x^{train} =$
 1478 $\mu_w^{train} = 0$, and covariances $\Sigma_x^{train} = \Sigma_w^{train} = \mathbf{I}$. At test time, we set $\mu_x^{test} = \mu_w^{test} = 0$,
 1479 $\Sigma_x^{test} = a\mathbf{I}$, $\Sigma_w^{test} = b\mathbf{I}$, and $\sigma^{test} = \sigma$. In each subplot, exactly one of a , b , or σ is varied, while
 1480 the other two remain fixed at their training-distribution values to isolate the effect of a single shift
 1481 dimension. The dimension and context length are set to $d = 50$ and $l = 2d$.



1512 Figure 8: Generalization errors corresponding to Figure 7.