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ABSTRACT

Video and audio are closely correlated modalities that humans naturally perceive
together. While recent advancements have enabled the generation of audio or video
from text, producing both modalities simultaneously still typically relies on either a
cascaded process or multi-modal contrastive encoders. These approaches, however,
often lead to suboptimal results due to inherent information losses during inference
and conditioning. In this paper, we introduce SyncFlow, a system that is capable of
simultaneously generating temporally synchronized audio and video from text. The
core of SyncFlow is the proposed dual-diffusion-transformer (d-DiT) architecture,
which enables joint video and audio modelling with proper information fusion.
To efficiently manage the computational cost of joint audio and video modelling,
SyncFlow utilizes a multi-stage training strategy that separates video and audio
learning before joint fine-tuning. Our empirical evaluations demonstrate that
SyncFlow produces audio and video outputs that are more correlated than baseline
methods with significantly enhanced audio quality and audio-visual correspondence.
Moreover, we demonstrate strong zero-shot capabilities of SyncFlow, including
zero-shot video-to-audio generation and adaptation to novel video resolutions
without further training.

1 INTRODUCTION

Humans experience the world multimodally, where audio and video are naturally related, providing
complementary information that enhances perception and understanding. This natural synchronization
is reflected in most media content we consume, such as movies, virtual reality content, and human-
computer interfaces. With the advancement of artificial intelligence generated content (AIGC), there
has been substantial progress in generating audio or video from textual descriptions. State-of-the-art
models have achieved impressive results in tasks such as image generation (Rombach et al., 2022;
Ramesh et al., 2021), audio generation (Yang et al., 2023; Liu et al., 2023a; 2024a; Kreuk et al.,
2022), video generation (Singer et al., 2022b; Ho et al., 2022; OpenAI, 2024b), and audio-visual
cross-modal generation (Iashin & Rahtu, 2021; Luo et al., 2024; Mei et al., 2023; Mo et al., 2024),
showcasing the potential of AIGC in creating realistic and engaging content.

Despite the strong correlation between audio and video, most existing AIGC research treats audio and
video generation as isolated tasks, generating each modality independently (Żelaszczyk & Mańdziuk,
2022; Park et al., 2022; Yariv et al., 2024). For instance, diffusion models have recently shown
potential as real-time game engines by predicting frames sequentially (Valevski et al., 2024), but
audio is still not incorporated into the generation process despite the crucial role of audio in enhancing
the immersive and engaging experience in gaming. While there are a few studies that explore joint
audio-video generation, such as MMDiffusion (Ruan et al., 2023) and the more recent AV-DiT (Wang
et al., 2024), these approaches are primarily designed for unconditional generation and are often
domain-specific, such as focusing on dancing video (Li et al., 2021) or natural scenes (Lee et al.,
2022). Notably, MMDiffusion offers examples of open-domain, unconditional joint audio-video
generation but lacks evaluation metrics or comparative results in its publication, leaving a gap in
assessing its effectiveness. Whether audio and video can be generated simultaneously from text using
a unified approach has received limited attention.

Two main approaches have emerged that bring us closer to joint text-to-audio-video (T2AV) gen-
eration, though each comes with its limitations. One approach involves employing two separate
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systems, such as concatenating a text-to-video (T2V) model with a video-to-audio (V2A) model
or equipping a video understanding model with a text-to-audio (T2A) model (Chen et al., 2024a).
While these cascaded systems can generate both modalities, they introduce additional latency and the
risk of error propagation during the cascaded processing. Moreover, the lack of direct interaction
between the three modalities in such systems can potentially lead to sub-optimal results. Another
approach leverages a contrastively aligned latent space to generate audio and video jointly. For
instance, models like composable diffusion (CoDi) (Tang et al., 2024b) align visual, audio, and
textual representations in a shared latent space for T2AV generation. Similarly, the model proposed
by Xing et al. (2024) adopts pretrained Imagebind (Girdhar et al., 2023), a model that aligns six
modalities with contrastive learning to guide the generation of audio and video. However, these
methods are limited by using a one-dimensional contrastive representation, which contains limited
temporal information. Some previous work (Tang et al., 2024b) even targeted audio and video
with different durations, resulting in poor temporal alignment between the modalities. Recently,
TVGBench (Mao et al., 2024) addresses a text-to-audible-video generation task, which marks the
first attempt on the text conditioning audio-video joint generation.

This paper introduces SyncFlow, a model capable of generating temporally synchronized audio and
video from text. We propose a dual-diffusion-transformer (d-DiT) architecture to handle the synchro-
nized generation of video and audio. The d-DiT builds upon the Diffusion Transformer (DiT) (Peebles
& Xie, 2023a) architecture, which has demonstrated strong performance in both video and image
generation (Esser et al., 2024; OpenAI, 2024b). To address the challenges of computational cost and
the scarcity of paired audio-video data, we propose a modality-decoupled multi-stage training strategy.
Specifically, we decouple the model training on video and audio before joint audio-video fine tuning.
Starting with a pre-trained text-to-video model, we freeze the video generation component and adapt
it to audio generation by leveraging intermediate features from the video model as conditioning inputs
for audio synthesis. This decoupled approach allows the video generation related parameters to be
trained using widely available text-video datasets, while the audio component can be adapted with a
relatively small amount of paired data. Given the high computational demands of video generation,
particularly for high-resolution and high-frame-rate outputs, our strategy significantly reduces the
computational overhead of joint training and mitigates the need for large-scale text-video-audio
datasets. Finally, the entire d-DiT model is finetuned end-to-end on both video and audio modalities
to enhance the generation quality. Both the audio and video generation components of SyncFlow are
built using a flow-matching latent generative model (Lipman et al., 2022). Our experiment shows
SyncFlow not only achieves temporally synchronized T2AV but also achieves strong performance
compared with cascaded systems and systems built with contrastive encoders. In summary, our
contributions are as follows:

• We introduce SyncFlow for synchronized joint video-audio generation from text (T2AV).
SyncFlow can jointly generate temporally synchronized 16 FPS video and 48kHz sampling
rate audio with open-domain text conditions.

• We empirically show that SyncFlow performs better than other T2AV systems based on
cascaded processing and multi-modal contrastive encoders.

• The pretrained SyncFlow model demonstrates strong zero-shot performance on video-
to-audio generation and a zero-shot adaptation ability to new video resolutions for joint
audio-video generation.

2 RELATED WORKS

Rectifier Flow Matching Flow matching (FM) (Lipman et al., 2022) is a powerful method for gener-
ative modelling that enables efficient training of continuous normalizing flows (CNFs) (Papamakarios
et al., 2021) by directly predicting vector fields along fixed conditional probability paths. Building
on FM, rectified flow matching (RFM) (Liu et al., 2023b) enforces straight sampling trajectories
between prior and target data distributions. This process also shares a similar intuition as optimal-
transport-flow (Onken et al., 2021). Compared with diffusion-based methods (Ho et al., 2020), RFM
demonstrates improved sample quality on image generation while reducing the number of sampling
steps (Lipman et al., 2022). Subsequent works have expanded the use of RFM to various applications,
such as text-to-image generation (Esser et al., 2024; Liu et al., 2024b), point cloud generation (Wu
et al., 2023a), text-to-speech synthesis (Guo et al., 2024; Mehta et al., 2024), source separation (Yuan
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et al., 2024) and sound generation (Vyas et al., 2023; Prajwal et al., 2024), highlighting the versatility
of RFM across different domains.

Text-conditioned Generative Modeling Recent years have witnessed remarkable progress in text-
conditioned generative modelling. For text-to-image generation, models such as DALL-E 2 (Ramesh
et al., 2022) and Stable Diffusion Series (Rombach et al., 2022) demonstrated strong performance
by producing high-quality images aligned with the textual inputs. In the audio domain, there
has been substantial advancement in generating speech, music, and environmental sounds from
text or transcriptions (Tan et al., 2022; Liu et al., 2024a; Chen et al., 2024b; Ye et al., 2024; Li
et al., 2024; Agostinelli et al., 2023; Copet et al., 2023; Huang et al., 2023). In video generation,
CogVideo (Hong et al., 2023) and Make-a-Video (Singer et al., 2022a) have demonstrated early
success by effectively adapting text-to-image methodologies to video through language models and
diffusion-based approaches, respectively. Later, the diffusion-transformer architecture (Peebles & Xie,
2023b) has further enhanced video generation capabilities, as showcased by the OpenAI release of
Sora (OpenAI, 2024b). The recently proposed CogVideoX (Yang et al., 2024) scales the open-source
video generation model to 5-billion parameters, achieving state-of-the-art performance. SyncFlow
differs from prior work in that it focuses on the joint generation of synchronized audio and video,
posing challenges in both computational efficiency and coordination between modalities.

Joint Audio-visual Generation While significant progress has been made in generating audio,
video, and images independently, the task of simultaneously generating audio and video from
text remains underexplored. Although CoDi-2 (Tang et al., 2024a) demonstrates the ability to
generate video frames and sound from text instructions, it does not directly address the T2AV
task. MMDiffusion (Ruan et al., 2023), AV-DiT (Wang et al., 2024), TAVDiffusion (Mao et al.,
2024) and Hayakawa et al. (2024) have demonstrated success in the joint generation of videos with
accompanying audio. Some approaches perform text-conditioned joint audio-video generation by
relying on contrastive modality encoders, as seen in CoDi (Tang et al., 2024b) and (Xing et al.,
2024), where a shared video-audio-text contrastive-aligned one-dimensional representation is used to
condition both audio and video generation. While this allows for joint generation, the one-dimensional
contrastive representation lacks sufficient temporal information, limiting the performance of the
model on temporal synchronization. In fact, the audio and video samples generated by CoDi1 exhibit
mismatched duration, falling short of achieving true synchronization.

3 METHOD

Problem Definition This section introduces the implementation of SyncFlow for jointly generating
video frames yV = {yV1 , yV2 , . . . , yVN} and corresponding audio samples yA = {yA1 , yA2 , . . . , yAM}
given a text input s, where N is the number of video frames and M is the number of audio samples.
Both outputs are generated simultaneously to ensure temporal alignment between the video and
audio. The video frames yV are tensors of shape RF×C×H×W , where F is the number of frames,
C are the RGB channels, and H and W are the height and width of each frame, respectively. The
audio samples yA are monophonic, represented as a vector of shape RM , where M is the length
of the audio signal in samples. The generative process is defined as G(s; Θ) → (yV , yA), where
G(s; Θ) represents the joint generative function conditioned on the text input s, and Θ are the model
trainable parameters. Sections 3.1 and 3.2 provide a detailed explanation of the implementation of
the function G. Section 3.1 presents the high-level overview of the proposed method, introducing
the concept of latent rectifier flow matching (RFM), constructing latent spaces for both video and
audio and applying RFM for joint video and audio generation. In Section 3.2, we detail the design
of the dual-diffusion-transformer (d-DiT) architecture, elaborating on how it processes the latent
variables of both modalities. Additionally, Section 3.2 outlines the flow-matching loss function used
to optimize the model for synchronized multimodal generation and the formulation of classifier-free
guidance (Ho & Salimans, 2021) we used during inference.

3.1 LATENT RECTIFIER FLOW MATCHING

Preliminary: Rectifier Flow Matching (RFM) The training of SyncFlow is based on rectifier flow
matching (Liu et al., 2023b), which improves upon flow matching (Lipman et al., 2022) by optimizing

1https://github.com/microsoft/i-Code/tree/main/i-Code-V3
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the transport between the prior distribution p0 and the target distribution p1. Given a training data
sample x1 ∼ p1 from the target distribution and a sample from the prior distribution x0 ∼ p0, the
target velocity field v of RFM is calculated as v = x1 − x0. This velocity field represents the optimal
direction for transporting the sample x0 to the sample x1 along a straight trajectory. We follow Tong
et al. (2024) to perform mini-batch optimal transport within the batch of x0 and x1 during training to
find an approximate solution to the dynamic optimal transport.

To ensure that the transport follows a straight path between the prior and the target distributions,
RFM enforces that each point on this trajectory predicts the same velocity field. The intermediate
points along the trajectory are determined by the forward process of the RFM, where the noisy latent
variable at time t ∈ [0, 1] is given by xt = (1 − t)x0 + tx1. At each time step t, given the latent
sample xt, the RFM model u(xt, t; θ) is optimized toward predicting the velocity field that minimizes
the deviations with the target velocity field v = x1 − x0, in which θ are the trainable parameters for
RFM. With a pretrained velocity field prediction model u(xt, t; θ), the sampling process of RFM is
obtained by solving the ordinary differential equations (ODE) dxt

dt = u(xt, t; θ), where the generative
sampling process can be formulated as

x̂1 = x0 +

∫ 1

0

u(xt, t; θ) dt. (1)

In practice, the integral in Equation (1) is discretized into N sampling steps for numerical approxima-
tion. The multiple sampling steps of RFM break down the complex generative process into smaller,
more manageable steps, facilitating more accurate generation compared with directly generating
samples with one step, which intuitively aligns with the inference-time scaling laws (Snell et al.,
2024), as recently demonstrated by the OpenAI-o1 model (OpenAI, 2024a).

Latent Representation for Video and Audio Raw video and audio data often have extremely large
dimensionality. This results in high computational complexity during model training and inference,
particularly when dealing with high video frame rates (FPS) and audio sampling rates. To efficiently
model the high-dimensional yV and yA, we adopt a latent modelling approach inspired by the latent
diffusion model (Rombach et al., 2022). On both video and audio modalities, we train variational
autoencoders (VAE) (Kingma & Welling, 2014) with a latent space with compressed dimensions
compared with the original video or audio. The latent encodings for video and audio are formulated
as zV = Evideo(y

V ) ∈ RF ′×C×H′×W ′
, and zA = Eaudio(y

A) ∈ RT×DA , where Evideo and Eaudio are
pre-trained VAE encoders for video and audio, respectively. The video encoder Evideo, based on
a video spatial-temporal VAE proposed by Zheng et al. (2024), compresses the high-dimensional
frames yV into a latent representation zV with reduced dimension on both spatial and temporal axes.
The audio encoder Eaudio is derived from the Encodec (Défossez et al., 2023), which was originally
designed for learning discrete audio latent representation. We adapt Encodec by removing vector
quantization layers and adding a kullback–leibler (KL) divergence loss to regularize the variance of
the latent space following the training losses used in a standard VAE models (Kingma & Welling,
2014).

Both the video VAE and the audio VAE are paired with corresponding decoders that map the latent
representations back to their original high-dimensional spaces. Specifically, the video decoder DV

reconstructs the video frames from the latent space zV , while the audio decoder DA reconstructs
the audio samples from the latent space zA. The decoding processes can be described as ŷV =
DV (zV ), ŷA = DA(zA). This ensures that the compressed latent variables can be converted back
to full-resolution video and audio outputs after generation in the latent space.

Latent Rectifier Flow Matching The objective of SyncFlow is to generate the video and audio data
from a unified perspective from the text. The core idea of SyncFlow can be formulated as

(v̂At , v̂
V
t ) = u(zVt , zAt , t, s; θ), (2)

where zVt and zAt represent the video and audio latent variables at time t, and u(·) is the function that
predicts the velocity fields for both modalities, conditioned on the noisy latents, text conditions s, and
time t. Similar to the u(zt, t; θ) used in Equation (1), the predicted velocity fields v̂At and v̂Vt can be
used to sample ẑA1 and ẑA1 by solving the ODE, followed by decoding through the VAE decoders to
obtain the final generation output. Section 3.2 introduces the implementation of u(·) in Equation (2).
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3.2 DUAL-DIFFUSION TRANSFORMER

The input variables of u(·) in Equation (2), including the noisy video latent zVt and noisy audio latent
zAt differ in shape, for which we design a dual-diffusion-transformer (d-DiT) architecture, as shown
in Figure 1. The d-DiT comprises two distinct towers (i.e., stacks of layers) for handling video and
audio data, with a modality adaptor facilitating information sharing from the video tower to the audio
tower.

LN → Linear

Pre-Conv3D → LN

Pre-Linear

Post-Linear
× L layers × L layers

Spatial Attention 
Layer

Temporal Attention 
Layer

B×(Tv×S)×Ev

B×(Tv×S)×Ev

Audio Transformer 
Layer

B×Ta×Ea

B×Ta×Ea

Modality
Adaptor

Spatial Attention 
Layer

Temporal Attention 
Layer

B×(Tv×S)×Ev

B×(Tv×S)×Ev

Audio Transformer 
Layer
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Layer

𝐵 × (𝑇𝑣 × 𝑆) × 𝐸𝑣
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Audio Transformer 
Layer
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Adaptor
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Figure 1: The main architecture of dual-diffusion-
transformer (d-DiT) used by SyncFlow. Two parallel towers
handle video and audio generation, with modality adaptors
to enhance synchronization. Text input conditions the video
generation towers through cross-attentions.

Video Generation Tower The video
latent zVt is first processed by a three-
dimensional convolutional network,
which expands its channel dimension
to match the embedding dimension
E. Subsequently, the convolutional
outputs are spatially split into 2 × 2
patches, resulting in a tensor of shape
B × (Tv × S) × Ev, where B is the
batch size, Tv is the video latent tem-
poral dimension size, S is the number
of spatial patches, and Ev is the em-
bedding dimension.

To capture both per-frame spatial in-
formation and temporal dynamics,
each layer in the video generation
tower includes a spatial attention layer
and a temporal attention layer. Al-
though both attention mechanisms
share the same architecture, they dif-
fer in how the input is reshaped before
performing self-attention (Vaswani
et al., 2017). For spatial attention,
self-attention is applied to the patches
within each frame independently, by
combining the temporal and batch di-
mensions of the self-attention input into a tensor of shape (B × Tv)× S ×Ev . In temporal attention,
the spatial patches are combined with the batch dimension before input, and self-attention is applied
to the temporal sequence, yielding a tensor of shape (B × S)× Tv ×Ev . To incorporate text-based
control, we use the T5 text encoder (Raffel et al., 2020) to extract rich semantic embeddings from
the input text. The encoder part of T5, pre-trained on a variety of language tasks, produces textual
embeddings that are injected into both the spatial and temporal attention layers via cross-attention.

Audio Generation Tower The audio generation tower has the same number of layers in parallel with
the video generation tower. The input of the audio generation tower has shape B×Ta×Ea, where Ta

and Ea are the temporal dimensions and embedding dimension of the audio VAE latent, respectively.
Following the architecture used in AudioBox (Vyas et al., 2023), each audio transformer layer
includes 16-head self-attention, cross-attention, and a feed-forward MLP, with layer normalization
applied after each transformation. The output of each temporal attention layer in the video tower is
denoted as F (l)

video, and is used as conditioning information for the corresponding audio transformer
layer. We use the output from the temporal attention layers as conditioning information, rather than
the spatial attention layers, as they potentially contain richer temporal information.

Modality Adaptor Instead of directly using F (l)
video as key and value inputs in the cross-attention

operation of the audio transformer layer, F (l)
video passes through a modality adaptor. This adaptor

transforms the intermediate video features to ensure they are optimally suited for interacting with the
audio transformer. As shown in Figure 2, the default modality adaptor we used includes a multi-head
self-attention layer, followed by layer normalization and linear transformation. Our experiment
indicates the adaptor helps the model to achieve lower validation loss and better metrics score (see
Figure 6 and Table 4).
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Architecture Details

Figure 2: The detailed implementation of the spatial-temporal attention layers, audio transformer
layers, and modality adaptor. The output of the modality adaptor is concatenated with the flow
matching time step embedding as the cross-attention condition to the audio transformer layer.

To optimize the d-DiT architecture, the flow-matching loss is defined as the mean square
error (MSE) loss between the target velocity field and model prediction, given by Lfm =
Et∼U(0,1)

[
∥u(zVt , zAt , t, s; θ)− (vVt , vAt )∥2

]
, where vVt = zV1 − zV0 and vAt = zA1 − zA0 represent

the target velocities of the video and audio latent spaces, respectively.

During sampling, we employ classifier-free guidance (CFG) (Ho & Salimans, 2021), which has
been shown to be a helpful technique to enhance the generation quality and the relevancy to the text
conditions (Liu et al., 2023a). With the formulation of CFG, the final velocity prediction becomes a
combination of conditional and unconditional velocity prediction.

(v̂At , v̂
V
t ) = û(zVt , zAt , t; θ) = u(zVt , zAt , t; θ) + w ·

(
u(zVt , zAt , t, s; θ)− u(zVt , zAt , t; θ)

)
, (3)

where w is the CFG guidance weight. The effects of CFG are explored in the ablation studies.

Modality-decoupled Multi-stage Learning Generative modelling of video and audio data is compu-
tationally intensive. To address this, we propose a modality-decoupled training strategy consisting of
three stages: (1) Pretraining the video tower on text-video paired data; (2) Adapting the pretrained
video tower for audio generation, where the audio tower is trained while the video tower remains
frozen; (3) Jointly fine-tuning both the video and audio towers on the full training set. This approach
offers two main advantages. Due to the scarcity of text-video-audio data, our method is data-efficient
as it allows the video tower to be pretrained separately. Second, this method is computationally
efficient. Since the video tower is frozen during the second stage, the audio tower can be trained with
larger batch size, reducing computational overhead while improving performance. Experiments on
audio generation can be conducted more efficiently without retraining the video tower.

4 EXPERIMENTAL SETUP

Dataset We conduct experiments using the curated VGGSound (Chen et al., 2020), and the Greatest
Hits dataset (Owens et al., 2016). VGGSound was initially built using a specifically designed pipeline
to ensure strong audio-video correspondence and to filter out samples with significant ambient noise.
The Greatest Hits dataset (Owens et al., 2016) contains 977 videos of various objects being hit,
scratched, or poked with a drumstick, capturing interactions with materials such as metal, plastic,
cloth, and gravel. Each video includes both visual and audio data, making it ideal for studying the
correspondence between physical interactions and their resulting sounds. We split each video in the
Greatest Hits dataset into 10-second segments, resulting in a total of 2, 995 segments, from which we
select 744 segments as the test set, ensuring that no test samples originate from the same videos used
for training. For both the VGGSound and the Greatest Hits dataset, we use the VideoOFA (Chen
et al., 2023) to generate video captions automatically. We primarily use the Greatest Hits dataset for
ablation studies as it is smaller in scale.
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Evaluation Metrics To evaluate the quality of the generated video and audio, we use Fréchet
video distance (FVD) and Fréchet audio distance (FAD). FVD measures the similarity between
the distribution of generated and real videos by comparing feature representations extracted from
a pre-trained I3D model (Carreira & Zisserman, 2017), while FAD compares generated and real
audio using features from the VGGish model (Hershey et al., 2017). To assess the similarity between
the generated audio and target audio, we use KL divergence (Kreuk et al., 2022), which measures
the divergence between the VGGish classification output of paired audio samples. Additionally,
we use the CLAP score (Wu et al., 2023b) to measure the alignment between the generated audio
and the input text caption. To further examine the relationship between video, audio, and text, we
employ ImageBind (Girdhar et al., 2023) to extract contrastive embeddings from each modality and
calculate cosine similarity, referred to as the ImageBind Score (IB) (Mei et al., 2023). For instance,
IB (Gen-A&Gen-V) denotes the IB score between the generated audio and video, which is similar to
the AVHScore metrics proposed in Mao et al. (2024).

Setup Details We randomly sample two-second video-audio segments from the training dataset,
using 16 FPS video data with centre cropping and resizing to a resolution of 256× 256. The audio
data are sampled at 48kHz. The Video VAE downsamples the temporal dimension by a factor of 4
and the spatial dimensions by a factor of 8. We flatten the output of Pre-Conv3D (see Figure 1) into a
sequence of tensors by 2× 2 patch splitting on the spatial dimension. Building upon the Encodec, the
audio VAE downsamples the temporal dimension by a factor of 960, resulting in an audio latent with
a temporal resolution of 50Hz and an embedding dimension of 1142. The video generation tower
utilizes a pretrained text-to-video generation model OpenSora 2. Both video and audio generation
towers in d-DiT have 28 layers and a transformer feature dimension of 1142. The video VAE and
audio VAE are pre-trained independently and remain frozen during the SyncFlow training. For the
VGGSound dataset, we train the audio generation tower with a batch size of 16 per GPU for 150, 000
steps on 32 H100 GPUs, taking about 140 hours. Joint fine-tuning of the audio and video towers is
done with a batch size of 2 per GPU for 20, 000 steps. On the smaller Greatest Hits dataset, we train
for 25, 000 steps with a batch size of 16 on 8 H100 GPUs. We set the CFG weight in Equation (3) to
6.0 by default and use 50 sampling steps during generation. Additionally, we randomly drop the text
conditioning with a 10% probability during training to enable CFG.

Baselines For the cascaded model baselines, we combine the OpenSora model with three publicly
available T2A models: AudioLDM (Liu et al., 2023a), AudioLDM 2 (Liu et al., 2024a), and
AudioGen (Kreuk et al., 2022), two publicly available V2A models: SpecVQGAN (Iashin & Rahtu,
2021), Diff-Foley (Luo et al., 2024), and our reproduction of another V2A model FoleyGen (Mei et al.,
2023). The latter three V2A models are also compared against SyncFlow in video-to-audio generation
tasks. The FoleyGen we used is our reproduced version following the original paper (Mei et al., 2023).
AudioLDM is a latent diffusion model designed for generating audio from text, while AudioLDM 2
improves upon this by incorporating self-supervised pretraining for better audio quality and diversity.
AudioGen frames audio generation as a conditional language modelling task, using transformer
architectures to produce audio from textual descriptions. SpecVQGAN utilizes a vector-quantized
autoencoder to learn compact and meaningful audio representations, combined with a transformer
decoder for V2A generative modeling. Diff-Foley leverages diffusion models to create realistic sound
effects for videos. As the work that perform T2AV generation using contrastively pretrained encoders,
we reproduce the result of CoDi for comparison. In the original CoDi training, the video duration is 2
seconds while the audio duration is 10 seconds. For evaluation, we trim the CoDi audio generation
output to the first 2 seconds to match our setup.

5 RESULT

Table 1 presents the evaluation results on the VGGSound dataset, including cascaded systems, CoDi,
and various SyncFlow configurations trained on the VGGSound training set. In the SyncFlow-VGG
setup, the pretrained video generation tower is frozen, and only the audio generation tower and
modality adaptors are optimized. SyncFlow-VGG128×128 evaluates the pretrained SyncFlow on
a different target video resolution (128 × 128), which SyncFlow-VGG was not explicitly trained
on. SyncFlow-VGG-AV-FT involves joint fine-tuning of both the audio and video towers, with

2https://github.com/hpcaitech/Open-Sora
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Table 1: Performance evaluation of the proposed method on the VGGSound evaluation set. Gen-V
denote the generated video. GT-V and GT-T means the ground truth video and text in the evaluation
set, respectively. † denote the zero-shot setting.

Setting FAD ↓ KL ↓ CLAP ↑ IB Generated Audio
&Gen-V ↑ &GT-V ↑ &GT-T ↑

GroundTruth 0.0 0.0 0.275 0.276 0.276 0.200

OpenSora + AudioLDM 6.56 3.29 0.248 0.104 0.078 0.103
OpenSora + AudioLDM 2 8.61 3.08 0.255 0.137 0.116 0.107
OpenSora + AudioGen 7.13 3.38 0.246 0.094 0.100 0.100
OpenSora + SpecVQGAN 5.50 3.06 0.172 0.086 0.084 0.065
OpenSora + Diff-Foley 10.58 4.30 0.185 0.144 0.097 0.085
OpenSora + FoleyGen 3.69 3.08 0.228 0.159 0.122 0.141

CoDi 8.44 3.53 0.174 0.091 0.084 0.100

SyncFlow-VGG 1.81 2.53 0.311 0.182 0.180 0.176
†SyncFlow-VGG128×128 3.18 2.65 0.300 0.148 0.170 0.158
†SyncFlow-VGG512×512 2.59 2.60 0.266 0.165 0.149 0.157
SyncFlow-VGG-AV-FT 2.36 2.54 0.308 0.190 0.178 0.174

Figure 3: Snapshot of video and audio generated by SyncFlow. The video frames are displayed every
four frames for simplicity. The original audio frame length corresponding to each audio is 32.

parameters initialized from SyncFlow-VGG. Based on the experimental results, we can draw the
following conclusions.

The proposed system outperforms the cascaded methods. The cascaded methods include both
OpenSora followed by V2A models and OpenSora followed by T2A models. The cascaded systems
exhibit significant variation in performance, with the best-performing OpenSora+FoleyGen achieving
an FAD score of 3.69. Notably, the three T2A-based cascaded systems demonstrate worse FAD
scores, likely due to the lack of fine-tuning on the VGGSound dataset, which leads to a gap in the data
distribution. Moreover, the audio generated by SyncFlow-VGG variants generally achieves a higher
IB score with the generated video than the ground truth video, despite the latter typically having
better overall video quality. This suggests that sharing information between the video and audio
towers during generation helps the audio adapt to video-specific characteristics, such as acoustic
environment, gender, and distance. Also, we found joint fine-tuning of the audio and video towers
improves synchronization. As observed with SyncFlow-VGG-AV-FT, after jointly fine-tuning both
towers with smaller batch sizes, the system exhibits better ImageBind scores between the generated
audio and video, indicating improved synchronization. We show examples of SyncFlow-VGG
generation in Figure 3.
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Cascaded methods are prone to error propagation. The absence of interaction across all three
modalities in cascaded systems introduces the potential for error propagation. This is evident in the
lower CLAP and IB (Gen-A & Gen-V) scores. While T2A-based systems generally achieve higher
CLAP scores, their IB (Gen-A & Gen-V) scores are lower than V2A-based systems, suggesting that
T2A models lack sufficient conditioning from the visual modality, and V2A models lack conditioning
from the text modality. This supports the hypothesis that cascaded systems are prone to error
propagation, leading to suboptimal results.

Our proposed system outperforms the modality contrastive encoder-based system. Since CoDi
conditions its audio and video generation modules on a one-dimensional vector without sufficient
temporal information, it is reasonable that it delivers suboptimal performance on the T2AV task.

Besides, SyncFlow can generate videos at new target resolutions along with corresponding audio, as
seen with SyncFlow-VGG512×512 and SyncFlow-VGG128×128. The IB (Gen-A & Gen-V) score for
the 512 resolution is higher than for the 128, while the CLAP score is lower. This suggests that a
higher video resolution may have more influence on cross-attention conditions than text conditions.

Video Generation Tower Performance Table 2 compares the video generation quality across
different settings. Overall, the pretrained OpenSora performs significantly better than CoDi, which
is developed based on the Make-a-Video model (Singer et al., 2022b). Besides, results show that
increasing the target resolution in the pretrained OpenSora model leads to improved performance,
with the 512× 512 resolution achieving the best IB score. Notably, OpenSora sometimes achieves
higher ImageBind scores than ground truth video-caption pairs. This discrepancy may arise from
imperfections in the video captioning model, VideoOFA, which sometimes assigns captions that do
not fully align with the video content. In contrast, the generated videos, being directly conditioned on
these captions, can potentially achieve better alignment. After fine-tuning the video generation tower,
SyncFlow-VGG-AV-FT achieves the best FVD score, indicating that fine-tuning on the training set
helps align the model target space with the data distribution in the evaluation set.

Table 2: Performance comparison on different video generation pipelines.

Model Resolution FPS FVD ↓ IB Gen-V & GT-T ↑ IB Gen-V & GT-A ↑
GroundTruth 256× 256 16 0.6 0.332 0.276

CoDi 256× 256 4 718.8 0.338 0.181
OpenSora 128× 128 16 506.9 0.308 0.164
OpenSora 256× 256 16 397.7 0.356 0.203
OpenSora 512× 512 16 331.8 0.374 0.209
SyncFlow-VGG-AV-FT 256× 256 16 298.4 0.350 0.220

Zero-shot Video-to-Audio Generation Diffusion and flow-matching-based generative models have
proven effective in tasks like in-filling and out-painting (Liu et al., 2023a; Rombach et al., 2022),
where part of the target data is known. In these cases, noise is added to the known information,
replacing the predicted part of the model, so that each denoising step incorporates the noisy version
of the ground truth. This process, often referred to as latent inversion (Lan et al., 2024), can also be
applied to editing tasks, where denoising begins with partially noisy data, and the process is guided
by specific editing instructions. Similarly, SyncFlow can perform V2A generation by replacing the
predicted video latent ẑVt with the ground truth latent zVt , ensuring that the model receives accurate
guidance from the ground truth video at each denoising step.

Table 3 presents the video-to-audio (V2A) performance across different systems. SyncFlow demon-
strates competitive results compared to other approaches. When comparing these results with Table 1,
where SyncFlow-VGG achieves a KL divergence of 2.53 and an IB (Gen-A & Gen-V) score of
0.182, introducing ground truth video information into the generation process leads to significant
improvements in both metrics. In the V2A setting, the IB (Gen-A & Gen-V) score increases to 0.210,
indicating the T2AV system potential upper bound if video generation is well-aligned with ground
truth. Figure 4 shows examples of SyncFlow on the zero-shot V2A generation.

Ablation Studies Our ablation study addresses two key questions: (1) How important is the modality
adaptor? and (2) How effectively does the audio tower utilize video information from the video
generation tower? To address the first question, we conduct an experiment where features from the
video generation tower are directly used as conditions for audio generation, bypassing the modality

9
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Table 3: Performance comparison on zero-shot video-to-audio generation. The FoleyGen† is the
internel version.

Setting Zero-shot FAD ↓ KL ↓ IB Gen-A & GT-V ↑
GroundTruth - 0.0 0.0 0.276

FoleyGen† ✗ 1.31 1.97 0.297
SpecVQGAN ✗ 5.53 2.91 0.094
Diff-Foley ✗ 7.85 3.51 0.143
SyncFlow-VGG ✓ 1.81 2.44 0.210

Figure 4: Example of zero-shot video-to-audio generation using SyncFlow. The input video is
sourced from the VGGSound evaluation set.

Figure 5: The effect of classifier-free guidance scale on the performance of SyncFlow-VGG.

Table 4: Ablation studies on the Greatest Hits dataset.

Setting FAD ↓ IB Gen A & Gen V ↑ CLAP ↑ KL ↓
SyncFlow-GH 0.92 0.156 0.354 2.88

SyncFlow-GH w/o modality adaptor 2.34 0.144 0.313 3.37
Text-to-audio w/ SyncFlow Audio Tower 1.01 0.138 0.379 2.74

adaptor. This configuration, referred to as SyncFlow-GH w/o modality adaptor, is designed to assess
the impact of incorporating a modality adaptor before conditioning the audio generation tower. For
the second question, we evaluate text-to-audio generation by using the audio tower without any
video information, ensuring that the model relies solely on the text embeddings extracted by the
T5 text encoder. Given the relatively small scale of the Greatest Hits dataset, we report the average
performance of the last three checkpoints (saved every 500 training step) for more reliable results.

As shown in Table 4, removing the modality adaptor results in a noticeable performance drop
compared to SyncFlow-GH, highlighting the importance of the adaptor in improving synchronization
between audio and video. Also, Figure 6 in the Appendix A.2 shows that with and without the
modality adaptor can have a clear gap in the validation loss. In the text-to-audio generation setting,
the model achieves better CLAP and KL scores, but the IB score, which indicates the audio-video
correspondence, shows a clear degradation. This suggests that while text-based audio generation can
lead to better text-audio alignment (CLAP), incorporating video information during the generation
process significantly enhances synchronization between the audio and video modalities. We also
perform ablation studies on the best classifier guidance scale to use, which is shown in Figure 5. Not
all metrics show the same trend with the change of the guidance scale. We chose 6.0 as the default
guidance scale as it has the best average IB score.
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6 CONCLUSIONS

In this paper, we introduced SyncFlow, a model for joint audio and video generation from text,
addressing the limitations of existing cascaded and contrastive encoder-based methods. By leveraging
the dual-diffusion-transformer (d-DiT) architecture and a modality-decoupled training strategy,
SyncFlow efficiently generates temporally synchronized audio and video with improved quality and
alignment. Our experiments demonstrated strong performance on multiple benchmarks, including
VGGSound and Greatest Hits, showcasing the ability of SyncFlow to achieve strong audio-visual
correspondence and zero-shot adaptability to new video resolutions. Additionally, our ablation studies
highlighted the importance of the modality adaptor in enhancing synchronization between modalities.

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
music from text. arXiv preprint:2301.11325, 2023.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Gehui Chen, Guan’an Wang, Xiaowen Huang, and Jitao Sang. Semantically consistent video-to-audio
generation using multimodal language large model. arXiv preprint:2404.16305, 2024a.

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. VGGSound: A large-scale audio-
visual dataset. In IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
721–725, 2020.

Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov. MusicLDM: Enhancing novelty in text-to-music generation using beat-synchronous
mixup strategies. In International Conference on Acoustics, Speech and Signal Processing, pp.
1206–1210. IEEE, 2024b.
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A APPENDIX

A.1 LIMITATIONS

The model is trained on a video sub-clip randomly sampled from a video in the dataset, while the text
caption from VideoOFA is based on the full-length video. This means the caption we used for the
model training is not optimal. Nevertheless, most videos have consistent semantics, so our model
generally works fine. Improving caption quality could be a way to improve the proposed method.

Despite carefully curating the VGGSound dataset, we still observe videos with static frames and
ambient sounds, such as videos with static album covers or food-sizzling sounds. There are also a lot
of off-screen sounds in the data, such as narration, environmental sound, etc. Future work can be
done to address the data quality issue, such as filtering the data based on audio-visual correspondence.

The samples generated by the text-to-video model can sometimes lack clear and coherent movement,
leading to potential ambiguities and mismatches during training and inference. Future work could
focus on enhancing the performance of the video generation tower to address these issues.

A.2 FIGURES
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Figure 6: Validation loss on the Greatest Hit dataset with and without the proposed modality adaptor.
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