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Abstract
Large Language Models (LLMs) show impres-001
sive inductive reasoning capabilities, enabling002
them to generate hypotheses that could gener-003
alize effectively to new instances when guided004
by in-context demonstrations. However, in real-005
world applications, LLMs’ hypothesis genera-006
tion is not solely determined by these demon-007
strations but is significantly shaped by task-008
specific model priors. Despite their critical009
influence, the distinct contributions of model010
priors versus demonstrations to hypothesis gen-011
eration have been underexplored. This study012
bridges this gap by systematically evaluating013
three inductive reasoning strategies across five014
real-world tasks with three LLMs. Our empiri-015
cal findings reveal that, hypothesis generation016
is primarily driven by the model’s inherent pri-017
ors; removing demonstrations results in mini-018
mal loss of hypothesis quality and downstream019
usage. Further analysis shows the result is con-020
sistent across various label formats with differ-021
ent label configurations, and prior is hard to022
override, even under flipped labeling. These023
insights advance our understanding of the dy-024
namics of hypothesis generation in LLMs and025
highlight the potential for better utilizing model026
priors in real-world inductive reasoning tasks.027

1 Introduction028

Large Language Models (LLMs) have drawn sig-029

nificant interests due to their performance on a030

diverse range of reasoning tasks (Kojima et al.,031

2022), such as mathematical reasoning, common-032

sense reasoning and symbolic reasoning. Inductive033

reasoning– an important component of reasoning034

(Yang et al., 2022; Heit, 2000), as a way to derive035

abstract hypothesis from limited specific observa-036

tions, is widely regarded as a core aspect of human037

intelligence.038

Existing studies primarily assess the inductive039

reasoning capabilities of LLMs (Wang et al., 2023;040

Qiu et al., 2023; Cheng et al., 2024) by evaluating041

their ability to generate textual hypotheses based on042

in-context input-output pairs and subsequently test 043

these hypotheses on unseen examples, thereby eval- 044

uating their generalization abilities. These studies 045

demonstrated that LLMs can propose high-quality 046

hypotheses, establishing them as exceptional hy- 047

pothesis generators (Qiu et al., 2023; Cheng et al., 048

2024; Li et al., 2024). 049

LLMs employ various approaches to generate 050

hypotheses depending on the nature of the task. For 051

symbolic tasks, such as mathematical function dis- 052

covery (Shojaee et al., 2024), LLMs rely primarily 053

on input-output mappings in demonstrations, often 054

with minimal prior knowledge about the mathemat- 055

ical functions. In contrast, research by Qi et al. 056

(2023) demonstrated that LLMs can formulate hy- 057

potheses solely from provided background infor- 058

mation, leveraging the extensive and diverse knowl- 059

edge gained during pre-training. In real-world ap- 060

plications, hypothesis generation tends to be data- 061

driven , such as generating hypotheses for trending 062

Twitter headline patterns (Zhou et al., 2024), where 063

both prior knowledge and demonstrations are uti- 064

lized. In these cases, the interaction between the 065

model’s task-specific priors and provided examples 066

is mixed. 067

In empirical science, data-driven hypothesis gen- 068

eration serves as the foundational step toward sci- 069

entific discovery (Majumder et al., 2024a,b). When 070

employing LLMs for hypothesis generation, the 071

goal is to uncover novel hypotheses that contribute 072

fresh insights and ideas to the existing literature 073

(Zhou et al., 2024). However, due to the com- 074

bined influence of the model’s prior knowledge 075

and the provided examples, the origin of gener- 076

ated hypotheses often remains unclear. For certain 077

tasks, where LLMs are pre-trained on extensive 078

knowledge bases, a strong model prior may even 079

overshadow the potential for generating genuinely 080

novel insights from the provided examples. This 081

raises a critical question: What is the role of model 082

prior in real-world inductive reasoning? 083
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To address this issue, this paper presents a sys-084

tematic empirical study on real-world inductive rea-085

soning problems, focusing on classification tasks,086

where hypotheses are generated to capture patterns087

specific to the positive class. We evaluate three rep-088

resentative baselines: direct input-output prompt-089

ing (Qiu et al., 2023), iterative refinement with090

ranking (Qiu et al., 2023; Shojaee et al., 2024), and091

HypoGeniC (Zhou et al., 2024; Liu et al., 2024),092

across five diverse real-world tasks covering text,093

image, and image-text modalities. For each base-094

line, we conduct experiments where LLMs gener-095

ate hypotheses both with and without demonstra-096

tions. The quality of the generated hypotheses is097

then evaluated from three perspectives: hypothesis-098

based classification performance, LLM-based as-099

sessments, and human evaluation.100

Our experimental results reveal that, for real-101

world tasks where LLMs have been trained on102

substantial amounts of relevant data, task-specific103

model prior plays a dominant role in hypothesis104

generation. Notably, removing in-context demon-105

strations has minimal impact on the quality of the106

hypotheses. This trend holds consistently across107

three baselines with three LLMs: GPT-4o, Qwen2-108

VL and Gemini-pro, strongly suggesting that, coun-109

terintuitively, LLMs depend more on task-specific110

prior knowledge than on in-context demonstrations111

for generating hypotheses. Further analysis across112

various label configurations and formats supports113

this conclusion, indicating that model prior is of-114

ten so robust that it is minimally affected by the115

provided examples.116

2 Related Work117

Inductive Reasoning with LLMs. Primary stud-118

ies on inductive reasoning mainly focus on eval-119

uating their inductive reasoning capabilities. Qiu120

et al. (2023) evaluate LLMs by inducting rules from121

examples, demonstrated that LLMs are good hy-122

pothesis proposers. Wang et al. (2023) uses Python123

programs to select better hypothesis, thus improv-124

ing the inductive reasoning performance. Besides125

these evaluations on symbolic tasks, Yang et al.126

(2022) propose to induce natural language rules127

from natural language facts while Hypotheses-to-128

Theories (Zhu et al., 2023) learns rules from de-129

duction. Similarly, Honovich et al. (2022) also130

show LLMs are able to infer a natural task de-131

scription by provided demonstrations. Recently,132

some works employ LLMs to generate hypothesis133

that can describe the difference or shift between 134

two distributions in different modalities, such as 135

text (Zhong et al., 2022, 2023; Singh et al., 2022), 136

and image (Dunlap et al., 2024; Kim et al., 2024). 137

Distinct from these studies, our work delves into 138

understanding how LLMs perform inductive rea- 139

soning for real-world tasks, offering insights into 140

their underlying mechanisms. 141

Hypothesis Generation with LLMs. Yang et al. 142

(2023b) uses raw web corpus as observations to 143

generate scientific hypothesis, and Pham et al. 144

(2023) generates hypothesis to uncover latent top- 145

ics in a text collection. In Qi et al. (2023), it shows 146

LLMs are good hypothesis proposers with only 147

background knowledge. Majumder et al. (2024a) 148

provides initial evidence for LLMs to do data- 149

driven discovery, where both search and verifi- 150

cation of hypotheses may be carried out using a 151

dataset alone. HypoGeniC (Zhou et al., 2024) also 152

uses LLMs to generate hypothesis from real-world 153

labeled examples. Si et al. (2024) and Baek et al. 154

(2024) further explore the potential to generate hy- 155

pothesis in research with LLMs to provide insights 156

and ideas for the literature. Additionally, Liu et al. 157

(2024) combines theory-based generation and data- 158

driven generation to get better hypothesis. How- 159

ever, these works do not clearly distinguish whether 160

the hypotheses originate from hidden knowledge or 161

provided examples—a distinction that is the central 162

focus of our work. 163

3 Natural Language Hypothesis 164

Generation 165

Let Z = DP ∪ DN represent the labeled data for 166

a real-world classification task T , where DP and 167

DN correspond to demonstrations of the positive 168

(P ) and negative (N ) classes, respectively. Each 169

sample in Z is a pair (x, y), where x denotes the 170

example and y ∈ {P,N} represents the label. A 171

valid natural language hypothesis h, as introduced 172

by Zhong et al. (2022), is expressed as a natural 173

language string. For any example x, h is capable 174

of determining whether x belongs to the positive 175

or negative class. 176

Natural language hypothesis generation involves 177

prompting LLMs to produce a set of valid hy- 178

potheses H = {h1, h2, . . . , hm} using in-context 179

demonstrations tailored to task T . In this paper, we 180

consider the setting where the input to LLMs can 181

be divided into two parts, as shown in Figure 1: (1) 182

Task-Specific Instructions: a set of natural lan- 183
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Hypothesis Generator Prompt Template

Task-Specific Instructions
[Task Description]
[Hypothesis Requirements]
Demonstrations
[Group DP demos] . . .
[Group DN demos] . . .
Formatting Instructions

Figure 1: Prompt template for hypothesis generation.

guage to describe the task and the requirements for184

the hypothesis. (2) Demonstrations: a set of exem-185

plars from different groups structured in a specified186

way to show the patterns of each group. Ideally,187

we aim to prompt LLMs to generate a list of valid188

hypothesis to maximize the downstream task per-189

formance, by carefully selecting instructions and190

demonstrations. There are two factors contributing191

to the hypothesis generation:192

Task-Specific Model Prior: LLMs are pretrained193

on a diverse set of datasets, allowing them to accu-194

mulate extensive background knowledge across a195

wide range of domains. When provided with a task196

description, the model leverages its priors to infer197

relevant patterns, generating hypotheses based on198

this internalized knowledge.199

Input-Label Mappings in Demonstrations: The200

demonstrations provided serve as a specific guid-201

ance, offering cues about how to approach the task.202

The model may use these demonstrations to refine203

its hypothesis generation, aligning its output more204

closely with the intended task requirements.205

4 Experimental Settings206

4.1 Hypothesis Generation Baselines207

In this paper, we evaluate three commonly-used208

hypothesis generation baselines.209

Input-Output Prompting. Input-output prompt-210

ing (IO-Prompting) represents the most common211

approach to prompting LLMs (Qiu et al., 2023).212

In this standard IO-Prompting framework, we di-213

rectly provide the LLMs with a set of in-context214

demonstrations within the prompt context. The215

objective is to generate m hypotheses that effec-216

tively captures the patterns of positive class P . This217

approach is a single-step method, utilizing the in-218

context demonstrations once to guide the model’s219

hypothesis generation.220

Iterative Refinement with Ranking. Standard 221

IO-prompting utilizes in-context demonstrations 222

only once, potentially under utilizing their full ca- 223

pacity. To address this limitation, various methods 224

have been proposed to iteratively refine hypothe- 225

ses, thereby enhancing model performance (Wang 226

et al., 2023; Qiu et al., 2023; Shojaee et al., 2024; 227

Xiao et al., 2024). In our approach, we iteratively 228

refine hypotheses using ranking information as a 229

feedback signal. 230

The refinement process begins with an initial set 231

of m hypotheses generated via IO-prompting. At 232

each iteration, hypotheses in the bank are ranked 233

based on their performance on a validation set. The 234

top-ranked m hypotheses are then fed back to the 235

model, along with in-context demonstrations, guid- 236

ing it to generate hypotheses with improved per- 237

formance. In cases where no demonstrations are 238

available, only the ranked hypotheses with their 239

accuracies are provided in the iterative refinement 240

process. This approach thus augments data uti- 241

lization by continuously leveraging feedback to 242

generate higher-quality hypotheses. 243

Update from Mistakes: HypoGeniC. The pre- 244

vious methods leverage data within one single 245

prompt to generate hypotheses, yet using all demon- 246

strations in a single prompt may not be optimal for 247

performance. Therefore, we also evaluate a strat- 248

egy that updates hypotheses from mistakes made 249

by current hypothesis. We largely follow an estab- 250

lished approach, HypoGeniC (Zhou et al., 2024; 251

Liu et al., 2024), which iteratively generate new 252

hypotheses from incorrect prediction examples. 253

In our evaluation, we initialize the hypothesis 254

bank using standard IO-prompting as well as the 255

reward scores as in Zhou et al. (2024); Liu et al. 256

(2024). During the update phase, if the number 257

of incorrect examples for each group reaches a 258

predefined number, these incorrect examples are 259

employed to guide the generation of new hypothe- 260

ses. In each update, m hypotheses with highest 261

reward scores are kept in the hypothesis bank. This 262

iterative updating approach enables the model to 263

adapt hypotheses progressively, making better use 264

of feedback from misclassifications. For a fair com- 265

parison, when demonstrations are absent, we up- 266

date the hypothesis by iterative refinement, using 267

reward scores for ranking. 268

All the implementation details are in the Ap- 269

pendix B. 270
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Dataset Demos IO-Prompting Iterative-Refinement HypoGeniC

Best Average Best Average Best Average

Hallucination w/o 63.7 ± 2.3 59.4 ± 1.1 66.9 ± 0.5 62.1 ± 0.3 61.7 ± 0.3 57.9 ± 0.5

w/ 63.8 ± 0.3 58.3 ± 0.1 63.7 ± 2.0 59.7 ± 2.6 65.6 ± 2.0 59.2 ± 1.1

Unhealthy Comments w/o 70.3 ± 0.7 63.2 ± 0.9 71.4 ± 1.2 68.8 ± 1.4 71.2 ± 0.4 67.3 ± 1.3

w/ 70.0 ± 0.3 66.9 ± 1.2 71.8 ± 0.7 69.8 ± 0.3 71.1 ± 1.2 67.6 ± 0.8

Funny Reddit w/o 64.1 ± 2.3 58.6 ± 0.3 67.0 ± 1.6 63.5 ± 0.4 64.4 ± 1.7 60.6 ± 1.3

w/ 65.8 ± 2.4 59.0 ± 1.4 69.8 ± 1.7 66.1 ± 0.8 62.2 ± 3.5 57.6 ± 1.0

Truthful Review w/o 69.1 ± 0.6 57.0 ± 0.5 69.0 ± 0.7 63.8 ± 1.0 69.2 ± 0.7 59.6 ± 1.3

w/ 68.5 ± 0.9 59.7 ± 0.8 69.5 ± 1.6 63.6 ± 0.4 62.4 ± 5.1 59.4 ± 3.7

PneumoniaMNIST w/o 75.9 ± 0.5 72.4 ± 0.4 77.6 ± 0.5 75.6 ± 0.2 76.8 ± 0.8 73.4 ± 0.3

w/ 74.7 ± 1.1 69.7 ± 0.5 76.2 ± 1.7 74.2 ± 1.1 74.6 ± 0.5 71.4 ± 0.8

w/o 68.62 62.12 70.38 66.76 68.66 63.76Overall Average
w/ 68.56 62.72 70.20 66.68 67.18 63.04

Table 1: Accuraccy comparison of single hypothesis-based classification across five datasets of three baselines:
accuracy (mean ± standard deviation) for the best single hypothesis and the average across five hypotheses, with
(w/) and without (w/o) demonstrations. The better overall average between (w/) and (w/o) is highlighted in bold.

Demos Hallucination Unhealthy Comments Funny Reddit Truthful Review PneumoniaMNIST Overall Average

Best w/o 60.4 ± 0.0 68.5 ± 0.0 63.6 ± 0.0 67.0 ± 0.0 65.4 ± 0.0 64.98
w/ 60.1 ± 2.3 68.0 ± 0.0 62.4 ± 2.2 66.0 ± 0.4 62.5 ± 2.9 63.80

Average w/o 57.7 ± 0.0 63.0 ± 0.0 57.1 ± 0.0 55.1 ± 0.0 57.9 ± 0.0 58.16
w/ 55.4 ± 1.1 63.4 ± 0.2 58.2 ± 0.8 56.5 ± 1.1 54.7 ± 2.0 57.64

Table 2: Accuraccy comparison of single hypothesis-based classification with Qwen2-VL-72B: accuracy (mean ±
standard deviation) for the best single hypothesis and the average across five hypotheses, with (w/) and without
(w/o) demonstrations. The better overall average between (w/) and (w/o) is highlighted in bold.

4.2 Evaluation of Hypothesis271

After generating a set of hypotheses H =272

{h1, h2, . . . , hm}, it is crucial to evaluate their273

quality to ensure that the generated hypotheses are274

both functional and interpretable. We perform this275

evaluation from three perspectives: hypothesis-276

based classification, LLM-based evaluation and277

human evaluation. These complementary meth-278

ods allow for a robust assessment, combining quan-279

titative performance metrics with qualitative assess-280

ments from domain experts.281

Hypothesis-based Inference. In hypothesis-282

based inference (Liu et al., 2024; Zhou et al.,283

2024), the goal is to assess how well the gen-284

erated hypotheses support downstream decision-285

making tasks. We measure the predictive perfor-286

mance of the hypothesis on a test dataset Dtest =287

{(xj , yj)}Ntest
j=1 . The hypothesis is evaluated based288

on how accurately it assigns the correct label to289

each input xj . Predictions are made by compar-290

ing test examples xj with learned patterns, which291

can consist of a single hypothesis or multiple hy-292

potheses. If a test example satisfies the pattern, it is293

assigned the corresponding class. Unless otherwise294

stated, the results reported in this work are based295

on patterns formed from single hypothesis. To re-296

move the influence of prior in the inference, we 297

also do hypothesis-based inference without knowl- 298

edge, which can be found in Appendix C.1. See 299

Appendix F for evaluation prompts. 300

LLM-based Evaluation. In addition to assess- 301

ing the effectiveness of hypotheses in downstream 302

task usage, we also evaluate their helpfulness (Liu 303

et al., 2024) and novelty (Liu et al., 2024; Si et al., 304

2024) through LLM-based metrics. Specifically: 305

(1) Helpfulness measures the extent to which a hy- 306

pothesis accurately captures the underlying patterns 307

of the data and generalizes effectively to unseen 308

samples. (2) Novelty assesses whether the hypothe- 309

sis introduces new insights or unique perspectives 310

relevant to the task. 311

Our LLM-based evaluation incorporates both 312

scoring and pairwise comparison assessments. For 313

scoring, LLMs assign a rating on a 5-point scale 314

to reflect each hypothesis’s quality. For pairwise 315

comparison, we randomly pair hypotheses gener- 316

ated with and without demonstrations, and prompt 317

the LLMs to select the better hypothesis in each 318

pair. This pairwise evaluation provides insights 319

into relative performance, while scoring offers an 320

absolute measure of quality. 321
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IO-Prompting Iterative-Refinement HypoGeniC

Dataset w/o demos w/ demos w/o demos w/ demos w/o demos w/ demos

Hallucination 62.2 ± 1.0 61.1 ± 0.3 60.1 ± 4.5 61.1 ± 1.3 58.6 ± 4.0 60.1 ± 0.5

Unhealthy Comments 71.5 ± 0.7 70.9 ± 0.5 71.0 ± 0.4 70.9 ± 0.3 70.9 ± 1.0 70.7 ± 2.3

Funny Reddit 58.3 ± 0.4 59.2 ± 0.3 63.9 ± 2.7 67.3 ± 1.2 58.8 ± 0.7 58.4 ± 0.5

Truthful Reviews 63.8 ± 1.4 65.3 ± 0.9 68.5 ± 0.3 69.1 ± 1.3 67.7 ± 1.5 62.1 ± 4.6

PneumoniaMNIST 75.8 ± 0.9 72.2 ± 1.2 76.0 ± 2.5 74.1 ± 1.7 74.9 ± 1.7 74.6 ± 1.0

Overall Average 66.32 65.74 67.90 68.50 66.18 65.18

Table 3: Accuracy comparison of multiple hypotheses-based classification across five datasets of three baselines:
accuracy (mean ± standard deviation) with (w/) and without (w/o) demonstrations. The better overall average
between (w/) and (w/o) is highlighted in bold.

Figure 2: Accuracy difference comparison of single hypothesis-based classification under different label settings:
Accuracy difference (accuracy of different label settings - accuracy without demos) across five datasets with
IO-Prompting.

Human Evaluation. To validate the effective-322

ness of LLM-based evaluation, we also conduct323

a human evaluation to assess the quality of the324

generated hypotheses. Our goal is to examine the325

degree of alignment between LLM-based evalua-326

tion results and those obtained from human experts.327

Given that scoring may be challenging for human328

evaluators, we employ a pairwise comparison for-329

mat, allowing experts to select the higher-quality330

hypothesis or indicate if the difference is difficult331

to discern. A total of nine participants are recruited332

for this evaluation, ensuring diverse perspectives in333

assessing the hypotheses.334

For further details in both LLM-based and hu-335

man evaluations, refer to Appendix D.336

4.3 Other Settings337

Models. We conduct experiments with GPT-4o,338

Qwen2-VL-72B1 and gemini-1.5-pro-002, leverag-339

ing both open-source models and API-accessible340

models to ensure diverse evaluation. Unless other-341

wise stated, we use GPT-4o2 in experiments.342

1https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct-
AWQ

2By default, we use GPT-4o-2024-08-06. However, if a
request is rejected due to safety reasons, we will switch to
GPT-4o-2024-05-13.

Datasets. We conduct evaluations on five real- 343

world inductive reasoning datasets: hallucination 344

pattern induction (Li et al., 2023), unhealthy com- 345

ments (Zhong et al., 2023), funny Reddit posts 346

(Zhong et al., 2023), pneumoniaMNIST (Xiao 347

et al., 2024), and truthful hotel reviews (Zhou et al., 348

2024). 349

Our selection of datasets is motivated by three 350

key factors: (1) their coverage of three distinct 351

modalities—text (unhealthy comments, funny Red- 352

dit posts, and truthful hotel reviews), image (pneu- 353

moniaMNIST), and image-text (hallucination pat- 354

tern induction), (2) diverse domains, including 355

model behavior analysis (hallucination pattern in- 356

duction), medical diagnosis (pneumoniaMNIST), 357

and social media content (unhealthy comments, 358

funny Reddit posts, and truthful hotel reviews), and 359

(3) their status as widely studied problems in real- 360

world inductive reasoning tasks. Further details 361

and more references for these datasets are provided 362

in Appendix 6. 363

Other Parameters. The number of in-context 364

demonstrations is set to N = 30 for IO-prompting 365

and iterative-refinement, and N = 50 for Hy- 366

poGenic to encourage more updates. Examples 367

are randomly sampled from the training set. For 368

each dataset, we generate five candidate hypothe- 369
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IO-Prompting Iterative-Refinement HypoGeniC Overall Average

Criteria w/o w/ w/o w/ w/o w/ w/o w/

Helpfulness 4.00 ± 0.000 3.96 ± 0.195 4.00 ± 0.000 3.80 ± 0.400 4.04 ± 0.195 4.08 ± 0.271 4.01 3.95

Novelty 2.56 ± 0.571 2.40 ± 0.566 2.60 ± 0.693 2.60 ± 0.748 2.84 ± 0.674 2.36 ± 0.741 2.67 2.45

Table 4: LLM-based Scoring: Comparison of Helpfulness and Novelty scores across three baselines, with and
without demonstrations (w/ demos vs. w/o demos). The better overall average between (w/) and (w/o) is highlighted
in bold.

ses. Main results are averaged over three random370

seeds to ensure robustness. More implementation371

details can be found in Appendix B.372

5 Task-Specific Model Prior Dominates373

Hypothesis Generation374

5.1 LLMs Are Zero-Shot Hypothesis375

Generators376

To see the impact of the model prior in hypothesis377

generation, we compare the hypothesis generation378

in the following two settings.379

Model Prior Only is a typical zero-shot hypothesis380

generation scenario without the use of demonstra-381

tions, relying primarily on prior for generation.382

Demos with Ground Truth Labels is used in a383

typical real-world inductive reasoning tasks, with384

demonstrations as a specific guidance.385

Results for single hypothesis-based and multiple386

hypotheses-based classification are shown in Table387

1 and Table 3. From the results, We find that remov-388

ing in-context demonstrations cause little degrada-389

tion for the downstream task performance. The390

trend is consistent across five different datasets on391

three baselines. In some cases, LLMs can even392

generate better hypothesis using only model prior.393

Additionally, iterative refinement outperforms the394

other two baselines, showing that data still helps for395

hypothesis selection, but not as in-context demon-396

strations for hypothesis generation.397

Resutls with Qwen2-VL and Gemini-1.5-pro.398

The results for single hypothesis-based classifica-399

tion on Qwen2-VL and Gemini-1.5-pro-002, with400

IO-prompting, are provided in Table 2 and Ap-401

pendix C.3. These results similarly show a neg-402

ligible performance drop without demonstrations,403

underscoring the universality of our findings across404

different models.405

These results indicates LLMs are good zero-shot406

hypothesis proposers under strong prior, and in-407

context demonstrations with ground truth labels408

are not necessary to achieve acceptable hypothesis.409

Figure 3: LLM-based Pairwise Comparison: Pairwise
win rate (%) of three baselines. The left plot shows the
comparison of Helpfulness, while the right plot presents
Novelty. The dashed line indicates a tie where "w/ de-
mos" and "w/o demos" perform equally well.

This is a counter-intuitive phenomenon, given that 410

labeled data is very important in in-context learning 411

(Brown, 2020), which can inform the model of 412

corresponding data distribution (Min et al., 2022). 413

5.2 Input-Label Mappings in Demonstrations 414

Cannot Override Strong Model Prior 415

To further explore the interaction between model 416

prior and input-label mappings in demonstrations 417

in hypothesis generation, we use in-context demon- 418

strations with different label settings: 419

(1) Demos with ground truth (correct) labels. 420

(2) Demos with flipped labels. 421

(3) Demos with random labels. 422

(4) Only positive group demos. 423

(5) Only negative group demos. 424

425
Figure 2 illustrates the relative accuracy differ- 426

ence between various label settings and without 427

demonstrations. From the result, there is quite lim- 428

ited difference (mostly smaller than 3%) of perfor- 429

mance among different settings, with the flipped la- 430

bel setting in truthful review as an exception, which 431

has a performance degradation about 4.5%. 432

These findings suggest that while demonstra- 433

tions can provide some guidance, the models’ hy- 434

pothesis generation abilities are ultimately shaped 435

more by its pre-trained priors than by any super- 436

ficial label configurations. Furthermore, the prior 437
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Figure 4: Human pairwise comparison results on three
datasets, showing preferences for hypotheses with, with-
out demos, and cases where it was hard to tell the differ-
ence.

is too strong to be overridden by the patterns in438

demonstrations, even with totally flipped labels.439

5.3 LLM-based Evaluation Results440

LLM-based Scoring. Table 4 summarizes the441

helpfulness and novelty scores for various ap-442

proaches. Each score represents the average of443

25 hypotheses generated across five datasets. For444

helpfulness, hypotheses generated without demon-445

strations achieve higher scores when using IO-446

prompting and iterative-refinement. Regarding447

novelty, hypotheses generated without demonstra-448

tions score higher on IO-prompting and Hypogenic,449

while iterative-refinement yields a tie between the450

two settings.451

LLM-based Pairwise Comparison. Figure 3452

presents the pairwise comparison results for three453

baselines, evaluating hypotheses generated with454

and without demonstrations. The comparisons in-455

volve randomly paired hypotheses, with win rates456

aggregated across all datasets. For Helpfulness, IO457

prompting and iterative refinement perform better458

without demonstrations, while HypoGenic demon-459

strates improved performance with them. For Nov-460

elty, iterative refinement excels in the absence of461

demonstrations, whereas IO prompting and Hy-462

poGenic exhibit minimal differences between the463

two settings.464

These results highlight that LLMs can produce465

highly helpful and novel hypotheses even without466

in-context demonstrations.467

5.4 Human Evaluation Results468

We conduct a human evaluation on Funny Red-469

dit, Truthful Reviews, and Unhealthy Comments470

Format Correct Label Flipped Label

Best Average Best Average

Label Format1 68.56 62.72 65.15 59.96
Label Format2 67.88 62.78 67.49 61.90

w/o demos Best: 68.62 Average: 62.12

Table 5: Accuracy comparison of different label formats
in correct and flipped label settings with IO-prompting.
Each number is the average over five datasets.

Figure 5: Difference of predictions between correct
label and flipped label demos: Adverse Correction Rate
(ACR) and Beneficial Correction Rate (BCR) values
under multiple hypotheses-based classification.

datasets, as the other datasets require more special- 471

ized expertise. The results are illustrated in Figure 472

4. Across the three datasets, hypotheses generated 473

without demonstrations received the highest per- 474

centage of preference. These findings indicate a 475

slight overall preference for hypotheses generated 476

using only the model’s prior, though the extent of 477

this preference varies by dataset. 478

6 Analysis 479

6.1 Is the result consistent with different 480

in-context demonstration label formats? 481

To evaluate the consistency of results across differ- 482

ent label formats, we compare two label formats: 483

Label Format 1: Demonstrations are provided as 484

examples for positive and negative classes as in 485

Figure 1. Label Format 2: Demonstrations are 486

presented in the format of (Example, Label). 487

The average accuracy across all datasets for the 488

correct and flipped label settings is presented in 489

Figure 5. (Results for each dataset of Label Fomat 490

2 can be found in Appendix C.2). With correct 491

labels, the performance of the two label formats is 492

very similar. However, in the flipped label settings, 493

Label Format 2 shows almost no performance drop, 494

which differs slightly from Label Format 1. No- 495

tably, neither label format outperforms the hypothe- 496

ses generated without demonstrations. This finding 497

highlights the dominant role of the strong model 498

7



Figure 6: An illustration of the case study: positive
sentiment hypothesis generation. The highlighted text
with a green background represents flipped label demos.

Figure 7: Distribution of the number of supported true
positive and negative demos with different number of
flipped label demos.

prior, regardless of the presentation style of the499

demonstrations.500

6.2 What’s the difference between correct501

label and flipped label settings?502

To get an deep understanding for the impact of flip-503

ping labels and provide a more fine-grained evalua-504

tion, we adopt two additional metrics introduced by505

Wu et al. (2024), Adverse Correction Rate (ACR)506

and Beneficial Correction Rate (BCR):507

ACR =

∑n
i=1 I (ycorrect(xi) = yi ∧ yflipped(xi) ̸= yi)∑n

i=1 I (ycorrect(xi) = yi)
, (1)508

BCR =

∑n
i=1 I (ycorrect(xi) ̸= yi ∧ yflipped(xi) = yi)∑n

i=1 I (ycorrect(xi) ̸= yi)
, (2)509

where ycorrect(xi) and yflipped(xi) represents the pre-510

diction results using the hypothesis generated with511

ground truth label and flipped label demonstrations,512

xi, yi are input and ground truth label, respectively.513

These metrics offer a comprehensive evaluation of514

how flipping labels of the demonstrations influence515

the prediction results in downstream tasks.516

Results for multiple hypothesis-based classifi-517

cation prediction difference are shown in Table 5.518

The results indicate that flipping the labels of in-519

context demonstrations does lead to some shifts520

in prediction outcomes, particularly notable in the521

truthful hotel review dataset, where nearly half of 522

the predictions are affected. In contrast, for the 523

other four datasets, label flipping only minimally 524

alters prediction results. This suggests that while 525

the model leverages the input-label mappings in 526

provided demonstrations to inform its hypothesis 527

generation, the inherent task-specific knowledge 528

remains predominant, preventing the provided pat- 529

terns from overriding its established priors. 530

6.3 A Case Study: Hypothesis Generation for 531

Positive Sentiment Pattern 532

This case study highlights that large language mod- 533

els (LLMs) heavily rely on prior knowledge when 534

generating hypotheses, often ignoring patterns in- 535

troduced in demonstrations. As shown in Figure 536

6, we replace true positive demonstrations with 537

flipped label demonstrations (negative examples) 538

to test whether the model adjusts its hypothesis or 539

adheres to its prior. 540

Using IO-prompting, we provide six demonstra- 541

tions, varying the number of flipped label demos 542

from 0 to 5, and prompt the model to generate a hy- 543

pothesis and corresponding supporting demonstra- 544

tions. Repeating the experiment across 50 random 545

seeds, we track the distribution of true positive and 546

negative examples within the model’s supported 547

demonstrations for its hypothesis. 548

The results, shown in Figure 7, reveal notable 549

patterns. The distribution of positive examples in 550

the supported demonstrations begins to shift when 551

three flipped label demonstrations are introduced. 552

When five flipped demonstrations are provided, the 553

mean number of positive examples converges to 554

one. However, the model consistently avoids using 555

flipped label demonstrations in its hypothesis gen- 556

eration, even when five demonstrations are flipped. 557

This indicates that the model’s hypotheses are pre- 558

dominantly influenced by prior knowledge rather 559

than the provided demonstrations. 560

7 Conclusion 561

In this paper, we explore the role of task-specific 562

priors in a real-world inductive reasoning sce- 563

nario—hypothesis generation from labeled data. 564

Experiments reveal that LLMs rely heavily on 565

strong priors, which are difficult to override with 566

demonstrations, offering insights into hypothesis 567

generation mechanisms and future research direc- 568

tions. 569
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Limitations570

Beyond Classification Problems. Our experi-571

ments are limited to classification problems. Exten-572

sions to multi-choice or other tasks requires better573

representation of the hypothesis. We leave exten-574

sions to non-classification tasks for future work.575

Better Application of Generated Hypotheses.576

We think future can explore better application of577

generated hypotheses. For instance, this paper uses578

hypotheses to construct patterns for classification579

problems. Better application of hypotheses can580

improve downstream task performance, which we581

leave for future work.582
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A Dataset Details727

In this paper, we include 5 real-world datasets: hal-728

lucination, unhealthy comments in conversation,729

truthful hotel review, pneumonia MNIST and funny730

reddit post.731

Dataset Train Validation Test

Hallucination 400 100 374
Pneumonia MNIST 800 270 468
Unhealthy Conversation 800 400 800
Funny Reddit 200 100 308
Truthful Hotel Review 800 300 500

Table 6: Dataset Split for Train, Validation, and Test
Sets.

Hallucination Pattern. The dataset is first in-732

troduced in (Li et al., 2023). We use its adver-733

sarial sampling version, which can be found in734

https://github.com/RUCAIBox/POPE. To build our735

hallucination dataset, we prompt GPT-4o with each736

image-question pair once and see if the model hallu-737

cinates the object presence. As a result, we get 437738

hallucinated image-question pairs and randomly739

sample another 437 image-question pairs as non-740

hallucination cases.741

Unhealthy Comments. Expert-annotated un-742

healthy conversations are from (Price et al.,743

2020), and we use the version from (Zhong744

et al., 2023), which can be downloaded from745

https://github.com/ruiqi-zhong/D5. We sample746

longest 1000 samples for unhealthy and healthy747

comments from the dataset in our evaluation.748

Truthful Hotel Reviews. Truthful review detec-749

tion is an instance of deception. The dataset we use750

is from (Zhou et al., 2024). The dataset includes751

800 genuine reviews and 800 fictitious reviews for752

20 hotels in Chicago, which can be downloaded753

from https://github.com/ChicagoHAI/hypothesis-754

generation.755

Funny Reddit Posts. We collect jokes posted on756

the Reddit forum r/Jokes and cleaned by (Zhong757

et al., 2023). This dataset can be downloaded758

from https://github.com/ruiqi-zhong/D5. We also759

remove all the duplicate samples for better dataset760

quality.761

Pneumonia MNIST. Pneumonia recognition via762

chest X-ray image is an important problem. The763

dataset is from (Yang et al., 2023a), and can be 764

downloaded from https://medmnist.com/. 765

For each dataset, we have at least 200 samples 766

for training, 100 samples for validation and 300 767

samples for test. For each dataset, we keep a bal- 768

ance between positive and negative class. Detailed 769

statistics is shown in Table 6. 770

B Implementation Details 771

Model Parameters. For API usage, the tempera- 772

ture and top-p are set to a small number 1× 10−15 773

and 1× 10−10, respectively. 774

Iterative Refinement. We initialize the hypoth- 775

esis bank with 5 hypotheses generated using IO- 776

prompting. In refinement process, for each itera- 777

tion, we select 5 hypotheses achieving highest ac- 778

curacy on the validation set to LLMs for refinement 779

and hope to get hypothesis with better quality. We 780

evaluate 5 hypotheses with the best performance 781

on validation dataset. We set refinement iteration 782

to 3 in the paper. 783

HypoGeniC. We set the hypothesis bank size to 784

5. Throughout the experiment, we use the reward 785

efficient α = 0.5, the number of initialized ex- 786

amples num_init = 10, and maximum number 787

of wrong examples for each group to 2 for more 788

updates. For each iteration, we select top 3 hypothe- 789

ses to evaluate. For each update, we generate 1 new 790

hypothesis with incorrect examples. When there 791

are no demonstrations, we rank the hypotheses in 792

the bank by reward scores and use this ranking as 793

feedback to get better hypothesis. 794

C Additional Results 795

C.1 Hypothesis-based Inference without 796

task-specific knowledge 797

To minimize the impact of prior knowledge in 798

hypothesis-based inference, we eliminate task- 799

specific knowledge from the evaluation prompt 800

and remove learned patterns from the hypothe- 801

sis. Instead, we reformulate the task into its 802

corresponding modalities, prompting large lan- 803

guage models (LLMs) with: "Does the pro- 804

vided text/image/image-question align with the 805

given text/image/image-question patterns?" This 806

approach isolates the quality of the hypothesis, en- 807

suring that inference is not influenced by prior 808

knowledge. 809

The results are shown as Table 7. On average, 810

there is limited difference between the hypotheses 811

11

https://github.com/RUCAIBox/POPE
https://github.com/ruiqi-zhong/D5
https://github.com/ChicagoHAI/hypothesis-generation
https://github.com/ChicagoHAI/hypothesis-generation
https://github.com/ChicagoHAI/hypothesis-generation
https://github.com/ruiqi-zhong/D5
https://medmnist.com/


generated with and without demonstrations. The812

findings demonstrate again that LLMs are able to813

generate hypothesis with high quality only with814

task-specific prior.815

C.2 Results of Different Datasets with Label816

Format 2817

We provide results on each dataset with Label For-818

mat 2. The results are shown as Table 8. From the819

results, we can see that the results vary by dataset.820

However, there is quite limited difference (smaller821

than 3%) between correct and flipped label settings,822

showing the prior is too strong to be overridden by823

provided demonstrations.824

C.3 Results with Gemini Model825

We test IO-prompting with and without demonstra-826

tions on model gemini-1.5-pro-002. We report827

the average over two random seeds. The results828

are shown as Table 9. On average, there is quite829

limited performance difference with and without830

demonstrations, demonstrating that with only prior,831

LLMs can generate good hypotheses.832

D Evaluation Details833

LLM-based Evaluation Details. We prompt834

large language models (LLMs) to generate five835

hypotheses for each dataset across three different836

baselines. This results in a total of 25 hypotheses837

per baseline for both settings: with and without838

demonstrations.839

For LLM-based scoring, each hypothesis is eval-840

uated by prompting the LLMs to assign a score on a841

1–5 scale. Additionally, for pairwise comparisons,842

we randomly pair hypotheses generated with and843

without demonstrations, creating a total of 25 pairs844

for evaluation.845

Human Evaluation Details. We randomly pair846

the hypotheses generated with and without demon-847

strations across three datasets and three baselines.848

We selected the datasets unhealthy comments, truth-849

ful reviews, and funny Reddit posts because their850

domain knowledge is accessible to non-experts.851

Participants were provided with a questionnaire852

for evaluation. For each evaluation, we included853

the evaluation context, paired hypotheses, and illus-854

trative examples to guide participants. An example855

of the evaluation interface is shown in Figure 8.856

E Examples of Generated Hypothesis 857

We randomly select generated hypothesis with and 858

without demonstrations for each dataset, shown as 859

Table 10. 860

F Prompts 861

For prompt construction, we begin by manually 862

crafting a prompt for hallucination pattern induc- 863

tion, following a format similar to that used in 864

(Zhou et al., 2024). Subsequently, we leverage in- 865

context learning to generate prompts for other tasks. 866

Specifically, we provide the task name along with 867

the manually constructed prompt to the language 868

model, enabling it to generate prompts tailored to 869

other tasks. 870
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Demos Hallucination Unhealthy Comments Funny Reddit Truthful Review PneumoniaMNIST Overall Average

Best
w/o 63.1 70.1 61.6 64.0 75.6 66.9
w/ 57.5 68.0 59.1 64.6 80.8 66.0

Average
w/o 54.4 60.3 54.1 56.7 69.8 59.1
w/ 53.6 63.3 54.8 51.8 73.1 59.3

Table 7: Accuraccy comparison of single hypothesis-based classification without task-specific knowledge in
inference: accuracy for the single hypothesis and the average across five hypotheses, with (w/) and without (w/o)
demonstrations.

Label Hallucination Unhealthy Comments Funny Reddit Truthful Review PneumoniaMNIST Average

Correct (Best) 63.9 70.6 61.7 68.0 75.2 67.9
Flipped (Best) 61.2 71.5 62.0 68.8 73.9 67.5

Correct (Avg) 57.0 65.1 59.0 62.5 70.3 62.8
Flipped (Avg) 57.8 64.7 57.3 61.3 68.5 61.9

Table 8: Accuracy comparison across five datasets with correct and flipped label settings in the Label Format 2.

Demos Hallucination Unhealthy Comments Funny Reddit Truthful Review PneumoniaMNIST Overall Average

Best
w/o - 67.9 ± 0.2 62.7 ± 0.3 68.8 ± 2.0 58.2 ± 1.8 64.4
w/ - 67.8 ± 1.3 65.9 ± 0.3 66.9 ± 1.7 55.7 ± 1.4 64.1

Average
w/o - 61.9 ± 0.3 56.8 ± 0.0 64.5 ± 2.3 53.1 ± 0.2 59.1
w/ - 62.4 ± 1.1 58.0 ± 1.2 63.4 ± 1.2 53.0 ± 1.5 59.2

Table 9: Accuraccy comparison of single hypothesis-based classification with gemini-1.5-pro-002: accuracy (mean
± standard deviation) for the best single hypothesis and the average across five hypotheses, with (w/) and without
(w/o) demonstrations. "-" means the response is prohibited due to satety reasons.

Dataset Hypothesis without Demos Hypothesis with Demos

Hallucination Hallucinations are more likely to occur
when the questioned object is partially
occluded or located in a cluttered en-
vironment, making it difficult for the
model to accurately identify its pres-
ence or absence.

**Complex Backgrounds Hypothe-
sis**: Images with complex or cluttered
backgrounds may lead to hallucinations,
as the model might misinterpret overlap-
ping or densely packed objects as the
queried item.

Unhealthy Comments Comments containing personal attacks
or insults are more likely to be un-
healthy, as they often escalate conflicts
and discourage constructive dialogue.

Comments that include personal attacks
or derogatory language towards individ-
uals are more likely to be unhealthy.

Funny Reddit Posts Posts that incorporate unexpected
punchlines or twists are more likely
to be perceived as funny, as they play
on the element of surprise and subvert
reader expectations.

Posts that use wordplay or double enten-
dres, where a phrase can be interpreted
in multiple humorous ways, tend to be
perceived as funny.

Pneumonia MNIST The presence of pleural effusion, seen
as blunting of the costophrenic angles
or fluid layering in the pleural space,
may indicate pneumonia.

Presence of air bronchograms within ar-
eas of increased opacity suggests pneu-
monia.

Truthful Hotel Reviews Truthful reviews often mention both
positive and negative aspects of the stay,
providing a balanced perspective rather
than an overly positive or negative one.

Truthful reviews often mention both
positive and negative aspects of the stay,
providing a balanced perspective that
suggests authenticity.

Table 10: Examples of Generated Hypotheses with and without In-Context Demonstrations.
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Figure 8: Example interface of human evaluation.
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Prompt for hallucination with demonstrations

You’re a professional vision-language model behavior analyst.
Given a set of image-question pairs, we want to generate hypotheses that are useful for predicting
whether a model will hallucinate the existence of an object in response to a given question.
In other words, we want to know whether the model will falsely claim the presence of an object in
the image when answering the question.
Using the given examples, please propose {{num_hypotheses}} possible hypotheses that can
identify specific patterns that occur across the provided image-question pairs.
Each hypothesis should contain the following: a hypothesis about what image content features,
object features, or contextual relationships make the model more likely to hallucinate.
The hypotheses should analyze what kinds of image-question pairs are more likely to trigger
hallucinations.

Some examples of hallucination and non-hallucination cases are shown.
Hallucination cases are from number 1 to {{num_1}}, and non-hallucination cases are from
number {{num_2}} to {{num_3}}.

Based on provided examples, please generate hypotheses that are useful for predicting whether the
model will hallucinate the existence of an object in response to a given question.
Propose {{num_hypotheses}} possible hypotheses for hallucination patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Proposed hypotheses:

Prompt for hallucination without demonstrations

You are an expert in vision-language models, specializing in detecting and preventing hallucina-
tions.
We want to generate hypotheses that are useful for predicting whether a vision-language model
will hallucinate the existence of an object when responding to a question about an image.
In other words, we want to identify patterns that indicate when the model will incorrectly claim
the presence of an object not present in the image, or the absence of an object that is present.
Please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across common hallucination cases
and focus on the relationship between the image content and the questioned object.
Each hypothesis should contain the following: a hypothesis about what image content features,
object features, or contextual relationships make the model more likely to hallucinate.
The hypotheses should analyze what kind of image-question pairs are more likely to lead to
hallucinations.
Please generate {{num_hypotheses}} possible hypotheses for hallucination patterns in the given
context.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:
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Prompt for unhealthy comments with demonstrations

You’re an expert comment analyst in online conversation.
Given a set of comments, we want to generate hypotheses that are useful for predicting whether a
comment is unhealthy.
In other words, we want to know if the comment contributes to unhealthy conversations online.
Using the given examples, please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across the provided unhealthy
comments. Each hypothesis should contain the following: A hypothesis about what makes
comments more likely to be unhealthy. The hypotheses should analyze what kind of comments are
likely to be unhealthy.
Here are some examples of unhealthy and healthy comments:

Unhealthy comments:
{{positive_examples}}
Healthy comments:
{{negative_examples}}

Based on the provided examples, please generate hypotheses that are useful for predicting whether
a comment is unhealthy.
Propose {{num_hypotheses}} possible hypotheses for unhealthy comment patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t include any other words.
Proposed hypotheses:

Prompt for unhealthy comments without demonstrations

You’re an expert comment analyst in online conversation.
We want to generate hypotheses that are useful for predicting whether a comment is unhealthy. In
other words, we want to know if the comment contributes to unhealthy conversations online.
Please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across common unhealthy comments.
Each hypothesis should contain the following: A hypothesis about what makes comments more
likely to be unhealthy.
The hypotheses should analyze what kind of comments are likely to be unhealthy.
Please generate hypotheses that are useful for predicting whether a comment is unhealthy or
healthy.
Propose {{num_hypotheses}} possible hypotheses for unhealthy comment patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:
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Prompt for truthful reviews with demonstrations

You’re a professional hotel review analyst.
Given a set of hotel reviews, we want to generate hypotheses that are useful for predicting whether
a review is truthful. In other words, we want to know whether the review is written by someone
who actually lived in the hotel.
Using the given examples, please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across the provided reviews. Each
hypothesis should contain the following: A hypothesis about what makes reviews more likely to
be truthful. The hypotheses should analyze what kind of reviews are likely to be truthful.
Here are some examples of truthful and deceptive reviews:

Truthful reviews:
{{positive_examples}}
Deceptive reviews:
{{negative_examples}}

Based on provided examples, please generate hypotheses that are useful for predicting whether a
review is truthful.
Propose {{num_hypotheses}} possible hypotheses for truthful review patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:

Prompt for truthful reviews with demonstrations

You’re a professional hotel review analyst.
We want to generate hypotheses that are useful for predicting whether a review is truthful or
deceptive. In other words, we want to know whether the review is written by someone who actually
lived in the hotel.
Please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across common truthful reviews.
Each hypothesis should contain the following: A hypothesis about what makes reviews more likely
to be truthful. The hypotheses should analyze what kind of reviews are likely to be truthful or
deceptive.
Please generate hypotheses that are useful for predicting whether a review is truthful or deceptive.
Propose {{num_hypotheses}} possible hypotheses for truthful review patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:
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Prompt for PneumoniaMNIST with demonstrations

You’re a professional radiologist specializing in chest X-rays.
Given a set of labeled chest X-ray images, we want to generate hypotheses that are useful for
predicting whether a patient has pneumonia. In other words, we want to know whether the X-ray
shows signs of pneumonia.
Using the given examples, please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across the provided X-ray images.
Each hypothesis should contain the following: A hypothesis about what makes an X-ray more
likely to indicate pneumonia. The hypotheses should analyze what kind of image patterns are
likely to be indicative of pneumonia or not.

Some examples of X-ray images labeled as pneumonia and non-pneumonia are shown.
Pneumonia images are from number 1 to {{num_1}}, and non-pneumonia images are from
number {{num_2}} to {{num_3}}.

Based on provided examples, please generate hypotheses that are useful for predicting whether an
X-ray shows pneumonia or not.
Propose {{num_hypotheses}} possible hypotheses for pneumonia pattern recognition.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t include any other information.
Proposed hypotheses:

Prompt for PneumoniaMNIST without demonstrations

You’re a professional radiologist.
We want to generate hypotheses that are useful for predicting whether a patient has pneumonia
based on their chest X-ray image. In other words, we want to know which patterns in the image
are indicative of pneumonia presence.
Please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific visual patterns that occur in typical pneumonia cases.
Each hypothesis should contain the following: A hypothesis about what makes an image more
likely to show signs of pneumonia.
The hypotheses should analyze what kind of visual patterns or markers are likely to indicate
pneumonia.
Please generate hypotheses that are useful for predicting whether a patient has pneumonia or not
based on the X-ray.
Propose {{num_hypotheses}} possible hypotheses for pneumonia-related visual patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t include any additional context.
Proposed hypotheses:
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Prompt for funny reddit with demonstrations

You’re a professional humor analyst for Reddit posts.
Given a set of Reddit posts, we want to generate hypotheses that are useful for predicting whether
a post is considered funny or not. In other words, we want to know whether a post contains humor
patterns often associated with successful humorous posts.
Using the provided examples, please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across the provided posts.
Each hypothesis should contain the following: A hypothesis about what makes posts more likely to
be considered funny. The hypotheses should analyze what kind of posts are likely to be perceived
as funny or not.
Here are some examples of funny and unfunny posts:

Funny posts:
{{positive_examples}}
Unfunny posts:
{{negative_examples}}

Based on the provided examples, please generate hypotheses that are useful for predicting whether
a post is funny or not.
Propose {{num_hypotheses}} possible hypotheses for funny post patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:

Prompt for funny reddit without demonstrations

You’re a professional Reddit content analyst.
We want to generate hypotheses that are useful for predicting whether a Reddit post is funny or not.
In other words, we want to know what characteristics make a post likely to be perceived as humor-
ous by the community.
Please propose {{num_hypotheses}} possible hypotheses.
These hypotheses should identify specific patterns that occur across common funny posts.
Each hypothesis should contain the following: A hypothesis about what makes posts more likely
to be perceived as funny.
The hypotheses should analyze what kind of posts are likely to be considered humorous or non-
humorous.
Please generate hypotheses that are useful for predicting whether a post is funny or not.
Propose {{num_hypotheses}} possible hypotheses for funny Reddit post patterns.
Generate them in the format of 1. [hypothesis], 2. [hypothesis], ... {{num_hypotheses}}. [hypoth-
esis].
Don’t talk about any other words.
Proposed hypotheses:
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Evaluation prompt for hallucination

You are an expert in vision-language model behavior detection, and your job is to apply learned
patterns to predict if the model will hallucinate for the given image and question.
Here are some previously learned hallucination patterns:
{{patterns}}
The image is shown and the question is: {{text}}
Based on the learned patterns, will the model hallucinate?
Let’s think step by step.
Step 1: Look at the given image and question, and compare them with the provided hallucination
patterns.
Step 2: If the image and question pair matches learned hallucination pattern, then it is likely that
the model will hallucinate. If it does not match the pattern, then it is likely that the model will not
hallucinate.
Step 3: Apply the pattern to the given image-question pair and predict whether the model will
hallucinate based on the learned patterns.
Step 4: Give your final answer: yes or no. If you are unsure, respond with no.
Please give your answer strictly in the following format:
"""
Analysis: [your step-by-step analysis]
Answer: [your answer]
"""
Give your answer in the above format. Don’t talk about any other words.

Evaluation prompt for unhealthy comments

You will predict whether a comment is unhealthy based on the provided unhealthy comment
patterns.
Here are some previously generated unhealthy comment patterns:
{{patterns}}
A comment is the following: {{text}}
Is this comment unhealthy?
Think step-by-step.
Step 1: Look at the new comment and compare it with the provided unhealthy comment patterns.
Step 2: If the comment matches the pattern, then it is likely unhealthy. If it does not match the
pattern, then it is likely healthy.
Step 3: Apply the pattern to the new comment and predict whether the new comment is unhealthy.
Step 4: Give your final answer: yes or no. If you are unsure, respond with no.
Please give your answer strictly in the following format:
"""
Analysis: [your step-by-step analysis]
Answer: [your answer]
"""
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Evaluation prompt for truthful review

You will predict whether a hotel review is truthful based on the given truthful review patterns.
Here are some previously generated truthful review patterns:
{{patterns}}
A hotel review is the following: {{text}}
Is this hotel review truthful?
Think step-by-step.
Step 1: Look at the new hotel review and compare it with the provided truthful review patterns.
Step 2: If the review matches the pattern, then it is likely truthful. If it does not match the pattern,
then it is likely not truthful.
Step 3: Apply the pattern to the new hotel review and predict whether the new hotel review is
truthful.
Step 4: Give your final answer: yes or no. If you are unsure, respond with no.
Please give your answer strictly in the following format:
"""
Analysis: [your step-by-step analysis]
Answer: [your answer]
"""

Evaluation prompt for pneumoniaMNIST

You are an expert in pneumonia detection, and your job is to apply learned patterns to predict if a
person has pneumonia.
Here are some previously generated pneumonia patterns: {{patterns}}
A chest X-ray image is shown.
Based on the learned patterns and given image, is this person likely to have pneumonia based on
the learned patterns?
Think step-by-step.
Step 1: Look at the given chest X-ray image and compare it with the provided pneumonia patterns.
Step 2: If the image features match the pneumonia patterns, then the person is likely to have
pneumonia. If the features do not match the patterns, then the person is likely not to have
pneumonia.
Step 3: Apply the pattern to the new chest X-ray image and predict whether the person has
pneumonia.
Step 4: Give your final answer: yes or no. If you are unsure, respond with no.
Please give your answer strictly in the following format:
"""
Analysis: [your step-by-step analysis]
Answer: [your answer]
"""
Give your answer in the above format. Don’t talk about any other words.
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Evaluation prompt for funny reddit

You will predict whether a Reddit post is funny based on the given funny Reddit post patterns.
Here are some previously generated funny Reddit post patterns:
{{patterns}}
A Reddit post is the following: {{text}}
Is this Reddit post funny?
Think step-by-step:
Step 1: Look at the new Reddit post and compare it with the provided funny post patterns.
Step 2: If the post matches the pattern, then it is likely funny. If it does not match the pattern, then
it is likely not funny.
Step 3: Apply the pattern to the new Reddit post and predict whether the new post is funny.
Step 4: Give your final answer: yes or no. If you are unsure, respond with no.
Please give your answer strictly in the following format:
"""
Analysis: [your step-by-step analysis]
Answer: [your answer]
"""
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