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ABSTRACT

Large language models (LLMs) have achieved remarkable success in natural lan-
guage processing tasks but suffer from high computational costs during infer-
ence, limiting their deployment in latency-constrained applications. To address
this issue, we propose a novel Collaborative Inference with Token-lEvel Routing
(CITER) framework that introduces a token-level routing mechanism, enabling ef-
ficient collaboration between small and large language models (SLMs & LLMs).
Specifically, CITER enables routing non-critical tokens to an SLM to reduce com-
putational overhead, while critical tokens are processed by an LLM to maintain
generation quality. We formulate the training of the router as a reinforcement
learning task, where the router receives rewards based on both the quality of pre-
dictions and the inference cost of generation. This allows the router to learn to pre-
dict token-level routing scores and make routing decisions based on both the cur-
rent token and the future impact of its decisions. To further accelerate the reward
evaluation process, we introduce a shortcut for reward function estimation, signif-
icantly reducing the cost of the reward estimation and improving the practicality
of our approach. Extensive experiments across four benchmark datasets demon-
strate that CITER reduces inference cost while preserving high-quality generation,
offering a promising solution for real-time and resource-constrained applications.

1 INTRODUCTION

Large language models (LLMs) have revolutionized a wide range of natural language processing
tasks, from machine translation to context summarization and question answering (Coleman et al.,
2024; Kamalloo et al., 2024; Eniser et al., 2024; He et al., 2024). However, their impressive perfor-
mance comes with a substantial computational cost, particularly during inference. As these models
grow in size, the cost of inference becomes a significant barrier to their practical deployment, espe-
cially in real-time applications. Thus, there is a growing need for accelerating the inference process
without compromising the quality of the generated outputs.

Among the strategies (Dao et al., 2022; Sanh et al., 2020; Kou et al., 2024; Anagnostidis et al.,
2024) to reduce inference costs, particularly the number of arithmetic operations, routing tasks to
models of different sizes is a promising approach to accelerating LLM inference while maintaining
output quality. In this approach, small language models (SLMs) handle simpler tasks with lower
computational overhead, while more complex cases are routed to LLMs to ensure response accuracy.
However, while promising, existing works largely focus on routing entire user queries to different
models for generation (Ong et al., 2024; Mohammadshahi et al., 2024). This binary “either-or”
approach limits routing flexibility and may reduce efficiency, as many responses are often routed to
LLM to ensure the highest possible accuracy, even though SLM can often provide reasonably good
answers.

To address this challenge, we present a novel framework, namely Collaborative Inference with
Token-lEvel Routing(CITER). CITER introduces a token-level router that predicts whether a to-
ken is important by estimating the token-level routing score, and routes it to the appropriate model
to balance the efficiency and accuracy of generation. Specifically, many tokens in the response that
are not important to the final prediction, can be generated by SLM to reduce inference cost, while
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Figure 1: An overview of the CITER framework. A router is leveraged to perform collaborative in-
ference between the SLM and LLM. The router is trained using routing preference collected through
three cases. Case 1: The SLM generates the correct token, the routing preference is assigned to the
SLM. Case 2: The SLM generates an incorrect token, while the LLM generates the correct token,
the routing preference is assigned to the LLM. Case 3: None of the SLM or the LLM generates
the correct token, then the collaborative inference is conducted to obtain the completed response for
assigning the routing preference.

the LLM can be reserved to generate important tokens only. We formulate a reinforcement learning
(RL) problem to train the router, with the objective of minimizing inference cost while preserving
output quality. By employing this formulation, the router learns to predict token-level routing scores
and make routing decisions not only based on the current token but also considering the impact of
these decisions on future tokens. However, training the router using RL can be computationally
expensive, as it requires estimating the reward function, which is defined as the accuracy of the
responses generated via collaborative inference starting from each initial state. To make this formu-
lation more practical, we present a shortcut to the reward function, where the prediction from the
SLM and LLM is leveraged to estimate the final reward without completing the whole generation
process, which significantly accelerates its training process. Through this RL framework, the router
learns an optimal token-level decision-making strategy, enabling an SLM and an LLM to collaborate
for effective and efficient autoregressive generation.

Our primary contribution is CITER, which accelerates LLM inference by employing a token-level
router to select the appropriate model for generating each token. Experiments on four benchmark
datasets demonstrate the effectiveness of our approach, achieving a reduction in LLM inference
cost while maintaining high output accuracy, with comparable accuracy while up to 30% fewer
calls to LLM or delivering up to a 25% improvement in accuracy with the same ratio of calls to
LLM compared to co-LLM (Shen et al., 2024). Additionally, our ablation study experiments also
demonstrate that token-level routing offers more flexibility for achieving more promising results
compared to query-level routing and that considering the long-term impact of routing decisions
boosts the acceleration performance significantly.

2 COLLABORATIVE INFERENCE WITH TOKEN-LEVEL ROUTING(CITER)

In this section, we describe our Collaborative Inference with Token-lEvel Routing (CITER) frame-
work that leverages token-level routing to accelerate LLM inference. As illustrated in Figure 1, in
CITER, we introduce a router to facilitate collaborative inference between a powerful but computa-
tionally expensive LLM and a fast but potentially inaccurate SLM. Specifically, the router is lever-
aged to predict the token-level routing score for each token, and a pre-defined threshold τ is used
to determine which model should generate this token. The key challenge of our framework is the
training process of the router. To feed the router with the knowledge on making the global optimal
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routing decisions not only based on the accuracy of the current token but also the long-term impact
of its decision, we formulate the training process of the router as a reinforcement learning problem,
aiming to minimize the inference cost while maintaining the generation quality. To be more specific,
we first formulate the RL problem and derive the reward function as token-wise routing preference,
which should be computed to collect during the router training process. Subsequently, we intro-
duce a shortcut for the reward function estimation, leveraging both the SLM and LLM’s prediction
to estimate the reward, to significantly accelerate the collection process of the token-wise routing
preference. Finally, we propose an iterative training process for the router to mitigate the potential
inconsistencies of the routing decisions in the preference collection phase and deployment. In the
rest of this section, we will outline the router training and collaborative inference processes in detail.

2.1 ROUTER TRAINING

2.1.1 PROBLEM FORMULATION

To equip the router with the ability to predict token-level routing scores and decide which model
to use based not only on the accuracy of the current token but also on the impact of future
token generation, we formulate the training process of the router as a reinforcement learning
agent. Let the current state Th be the historical context input to the LLM before h-th token, i.e.,
Th = {x, y1, · · · , yh−1}, where x is the input prompts. At each step h ∈ [H], the RL agent
select either the LLM πL and the SLM πS with action a = {L, S}. Then the state Th+1 is com-
posed by first sampling the next token yh ∼ πa(·|Th) and then concatenating it to previous state
as Th+1 = Th + {yh}. In addition, we assume the reward is defined by the whole trajectory by
R(TH ,AH) where AH is the sequence of a routing policy, i.e. AH = {a1, · · · aH}, ah = {L, S}.
Reward R comprehensively encodes the performance of the routing strategy, including the quality
of generated response TH and the computational cost required by performingAH . We further define
the (meta) policy for the routing agent as Π = {Πh(·|Th)}h and the state-action value function as
QΠ

h (Th, a) = E[R(TH ,Ah:H)|Th, a,Π], where the expectation is taken over TH and Ah:H given
history context Th, action a ∈ {L, S} and (meta) policy Π. The objective of the routing agent is to
optimize the policy by

Πh = argmax
Πh

Ea∼Πh(·|Th)Q
Π
h (Th, a)−KL(Πh ∥ µ), (1)

where µ is the pre-defined policy with µ(L) = µ(S) = 0.5, meaning that the SLM and
LLM are randomly selected. The closed-form solution for equation 1 is therefore Πh(a|Th) ∝
µ(a) exp(QΠ

h (Th, a)).

2.1.2 EFFICIENT COLLECTION OF TOKEN-WISE ROUTING PREFERENCES

Generally, it is hard to evaluate the quantity ofR(TH ,AH) because it contains both the quality of TH
and the efficiency ofAH . We inject the pairwise preference 1h[S ≻ L] following the Bradley–Terry
model (Bradley & Terry, 1952) as:

Pr
h
(S ≻ L|Th,Π) =

1

1 + exp(QΠ(Th, L)−QΠ(Th, S))
(2)

Following (Rafailov et al., 2024), we have that

QΠ
h (Th, L)−QΠ

h (Th, S) = log
Πh(L|Th)

µ(L)
− log

Πh(S|Th)
µ(S)

= log
Πh(L|Th)
Πh(S|Th)

, (3)

where the equation 3 is due to log(µ(L)/µ(S)) = 0. Plugging equation 3 into equation 2 yields

Pr(S ≻ L|Th,Π)h =
1

1 + Πh(L|Th)/Πh(S|Th)
= Πh(S|Th), (4)

where the last equation is due to the fact that Πh(S|Th)+Πh(L|Th) = 1. Therefore, given a context
Th, once we have labeled the preference 1h[S ≻ L|Th,Π], Πh(S|Th), the routing agent Π can be
learned by minimizing the cross-entropy loss

L =
∑
Th

1h[S ≻ L|Th,Π] logΠh(S|Th) + 1h[L ≻ S|Th,Π] logΠh(L|Th), (5)
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where the 1h[L ≻ S|Th,Π] is defined similarly to 1h[S ≻ L|Th,Π], but it takes action L (selecting
the LLM) instead of S (selecting the SLM) at step h, conditioned on the state Th.

To optimize equation 5, the routing preference 1h[S ≻ L|Th,Π] is determined by whether the
fully generated response, starting from state Th+1, is correct. The state Th+1 is reached by taking
action S (selecting the SLM) from state Th. Specifically, if the state Th+1 is a completed state
TH (e.g., ending with an <EOS> token), the routing preference is assigned based on whether the
generated response TH is correct. If the state Th+1 is an intermediate state, the routing agent Π will
be leveraged to process the collaborative inference between the SLM and the LLM, obtaining the
completed state TH . Subsequently, the routing preference 1h[S ≻ L|Th,Π] will be determined as
whether the generated response TH is correct. The whole process can be formulated as follows:

1h[S ≻ L|Th,Π] =1(Correct(TH)), if Th+1 is completed,
1h[S ≻ L|Th,Π] =1(Πh+1(S|Th+1) > τ)1h+1[S ≻ L|Th+1,Π]+

1(Πh+1(S|Th+1) ≤ τ)1h+1[L ≻ S|Th+1,Π], otherwise,
(6)

where the Correct(·) is used to determine whether the generated response is correct. The threshold
τ is a hyperparameter that determines the routing score required to select the SLM. If the routing
score exceeds τ , the token is considered non-critical and the SLM’s output will be committed to the
final response. Otherwise, the token is marked as critical and routed to the LLM for re-generation.

However, the second case in equation 6 requires generating the full response TH and calculating
the reward from each starting state Th, which is computationally expensive. To mitigate this, we
introduce a shortcut for estimating the reward function, significantly reducing the cost of reward
computation. We hypothesize that if the SLM cannot generate a token correctly when provided with
the previous ground truth contextual history, then this token is particularly challenging to generate.
Based on this hypothesis, we first provide both the SLM and LLM with the ground truth historical
context and their output tokens are then compared with the ground truth. Then, we assign the routing
preference 1h[S ≻ L|Th,Π] directly without generating the full response TH if at least one of them
generates the correct token. Specifically, we define the ground truth context before h-th token is
T ∗
h = {x, y∗1 , · · · , y∗h−1}, and y∗h is defined as the ground truth h-th token. Subsequently, we feed
T ∗
h to the SLM to generate the next token. If the SLM can generate the correct token y∗h based

on the ground truth context, the SLM will be selected, and we will assign the routing preference
1h[S ≻ L|Th,Π] = 1. Otherwise, we then feed T ∗

h to the LLM, and if LLM can generate the correct
token y∗h, we will choose the LLM and assign 1h[S ≻ L|Th,Π] = 0. Only when both models fail to
generate the correct token y∗h based on ground truth context, the full response generation is required
to compute the reward. This shortcut allows us to obtain routing preferences for most tokens without
generating the full response. Empirically, we find that about 80% ∼ 90% of tokens can be correctly
predicted by either the SLM or LLM, making the shortcut significantly reduce the computational
cost of the reward function estimation. After collecting the preference, it will be used to train the
router using equation 5.

2.1.3 ITERATIVE TRAINING PROCESS

Ideally, we would expect the router Π used during preference data collection to make the same
routing decision as the one used during deployment. However, as the router is updated throughout
training using the collected data in Section 2.1.2, its behavior is likely to change, leading to potential
inconsistencies. To address this issue, we propose a multi-iteration router training process. In each
iteration k, the router Πk−1 from the previous iteration k − 1 is used to collect routing preferences.
These newly collected routing preferences are then utilized to train a new router Πk. With each
iteration, the router’s behavior becomes more consistent, eventually reaching convergence. This
iterative process continues until the collected routing preferences match those from the previous
iteration or until a predefined number of iterations K is reached. The only exception occurs in the
first iteration, where no trained router exists. In this case, a simple routing policy is employed,
routing all tokens to the SLM to collect the initial preference data. By following this approach, we
can train the router in a practical and efficient manner. The full process is outlined in Algorithm 1.
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Algorithm 1: The Iterative Training Process of our Router
Input: The training data D = {(Th, y∗h)}i, the initial router Π0, the SLMMS and LLMML,

the pre-defined threshold τ and the number of iterations K
Output: The trained router Π

1 Initialization: iter k ← 0, previous routing preference S0 ← ∅
2 for k = 1 to K do
3 Sk ← ∅
4 for i = 1 to |D| do
5 ySh ←MS(Th)
6 if ySh == y∗h then
7 Sk ← Sk ∪ {1}
8 Continue
9 yLh ←ML(Th)

10 if yLh == y∗h then
11 Sk ← Sk ∪ {0}
12 Continue
13 Generate the full response TH starting from Th ∪ ySh with router Πk−i and threshold τ
14 Sk ← Sk ∪ {1(Correct(TH))}
15 if Sk == Sk−1 then
16 break
17 Train the router Πk with the routing preference Sk and dataset D as the loss

function equation 5
18 Π← Πk

19 Return Π

2.2 COLLABORATIVE INFERENCE

After router training, during inference, we aim to leverage the SLM to collaboratively generate
tokens to reduce the number of tokens generated by the LLM, thereby improving the efficiency of
the inference process. Specifically, we start by feeding both the input prompt and the previously
generated tokens into the SLM, obtaining the output token and corresponding hidden states. Then,
the router Π trained in Section 2.1 is leveraged to predict the token-level routing score based on
the hidden states from the SLM. During this process, the router considers both the current token
and the historical context to make routing decisions based not only on the accuracy of the current
token but also on the long-term influence of its decision on future token generation. Subsequently, a
pre-defined threshold τ is used to determine whether the SLM or the LLM should handle the current
token. If the routing score exceeds the threshold τ , indicating that the SLM is confident with its
output. The output token from the SLM will be committed to the final response and the generation
process will go on. Otherwise, the token will be routed to the LLM for re-generation and the SLM’s
output will be discarded. During the preference data collection process for router training, most
tokens are assigned to the SLM, with only a few routed to the LLM through our shortcut. As a
result, the SLM efficiently generates the majority of tokens. This process continues until an <EOS>
token is produced by either the SLM or LLM. In this way, the router dynamically routes each token
between the SLM and LLM, offloading non-critical tokens to the SLM to reduce computational
overhead while utilizing the LLM’s capabilities to maintain response quality.

3 EXPERIMENTS

In this section, we evaluate the performance of CITER aiming to answer the following questions: (1)
Compared with the previous works on speeding up the inference of LLM, how does our framework
perform in terms of the computational cost and the quality of the generated response? (2) Does
the components we proposed in our framework boost the performance of the router? (3) Does the
iterative training process of the router improve the performance of our framework? (4) How does
the performance of our framework change with the size of the LLM? (5) Can the router distinguish
the critical and non-critical tokens correctly?

5
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Table 1: The statistics of our evaluation datasets.

Dataset Domain Task # choices Train size Test size

Commonsense QA General CoT + Multi-choice 5 9,741 1,221
ARC-Challenge Reasoning CoT + Multi-choice 4 1,119 299
GSM8k Math Question answering N/A 7,473 1,319
MMLU-Professional Psychology Psychology CoT + Multi-choice 4 612 69
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Figure 2: The accuracy vs % calls to LLM curve of CITER and the baselines. Points closer to the
top-left corner indicate better acceleration performance.

3.1 EXPERIMENTAL SETUP

Dataset Description. We evaluate CITER and our baselines on four widely-used academic bench-
mark datasets: the commonsense QA dataset (Talmor et al., 2019) contains 12,102 questions requir-
ing different types of commonsense knowledge to answer; the ARC-Challenge dataset (Clark et al.,
2018), including 1,418 genuine grade-school level, multiple-choice science questions; the GSM8k
dataset (Cobbe et al., 2021) with 8.5K high quality linguistically diverse grade school math word
problems; and the MMLU-Professional Psychology dataset (Hendrycks et al., 2021), consisting of
874 multiple-choice questions on psychology, respectively. The statistics of the datasets are in Ta-
ble 1.

Evaluation. We evaluate the performance of CITER and the baseline methods using the test sets
and corresponding evaluation metrics for each dataset. Specifically, a threshold τ is applied in each
method to balance the trade-off between response accuracy and the % calls to LLM, which is defined
as the ratio of calls routed to the LLM. We then plot the accuracy vs. the % calls to LLM curve to
illustrate the acceleration performance of both CITER and the baselines. The optimal point is located
in the top-left corner of the curve, corresponding to the highest accuracy with the lowest inference
cost.

Baselines. We compare CITER with both a representative query-level routing method
(RouteLLM (Ong et al., 2024)) and a token-level routing method (co-LLM (Shen et al., 2024)).

6
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Figure 3: The accuracy vs % calls to LLM curve of CITER and the varient CITER-S. Points closer
to the top-left corner indicate better acceleration performance.
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Figure 4: The accuracy vs % calls to LLM curve of CITER with 1.5B SLM and CITER with 7B
SLM. Points closer to the top-left corner indicate better acceleration performance.

RouteLLM makes routing decisions for entire queries, directing them to different models for gener-
ation, while co-LLM breaks down the generation process, routing each token to different models.

Implementation Details We implement our framework using the Hugging Face Transformers li-
brary (Wolf et al., 2020). For the SLM and LLM, we utilize Qwen2-1.5b and Qwen2-72b, respec-
tively. The router is implemented as a multilayer perceptron (MLP) network with three hidden
layers, ReLU activation (Agarap, 2019), BatchNorm normalization (Ioffe & Szegedy, 2015), and a
0.1 dropout rate. It is trained using the Adam optimizer (Kingma & Ba, 2017) with a learning rate
of 1 × 10−7, betas of (0.9, 0.99), and no weight decay. Training is performed on a single NVIDIA
H100 GPU with a batch size of 80. The iterative training process runs for 2 rounds.

3.2 OVERALL PERFORMANCE

We conduct extensive experiments to assess the performance of CITER across all benchmark
datasets, comparing it against baseline methods. The results are presented in Figure 2. Notably,
all token-level routing methods, including CITER and co-LLM, significantly outperform the query-
level routing method, RouteLLM, across all datasets, particularly on the Commonsense QA and
GSM8k datasets, reducing up to 30% calls to LLM while maintaining the same accuracy or achiev-
ing up to 12% higher accuracy with the same ratio of calls to LLM. This emphasizes the effec-
tiveness of token-level routing, which provides enhanced flexibility in reducing computational costs
while preserving response quality. Furthermore, CITER consistently surpasses co-LLM, achieving
comparable accuracy with up to 27% fewer calls to LLM or delivering up to a 17% improvement
in accuracy with the same ratio of calls to LLM. These findings demonstrate the success of our
framework in accelerating LLM inference. This outcome is expected, as co-LLM does not consider
long-term information during the router training phase, which is crucial for token-level routing. In
the following section, we present experiments to further demonstrate the importance of incorporat-
ing long-term information in router training.

3.3 ANALYSIS OF LONG-TERM INFLUENCE

In this section, we conduct an ablation study on a key component of our framework: the long-
term influence of routing decisions, to evaluate its effectiveness. For this purpose, we design an
ablation variant, CITER-S, where the SLM is selected if both the SLM and LLM provide incorrect
predictions during the routing preference collection, disregarding the long-term impact of routing
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decisions. The results are shown in Figure 3. Clearly, CITER significantly outperforms the ablation
variant CITER-S across all datasets, reducing calls to LLM by up to 42% while maintaining the
same accuracy, or achieving up to a 23% accuracy improvement with the same ratio of calls to
LLM. These findings highlight the critical role of accounting for the long-term influence of routing
decisions.

3.4 ANALYSIS OF ITERATIVE TRAINING PROCESS

0.0 0.2 0.4 0.6 0.8 1.0
% Call to LLM

40

50

60

70

80

A
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ur
ac

y

Qwen2-1.5B

Qwen2-72B

Random

Iteration 1

Iteration 2

Iteration 3

Figure 5: Accuracy vs. % calls to
LLM curve of CITER with router over
the first three iterations on the common-
sense QA datasets. Points closer to the
top-left corner indicate better accelera-
tion performance.

To highlight the importance of the iterative training pro-
cess, we present the performance curve of CITER with
the router over the first three iterations on the Common-
sense QA dataset. As shown in Figure 5, the results
demonstrate a clear improvement in performance from
the first to the second iteration. In the second iteration,
CITER reduces ∼ 5% calls to LLM while maintaining
the same accuracy or achieves 2 ∼ 3% higher accuracy
with the same ratio of calls to LLM compared to the first.
This improvement underscores the effectiveness of our
proposed iterative training process. Moreover, the per-
formance curve of the third iteration closely follows that
of the second, indicating that the router has already con-
verged by the second iteration. The rapid convergence of
the router emphasizes the robustness of our training strat-
egy, suggesting that optimal performance can be achieved
without excessive computational costs or extended train-
ing periods.

3.5 ANALYSIS OF THE IMPACT OF SLM MODEL SIZE

We further scale up the SLM size from Qwen2-1.5B to Qwen2-7B, while keeping the LLM fixed
to Qwen2-72B, to understand the scalability of our framework. As shown in Figure 4, the results
clearly demonstrate that CITER reduces calls to LLM by up to 10% while maintaining the same level
of accuracy or achieves up to 11% higher accuracy with the same ratio of calls to LLM when using
Qwen2-7B as the SLM compared to Qwen2-1.5B, particularly on the commonsense QA and GSM8k
datasets, underscoring our framework’s scalability with larger SLMs. However, the performance
gap is most noticeable when only a few calls to LLM are made, and it gradually diminishes or even
disappears as the ratio of calls to LLM increases. This is expected, as the SLM’s capacity limits its
performance, and the quality of responses increasingly depends on the LLM as more calls are routed
to it.

3.6 CASE STUDY ANALYSIS ON THE ROUTER

Finally, we perform a case study to further analyze the decision-making process of the router in our
framework. A selection of examples, along with their corresponding routing decisions, is shown
in Figure 6. In the left example, it is clear that our router accurately identifies the critical tokens,
including the first occurrence of the answer ”Midwest” and the word ”fertile,” which describes the
farmland in the Midwest, both crucial to the final answer. Moreover, most non-critical tokens are
efficiently offloaded to the SLM, effectively reducing computational costs.

In the right example, we compare CITER with the token-level routing method co-LLM. It is evident
that our router outperforms co-LLM by correctly identifying potential critical tokens, particularly
time-related words. In co-LLM’s response, at the first red-marked word ”morning,” co-LLM incor-
rectly routes the word ”the” to the LLM while assigning the contextually important word ”morning”
to the SLM, leading to an initial error in the response. Similarly, co-LLM routes the critical phrase
”afternoon meal” to the SLM, which results in the final incorrect prediction. In contrast, our router
correctly identifies the critical word ”day” and routes it to the LLM, followed by routing the phrase
”has already” to accurately capture the reasoning process, ultimately leading to the correct predic-
tion.
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co-LLM

Wendi feeds each of her 20 chickens 3 cups of feed daily, split
into three meals. In the morning, she gives them 15 cups, and in
the afternoon, another 25 cups. How many cups of feed does she
need to give in the final meal?

James was looking for a
good place to buy
farmland. Where might
he look?

CITER

Wendi needs 20 * 3 = 60

cups of feed for the morning

meal. Wendi needs 60 cups

of feed for the afternoon

meal, so she needs 60 + 60

= \boxed{120} cups of feed

for the final meal.

Wendi needs 20 * 3 = 60 cups

of feed for the day. Wendi has

already given her chickens 15 +

25 = 40 cups of feed. Thus,

Wendi needs to give her

chickens 60 - 40 = \boxed{20}

cups of feed in the final meal.

CITER

The Midwest is a region of the

United States that is known

for its fertile farmland.

Therefore, the answer is

Midwest.

Q1 Q2

Figure 6: The case study analysis of our router. The words highlighted with yellow background are
generated by the LLM, while other words are generated by the SLM. The red-marked words are the
mistakes in co-LLM’s response.

These examples illustrate that the router in CITER effectively distinguishes between critical and
non-critical tokens, offloading non-critical tokens to the SLM to minimize computational overhead,
while leveraging the LLM to ensure the quality of the generated response.

4 RELATED WORK

In this section, we conduct a literature review that mainly focuses on prior LLM inference acceler-
ation methods, especially those that involve using routing mechanisms and collaborative inference
between LLMs for inference acceleration.

Query-Level Routing Mechanisms. Previous routing methods (Jang et al., 2023; Chronopoulou
et al., 2023; Diao et al., 2023; Lu et al., 2023; Cheng et al., 2024; Lu et al., 2024; Chen et al., 2023b;
Wang et al., 2024b) for efficient inference mainly focus on routing entire user queries to different
models for generation. For example, Routoo (Mohammadshahi et al., 2024) proposes a performance
predictor and a cost-aware decoder to route between LLMs, considering both performance and re-
source constraints; RouteLLM (Ong et al., 2024) formulates the routing problem as a classification
problem and employs a data augmentation framework to significantly expand the dataset used for
training the router. FrugalGPT Chen et al. (2023b) formulates the routing problem as a constrained
optimization problem, where the final generated quality is maximized under a budget or inference
cost constraint. However, as highlighted in Section 1, routing at the query-level granularity may lead
to suboptimal performance, as non-critical tokens in complex queries may be generated inefficiently,
while critical tokens in simple queries may suffer from inaccuracy. In contrast, token-level routing
methods offer more fine-grained control over the routing process, improving both inference costs
and the quality of the generated response.

Token-Level Routing Mechanisms. Unlike query-level routing methods, previous token-level
routing methods (Pfeiffer et al., 2021; Belofsky, 2023; Muqeeth et al., 2024; Wang et al., 2024a;
Wu et al., 2024; Xu et al., 2024) mainly focus on routing input tokens to different specialized
experts to enhance performance without considering the computational cost. For example, Ar-
row (Ostapenko et al., 2024) reuses a library of expert LoRAs to build a mixture-of-experts (MoE)
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architecture, dynamically routing inputs to different LoRAs during inference. Similarly, Branch-
Train-MiX (Sukhbaatar et al., 2024) fine-tunes LLMs on different domains from a seed LLM, cre-
ating specialized experts to form an MoE framework. Among these methods, co-LLM (Shen et al.,
2024) is the most relevant to our framework CITER, introducing a router to route tokens to mod-
els of different sizes. However, co-LLM only considers the current outputs from SLM and LLM
when generating ground truth labels to train the router. This may lead to suboptimal performance
since the influence of current decisions on future tokens is not considered. Moreover, similar to
other token-level routing methods, co-LLM focuses on enhanced response quality without taking
the computational cost of the inference process into account. In contrast, our CITER framework
considers both the current token and the future impact of each decision, enabling more accurate and
efficient routing.

Other Methods for LLM Inference Acceleration. In addition to routing methods, several ap-
proaches ranging from algorithmic to system optimizations (Leviathan et al., 2023; Miao et al.,
2023; Kwon et al., 2023; Bhendawade et al., 2024; Cai et al., 2024; Chen et al., 2024b;a) have been
proposed to accelerate LLM inference. Speculative Decoding (Leviathan et al., 2023; Chen et al.,
2023a) employs a small draft model to generate potential next tokens, which are concatenated with
previously generated tokens. These guesses are then processed by the target LLM in parallel to
verify their correctness. Tokens are only committed to the final output if confirmed by the target
LLM. Although this approach reduces inference time by generating multiple tokens in a single for-
ward pass, it does not lower the overall computational complexity (e.g., the total amount of FLOPs).
Speculative Streaming (Bhendawade et al., 2024) addresses the computational overhead of Specu-
lative Decoding by predicting n-grams instead of individual tokens in each forward pass. However,
it requires redesigning the LLM architecture, necessitating re-pretraining, which is computation-
ally prohibitive for many use cases. Medusa (Cai et al., 2024) mitigates the re-pretraining issue
by adding auxiliary heads to the original LLM, allowing n-gram predictions without modifying the
core model. These heads can be trained while keeping the original LLM frozen, thereby avoiding
the need for re-pretraining. SpecInfer and Sequoia (Miao et al., 2023; Chen et al., 2024b) leverage
tree-based parallelism for decoding and verification to further accelerate inference.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Collaborative Inference with Token-lEvel Routing(CITER) frame-
work to address the challenge of high computational costs associated with large language models.
By introducing a token-level routing mechanism, CITER enables efficient collaboration between
smaller and larger models, achieving a balance between computational efficiency and generation
quality. The key challenge lies in training the router, which we formulate as a reinforcement learn-
ing task. The router receives rewards based on both prediction quality and inference cost, allowing
it to learn to predict token-level routing scores and make routing decisions by considering both the
current token and the future impact of its decision. Additionally, we introduce an iterative training
process to mitigate inconsistencies during the dataset collection phase. To further accelerate the
learning process, we propose a shortcut where the reward is estimated based on the predictions from
both the small and large models at each step. Extensive experiments demonstrate that CITER sig-
nificantly reduces inference costs while maintaining high-quality generation, offering a promising
solution for real-time and resource-constrained applications.

Future work can explore several directions to further enhance the CITER framework. One potential
avenue is the application of CITER to other modalities, such as vision or multimodal tasks, to assess
its generalizability and effectiveness beyond language models. Additionally, investigating the use of
self-supervised learning to pretrain the router and reduce reliance on costly iterative training could
also be a promising direction. To be more specific, other estimation methods could be introduced
to further accelerate the routing preference collection for the case where both the SLM and the
LLM make the incorrect next token prediction. Future research could also focus on improving the
interpretability of the routing mechanism, providing more transparency on how the model makes
token-level routing decisions. Finally, exploring the integration of CITER with model compression
techniques or dynamic architectures may yield further reductions in computational costs, making it
even more suitable for deployment in real-time, edge-based applications.
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Fusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 487–503, Online, April
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39. URL
https://aclanthology.org/2021.eacl-main.39.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.01108.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to
decode collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing
expert llms into a mixture-of-experts llm, 2024. URL https://arxiv.org/abs/2403.07816.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
Lora-flow: Dynamic lora fusion for large language models in generative tasks, 2024a. URL
https://arxiv.org/abs/2402.11455.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. In The Twelfth International Conference on
Learning Representations, 2024b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A.1 COMMONSENSE QA

CommonsenseQA is a large-scale, multiple-choice question-answering dataset designed to chal-
lenge and evaluate systems on their ability to leverage commonsense knowledge. The dataset con-
sists of 12,102 questions, each accompanied by one correct answer and four distractor (incorrect)
options, requiring models to distinguish the correct answer by understanding various types of com-
monsense reasoning. What sets CommonsenseQA apart is its emphasis on requiring a broader array
of everyday knowledge, involving not only basic facts but also causal, temporal, and conceptual
reasoning.

A.2 ARC-CHALLENGE

The AI2 ARC dataset is a comprehensive collection of 7,787 grade-school-level multiple-choice sci-
ence questions, meticulously curated to stimulate advancements in question-answering systems. The
dataset is strategically divided into two subsets: the ARC-Easy Set and the ARC-Challenge Set. The
ARC-Challenge Set, which is the subset we utilized in our work, comprises a selection of particu-
larly difficult questions. These questions were specifically included because they were misclassified
by both a traditional retrieval-based algorithm and a word co-occurrence algorithm, making them
a true test of a model’s ability to understand and reason through complex scientific concepts. The
ARC-Challenge subset serves as an ideal benchmark for testing sophisticated models, as it presents
questions that require more than surface-level understanding or simple pattern matching.

A.3 MMLU-PROFESSIONAL PSYCHOLOGY

The MMLU dataset is a comprehensive multitask benchmark that comprises multiple-choice ques-
tions across a vast range of knowledge domains, including subjects in the humanities, social sci-
ences, hard sciences, and other fields. It covers 57 distinct tasks such as elementary mathematics,
U.S. history, computer science, law, and more, aimed at evaluating a model’s general world knowl-
edge and problem-solving capabilities.

In our work, we focused specifically on the “Professional Psychology” subset of MMLU. This sub-
set contains questions rich in domain-specific terminology, including specialized terms related to
psychology and, occasionally, biological concepts tied to psychological phenomena. It provides a
robust test for assessing a model’s proficiency in understanding and reasoning within a specialized
academic field, thus offering insights into the model’s capability to handle complex, domain-specific
content.

A.4 GSM8K

GSM8k (Grade School Math 8k) is a dataset consisting of 8.5K high-quality, linguistically diverse
grade school math word problems. Designed to evaluate and improve question-answering capabili-
ties in basic mathematical problem-solving, this dataset emphasizes multi-step reasoning, requiring
between 2 and 8 steps to arrive at the correct solution.

The problems involve a sequence of elementary calculations using basic arithmetic opera-
tions—addition, subtraction, multiplication, and division—along with some early Algebra concepts.
However, the dataset ensures that all problems are approachable for a bright middle school student,
avoiding the need for advanced mathematical tools like variable definitions in most cases.

One of the distinctive features of GSM8K is that the solutions are presented in natural language
rather than purely in mathematical expressions. This design decision aligns with the dataset’s goal
to illuminate the reasoning capabilities of large language models (LLMs), specifically how they
simulate an “internal monologue” when reasoning through problems. The dataset’s natural language
solutions provide a more interpretable and instructive resource for evaluating the logical progression
of LLMs in real-world tasks.

B PROMPT

In this section, we illustrate the prompt we used for each dataset.
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B.1 MULTIPLE-CHOICE QUESTION PROMPT

For multiple-choice question datasets, including the Commonsense QA dataset, the ARC-Challenge
dataset, and the MMLU-Professional Psychology dataset, we leverage the following prompt to re-
quire LLMs to provide both an explanation and a final answer in a specific format.

Example:

Question: $question
Choices:
A. $choice_A
B. $choice_B
C. $choice_C
D. $choice_D
E. $choice_E
Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning: $response

B.2 GSM8K MATH PROBLEM PROMPT

For math problems in the GSM8k dataset, the following prompt is employed to require LLMs to
provide a step-by-step solution with clear reasoning in LaTeX format, with the final answer enclosed
in a box using \boxed{}.
Example:

Solve the following math problem step by step. Ensure all reasoning is shown clearly
in LaTeX format, and the final answer should be enclosed using the LaTeX command
\boxed{} to display it in a box.
Question: $question
Solution: $solution

C EXAMPLES

In this section, we list examples of each dataset, including the questions, prompts, and responses
from LLMs to clearly demonstrate the prompt we use and the task of each dataset.

C.1 COMMONSENSE QA

Question: What do people aim to do at work?
Choices:
A. complete job
B. learn from each other
C. kill animals
D. wear hats
E. talk to each other

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
The answer should be something that people aim to do at work. People generally aim to
complete jobs. Therefore, the answer is complete job (A).

C.2 ARC-CHALLENGE

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see which

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

object rolls the farthest. What should they do so they can repeat their investigation?
Choices:
A. Put the objects in groups.
B. Change the height of the ramp.
C. Choose different objects to roll.
D. Record the details of the investigation.

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
To repeat their investigation, Juan and LaKeisha should record the details of the
investigation. This will involve noting down the objects they rolled, the height of
the ramp, and the distance each object rolled. This way, they can replicate the exact
conditions and compare the results of their repeated investigation. This is the
crucial step in the scientific method, as it ensures that the results are reliable
and can be trusted. Therefore, the final answer is record the details of the
investigation (D).

C.3 MMLU-PROFESSIONAL PSYCHOLOGY

Question: Justice primarily involves ___________.
Choices:
A. Recognizing fairness for all persons
B. Promoting accuracy and truthfulness
C. Benefitting others and do no harm
D. Respecting cultural and individual difference

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
Justice primarily involves recognizing fairness for all individuals. It is about ensuring
that everyone is treated equally and fairly, without any discrimination or bias. Therefore,
the answer is Recognizing fairness for all persons (A).

C.4 GSM8K

Solve the following math problem step by step. Ensure all reasoning is shown clearly in
LaTeX format, and the final answer should be enclosed using the LaTeX command \boxed{} to
display it in a box.
Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the
farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every
day at the farmers' market?
Solution: 16 - 3 = << 16 - 3 = 1 3 >> 13 eggs are left after breakfast. 13 - 4 = << 13 - 4 = 9
>> 9 eggs are left after baking. 9 * 2 = << 9 * 2 = 18 >> 18 dollars she makes at the
farmers' market. The final answer is: \\boxed{18}.
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