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Abstract

Watermarking is a critical tool for protecting datasets against malicious or unautho-1

rized use, yet existing methods often face limitations in data type support, fidelity2

preservation, and detection efficiency. In this work, we introduce HashMark, a3

novel and versatile watermarking scheme for tabular datasets, including synthetic4

data, without imposing restrictions on data types. At its core, HashMark employs5

a cryptographic hash function to map any data into binary values, enabling ef-6

ficient and robust watermark embedding. Our design generalizes and simplifies7

some prior approaches, such as the recent works Ngo et al. (arXiv 2024) and8

TabularMark (ACM CCS 2024), while addressing their key shortcomings. Unlike9

Ngo et al., HashMark supports categorical and mixed-type data with a unified10

framework. Compared to TabularMark, it enables efficient watermark detection11

without requiring access to the original dataset. Further, unlike TabularMark, we12

present experiments for categorical data. Finally, we run experiments comparing13

the accuracy of synthetically generated data and watermarked, synthetic data on14

three classifiers over several datasets using three approaches for generating syn-15

thetic data. These experiments clearly demonstrate a negligible impact on utility16

for intended machine learning tasks when HashMark is used.17

1 Introduction18

As financial institutions increasingly rely on data-driven systems for risk assessment, fraud detection,19

regulatory compliance, and AI-driven decision-making, ensuring data integrity, provenance, and20

ownership is paramount. Data watermarking—the practice of embedding imperceptible markers21

or identifiers into datasets—offers a powerful mechanism for protecting sensitive financial data,22

establishing ownership, and verifying authenticity across complex data pipelines. In contexts where23

financial data is shared with third parties, sold to analytics providers, or used to train machine24

learning models, watermarking provides a means to trace data lineage, deter unauthorized use, and25

ensure accountability. Moreover, with the growing adoption of generative models and synthetic26

data in finance—for tasks such as scenario simulation, stress testing, and customer behavior mod-27

eling—watermarking plays a critical role in guaranteeing the traceability and responsible use of28

AI-generated financial datasets.29

Previous research on watermarking typically focuses on image, audio, or text data [3, 35, 39, 42, 44],30

with less attention given to tabular data, one of the most common and essential data formats in31

machine learning. Tabular data presents unique challenges for watermarking: (1) Precise values lack32

perceptual redundancy, making even minor changes impactful; (2) Mixed data types (categorical,33

numerical) require tailored strategies; (3) Resilience is needed against insertions, deletions, and34

foreign key modifications. Existing attempts to provide watermarking for tabular data often focus35

solely on relational data [2, 17, 18, 22, 25, 26, 33, 34]. Existing methods have proposed watermarking36
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Table 1: Comparison of HashMark with prior works (transposed). Detection Cost refers to the
information needed to detect the watermark efficiently. “# Modification” refers to the number of cells
that need to be modified to embed the watermark.

Ngo et al. Zheng et al. HashMark1 HashMark2

# Modification All All Θ(1) All
Fidelity High High V.High High
Deletions Allowed Allowed Limited Allowed
Permutations Allowed Allowed Limited Allowed
Data Types Numerical Any∗ Any Any
Detection Cost High V.High V.Low Low

techniques that either alter specific data points or embed identifiers at a statistical level. Only recently37

have watermarking approaches specifically designed for tabular data been proposed. These include38

the works of [16], [43], and [29]. However, these approaches often face challenges related to39

computational complexity, scalability, and storage requirements.40

Our Motivation. Watermarking tabular data is crucial in maintaining data provenance within large41

organizations, where information flows across multiple departments (especially in large financial42

organizations) and systems in non-adversarial settings. In such environments, employees typically43

do not attempt to remove watermarks, which enables effective tracking of data lineage, ensures44

integrity, and facilitates compliance with internal policies and regulatory requirements. By embedding45

identifiable markers in datasets, organizations can monitor data movement, quickly trace discrepancies,46

and uphold accountability throughout the data lifecycle, which is essential for informed decision-47

making and trust in data-driven processes. The growth in synthetic data also adds another dimension48

to the problem, as enterprises must effectively identify and distinguish synthetic data from original49

data. Note that synthetic data is an effective tool for producing a dataset that protects the privacy of50

confidential data while still allowing for downstream utility, similar to the original data.51

While no watermarking scheme is entirely immune to removal (most recently [40] showed that52

under even mild assumptions, strong LLM watermarking is impossible)—just as encryption can53

be broken, DRM bypassed, or licenses violated—the value lies in raising the cost of misuse and54

enabling accountability in practical, non-adversarial scenarios. Tabular data remains a fundamental55

medium for information sharing, particularly within enterprises, necessitating continual advancements56

in watermarking techniques. Our research tackles essential shortcomings in previous studies. By57

advancing robustness and applicability, we contribute to a framework that strengthens data governance58

and mitigates unauthorized use.59

Figure 1: HashMark2: On the left is the source input table, to be watermarked, containing cells of
two columns - one text and the other numerical. After applying the hash function to each cell, the
hashed values are shown next. In the middle, we show how values are adjusted to be able to hash to 0.
For text data, we replace it with a new value, and for numerical data, we add in the smallest decimal
place. On the right is the watermark embedded table where all cells hash to 0.
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1.1 Our Contributions60

We introduce HashMark, a suite of simple yet powerful watermarking protocols for tabular datasets.61

Our approach embeds bits into select table cells using a cryptographic, seeded hash function, ensuring62

that the output looks uniformly random without the knowledge of the seed. A hash function is versatile63

in its agnosticism on the input data type, working over numeric and alphanumeric inputs.64

We present two variants, HashMark1 and HashMark2, each offering unique properties. In both65

schemes, we map cell contents to a target bit (0 or 1) via the seeded hash function. If the cell content66

does not map to the target bit, we carefully modify the cell values while preserving the dataset’s67

fidelity. For numerical values, we make minimal perturbations (e.g., incrementing by 10−c). For68

alphanumeric values, we apply rejection sampling from the original distribution.69

• Thus, HashMark offers high fidelity as the changes in the dataset to embed the watermark70

are minimal in the case of numerical values (due to small perturbation) and none in the case71

of alphanumeric values (due to rejection sampling from the same distribution).72

• Meanwhile, the detection cost is low in HashMark as it only requires the knowledge of73

the seed of the hash function, an artifact of our simpler design. Meanwhile, [29] requires74

remembering how the columns in the dataset are paired. [43] requires the knowledge of the75

entire source dataset to detect the watermark.76

• HashMark can support any data, as explained above. Meanwhile, [29] naively cannot77

support categorical data. While [43] claims to support any data, their exposition does not78

clarify how their approach translates to textual data1 (marked as Any∗) in Table 1.79

HashMark2. Figure 1 pictorially represents HashMark2. HashMark2 embeds the same target bit80

(say 0) at all positions in the dataset. It uses the hash function for the binary mapping and then applies81

the above-outlined "adjustment" procedure to ensure that every cell maps to 0 under the seeded hash82

function. This is akin to prior approaches of [29] and [43]2. Our detection algorithm relies on a83

statistical test.84

HashMark1. For static datasets (e.g., unique IDs, timestamps, categorical labels), HashMark185

modifies only a constant ℓ ≪ N cells, ensuring high fidelity. It uses two PRGs: G1 derives ℓ86

pseudrandom bits, while G2 selects ℓ cell locations. Each of the ℓ cell locations is adjusted until87

it hashes to the desired bit produced earlier by G1. Detection verifies these bits using the same88

PRGs. Its advantages include: minimal distortion (only ℓ cells altered), and security relies on the89

pseudorandomness of G1 and G2. Note that minor permutations or deletions of rows compromise90

detection since they disrupt cell positioning. Partial robustness to these changes is possible if91

watermarking is restricted to fixed columns.92

Additionally,93

• We theoretically analyze fidelity and model the watermark removal process.94

• Extensive experiments validate our approach. For HashMark1, we show high embedding95

efficiency while maintaining classification accuracy across three classifiers. For HashMark2,96

we evaluate both Gaussian and synthetic datasets, analyzing fidelity through z-score, mean-97

squared error, and robustness to noise. Results confirm that the watermarked synthetic98

data has a negligible impact on classification accuracy. We employ four datasets to train99

synthesizers, produce synthetic data, and watermark this synthetic data before running two100

classifiers. Additionally, we are the first to study watermarking for alphanumeric columns101

concretely. While prior work TabularMark [43] claimed to offer support for alphanumeric102

columns, the details were underspecified.103

2 HashMark: Element Wise Tabular Watermarking104

1[43] focuses on categorical data (e.g., education level, marital status), their watermarking distorts integer-
based distributions by adding floating-point perturbations, harming utility. Restricting to integer-based perturba-
tions could lead to some gaps in the range of the column. We argue that such columns should not be watermarked.
Further, they do not support unrestricted alphanumeric data (e.g., ASINs) or test such cases.

2Indeed, one can conceivably correlate our binary hashing approach with the red-green paradigm adopted by
these works. However, our construction vastly simplifies their approaches.

3



Algorithm 1 Embedding Algorithm
Input: Sampling Algorithm for Dataset D Generate
Secret Seed seed
Number of Rows: ℓ
Associated Distribution: ρ
Column column of dataset X
seed

$← S //S is the seed space of the hash function.

for i = 1 to ℓ do
whileH(seed,D[i]) ̸= 0 do
new_value ← Generate(ρ,D[i]) //Addnl. parameters could include t for threshold constrained
sampling.
D[i]← new_value

end while
end for

At its core, any watermarking approach needs to ensure that the utility of the data is preserved105

even after embedding the watermark. Furthermore, the detectability of the watermark is pre-106

served even after modification by both adversarial and honest actions. We have two constructions107

HashMark1,HashMark2 with various properties and an implicit trade-off.108

However, before examining the constructions, it is instructive to consider the commonalities. Both109

the constructions will rely on applying a seeded hash functionH that can take any inputs and produce110

an output bit. Such a binary hash function enables us to map any cell (numerical, textual, categorical,111

etc.) to either 0 or 1, depending on the function’s description. They will also rely on modifying a112

cell’s contents through invoking the function Generate (until it satisfies some H-based property).113

The question remains of how to instantiate this function. Algorithm 1 provides a template for how114

to approach this embedding of the watermark. Due to space constraints, we defer an expanded115

discussion to the appendix (Section D.2), but summarize below:116

• Caveat of Rejection Sampling: Columns with small fixed ranges (e.g., marital status,117

education, salary tiers) should not be watermarked, since rejection sampling can skew118

distributions and harm utility. Treat all values in such columns as valid (always mapping to119

the desired bit).120

• Numerical Values: Perturb values slightly by adding 10−c, where c is a scheme parameter,121

until the resulting value hashes to the desired bit. Fidelity bound (See Theorem 1) E[||X−122

Xw||∞] ≤ (lnN + 2) · 10−c. Supports truncation up to b decimal places.123

• Alphanumeric/Textual Data: Use rejection sampling to resample values until they hash124

to the desired bit. Fidelity guarantee via Jensen-Shannon Divergence (See Theorem 2):125

JSD(ρ||ρ′) ≈ 0.215.126

• Preserving Correlations: Sample rows from the learned distribution ρ (e.g., synthetic data127

generator) to preserve correlations. Reject and resample rows that don’t satisfy watermarking128

constraints. Satisfying all columns can be costly (2n time). Instead, use a threshold t: accept129

rows where at least t out of n cells meet the constraint; adjust detectability accordingly.130

3 Conclusion131

We present HashMark, a hash-based framework for watermarking financial datasets, strengthening132

data integrity, auditability, and provenance in AI-driven financial systems. HashMark supports both133

numerical and categorical attributes common in finance (e.g., transaction records, customer profiles,134

risk metrics), improves upon prior methods [16, 29, 43], and enables secure, efficient, and compliant135

data sharing. Beyond protecting sensitive financial information, HashMark is particularly suited for136

watermarking synthetic financial data used in stress testing, fraud detection, and regulatory reporting,137

thereby facilitating accountability and regulatory compliance.138
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A Related Work262

Watermarking Tabular Data. Watermarking tabular data has been extensively studied. [2]263

pioneered a scheme embedding watermarks in the least significant bit of specific cells using hash264

values based on primary and private keys. Subsequent works by [37] and [15] improved this by265

embedding multiple bits. Another approach embeds watermarks in statistical properties. [34]266

introduced a method that partitions dataset rows and modifies subset statistics, later refined by267

Shehab et al. [33] to resist insertion and deletion attacks using optimized partitioning and hash-based268

embedding. Their approach, however, relies on assumptions about data distribution and primary keys.269

Inspired by watermarking techniques in large language models [1, 21, 24], [16], [29], and [43]270

proposed watermarking schemes for generative tabular data using red-green interval partitioning.271

[16] introduced a data binning approach, ensuring values lie near green intervals and using statistical272

hypothesis testing for detection. However, assuming continuous distributions makes it vulnerable273

to feature selection and truncation attacks. [29] paired columns into key-value sets, deriving a seed274

from the key column to generate bins for the value column. Entries falling in red bins were resampled275

from green bins. While novel, this method suffers from two key weaknesses: (i) detection requires276

prior knowledge of the column pairing or an exhaustive search across all pairs, and (ii) relying on key277

column-derived seeds introduces low entropy, weakening the pseudorandomness of bin assignments278

and potentially compromising security. It is important to note that even with knowledge of column279

pairing, any deletion of rows will trigger an error when calculating the key column-derived seed,280

which is not explored or discussed in the paper. [43] took a similar approach, embedding watermarks281

as additive noise within predefined bins. They assumed noise follows a bounded range [−p, p],282

partitioned into red and green bins, with watermarking achieved by sampling noise only from green283

bins. Despite robustness claims and categorical feature support, their method has several limitations.284

First, detection requires access to the original dataset, making watermark verification infeasible in285

practical scenarios where datasets are modified or shuffled. Second, row-matching under permutation286

increases detection complexity. Finally, their claimed support for categorical data is unclear and287

lacks empirical validation - (a) Their protocol description focuses only on categorical data, i.e., those288

with a fixed range (e.g., education level, employee designation, marital status, etc.). They suggest289

encoding it first as integers and then applying their embedding techniques. However, this method290

is flawed because these differences often result in floating-point values, distorting the expected291

integer-based distribution. Restricting differences to integers could also leave gaps in the data (by292

omitting particular values from the range), harming its utility. Instead, we argue against watermarking293

such columns altogether, and (b) it does not address unrestricted categorical data (e.g., alphanumeric294

ASINs) or provide experiments for such cases. The above is summarized in Table 1.295

Watermarking for LLMs. Many watermarking schemes for LLMs take advantage of the sampling296

algorithm that generates each token of an LLM output. [8] observed that these LLM output tokens297

correlate with the randomness used in the token sampling algorithm. This correlation is efficiently298

communicable for many LLM outputs by replacing this randomness with cryptographic pseudoran-299

domness. Subsequent works [11, 7] have built upon this idea by incorporating error correction and300

public identifiability into these watermarks. However, robustness remains a persistent issue for this301

line of work, and a recent impossibility result [41] demonstrated that an adversary that can efficiently302

perturb or resample the output can always remove a watermark. Another line of work, which has been303

the source of inspiration for more recent watermarking schemes for tabular data, include [1, 21, 24].304

[24] introduced the red-green list paradigm, forming the basis of several works [16, 43, 29]. More305

recently, [13] improved on the works employing the red-green list paradigm.306

B Preliminaries307

Notations. For n ∈ N+, we denote by [n] the set {1, . . . , n}. For a set X , we denote by x
$← X308

that a value x is sampled uniformly at random from X .309

Seeded Hash Function. A function H : S × X → Y is a hash function, modeled as a random310

oracle, if the computation of H(S,X) for a random S
$← S and any X ∈ X is indistinguishable311
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from Y
$← Y . In our application, we will suppress the presence of the seed distribution S and we312

will set Y := {0, 1}.313

C Problem Formulation314

Our dataset is a matrix X of dimension m×n. It is important to stress that X contains both numerical315

values, alphabetical and alphanumeric. We assume each column i contains m i.i.d points from a316

distribution ρi. For simplicity, we will define a function Generate that takes as input a probability317

distribution ρi and a sample pi from the distribution ρi to produce a new sample p′i. When ρi is318

undefined, we can still extract a new sample using just pi. The goal is to generate a watermarked Xw319

with the following properties:320

Fidelity : The watermarked dataset Xw is “close” to the original data set X. In our approach for321

numerical data, we show that Xw and X are close in the L∞ distance. See Theorem 1.322

Detectability : Efficient testing can reliably identify the watermarking. In our first variant, we will323

rely on cryptographic properties to ensure detection, while in the second variant, we will324

rely on statistical testing.325

Robustness : The watermarked dataset Xw is resistant to various perturbations observed in common326

usage. Some of these include removing or permutations of rows and columns and modifying327

cell content.328

Utility : The watermarked dataset Xw is still useful for intended downstream tasks such as machine329

learning tasks. Through empirical testing, we will show that there is a negligible difference330

in accuracy.331

D Dataset Details332

Wilt. Wilt [20] is the public dataset from the UCI Machine Learning Repository from a remote333

sensing study on detecting diseased trees in satellite imagery. It comprises 4,839 image segments334

with spectral and texture features from Quickbird multispectral and panchromatic bands. The335

dataset includes six numerical and categorical attributes and a binary classification task: identifying336

trees as wilted or healthy. We generate synthetic datasets. There are 4839 records with 6 features337

(including the target) and 2 classes. This dataset is licensed under a Creative Commons Attribution338

4.0 International (CC BY 4.0) license.339

California Housing Prices. The California Housing Prices dataset [23, 14], sourced from the 1990340

U.S. Census, contains 20,640 records with 10 socio-economic and geographical attributes influencing341

housing prices. It has a multi-target label indicating proximity to the ocean, making it a multi-class342

classification problem. It has 5 classes. This dataset is licensed under Apache License Version 2.0.343

HOG. The HOG feature dataset [4] is generated with the histogram of oriented gradients (HOG)344

features extracted from the digits dataset, combined with their categories. There are 16 features,345

10992 records, and 10 classes. This dataset is licensed under a Creative Commons Attribution 4.0346

International (CC BY 4.0) license.347

Shoppers Dataset. The shoppers dataset [32] aimed to capture the shoppers purchasing intent.348

There are 12,330 records with 18 attributes with two classes. The dataset is licensed under a Creative349

Commons Attribution 4.0 International (CC BY 4.0) license.350

Amazon ASINs. We used the Amazon Product Details Dataset [31]. For our experiments, we351

parsed the dataset only to extract the unique identifiers for Amazon products, generating 30,000352

actual ASINs. This dataset is licensed under CC0.353

Gitcommit Hashes. We used the Gitcommit Messages dataset [10]. It contains 4.3 million records,354

from which we only extracted the hashes for the gitcommit messages. The dataset is licensed under355

the Open Data Commons Attribution License (ODC-By) v1.0.356
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Algorithm 2 HashMark1 Embedding Algorithm

Input: Original Dataset X of dimension m× n
Probability Distributions ρ1, . . . , ρn.
PRG G1 : X1 → {0, 1}ℓ
PRG G2 : X2 → [m]ℓ × [n]ℓ

X1
$← X1, X2

$← X2

{biti}ℓi=1
$← G1(X1)

{(rowi, coli)}ℓi=1 ← G2(X2)

seed
$← S //S is the seed space ofH

for i = 1 to ℓ do
whileH(seed,X[rowi, coli]) ̸= biti do
new_value $← Generate(ρi,X[rowi, coli])
X[rowi, coli]← new_value

end while
end for

D.1 HashMark1: Embedding Pseudorandom Bits357

We begin by describing our first approach to watermarking. This approach ensures high fidelity358

and detectability but suffers from issues when it comes to robustness. The embedding algorithm is359

formally defined in Algorithm 2. We start with an original dataset X of dimension m×n. The idea is to360

sample ℓ pseudorandom bits. Let us call it bit1, . . . , bitℓ. Additionally, we also sample ℓ cells defined361

by (rowi, coli) in X. By modifying the cell content suitably, we ensure thatH(X[rowi, coli]) = biti.362

Detecting HashMark1363

To detect, the algorithm needs:364

• Knowledge of X1 to retrieve the original binary string of bit1, . . . , bitℓ.365

• Knowledge of X2 to first identify the target cells (rowi, coli), and then usingH to retrieve366

bit′1, . . . , bit
′
ℓ.367

• The watermark detection is successful iff (bit1, . . . , bitℓ) = (bit′1, . . . , bit
′
ℓ)368

However, this scheme is low-robust because the detection algorithm critically relies on extracting369

the cell where the watermark was embedded. This would be meaningless if the first row (or the first370

column) were removed. The benefit of this approach is that only ℓ of the spots are touched, which is371

a tunable parameter. This ensures very high fidelity and utility. The detectability is also reducible to372

the hardness of the underlying cryptographic primitives (and does not rely on a statistical measure).373

D.2 Defining Generate374

The crux of our construction is instantiating the function Generate that helps modify the content of375

the dataset to satisfy the hashing requirement. In this section, we focus on defining this function along376

with some optimizations. However, before we proceed, we must discuss a caveat to our approach.377

This is a limitation of rejection-sampling-based approaches. Let C be a column with a fixed range.378

Some examples of such columns include marital status, education level, designation at a company,379

and base salary tiers at a company, among others. If one were to apply a hash function, mapping380

elements in the range of 0 or 1, some elements in the range might be hashed to an undesired bit. The381

ensuing watermarked dataset will be constrained to remove these elements from the range, resulting in382

a skewed distribution, which will prevent utility. Therefore, it is essential not to embed the watermark383

in these columns, as this could skew the resulting distribution. In other words, we consider every384

element in the range to be “valid,” i.e., hashing to the desired bit.385

In the ensuing discussion, we focus solely on generating values for the remaining attributes/columns.386

We will focus on embedding the watermark and later define fidelity, i.e., how close the watermarked387
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distribution is to the un-watermarked one. The proofs of the following are deferred to Section G in388

the appendix.389

Numerical Values. Suppose a column C consists of numerical data, specifically floating-point390

values. In that case, the generate function can take the old value and add 10−c for some constant c391

that is a scheme parameter. This ensures that the perturbation does not adversely impact the fidelity.392

Formally, we have the following theoretical guarantee, as measured by the expected difference in L∞393

between the unwatermarked and watermarked distributions.394

Theorem 1. Let X be the original dataset and Xw be the watermarked dataset of size N where395

x′
i ∈ Xw is generated as follows:396

x′
i = xi + ki · 10−c,

where ki = min{k ≥ 0 | H(xi + k · 10−c) = 0,H is a seeded hash function as defined before, and397

c ≥ 0 is some integer. Then,398

E[||X− Xw||∞] ≤ (lnN + 2) · 10−c

Our approach can be easily extended to support truncation up to b decimals place if only the value399

until the first b decimal places are included in the input toH.400

Alphanumeric/Textual Data. In the case of textual data, the generate function can reject and401

re-sample from the underlying distribution for the feature ρi. Then, one can measure the fidelity of402

the watermarked dataset by measuring the Jensen-Shannon Divergence [27] between the watermarked403

and the un-watermarked dataset. Formally, we get the following theoretical guarantee:404

Theorem 2. Let ρ be the distribution of an alphanumeric column where we embed the watermark.405

Let ρ′ be the modified distribution consisting only of those values that hash to 0. Then, the Jensen-406

Shannon Divergence is:407

JSD(ρ||ρ′) = 3

4
log(

4

3
) ≈ 0.215

Preserving Correlations. Datasets often contain correlations between various features or attributes.408

Any watermarking approach should ensure that these correlations are preserved. Rejection sampling409

column-wise can often lead to a loss of such correlations. We now detail how to preserve correlations.410

• Let ρ be a probability distribution that defines the underlying dataset. This can contain both411

categorical (aka alphanumeric values) and numerical values. For example, a synthetic data412

generation algorithm (such as the ones employed in our experiments) is trained on a source413

(i.e., the original dataset), which yields a distribution ρ from which one can sample as many414

rows as needed. These synthetic data algorithms have been experimentally shown to be415

close to the original dataset for various machine learning tasks, serving as a heuristic proof416

of correlation preservation.417

• Let R $← ρ be a row sampled from this distribution. Further, let this row R be such that418

there exist cells that do not map to the desired bit.419

• We can now reject R and resample from ρ until the sampled row satisfies the required420

constraint. However, such rejection and resampling until every cell maps to the desired421

bit can be computationally expensive. For n columns, this can take 2n time. Instead, one422

can choose a threshold t such that if t of the n cells in a row R map to the desired bit, it423

is marked as accepted. The detectability threshold can be suitably set to account for this424

modification.425

D.3 HashMark2: Global Embedding426

Unlike HashMark1, HashMark2 is more resilient to various perturbations and cell modification. The427

embedding approach is visually represented in Figure 1 and described in Algorithm 1. The crux of428

the strategy is to embed a global bit (say 0) in every cell of the dataset X using a binary hash function429

H—consequently, a watermarked table to have more values that hash to 0 than an unwatermarked430

table. Detection is performed by using the secret description of the hash function to hash the data431

and count the number of cells that map to zero. Additional methods can allow the user to check only432

a subset of locations, making a slight skew more pronounced. This approach has the versatility of433
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embedding a watermark in an existing dataset or generating a watermarked dataset at the source. The434

latter is a setting suitable for synthetic data.435

Detecting HashMark2. To detect HashMark2, we use a one-proportion z-test [12], which is a436

statistical test used to determine whether the single sample rate, for example, the success rate in the437

number of entries that map to 0, is significantly different from a hypothesized population rate. We438

define the null hypothesis as:439

H0 : Dataset X is not watermarked
However, we note that if the null hypothesis holds, then so does a hypothesis H0,i :440

The i-th column is not watermarked also holds. This reduces the problem of rejecting H0 to simply441

rejecting H0,i for each column i.442

Let Ti represent the number of elements in the i-th value column that hash to 0. Under the i-th443

null hypothesis, H0,i should follow the Bernoulli Distribution B with probability 1/2 as an ideal444

hash function H will output 0 or 1 with probability 1/2. Let m be the total number of rows, i.e.,445

Ti ∼ B(m, 1/2) for a sufficiently large number of rows m. By the Central Limit Theorem (CLT),446

for large m, we obtain that:447

2
√
m

(
Ti

m
− 1

2

)
∼ N (0, 1)

where N (0, 1) is the normal distribution. Thus, the test statistic for a one-proportion z-test is:448

z = 2
√
m

(
Ti

m
− 1

2

)
(1)

For each column, the detection algorithm computes a z-score by counting values that hash to 0. To449

account for multiple hypothesis testing (e.g., 5 columns at α = 0.05), per-column thresholds αi are450

adjusted (e.g., αi = 0.01). If a column’s z-score exceeds its threshold, the null hypothesis is rejected,451

indicating a watermark. Otherwise, no conclusion is made.452

To prevent spoofing (where forgers combine valid watermarked datasets), we use a secret seed in the453

hash function (Algorithm 1). Each dataset’s watermark uses a unique seed, making concatenated454

forgeries detectable as inconsistent.455

Robustness to Deletion, Permutation. It is clear that the permutation of rows does not impact456

the count Ti. H0,i is evaluated for every column i. This implies that the permutation of the column457

from position i to some j will still have its corresponding null hypothesis H0,j and evaluated. Now,458

observe that the detection algorithm performs multiple hypothesis tests conducted simultaneously.459

Therefore, removing columns implies that one has to compute αi as a function of α and the number460

of remaining columns. This guarantees robustness to column deletion. Removal of rows implies a461

smaller m. This results in an increase in the error in the CLT approximation. However, in practice, a462

rule-of-thumb for applying Z-test has been for m > 50 [9]. However, if m < 50, one could apply the463

Z-test on H0 and not individual H0,i.464

Finally, as remarked before, one can also modify the application ofH to ensure support for truncation.465

D.4 Analysis on Removal of HashMark466

Before we look at the mathematical analysis, we discuss the modes of attacks to remove the watermark.467

The property of the ideal hash function H implies that the perturbation of a cell content initially468

mapping to 0 can flip to 1, with a probability 0.5. Further, a secret seed (of the seeded hash function)469

implies that an adversary, without knowledge of this seed, cannot determine the actual mapping of470

the bit.471

This section will study the effort required for the perturbation to remove the watermark. Specifically,472

an adversary can only modify r cells by adding noise. We will analyze the expected number of r.473

Note that an adversary, adding noise to every cell in a column, can remove the watermark. This is true474

for every scheme [16, 29, 43]. Experimentally, we show the results comparing with [29] in Section E.475

In the analysis below, we assume there are M values in total. Of this, N is the number of values476

with the property they hash to a desired bit. In HashMark1, we have N = ℓ while M = mn. In477

HashMark2, we have N = M = m as described above. The proof of the following are deferred to478

Section G in the appendix.479
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Proposition 1. Given values val1, . . . , valM . Then, the minimum number of values needed to ensure480

that the Z-score remains α is given by:481

α ·
√
M

2
+

M

2

Proof. Of the m values, we need to compute Ti that ensures that the score is α. We use Equation 1482

as:483

α =
2(Ti − 0.5M)√

M

Then, Ti = 0.5M + α
√
M/2. In other words, we need at least 0.5M + α

√
M/2 values to ensure a484

Z-score of α. Call this value Tα.485

Theorem 3. Let r be the number of cells an adversary can modify. This modification is done by486

sampling noises ϵ1, . . . , ϵr
$← D. Then, we have:487

E[r] := 2 · (N − Tα) ·
M

N
for any error distribution D.488

Proof of Theorem 3. First, observe that for any value vali such thatH(vali) = 0:489

Pr[H(vali + ϵi) = 1] =
1

2

for any ϵi
$← D. We already know that one needs at least Tα = 0.5M + α

√
M/2 cells to be490

unmodified to get a score of α (from Proposition 1). To achieve the watermark removal, we need to491

add noise to the remaining N − Tα cells. Observe that this follows a hypergeometric distribution - in492

a sample of size M , N successes exist (i.e., mapping to 0). Then, the expected number of tries to493

pick at least (N − Tα) successfully is given by: ≈ (N − Tα) ·M/N . Therefore, we get:494

E[r] := 2 · (N − Tα) ·
M

N
495

Note that in HashMark1 where N < M , the number of tries needed for the adversary is inversely pro-496

portional to N , making HashMark1 more robust to noise addition attacks. Meanwhile, in HashMark2,497

since M = N , the number of tries needed is much smaller. Consequently, one can envision498

HashMark2 where only a specific subset of cells (chosen at random) is embedded with the bit. While499

this makes it more resilient to modification attacks, the problem of efficiently identifying this subset500

of cells becomes paramount.501

Other Attacks. We look at some additional attack vectors.502

• Data Augmentation Attacks: Adding data reduces the z-score. However, since the secret503

information is unknown to an attacker, one can expect that half of the new content will map504

to 0 on average. For example, if one had m rows in a column that all map to 0, adding505

another m rows will reduce the z-score by a factor of
√
2, on expectation.506

• Feature Selection: Observe that the choice of z-score threshold depends on the number507

of columns in the dataset. This is discussed in 5.1.1. Therefore, reducing the number of508

columns will consequently require a higher threshold.509

HashMark and Applications. Watermarking tabular data provides verifiable guarantees for data510

integrity in organizational settings where datasets are routinely shared. When a watermark embedded511

using HashMark2 is detected in a dataset D, two key properties hold: (1) Theorem 5.3 ensures an512

expected upper bound on the number of modified cells, limiting undetected alterations; and (2)513

if an attacker injects γ · m additional rows into an m-row dataset, the detection signal degrades514

predictably, with the z-score scaling by
√
(1 + γ). These mechanisms establish a measurable trust515

boundary, enabling provenance tracking while tolerating benign modifications. By formalizing516

such robustness-utility tradeoffs, our work advances watermarking techniques for practical data517

governance.518
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E Experimental Results519

In this section, we focus on experimentation for embedding watermarks in numerical data, specifically520

floating-point values. Our experiments were performed on an Apple MacBook M1 Pro with 16GB521

of memory running Sonoma 14.3. We used Python 3.11. We instantiated the hash function using522

SHA-256 from the hashlib module. We select a random seed for evaluating the hash function. We523

implemented Generate by adding 10−c to the value until it hashes to 0. Our choice of c is specified524

for each context separately. Due to space constraints, we will focus on HashMark2 in this section525

and defer the experiments pertaining to HashMark1 to the appendix.526

We defer the experiments pertaining to HashMark1 to the appendix in Section E.2527

E.1 Evaluation of HashMark2528

In this section, we evaluate the performance of HashMark2 along the following dimensions:529

• Performance (vs the work of [29]) on Gaussian Datasets: Following [29], we test530

HashMark2 on Gaussian data (1 column, 2000 rows). With c = 10, HashMark2 matches531

their robustness and fidelity while being significantly simpler, which proves that complex532

watermarking isn’t necessary.533

Fidelity: The KDE plots (Figs. 2a-2b) show nearly identical distributions before and after534

watermarking. Figure 2d, which shows how the choice of 10−c in Generate impacts the535

mean-squared error (MSE), confirms that smaller c values (larger perturbations) increase536

MSE, as expected.537

Robustness: Figure 2c demonstrates that z-scores grow with more rows, improving detection538

confidence. When adding Gaussian noise (Fig. 2e), smaller c values yield lower z-scores,539

showing greater noise sensitivity. Crucially, our z-scores consistently surpass Ngo et al.’s540

under identical conditions (Fig. 6). Extended results (Figs. 8a, 8b) reinforce these findings541

and are deferred to the appendix.542

For completeness in Figure 7, we reproduce the plot from Ngo et al. for the abovementioned543

experiments. We also present additional plots for HashMark2 in Figure 8. Figure 8a extends544

Figure 2d for a wider choice of c while Figure 8b extends Figure 2c for a larger number of545

rows. These additional plots are in line with the conclusions drawn above.546

• Utility for Real-Life Datasets: Following prior works such as [16] and [29], we evaluate the547

utility of our proposed approach HashMark2 by testing it on four real-world datasets. These548

datasets are first used to train neural network-based and statistical-based generative methods.549

The trained generative method is then used to generate synthetic datasets. Specifically,550

we utilize CTGAN [38], Gaussian Copula [28], and TVAE [38] to represent GAN-based,551

copula-based, and VAE-based generators, respectively, for generating tabular data. We552

utilize the Synthetic Data Vault [30] as our library and employ the default parameters. The553

dataset was randomly partitioned with 25% test cases. While we defer a discussion on the554

dataset to Section D, we summarize the findings of our experiment below in Table 2. Our555

experiments indicate that the watermarking has a negligible impact on the accuracy of the556

synthetic dataset, even for a multi-class classification problem.557

• Fidelity for Alphanumeric Synthetic Data: We evaluate HashMark2’s performance on558

alphanumeric attributes by measuring the Jensen-Shannon divergence (JSD) between wa-559

termarked synthetic data (where all values hash to 0) and real datasets. Using SciPy’s JSD560

implementation [36] with 30 trials, we find:561

– ASINs (10-character alphanumeric): 0.1090 ± 0.0016 JSD (vs. Amazon Product562

Dataset [31])563

– Git commit hashes (40-character hex): 0.002176± 0.0003 JSD (vs. GitHub Commit564

Messages [10])565

Lower JSD values indicate better preservation of the original distribution, demonstrating566

HashMark2’s effectiveness for alphanumeric data.567

• HashMark2 with simpler classifiers and dataset: Prior experiments were on datasets with568

multiple attributes and complex machine learning models. We wanted to study HashMark2’s569

impact on the accuracy of simpler machine learning models with fewer columns. Specifically,570

we ran experiments using one attribute and two classes on these simple classifiers - linear571
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(a) (b) (c)

(d) (e)

Figure 2: Plot of various experiments on Gaussian dataset. Figures 2a and 2b show the distribution of
the data, before and after watermarking. Value refers to the actual value in the dataset. Figure 2c
shows the variation of the z-score with the number of rows sampled. Figure 2d plots the variation of
the mean-squared error (MSE) for different choices of c. Figure 2e plots the change in z-score when
compared with the choice of c for various Gaussian noises.

Table 2: Accuracy comparison of different classifiers and synthesizers across four datasets on
synthetic and watermarked synthetic data. Standard deviations are included for each record. W/M =
Watermarked synthetic dataset, while Non-W/M refers to an unwatermarked but synthetic dataset.

Dataset Classifier Synthesizer Non-W/M (%) W/M (%)

Wilt

XGB
CTGAN 83.63 ± 4.63 83.31 ± 5.01
Copula 94.38 ± 0.53 94.40 ± 0.52
TVAE 94.87 ± 0.37 94.89 ± 0.39

RF
CTGAN 84.45 ± 5.74 84.30 ± 5.70
Copula 94.39 ± 0.52 94.40 ± 0.52
TVAE 94.34 ± 0.37 94.34 ± 0.38

Housing

XGB
CTGAN 49.26 ± 2.38 49.11 ± 2.68
Copula 55.15 ± 5.12 55.66 ± 4.77
TVAE 61.55 ± 2.39 61.13 ± 2.46

RF
CTGAN 48.31 ± 1.90 48.14 ± 2.00
Copula 52.97 ± 5.83 53.04 ± 5.93
TVAE 62.30 ± 1.92 62.40 ± 1.77

HOG
XGB CTGAN 77.65 ± 2.07 77.62 ± 2.08

TVAE 89.77 ± 1.59 89.34 ± 1.76

RF CTGAN 74.40 ± 4.41 74.39 ± 4.48
TVAE 91.20 ± 2.16 91.28 ± 2.16

Shoppers

XGB
CTGAN 86.43± 0.79 85.28± 1.95
Copula 86.01 ± 1.38 86.56 ± 1.41
TVAE 87.94± 0.61 87.85± 0.54

RF
CTGAN 87.77± 0.82 86.00± 2.74
Copula 86.05± 1.40 85.78± 1.38
TVAE 88.71± 1.00 88.10± 1.23

regression, logistic regression, and decision tree. We present our findings in Table 3. To572

summarize, we demonstrate that the perturbation parameter (i.e., adding 10−c) controls the573

deviation from the value. However, even with a smaller value of c, there is a negligible574

difference in the model performance.575

• Constrained Sampling, Threshold, and Z-Score: We also investigate the utility of constrained576

sampling, i.e., one in which we sample a row from the distribution ρ and we check if at577
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Table 3: Model Performance Under Watermarking Perturbation (10−c). W/M = Watermarked dataset.
For Logistic/Decision Tree, we report accuracy; for Linear Regression, we report R2 values.

Logistic Reg. Linear Reg. Decision Tree

Orig. W/M Orig. (R2) W/M (R2) Orig. W/M

c = 2 99.98% 99.64% 1.000000 0.999899 100% 100%
c = 4 99.98% 99.98% 1.000000 1.000000 100% 99.995%
c = 6 99.98% 99.98% 1.000000 1.000000 100% 99.961%

least t fraction of the n columns in a row hash to 0. If not, we reject that row and resample578

another. This process is repeated until an appropriately sized dataset is generated, ensuring579

that correlations are preserved. We summarize our findings across Tables 6 and ?? for the580

four datasets. While increasing t does increase the running time of watermarked dataset581

generation, we find no significant difference in accuracy; however, we do notice an increase582

in z-score, as expected.583

E.2 Evaluation of HashMark1584

We begin by benchmarking the performance of HashMark1 along the following axes:585

• Varying ℓ, we wish to study the running time of the watermarking process. We break down586

the running time of watermarking as (a) the cost of identifying locations to embed the587

watermark and (b) the time taken to run Generate to embed the desired bits.588

• The utility of the watermarked dataset vs. the original dataset for downstream machine589

learning tasks.590

• The role of ℓ in accuracy, i.e., how does the accuracy change when more bits are embedded?591

Performance of Embedding Process. In Figure 3, we plot the time, in seconds, against the number592

of bits being embedded. We split the cost as follows: to generate locations for embedding (dubbed593

pair generation time) and then modify the cell content until it hashes to the desired bit. Recall that the594

pair generation time requires using a seed to produce ℓ cell positions, which only contain floating595

point values. We then use the same seed to generate ℓ bits additionally. As one can observe, the596

embedding time is much smaller than the pair generation time, and it takes less than 10 milliseconds597

to embed as many as 1000 bits.598

Dataset. We study the above for a specific dataset - the adult census income dataset from [6, 19] to599

predict if an individual earns over $50,000 per year. The preprocessed dataset has 105 features and600

45,222 records with a 25% positive class (i.e., 25% of the records have class 1 while the rest are in601

class 0) We randomly split into training and testing datasets. We observed that the dataset consisted602

of integers or floating point values with at least eight decimal places. This leads us to choose c = 6603

and embed only in the floating point values.604

Downstream Utility. We embed ℓ = 384 bits 3 They are:605

• Logistic Regression Classifier with maximum iterations as 1000606

• Random Forest Classifier with 100 estimators607

• MLP Classifier with hidden layer sizes 100, 50; maximum iterations=1000, and learning608

rate – 0.0001609

We plotted the difference in accuracy when run on the original versus the watermarked dataset in610

Figures 4 and 5 for each of the 1000 runs. Meanwhile, in Table 4, we present the average accuracy of611

the 1000 runs. Identical behavior was observed in the Logistic Regression classifier with less than612

0.005% difference observed in the accuracy of the other two classifiers. This shows that HashMark1’s613

embedding has a negligible impact on the accuracy of the classifier. For completeness, we also plot614

3Choice of ℓ is set to be 384 because it is the number of bits in a standard hash-based watermarking scheme
albeit for messaging applications (i.e., signatures) known as BLS Signature [5]. Note that this corresponds to
less than 1% of the number of cells in the dataset.
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Figure 3: Embedding Time as a function of ℓ for HashMark1. Here, the blue column refers to the
cost of generating valid cells to embed in the dataset, while the green column is the cost of modifying
the content to make it hash to the desired bit.

Table 4: Classification accuracy (%) with and without watermarking. In addition to this, we add the
standard deviation of each record.

Model Logistic Regression Random Forest MLP Classifier

Original 84.021 ± 0.3 85.186 ± 0.27 83.504 ± 0.44
Watermarked 84.021 ± 0.3 85.188 ± 0.28 83.508 ± 0.446

the difference in accuracy between the original and watermarked dataset in Figures 4 and 5, in each615

of the 1000 runs. As can be observed, the most significant difference in accuracy is less than 0.005%.616

Finally, in Figure 5b, we plot the impact of increasing ℓ on the accuracy of the logistic regression617

classifier. As expected, larger ℓ does cause an impact in accuracy, though the degradation is minimal.618

F Additional Experiments619

We also present additional experiments studying the variation of MSE with respect to the choice of c620

for further values of c. Similarly, we also show how the Z-score varies for larger sampled rows. This621

is done in Figure 8.622

In Figure 7, we reproduce Figure 2 from Ngo et al. [29]. This shows that the performance of623

HashMark2, as seen in Figure 2, matches (or surpasses) similar experiments from Ngo et al. This is624
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Table 5: Effect of constraint threshold t on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark2. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) W/M (%)

Wilt (5 cols, 3629 samples)

1/4 1.74 ± 0.22 64.08 ± 6.68

XGB
TVAE 95.24 ± 0.57 95.07 ± 0.84

GC 94.33 ± 0.31 94.53 ± 0.24
CTGAN 83.65 ± 3.24 81.79 ± 6.76

RF
TVAE 94.78 ± 0.30 94.86 ± 0.42

GC 94.43 ± 0.31 94.45 ± 0.30
CTGAN 84.31 ± 1.93 84.76 ± 1.54

1/3 1.92 ± 0.24 65.45 ± 4.90

XGB
TVAE 94.86 ± 0.44 95.19 ± 0.43

GC 94.33 ± 0.31 94.53 ± 0.24
CTGAN 84.07 ± 4.94 85.62 ± 6.19

RF
TVAE 94.84 ± 0.45 94.76 ± 0.66

GC 94.43 ± 0.31 94.45 ± 0.30
CTGAN 86.08 ± 6.52 86.60 ± 6.82

1/2 9.43 ± 0.44 65.05 ± 1.26

XGB
TVAE 95.02 ± 0.44 95.31 ± 0.48

GC 94.33 ± 0.31 94.43 ± 0.33
CTGAN 82.55 ± 7.06 84.23 ± 6.56

RF
TVAE 94.73 ± 0.43 94.68 ± 0.45

GC 94.43 ± 0.31 94.43 ± 0.30
CTGAN 80.46 ± 7.11 80.50 ± 6.03

2/3 22.73 ± 0.30 108.95 ± 4.59

XGB
TVAE 95.22 ± 0.32 95.17 ± 0.65

GC 94.33 ± 0.31 94.26 ± 0.46
CTGAN 78.83 ± 9.36 78.86 ± 9.80

RF
TVAE 94.83 ± 0.66 94.83 ± 0.25

GC 94.43 ± 0.31 94.41 ± 0.34
CTGAN 82.12 ± 5.57 84.21 ± 5.18

3/4 23.20 ± 0.16 116.91 ± 9.98

XGB
TVAE 95.21 ± 0.32 95.32 ± 0.53

GC 94.33 ± 0.31 94.26 ± 0.46
CTGAN 78.38 ± 6.28 77.47 ± 6.41

RF
TVAE 94.93 ± 0.41 94.84 ± 0.29

GC 94.43 ± 0.31 94.41 ± 0.34
CTGAN 79.87 ± 6.53 80.74 ± 5.64

Housing (9 cols, 15480 samples)

1/4 2.84 ± 0.72 449.17 ± 40.27

XGB
TVAE 63.35 ± 0.76 63.43 ± 0.79

GC 52.82 ± 3.99 52.27 ± 3.24
CTGAN 47.07 ± 2.58 46.59 ± 2.15

RF
TVAE 62.79 ± 0.59 62.93 ± 0.43

GC 53.60 ± 2.02 53.71 ± 3.27
CTGAN 45.72 ± 2.02 46.50 ± 2.31

1/3 2.63 ± 0.64 415.68 ± 7.37

XGB
TVAE 62.75 ± 1.54 62.86 ± 1.42

GC 52.82 ± 3.99 52.27 ± 3.24
CTGAN 46.48 ± 1.73 46.63 ± 2.89

RF
TVAE 61.91 ± 2.63 61.93 ± 2.29

GC 53.60 ± 2.02 53.71 ± 3.27
CTGAN 48.99 ± 1.39 48.69 ± 1.20

1/2 18.27 ± 0.20 552.12 ± 12.20

XGB
TVAE 60.95 ± 3.12 61.02 ± 3.05

GC 52.82 ± 3.99 52.76 ± 2.63
CTGAN 47.70 ± 1.95 48.75 ± 3.12

RF
TVAE 63.38 ± 0.16 63.30 ± 0.45

GC 53.60 ± 2.02 53.45 ± 2.90
CTGAN 49.81 ± 2.78 47.59 ± 3.02

2/3 34.43 ± 0.29 848.09 ± 17.84

XGB
TVAE 61.75 ± 2.03 61.88 ± 1.73

GC 53.60 ± 4.82 52.91 ± 2.85
CTGAN 47.77 ± 2.52 46.29 ± 3.79

RF
TVAE 62.24 ± 1.30 62.24 ± 1.55

GC 54.06 ± 2.88 53.74 ± 3.21
CTGAN 48.81 ± 2.08 48.13 ± 2.04

3/4 53.74 ± 0.29 1632.13 ± 79.29

XGB
TVAE 62.13 ± 1.85 62.83 ± 1.97

GC 52.82 ± 3.99 53.91 ± 3.73
CTGAN 46.84 ± 3.37 48.00 ± 2.20

RF
TVAE 60.86 ± 2.19 60.87 ± 2.20

GC 53.60 ± 2.02 53.75 ± 2.66
CTGAN 49.89 ± 2.68 48.56 ± 1.73
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Table 6: Effect of constraint threshold t on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark2. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) W/M (%)

HOG (18 cols, 8244 samples)

1/4 -5.77 ± 0.78 373.24 ± 105.90
XGB TVAE 88.52 ± 4.74 87.53 ± 4.89

CTGAN 73.74 ± 3.15 72.92 ± 3.75

RF TVAE 92.48 ± 1.33 93.03 ± 1.22
CTGAN 74.56 ± 3.28 74.24 ± 2.90

1/3 -4.89 ± 1.15 511.61 ± 8.76
XGB TVAE 88.84 ± 1.90 90.64 ± 1.19

CTGAN 70.44 ± 6.26 70.87 ± 5.59

RF TVAE 91.36 ± 0.94 91.92 ± 1.00
CTGAN 73.29 ± 3.81 73.25 ± 4.12

1/2 7.46 ± 0.18 797.56 ± 12.58
XGB TVAE 91.43 ± 1.27 91.49 ± 0.85

CTGAN 75.44 ± 3.19 75.82 ± 3.40

RF TVAE 92.43 ± 1.01 91.86 ± 0.89
CTGAN 74.32 ± 3.27 74.00 ± 3.09

2/3 31.40 ± 0.21 9868.32 ± 8790.14
XGB TVAE 88.80 ± 2.53 87.78 ± 2.71

CTGAN 72.71 ± 2.93 73.34 ± 3.31

RF TVAE 91.78 ± 1.63 91.47 ± 2.50
CTGAN 72.31 ± 3.75 72.71 ± 4.08

3/4 40.77 ± 0.16 35088.75 ± 30542.58
XGB TVAE 90.83 ± 1.00 90.74 ± 1.09

CTGAN 75.26 ± 4.04 74.95 ± 4.00

RF TVAE 88.92 ± 3.03 88.08 ± 3.70
CTGAN 70.71 ± 5.23 70.20 ± 5.15

Shopper (12 cols, 9247 samples)

1/4 -2.11 ± 1.38 438.51 ± 5.14

XGB
TVAE 87.78 ± 0.78 87.78 ± 0.76

GC 85.51 ± 0.63 85.80 ± 0.76
CTGAN 87.35 ± 0.35 87.06 ± 0.95

RF
TVAE 88.74 ± 0.32 88.74 ± 0.45

GC 85.62 ± 0.43 85.99 ± 0.98
CTGAN 87.95 ± 0.49 87.91 ± 0.28

1/3 -3.37 ± 1.26 639.55 ± 64.59

XGB
TVAE 88.13 ± 0.63 87.86 ± 0.86

GC 85.51 ± 0.63 85.28 ± 1.17
CTGAN 84.76 ± 1.05 84.94 ± 1.31

RF
TVAE 88.18 ± 0.53 88.06 ± 0.81

GC 85.62 ± 0.43 85.70 ± 0.68
CTGAN 88.01 ± 0.62 87.80 ± 0.69

1/2 9.22 ± 1.27 939.33 ± 107.06

XGB
TVAE 87.27 ± 1.33 87.54 ± 0.94

GC 85.51 ± 0.63 86.10 ± 0.94
CTGAN 85.27 ± 1.54 85.59 ± 1.64

RF
TVAE 88.61 ± 0.56 88.28 ± 0.54

GC 85.62 ± 0.43 85.65 ± 0.71
CTGAN 87.80 ± 0.25 87.57 ± 0.69

2/3 34.14 ± 0.28 3690.59 ± 252.79

XGB
TVAE 87.46 ± 0.69 88.01 ± 0.20

GC 85.51 ± 0.63 85.74 ± 0.61
CTGAN 85.89 ± 0.57 85.59 ± 1.70

RF
TVAE 88.48 ± 0.32 88.30 ± 0.64

GC 85.62 ± 0.43 86.49 ± 0.56
CTGAN 87.89 ± 0.88 87.82 ± 0.59

3/4 43.50 ± 0.42 9276.41 ± 1742.76

XGB
TVAE 88.10 ± 0.92 88.39 ± 0.78

GC 85.51 ± 0.63 86.06 ± 1.24
CTGAN 86.75 ± 0.81 86.44 ± 0.43

RF
TVAE 88.52 ± 0.55 88.17 ± 0.88

GC 85.62 ± 0.43 86.77 ± 0.74
CTGAN 87.80 ± 0.58 87.63 ± 0.74
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(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Logistic Regression Classifier

(b) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Random Forest Classifier

Figure 4: Experiments pertaining to HashMark1 for the Adult Census Dataset (Part 1).

especially important considering that HashMark2 is conceptually simpler while offering support for625

categorical data and being more secure. Recall that HashMark2 uses a truly random value as seed,626

while Ngo et al. opt for a heuristic approach to obtain seed via pairing algorithm, which are often627

poor sources of entropy.628

G Deferred Proofs629

Proof of Theorem 1. For each element xi in X, let x′
i be the corresponding element in Xw. As defined630

above:631

x′
i = xi + ki · 10−c,

where ki = min{k ≥ 0 | H(xi + k · 10−c) = 0. In other words, |xi − x′
i| = ki · 10−c.632

Recall thatH maps to 0 and 1 with equal probability. Therefore, for a given x′
i = xi + ki · 10−c, the633

hash function should have mapped to 1 for every choice from 0 to ki − 1 and succeed in time ki. In634

other words, Pr[Ki = k] =
(
1
2

)k+1
, i.e., it follows a geometric distribution.635

Now, ||X− Xw||∞ = maxi |xi − x′
i| = maxi ki · 10−c. We can use the well-known approximation636

for the maximum of n i.i.d geometric variables to get E[maxi ki] = 0.5 +HN/ ln 2 where HN is637

the N -th harmonic number. Further lnN ≤ HN ≤ 1 + lnN or HN ≤ lnN + 1. This gives us that:638

E[||X− Xw||∞] ≤
(
0.5 +

ln(N) + 1

ln 2

)
· 10−c

≤ (lnN + 2) · 10−c
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(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the MLP Classifier

(b) Average Difference in the accuracy of the logistic regression classifier as the number
of bits embedded (ℓ) increases.

Figure 5: Experiments pertaining to HashMark1 for the Adult Census Dataset (Part 2).

(a) (b)

Figure 6: This figure shows the evaluation of the robustness of Gaussian noise by studying the z-score
across various choices of standard deviation. To the left, we show the results from [29], and to the
right, we show the results from our own experiment. Observe similar behavior across both works.

639
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Figure 7: This is a reproduction of Figure 2 from Ngo et al. [29].

(a) (b)

Figure 8: Plot of additional experiments on Gaussian dataset. Figure 8a plots MSE for more values
of c. Figure 8b shows how the z-score changes when more rows are involved in the computation.

Proof of Theorem 2. The Jensen-Shannon Divergence (JSD) measures the similarity between two640

probability distributions. It is defined as:641

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (2)

where M = 1
2 (P +Q) is the midpoint distribution, and D(P ||Q) is the Kullback-Leibler Divergence,642

defined as: D(P ||Q) =
∑

x P (x) log(P (x)
Q(x) ).643

Let us find: JSD(ρ||ρ′). Partition the set of all values X into X0 and X1 where Xb consists of those644

values in X that hashes to bit b. Note that ρ′ is only defined on X0 giving:645

ρ′(x) =

{
ρ(x)
Z x ∈ X0

0 otherwise

Here, Z is a normalization term needed to ensure that the sum of probabilities in ρ′ is 1. Since646

the hash function is ideal, i.e., maps to 0 and 1 with equal probability, Z is approximately 0.5 or647

ρ′(x) = 2 · ρ(x) for x ∈ X0.648

22



Now, let’s find the midpoint distribution M(x) = 1
2 (ρ(x) + ρ′(x)). We get:649

M(x) =

{
3
2ρ(x) x ∈ X0
1
2ρ(x) otherwise

Now, we can compute the Kullback-Leibler divergences:650

D(ρ||M) =
∑
x∈X

ρ(x) log(
ρ(x)

M(x)
)

=
∑
x∈X0

ρ(x) log(
ρ(x)
3
2ρ(x)

) +
∑
x∈X1

ρ(x) log(
ρ(x)
1
2ρ(x)

)

Simplifying, we get D(ρ||M) = 0.5(log(2) + log(2/3)) = 0.5 log(4/3). Similarly, we get:651

D(ρ′||M) = log(4/3). Plugging this in Equation 2, we get:652

JSD(ρ||ρ′) = 3

4
log(

4

3
) ≈ 0.215

653

Proof of Proposition 1. Of the m values, we need to compute Ti that ensures that the score is α. We654

use Equation 1 as:655

α =
2(Ti − 0.5M)√

M

Then, Ti = 0.5M + α
√
M/2. In other words, we need at least 0.5M + α

√
M/2 values to ensure a656

Z-score of α. Call this value Tα.657

Proof of Theorem 3. First, observe that for any value vali such thatH(vali) = 0:658

Pr[H(vali + ϵi) = 1] =
1

2

for any ϵi
$← D. We already know that one needs at least Tα = 0.5M + α

√
M/2 cells to be659

unmodified to get a score of α (from Proposition 1). To achieve the watermark removal, we need to660

add noise to the remaining N − Tα cells. Observe that this follows a hypergeometric distribution - in661

a sample of size M , N successes exist (i.e., mapping to 0). Then, the expected number of tries to662

pick at least (N − Tα) successfully is given by: ≈ (N − Tα) ·M/N . Therefore, we get:663

E[r] := 2 · (N − Tα) ·
M

N

664
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NeurIPS Paper Checklist665

1. Claims666

Question: Do the main claims made in the abstract and introduction accurately reflect the667

paper’s contributions and scope?668

Answer: [Yes]669

Justification:The abstract and introduction encapsulate the paper’s contributions: the develop-670

ment of an agent framework featuring fine-grained security tiers, alongside the introduction671

of a novel benchmark dataset for systematic evaluation of agent behavior in scenarios672

necessitating privacy protection673

Guidelines:674

• The answer NA means that the abstract and introduction do not include the claims675

made in the paper.676

• The abstract and/or introduction should clearly state the claims made, including the677

contributions made in the paper and important assumptions and limitations. A No or678

NA answer to this question will not be perceived well by the reviewers.679

• The claims made should match theoretical and experimental results, and reflect how680

much the results can be expected to generalize to other settings.681

• It is fine to include aspirational goals as motivation as long as it is clear that these goals682

are not attained by the paper.683

2. Limitations684

Question: Does the paper discuss the limitations of the work performed by the authors?685

Answer: [Yes]686

Justification: We discuss limitations in Section ??.687

Guidelines:688

• The answer NA means that the paper has no limitation while the answer No means that689

the paper has limitations, but those are not discussed in the paper.690

• The authors are encouraged to create a separate "Limitations" section in their paper.691

• The paper should point out any strong assumptions and how robust the results are to692

violations of these assumptions (e.g., independence assumptions, noiseless settings,693

model well-specification, asymptotic approximations only holding locally). The authors694

should reflect on how these assumptions might be violated in practice and what the695

implications would be.696

• The authors should reflect on the scope of the claims made, e.g., if the approach was697

only tested on a few datasets or with a few runs. In general, empirical results often698

depend on implicit assumptions, which should be articulated.699

• The authors should reflect on the factors that influence the performance of the approach.700

For example, a facial recognition algorithm may perform poorly when image resolution701

is low or images are taken in low lighting. Or a speech-to-text system might not be702

used reliably to provide closed captions for online lectures because it fails to handle703

technical jargon.704

• The authors should discuss the computational efficiency of the proposed algorithms705

and how they scale with dataset size.706

• If applicable, the authors should discuss possible limitations of their approach to707

address problems of privacy and fairness.708

• While the authors might fear that complete honesty about limitations might be used by709

reviewers as grounds for rejection, a worse outcome might be that reviewers discover710

limitations that aren’t acknowledged in the paper. The authors should use their best711

judgment and recognize that individual actions in favor of transparency play an impor-712

tant role in developing norms that preserve the integrity of the community. Reviewers713

will be specifically instructed to not penalize honesty concerning limitations.714

3. Theory assumptions and proofs715

Question: For each theoretical result, does the paper provide the full set of assumptions and716

a complete (and correct) proof?717
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Answer: [Yes]718

Justification: The contribution of this work does involve theoretical results and proofs.719

Guidelines:720

• The answer NA means that the paper does not include theoretical results.721

• All the theorems, formulas, and proofs in the paper should be numbered and cross-722

referenced.723

• All assumptions should be clearly stated or referenced in the statement of any theorems.724

• The proofs can either appear in the main paper or the supplemental material, but if725

they appear in the supplemental material, the authors are encouraged to provide a short726

proof sketch to provide intuition.727

• Inversely, any informal proof provided in the core of the paper should be complemented728

by formal proofs provided in appendix or supplemental material.729

• Theorems and Lemmas that the proof relies upon should be properly referenced.730

4. Experimental result reproducibility731

Question: Does the paper fully disclose all the information needed to reproduce the main ex-732

perimental results of the paper to the extent that it affects the main claims and/or conclusions733

of the paper (regardless of whether the code and data are provided or not)?734

Answer: [Yes]735

Justification: We describe the details of the evaluation experiments we run in Section E and736

the supplementary material.737
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• The answer NA means that the paper does not include experiments.739

• If the paper includes experiments, a No answer to this question will not be perceived740

well by the reviewers: Making the paper reproducible is important, regardless of741

whether the code and data are provided or not.742

• If the contribution is a dataset and/or model, the authors should describe the steps taken743

to make their results reproducible or verifiable.744

• Depending on the contribution, reproducibility can be accomplished in various ways.745

For example, if the contribution is a novel architecture, describing the architecture fully746

might suffice, or if the contribution is a specific model and empirical evaluation, it may747

be necessary to either make it possible for others to replicate the model with the same748

dataset, or provide access to the model. In general. releasing code and data is often749

one good way to accomplish this, but reproducibility can also be provided via detailed750

instructions for how to replicate the results, access to a hosted model (e.g., in the case751

of a large language model), releasing of a model checkpoint, or other means that are752

appropriate to the research performed.753

• While NeurIPS does not require releasing code, the conference does require all submis-754

sions to provide some reasonable avenue for reproducibility, which may depend on the755

nature of the contribution. For example756

(a) If the contribution is primarily a new algorithm, the paper should make it clear how757

to reproduce that algorithm.758

(b) If the contribution is primarily a new model architecture, the paper should describe759

the architecture clearly and fully.760

(c) If the contribution is a new model (e.g., a large language model), then there should761

either be a way to access this model for reproducing the results or a way to reproduce762

the model (e.g., with an open-source dataset or instructions for how to construct763

the dataset).764

(d) We recognize that reproducibility may be tricky in some cases, in which case765

authors are welcome to describe the particular way they provide for reproducibility.766

In the case of closed-source models, it may be that access to the model is limited in767

some way (e.g., to registered users), but it should be possible for other researchers768

to have some path to reproducing or verifying the results.769

5. Open access to data and code770
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versions (if applicable).794
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information about the statistical significance of the experiments?812
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• The factors of variability that the error bars are capturing should be clearly stated (for821
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the experiments?840
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• The answer NA means that there is no societal impact of the work performed.872
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strategies (e.g., gated release of models, providing defenses in addition to attacks,891

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from892

feedback over time, improving the efficiency and accessibility of ML).893

11. Safeguards894

Question: Does the paper describe safeguards that have been put in place for responsible895

release of data or models that have a high risk for misuse (e.g., pretrained language models,896

image generators, or scraped datasets)?897

Answer: [NA]898

Justification: The results of the paper do not pose such risks as there is no real-world data899

involved.900

Guidelines:901

• The answer NA means that the paper poses no such risks.902

• Released models that have a high risk for misuse or dual-use should be released with903

necessary safeguards to allow for controlled use of the model, for example by requiring904

that users adhere to usage guidelines or restrictions to access the model or implementing905

safety filters.906

• Datasets that have been scraped from the Internet could pose safety risks. The authors907

should describe how they avoided releasing unsafe images.908

• We recognize that providing effective safeguards is challenging, and many papers do909

not require this, but we encourage authors to take this into account and make a best910

faith effort.911

12. Licenses for existing assets912

Question: Are the creators or original owners of assets (e.g., code, data, models), used in913

the paper, properly credited and are the license and terms of use explicitly mentioned and914

properly respected?915

Answer: [Yes]916

Justification: A dedicated section on dataset details is included.917

Guidelines:918

• The answer NA means that the paper does not use existing assets.919

• The authors should cite the original paper that produced the code package or dataset.920

• The authors should state which version of the asset is used and, if possible, include a921

URL.922

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.923
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• For scraped data from a particular source (e.g., website), the copyright and terms of924

service of that source should be provided.925

• If assets are released, the license, copyright information, and terms of use in the926

package should be provided. For popular datasets, paperswithcode.com/datasets927

has curated licenses for some datasets. Their licensing guide can help determine the928

license of a dataset.929

• For existing datasets that are re-packaged, both the original license and the license of930

the derived asset (if it has changed) should be provided.931

• If this information is not available online, the authors are encouraged to reach out to932

the asset’s creators.933

13. New assets934

Question: Are new assets introduced in the paper well documented and is the documentation935

provided alongside the assets?936

Answer: [NA]937

Justification:938

Guidelines:939

• The answer NA means that the paper does not release new assets.940

• Researchers should communicate the details of the dataset/code/model as part of their941

submissions via structured templates. This includes details about training, license,942

limitations, etc.943

• The paper should discuss whether and how consent was obtained from people whose944

asset is used.945

• At submission time, remember to anonymize your assets (if applicable). You can either946

create an anonymized URL or include an anonymized zip file.947

14. Crowdsourcing and research with human subjects948

Question: For crowdsourcing experiments and research with human subjects, does the paper949

include the full text of instructions given to participants and screenshots, if applicable, as950

well as details about compensation (if any)?951

Answer: [NA]952

Justification: The paper does not involve any crowdsourcing or research with human subjects.953

Guidelines:954

• The answer NA means that the paper does not involve crowdsourcing nor research with955

human subjects.956

• Including this information in the supplemental material is fine, but if the main contribu-957

tion of the paper involves human subjects, then as much detail as possible should be958

included in the main paper.959

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,960

or other labor should be paid at least the minimum wage in the country of the data961

collector.962

15. Institutional review board (IRB) approvals or equivalent for research with human963

subjects964

Question: Does the paper describe potential risks incurred by study participants, whether965

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)966

approvals (or an equivalent approval/review based on the requirements of your country or967

institution) were obtained?968

Answer: [NA]969

Justification: The paper does not involve any crowdsourcing or research with human subjects.970

Guidelines:971

• The answer NA means that the paper does not involve crowdsourcing nor research with972

human subjects.973
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• Depending on the country in which research is conducted, IRB approval (or equivalent)974

may be required for any human subjects research. If you obtained IRB approval, you975

should clearly state this in the paper.976

• We recognize that the procedures for this may vary significantly between institutions977

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the978

guidelines for their institution.979

• For initial submissions, do not include any information that would break anonymity (if980

applicable), such as the institution conducting the review.981

16. Declaration of LLM usage982

Question: Does the paper describe the usage of LLMs if it is an important, original, or983

non-standard component of the core methods in this research? Note that if the LLM is used984

only for writing, editing, or formatting purposes and does not impact the core methodology,985

scientific rigorousness, or originality of the research, declaration is not required.986

Answer: [NA]987

Guidelines:988

• The answer NA means that the core method development in this research does not989

involve LLMs as any important, original, or non-standard components.990

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)991

for what should or should not be described.992

30


