© ®©® N O o A~ W N =

HashMark: Watermarking Tabular/Synthetic Data For
Machine Learning Via Cryptographic Hash Functions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Watermarking is a critical tool for protecting datasets against malicious or unautho-
rized use, yet existing methods often face limitations in data type support, fidelity
preservation, and detection efficiency. In this work, we introduce HashMark, a
novel and versatile watermarking scheme for tabular datasets, including synthetic
data, without imposing restrictions on data types. At its core, HashMark employs
a cryptographic hash function to map any data into binary values, enabling ef-
ficient and robust watermark embedding. Our design generalizes and simplifies
some prior approaches, such as the recent works Ngo et al. (arXiv 2024) and
TabularMark (ACM CCS 2024), while addressing their key shortcomings. Unlike
Ngo et al., HashMark supports categorical and mixed-type data with a unified
framework. Compared to TabularMark, it enables efficient watermark detection
without requiring access to the original dataset. Further, unlike TabularMark, we
present experiments for categorical data. Finally, we run experiments comparing
the accuracy of synthetically generated data and watermarked, synthetic data on
three classifiers over several datasets using three approaches for generating syn-
thetic data. These experiments clearly demonstrate a negligible impact on utility
for intended machine learning tasks when HashMark is used.

1 Introduction

As financial institutions increasingly rely on data-driven systems for risk assessment, fraud detection,
regulatory compliance, and Al-driven decision-making, ensuring data integrity, provenance, and
ownership is paramount. Data watermarking—the practice of embedding imperceptible markers
or identifiers into datasets—offers a powerful mechanism for protecting sensitive financial data,
establishing ownership, and verifying authenticity across complex data pipelines. In contexts where
financial data is shared with third parties, sold to analytics providers, or used to train machine
learning models, watermarking provides a means to trace data lineage, deter unauthorized use, and
ensure accountability. Moreover, with the growing adoption of generative models and synthetic
data in finance—for tasks such as scenario simulation, stress testing, and customer behavior mod-
eling—watermarking plays a critical role in guaranteeing the traceability and responsible use of
Al-generated financial datasets.

Previous research on watermarking typically focuses on image, audio, or text data [3, 35, 39, 42, 44],
with less attention given to tabular data, one of the most common and essential data formats in
machine learning. Tabular data presents unique challenges for watermarking: (1) Precise values lack
perceptual redundancy, making even minor changes impactful; (2) Mixed data types (categorical,
numerical) require tailored strategies; (3) Resilience is needed against insertions, deletions, and
foreign key modifications. Existing attempts to provide watermarking for tabular data often focus
solely on relational data [2, 17, 18, 22, 25, 26, 33, 34]. Existing methods have proposed watermarking

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59

Table 1: Comparison of HashMark with prior works (transposed). Detection Cost refers to the
information needed to detect the watermark efficiently. “# Modification” refers to the number of cells
that need to be modified to embed the watermark.

Ngoetal. Zhengetal. HashMark; HashMarks

Modification All All O(1) All
Fidelity High High V.High High
Deletions Allowed Allowed Limited Allowed
Permutations Allowed Allowed Limited Allowed
Data Types Numerical Any* Any Any
Detection Cost High V.High V.Low Low

techniques that either alter specific data points or embed identifiers at a statistical level. Only recently
have watermarking approaches specifically designed for tabular data been proposed. These include
the works of [16], [43], and [29]. However, these approaches often face challenges related to
computational complexity, scalability, and storage requirements.

Our Motivation. Watermarking tabular data is crucial in maintaining data provenance within large
organizations, where information flows across multiple departments (especially in large financial
organizations) and systems in non-adversarial settings. In such environments, employees typically
do not attempt to remove watermarks, which enables effective tracking of data lineage, ensures
integrity, and facilitates compliance with internal policies and regulatory requirements. By embedding
identifiable markers in datasets, organizations can monitor data movement, quickly trace discrepancies,
and uphold accountability throughout the data lifecycle, which is essential for informed decision-
making and trust in data-driven processes. The growth in synthetic data also adds another dimension
to the problem, as enterprises must effectively identify and distinguish synthetic data from original
data. Note that synthetic data is an effective tool for producing a dataset that protects the privacy of
confidential data while still allowing for downstream utility, similar to the original data.

While no watermarking scheme is entirely immune to removal (most recently [40] showed that
under even mild assumptions, strong LLLM watermarking is impossible)—just as encryption can
be broken, DRM bypassed, or licenses violated—the value lies in raising the cost of misuse and
enabling accountability in practical, non-adversarial scenarios. Tabular data remains a fundamental
medium for information sharing, particularly within enterprises, necessitating continual advancements
in watermarking techniques. Our research tackles essential shortcomings in previous studies. By
advancing robustness and applicability, we contribute to a framework that strengthens data governance
and mitigates unauthorized use.

A b b S

) > > Hashing Resampling 3 Output Table

< Table y 4 & .
/ y y V 4
R482157 23.35789
E205698 34.265%6 Apply 7

: Hash s le)

¥333263 1237043 o g L =AmPE

W4g3792 67.39876 TRega1s7 2335789

1453873 123.4567

TRB2187 2335789 I,,;/Appl\.}\:__l‘
E245698 3426558 LI Hash
P347658 1237043
Q341276 67.39876
1453879 123.4568

7 N\

¥, \ Y\

[] w: rked=d

L watermarkeds
Output

R482157 23.35789
E245658 34.26558

o - o
-

oo oo o
oo oo o

P347858 1237042
Q341276 67.39876
1453879 123.4568

Figure 1: HashMarks: On the left is the source input table, to be watermarked, containing cells of
two columns - one text and the other numerical. After applying the hash function to each cell, the
hashed values are shown next. In the middle, we show how values are adjusted to be able to hash to 0.
For text data, we replace it with a new value, and for numerical data, we add in the smallest decimal
place. On the right is the watermark embedded table where all cells hash to 0.

60

61
62
63
64

65
66
67
68
69

70
71
72

73
74
75
76

77
78
79

80
81
82
83
84

85
86
87
88
89
90
91
92

93

94

95
96
97
98
99
100
101
102
103

104

1.1 Our Contributions

We introduce HashMark, a suite of simple yet powerful watermarking protocols for tabular datasets.
Our approach embeds bits into select table cells using a cryptographic, seeded hash function, ensuring
that the output looks uniformly random without the knowledge of the seed. A hash function is versatile
in its agnosticism on the input data type, working over numeric and alphanumeric inputs.

We present two variants, HashMark; and HashMarks, each offering unique properties. In both
schemes, we map cell contents to a target bit (0 or 1) via the seeded hash function. If the cell content
does not map to the target bit, we carefully modify the cell values while preserving the dataset’s
fidelity. For numerical values, we make minimal perturbations (e.g., incrementing by 10~°). For
alphanumeric values, we apply rejection sampling from the original distribution.

* Thus, HashMark offers high fidelity as the changes in the dataset to embed the watermark
are minimal in the case of numerical values (due to small perturbation) and none in the case
of alphanumeric values (due to rejection sampling from the same distribution).

* Meanwhile, the detection cost is low in HashMark as it only requires the knowledge of
the seed of the hash function, an artifact of our simpler design. Meanwhile, [29] requires
remembering how the columns in the dataset are paired. [43] requires the knowledge of the
entire source dataset to detect the watermark.

* HashMark can support any data, as explained above. Meanwhile, [29] naively cannot
support categorical data. While [43] claims to support any data, their exposition does not
clarify how their approach translates to textual data' (marked as Any*) in Table 1.

HashMarks. Figure 1 pictorially represents HashMark,. HashMarks embeds the same target bit
(say 0) at all positions in the dataset. It uses the hash function for the binary mapping and then applies
the above-outlined "adjustment" procedure to ensure that every cell maps to 0 under the seeded hash
function. This is akin to prior approaches of [29] and [43]%. Our detection algorithm relies on a
statistical test.

HashMark;. For static datasets (e.g., unique IDs, timestamps, categorical labels), HashMark;
modifies only a constant { < N cells, ensuring high fidelity. It uses two PRGs: G; derives ¢
pseudrandom bits, while G5 selects ¢ cell locations. Each of the ¢ cell locations is adjusted until
it hashes to the desired bit produced earlier by GG;. Detection verifies these bits using the same
PRGs. Its advantages include: minimal distortion (only ¢ cells altered), and security relies on the
pseudorandomness of G and G5. Note that minor permutations or deletions of rows compromise
detection since they disrupt cell positioning. Partial robustness to these changes is possible if
watermarking is restricted to fixed columns.

Additionally,

* We theoretically analyze fidelity and model the watermark removal process.

» Extensive experiments validate our approach. For HashMark;, we show high embedding
efficiency while maintaining classification accuracy across three classifiers. For HashMarks,
we evaluate both Gaussian and synthetic datasets, analyzing fidelity through z-score, mean-
squared error, and robustness to noise. Results confirm that the watermarked synthetic
data has a negligible impact on classification accuracy. We employ four datasets to train
synthesizers, produce synthetic data, and watermark this synthetic data before running two
classifiers. Additionally, we are the first to study watermarking for alphanumeric columns
concretely. While prior work TabularMark [43] claimed to offer support for alphanumeric
columns, the details were underspecified.

2 HashMark: Element Wise Tabular Watermarking

1143] focuses on categorical data (e.g., education level, marital status), their watermarking distorts integer-
based distributions by adding floating-point perturbations, harming utility. Restricting to integer-based perturba-
tions could lead to some gaps in the range of the column. We argue that such columns should not be watermarked.
Further, they do not support unrestricted alphanumeric data (e.g., ASINs) or test such cases.

*Indeed, one can conceivably correlate our binary hashing approach with the red-green paradigm adopted by
these works. However, our construction vastly simplifies their approaches.

105
106
107
108

109
110
111
112
113
114
115
116

17
118
119
120
121
122
123
124
125
126
127
128
129
130

131

132
133
134
135
136
137
138

Algorithm 1 Embedding Algorithm

Input: Sampling Algorithm for Dataset D Generate
Secret Seed seed

Number of Rows: £

Associated Distribution: p

Column column of dataset X

seed & S //S is the seed space of the hash function.

fori =1to/do
while 7 (seed, D[i]) # 0 do
new_value <+ Generate(p, D[i]) /Addnl. parameters could include t for threshold constrained
sampling.
D[i] + new_value
end while
end for

At its core, any watermarking approach needs to ensure that the utility of the data is preserved
even after embedding the watermark. Furthermore, the detectability of the watermark is pre-
served even after modification by both adversarial and honest actions. We have two constructions
HashMarky, HashMark, with various properties and an implicit trade-off.

However, before examining the constructions, it is instructive to consider the commonalities. Both
the constructions will rely on applying a seeded hash function 7 that can take any inputs and produce
an output bit. Such a binary hash function enables us to map any cell (numerical, textual, categorical,
etc.) to either O or 1, depending on the function’s description. They will also rely on modifying a
cell’s contents through invoking the function Generate (until it satisfies some #-based property).
The question remains of how to instantiate this function. Algorithm 1 provides a template for how
to approach this embedding of the watermark. Due to space constraints, we defer an expanded
discussion to the appendix (Section D.2), but summarize below:

» Caveat of Rejection Sampling: Columns with small fixed ranges (e.g., marital status,
education, salary tiers) should not be watermarked, since rejection sampling can skew
distributions and harm utility. Treat all values in such columns as valid (always mapping to
the desired bit).

* Numerical Values: Perturb values slightly by adding 10~¢, where c is a scheme parameter,
until the resulting value hashes to the desired bit. Fidelity bound (See Theorem 1) E[||X —
Xuwlloo] < (In N + 2) - 10~°. Supports truncation up to b decimal places.

* Alphanumeric/Textual Data: Use rejection sampling to resample values until they hash
to the desired bit. Fidelity guarantee via Jensen-Shannon Divergence (See Theorem 2):
JSD(pllp') =~ 0.215.

* Preserving Correlations: Sample rows from the learned distribution p (e.g., synthetic data
generator) to preserve correlations. Reject and resample rows that don’t satisfy watermarking
constraints. Satisfying all columns can be costly (2" time). Instead, use a threshold ¢: accept
rows where at least ¢ out of n cells meet the constraint; adjust detectability accordingly.

3 Conclusion

We present HashMark, a hash-based framework for watermarking financial datasets, strengthening
data integrity, auditability, and provenance in Al-driven financial systems. HashMark supports both
numerical and categorical attributes common in finance (e.g., transaction records, customer profiles,
risk metrics), improves upon prior methods [16, 29, 43], and enables secure, efficient, and compliant
data sharing. Beyond protecting sensitive financial information, HashMark is particularly suited for
watermarking synthetic financial data used in stress testing, fraud detection, and regulatory reporting,
thereby facilitating accountability and regulatory compliance.

139

140
141

142
143
144

145
146
147

148
149

150
151

152
153
154
155

157
158

159
160

161

162

163
164
165

166
167

168
169
170

171
172

173
174
175

176
177

178
179
180

181
182

References

[1] Scott Aaronson. ‘reform’ ai alignment with scott aaronson. AXRP - The Al X-risk Research
Podcast, 2023.

[2] Rakesh Agrawal and Jerry Kiernan. Watermarking relational databases. In Proceedings of the
28th International Conference on Very Large Data Bases, VLDB ’02, page 155-166. VLDB
Endowment, 2002.

[3] Sajjad Bagheri Baba Ahmadi, Gongxuan Zhang, Mahdi Rabbani, Lynda Boukela, and Hamed
Jelodar. An intelligent and blind dual color image watermarking for authentication and copyright
protection. Applied Intelligence, 51(3):1701-1732, March 2021.

[4] E. Alpaydin and Fevzi. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
Learning Repository, 1996. DOI: https://doi.org/10.24432/C5SMG6K.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297-319, September 2004.

[6] David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, and Tucker Balch. Collusion
resistant federated learning with oblivious distributed differential privacy. In Proceedings of the
Third ACM International Conference on Al in Finance, ICAIF *22, page 114—122, New York,
NY, USA, 2022. Association for Computing Machinery.

[7] Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and
Douglas Stebila, editors, Advances in Cryptology — CRYPTO 2024, pages 325-347, Cham,
2024. Springer Nature Switzerland.

[8] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
ICLR, 2024.

[9] Wikipedia Contributions. Z-test, 2025. Accessed: 2025-01-30.
[10] Dhruvil Dave. Github commit messages dataset. Kaggle Dataset, 2023.

[11] Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
Mingyuan Wang. Publicly-detectable watermarking for language models. JACR Communica-
tions in Cryptology, 1(4), 2025.

[12] J.L. Fleiss, B. Levin, and M.C. Paik. Statistical Methods for Rates and Proportions. Wiley
Series in Probability and Statistics. Wiley, 2013.

[13] Eva Giboulot and Teddy Furon. Watermax: breaking the LLM watermark detectability-
robustness-quality trade-off. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[14] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition, 2019.

[15] A. Hamadou, X. Sun, S. A. Shah, and L. Gao. A weight-based semi-fragile watermarking
scheme for integrity verification of relational data. International Journal of Digital Content
Technology and Its Applications, 5:148-157, 2011.

[16] Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking
generative tabular data, 2024.

[17] Donghui Hu, Dan Zhao, and Shuli Zheng. A new robust approach for reversible database
watermarking with distortion control. IEEE Transactions on Knowledge and Data Engineering,
31(6):1024-1037, 2018.

[18] Min-Shiang Hwang, Ming-Ru Xie, and Chia-Chun Wu. A reversible hiding technique using Isb
matching for relational databases. Informatica, 31(3):481-497, 2020.

183
184
185
186

187
188

189
190
191

192
193
194

196

197
198
199
200
201

202
203
204

211
212
213

214
215
216

217

218
219
220

221
222
223

224
225
226

227
228

[19] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning
without distress: privacy-preserving empirical risk minimization. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, page 6346—6357,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[20] Brian Johnson. Wilt. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5KS4M.

[21] Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A
review of text watermarking: Theory, methods, and applications. IEEE Access, 6:8011-8028,
2018.

[22] Muhammad Kamran, Sabah Suhail, and Muddassar Farooq. A robust, distortion minimizing
technique for watermarking relational databases using once-for-all usability constraints. I[EEE
Transactions on Knowledge and Data Engineering, 25(12):2694-2707, 2013.

[23] R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics and Probability
Letters, 33(3):291-297, 1997.

[24] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 17061-17084. PMLR, 23-29 Jul 2023.

[25] Wenling Li, Ning Li, Jianen Yan, Zhaoxin Zhang, Ping Yu, and Gang Long. Secure and high-
quality watermarking algorithms for relational database based on semantic. IEEE Transactions
on Knowledge and Data Engineering, 2022.

[26] Chia-Chen Lin, Thai-Son Nguyen, and Chin-Chen Chang. Lrw-crdb: Lossless robust water-
marking scheme for categorical relational databases. Symmetry, 13(11):2191, 2021.

[27] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145-151, 1991.

[28] Guido Masarotto and Cristiano Varin. Gaussian copula marginal regression. Electronic Journal
of Statistics, 6(none):1517 — 1549, 2012.

[29] Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K. Potluru, and Manuela Veloso.
Adaptive and robust watermark for generative tabular data. Statistical Frontiers in LLMs and
Foundation Models at NeurIPS’24, abs/2409.14700, 2024.

[30] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399—410,
2016.

[31] PromptCloud. Amazon product dataset 2020. Kaggle Dataset, 2020.

[32] Cemal Okan Sakar, Suleyman Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time
prediction of online shoppers’ purchasing intention using multilayer perceptron and lstm
recurrent neural networks. Neural Computing and Applications, 31:6893 — 6908, 2018.

[33] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Watermarking relational databases using
optimization-based techniques. IEEE Transactions on Knowledge and Data Engineering,
20(1):116-129, 2008.

[34] R. Sion, M. Atallah, and S. Prabhakar. Rights protection for relational data. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD ’03),
pages 98-109, New York, NY, USA, 2003. Association for Computing Machinery.

[35] Mingtian Tan, Tianhao Wang, and Somesh Jha. A somewhat robust image watermark against
diffusion-based editing models, 2023.

229
230
231
232
233
234

236

237
238
239

240
241

242
243

244
245
246
247

248
249
250
251

252
253
254

255
256
257

259
260
261

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, lhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, and
Paul van Mulbregt. SciPy 1.0: Fundamental algorithms for scientific computing in python,
2020.

X. Xiao, X. Sun, and M. Chen. Second-lsb-dependent robust watermarking for relational
database. In Third International Symposium on Information Assurance and Security (IAS),
pages 292-300, 2007.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional GAN. Curran Associates Inc., Red Hook, NY, USA, 2019.

M. Yamni, H. Karmouni, M. Sayyouri, and H. Qjidaa. Efficient watermarking algorithm for
digital audio/speech signal. Digital Signal Processing, 120:103251, 2022.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese,
and Boaz Barak. Watermarks in the sand: impossibility of strong watermarking for language
models. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese,
and Boaz Barak. Watermarks in the sand: impossibility of strong watermarking for language
models. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Xiaorui Zhang, Xun Sun, Xingming Sun, Wei Sun, and Sunil Kumar Jha. Robust reversible
audio watermarking scheme for telemedicine and privacy protection. Computers, Materials &
Continua, 71(2):3035-3050, 2022.

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS ’24,
page 3570-3584, New York, NY, USA, 2024. Association for Computing Machinery.

Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y. Shih. An automated and robust
image watermarking scheme based on deep neural networks. IEEE Transactions on Multimedia,
23:1951-1961, 2021.

262

263
264
265
266
267

269

270
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295

296
297
298
299
300
301
302
303
304
305
306

307

308
309

310

311

A Related Work

Watermarking Tabular Data. Watermarking tabular data has been extensively studied. [2]
pioneered a scheme embedding watermarks in the least significant bit of specific cells using hash
values based on primary and private keys. Subsequent works by [37] and [15] improved this by
embedding multiple bits. Another approach embeds watermarks in statistical properties. [34]
introduced a method that partitions dataset rows and modifies subset statistics, later refined by
Shehab et al. [33] to resist insertion and deletion attacks using optimized partitioning and hash-based
embedding. Their approach, however, relies on assumptions about data distribution and primary keys.

Inspired by watermarking techniques in large language models [1, 21, 24], [16], [29], and [43]
proposed watermarking schemes for generative tabular data using red-green interval partitioning.

[16] introduced a data binning approach, ensuring values lie near green intervals and using statistical
hypothesis testing for detection. However, assuming continuous distributions makes it vulnerable
to feature selection and truncation attacks. [29] paired columns into key-value sets, deriving a seed
from the key column to generate bins for the value column. Entries falling in red bins were resampled
from green bins. While novel, this method suffers from two key weaknesses: (i) detection requires
prior knowledge of the column pairing or an exhaustive search across all pairs, and (ii) relying on key
column-derived seeds introduces low entropy, weakening the pseudorandomness of bin assignments
and potentially compromising security. It is important to note that even with knowledge of column
pairing, any deletion of rows will trigger an error when calculating the key column-derived seed,
which is not explored or discussed in the paper. [43] took a similar approach, embedding watermarks
as additive noise within predefined bins. They assumed noise follows a bounded range [—p, p],
partitioned into red and green bins, with watermarking achieved by sampling noise only from green
bins. Despite robustness claims and categorical feature support, their method has several limitations.
First, detection requires access to the original dataset, making watermark verification infeasible in
practical scenarios where datasets are modified or shuffled. Second, row-matching under permutation
increases detection complexity. Finally, their claimed support for categorical data is unclear and
lacks empirical validation - (a) Their protocol description focuses only on categorical data, i.e., those
with a fixed range (e.g., education level, employee designation, marital status, etc.). They suggest
encoding it first as integers and then applying their embedding techniques. However, this method
is flawed because these differences often result in floating-point values, distorting the expected
integer-based distribution. Restricting differences to integers could also leave gaps in the data (by
omitting particular values from the range), harming its utility. Instead, we argue against watermarking
such columns altogether, and (b) it does not address unrestricted categorical data (e.g., alphanumeric
ASINGs) or provide experiments for such cases. The above is summarized in Table 1.

Watermarking for LLMs. Many watermarking schemes for LLMs take advantage of the sampling
algorithm that generates each token of an LLM output. [8] observed that these LLM output tokens
correlate with the randomness used in the token sampling algorithm. This correlation is efficiently
communicable for many LLM outputs by replacing this randomness with cryptographic pseudoran-
domness. Subsequent works [11, 7] have built upon this idea by incorporating error correction and
public identifiability into these watermarks. However, robustness remains a persistent issue for this
line of work, and a recent impossibility result [41] demonstrated that an adversary that can efficiently
perturb or resample the output can always remove a watermark. Another line of work, which has been
the source of inspiration for more recent watermarking schemes for tabular data, include [1, 21, 24].
[24] introduced the red-green list paradigm, forming the basis of several works [16, 43, 29]. More
recently, [13] improved on the works employing the red-green list paradigm.

B Preliminaries

Notations. For n € NT, we denote by [n] the set {1,...,n}. For a set X, we denote by z & x
that a value z is sampled uniformly at random from X.

Seeded Hash Function. A function H : S x X —) is a hash function, modeled as a random
oracle, if the computation of (S, X) for a random S & Sand any X € X is indistinguishable

312
313

314

315
316
317
318
319
320

321
322

323
324
325

326
327
328

329
330
331

332

333
334
335
336
337
338
339

340
341
342
343

344
345
346
347

348
349
350

351

353

355
356

from Y & Y. In our application, we will suppress the presence of the seed distribution S and we
will set J := {0, 1}.

C Problem Formulation

Our dataset is a matrix X of dimension m X n. It is important to stress that X contains both numerical
values, alphabetical and alphanumeric. We assume each column ¢ contains m i.i.d points from a
distribution p;. For simplicity, we will define a function Generate that takes as input a probability
distribution p; and a sample p; from the distribution p; to produce a new sample p;. When p; is
undefined, we can still extract a new sample using just p;. The goal is to generate a watermarked X,,
with the following properties:

Fidelity : The watermarked dataset X,, is “close” to the original data set X. In our approach for
numerical data, we show that X, and X are close in the L, distance. See Theorem 1.

Detectability : Efficient testing can reliably identify the watermarking. In our first variant, we will
rely on cryptographic properties to ensure detection, while in the second variant, we will
rely on statistical testing.

Robustness : The watermarked dataset X, is resistant to various perturbations observed in common
usage. Some of these include removing or permutations of rows and columns and modifying
cell content.

Utility : The watermarked dataset X, is still useful for intended downstream tasks such as machine
learning tasks. Through empirical testing, we will show that there is a negligible difference
in accuracy.

D Dataset Details

Wilt. Wilt [20] is the public dataset from the UCI Machine Learning Repository from a remote
sensing study on detecting diseased trees in satellite imagery. It comprises 4,839 image segments
with spectral and texture features from Quickbird multispectral and panchromatic bands. The
dataset includes six numerical and categorical attributes and a binary classification task: identifying
trees as wilted or healthy. We generate synthetic datasets. There are 4839 records with 6 features
(including the target) and 2 classes. This dataset is licensed under a Creative Commons Attribution
4.0 International (CC BY 4.0) license.

California Housing Prices. The California Housing Prices dataset [23, 14], sourced from the 1990
U.S. Census, contains 20,640 records with 10 socio-economic and geographical attributes influencing
housing prices. It has a multi-target label indicating proximity to the ocean, making it a multi-class
classification problem. It has 5 classes. This dataset is licensed under Apache License Version 2.0.

HOG. The HOG feature dataset [4] is generated with the histogram of oriented gradients (HOG)
features extracted from the digits dataset, combined with their categories. There are 16 features,
10992 records, and 10 classes. This dataset is licensed under a Creative Commons Attribution 4.0
International (CC BY 4.0) license.

Shoppers Dataset. The shoppers dataset [32] aimed to capture the shoppers purchasing intent.
There are 12,330 records with 18 attributes with two classes. The dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

Amazon ASINs. We used the Amazon Product Details Dataset [31]. For our experiments, we
parsed the dataset only to extract the unique identifiers for Amazon products, generating 30,000
actual ASINs. This dataset is licensed under CCO.

Gitcommit Hashes. We used the Gitcommit Messages dataset [10]. It contains 4.3 million records,
from which we only extracted the hashes for the gitcommit messages. The dataset is licensed under
the Open Data Commons Attribution License (ODC-By) v1.0.

357

358
359
360
361
362

363

364

365

366
367

368

369
370
371
372
373

374

375

377
378
379
380
381

383
384
385

386
387

Algorithm 2 HashMark; Embedding Algorithm

Input: Original Dataset X of dimension m x n
Probability Distributions p1, ..., pp.

PRG G : X1 — {0,1}"

PRG G5 : Xy — [m]* x [n]*

X, Exx 8

(bit: 3o, & Gi(x))

{(rows, coly) Yi_, + Ga(Xy)
seed & S //S is the seed space of H

fori =1to/do
while H (seed, X[row;, col;]) # bit; do

new_value &- Generate(p;, X[row;, col;])
X[row;, col;] + new_value
end while
end for

D.1 HashMark;: Embedding Pseudorandom Bits

We begin by describing our first approach to watermarking. This approach ensures high fidelity
and detectability but suffers from issues when it comes to robustness. The embedding algorithm is
formally defined in Algorithm 2. We start with an original dataset X of dimension m x n. The idea is to
sample ¢ pseudorandom bits. Let us call it bit1, . . ., bity. Additionally, we also sample ¢ cells defined
by (row;, col;) in X. By modifying the cell content suitably, we ensure that H (X[row;, col;]) = bit;.

Detecting HashMark,

To detect, the algorithm needs:

» Knowledge of X to retrieve the original binary string of bitq, ..., bity.

» Knowledge of X5 to first identify the target cells (row;, col;), and then using H to retrieve
bit), ..., bit).
* The watermark detection is successful iff (bit1, ..., bit,) = (bit},. .., bit})

However, this scheme is low-robust because the detection algorithm critically relies on extracting
the cell where the watermark was embedded. This would be meaningless if the first row (or the first
column) were removed. The benefit of this approach is that only ¢ of the spots are touched, which is
a tunable parameter. This ensures very high fidelity and utility. The detectability is also reducible to
the hardness of the underlying cryptographic primitives (and does not rely on a statistical measure).

D.2 Defining Generate

The crux of our construction is instantiating the function Generate that helps modify the content of
the dataset to satisfy the hashing requirement. In this section, we focus on defining this function along
with some optimizations. However, before we proceed, we must discuss a caveat to our approach.
This is a limitation of rejection-sampling-based approaches. Let C be a column with a fixed range.
Some examples of such columns include marital status, education level, designation at a company,
and base salary tiers at a company, among others. If one were to apply a hash function, mapping
elements in the range of O or 1, some elements in the range might be hashed to an undesired bit. The
ensuing watermarked dataset will be constrained to remove these elements from the range, resulting in
a skewed distribution, which will prevent utility. Therefore, it is essential not to embed the watermark
in these columns, as this could skew the resulting distribution. In other words, we consider every
element in the range to be “valid,” i.e., hashing to the desired bit.

In the ensuing discussion, we focus solely on generating values for the remaining attributes/columns.
We will focus on embedding the watermark and later define fidelity, i.e., how close the watermarked

10

388
389

390
391
392
393
394

395
396

397
398

399

401
402
403
404

405
406
407

408
409
410

411
412
413
414
415
416
417

418
419

420
421
422
423
424
425

426

427
428
429
430
431
432
433

distribution is to the un-watermarked one. The proofs of the following are deferred to Section G in
the appendix.

Numerical Values. Suppose a column C consists of numerical data, specifically floating-point
values. In that case, the generate function can take the old value and add 10~ for some constant ¢
that is a scheme parameter. This ensures that the perturbation does not adversely impact the fidelity.
Formally, we have the following theoretical guarantee, as measured by the expected difference in L,
between the unwatermarked and watermarked distributions.

Theorem 1. Let X be the original dataset and X, be the watermarked dataset of size N where
x} € Xy, is generated as follows:

ZL’; = T; + kl . 10_6,
where k; = min{k > 0 | H(x; + k- 107°) = 0, H is a seeded hash function as defined before, and
c > 0 is some integer. Then,

E[||X — Xy|[oc] < (0N +2) - 107¢
Our approach can be easily extended to support truncation up to b decimals place if only the value
until the first b decimal places are included in the input to H.

Alphanumeric/Textual Data. In the case of textual data, the generate function can reject and
re-sample from the underlying distribution for the feature p;. Then, one can measure the fidelity of
the watermarked dataset by measuring the Jensen-Shannon Divergence [27] between the watermarked
and the un-watermarked dataset. Formally, we get the following theoretical guarantee:

Theorem 2. Let p be the distribution of an alphanumeric column where we embed the watermark.
Let p' be the modified distribution consisting only of those values that hash to 0. Then, the Jensen-
Shannon Divergence is:

3 4
JSD(p||p)) = 1 log(g) ~ 0.215

Preserving Correlations. Datasets often contain correlations between various features or attributes.
Any watermarking approach should ensure that these correlations are preserved. Rejection sampling
column-wise can often lead to a loss of such correlations. We now detail how to preserve correlations.

* Let p be a probability distribution that defines the underlying dataset. This can contain both
categorical (aka alphanumeric values) and numerical values. For example, a synthetic data
generation algorithm (such as the ones employed in our experiments) is trained on a source
(i.e., the original dataset), which yields a distribution p from which one can sample as many
rows as needed. These synthetic data algorithms have been experimentally shown to be
close to the original dataset for various machine learning tasks, serving as a heuristic proof
of correlation preservation.

« LetR & p be a row sampled from this distribution. Further, let this row R be such that
there exist cells that do not map to the desired bit.

* We can now reject R and resample from p until the sampled row satisfies the required
constraint. However, such rejection and resampling until every cell maps to the desired
bit can be computationally expensive. For n columns, this can take 2" time. Instead, one
can choose a threshold ¢ such that if ¢ of the n cells in a row R map to the desired bit, it
is marked as accepted. The detectability threshold can be suitably set to account for this
modification.

D.3 HashMarks: Global Embedding

Unlike HashMark;, HashMark, is more resilient to various perturbations and cell modification. The
embedding approach is visually represented in Figure 1 and described in Algorithm 1. The crux of
the strategy is to embed a global bit (say 0) in every cell of the dataset X using a binary hash function
‘H—consequently, a watermarked table to have more values that hash to 0 than an unwatermarked
table. Detection is performed by using the secret description of the hash function to hash the data
and count the number of cells that map to zero. Additional methods can allow the user to check only
a subset of locations, making a slight skew more pronounced. This approach has the versatility of

11

434
435

436
437
438
439

440
441
442

443
444
445
446
447

448

449

451
452

454

464

465

466

467
468
469
470
471

472
473
474
475

476
477
478
479

embedding a watermark in an existing dataset or generating a watermarked dataset at the source. The
latter is a setting suitable for synthetic data.

Detecting HashMark,. To detect HashMarksy, we use a one-proportion z-test [12], which is a
statistical test used to determine whether the single sample rate, for example, the success rate in the
number of entries that map to 0, is significantly different from a hypothesized population rate. We
define the null hypothesis as:

Hy : Dataset X is not watermarked

However, we note that if the null hypothesis holds, then so does a hypothesis Hy ;
The ¢-th column is not watermarked also holds. This reduces the problem of rejecting H to simply
rejecting Hy ; for each column i.

Let T; represent the number of elements in the ¢-th value column that hash to 0. Under the i-th
null hypothesis, Hy ; should follow the Bernoulli Distribution B with probability 1/2 as an ideal
hash function H will output O or 1 with probability 1/2. Let m be the total number of rows, i.e.,
T; ~ B(m,1/2) for a sufficiently large number of rows m. By the Central Limit Theorem (CLT),
for large m, we obtain that:

T, 1
2vm (-) ~ N(0,1)
m 2
where N (0, 1) is the normal distribution. Thus, the test statistic for a one-proportion z-test is:

s=avin (21 1)
m 2

For each column, the detection algorithm computes a z-score by counting values that hash to 0. To

account for multiple hypothesis testing (e.g., 5 columns at o = 0.05), per-column thresholds «; are

adjusted (e.g., a; = 0.01). If a column’s z-score exceeds its threshold, the null hypothesis is rejected,

indicating a watermark. Otherwise, no conclusion is made.

To prevent spoofing (where forgers combine valid watermarked datasets), we use a secret seed in the
hash function (Algorithm 1). Each dataset’s watermark uses a unique seed, making concatenated
forgeries detectable as inconsistent.

Robustness to Deletion, Permutation. It is clear that the permutation of rows does not impact
the count T;. Hy ; is evaluated for every column <. This implies that the permutation of the column
from position ¢ to some j will still have its corresponding null hypothesis Hy ; and evaluated. Now,
observe that the detection algorithm performs multiple hypothesis tests conducted simultaneously.
Therefore, removing columns implies that one has to compute «; as a function of « and the number
of remaining columns. This guarantees robustness to column deletion. Removal of rows implies a
smaller m. This results in an increase in the error in the CLT approximation. However, in practice, a
rule-of-thumb for applying Z-test has been for m > 50 [9]. However, if m < 50, one could apply the
Z-test on Hy and not individual Hy ;.

Finally, as remarked before, one can also modify the application of # to ensure support for truncation.

D.4 Analysis on Removal of HashMark

Before we look at the mathematical analysis, we discuss the modes of attacks to remove the watermark.
The property of the ideal hash function H implies that the perturbation of a cell content initially
mapping to 0 can flip to 1, with a probability 0.5. Further, a secret seed (of the seeded hash function)
implies that an adversary, without knowledge of this seed, cannot determine the actual mapping of
the bit.

This section will study the effort required for the perturbation to remove the watermark. Specifically,
an adversary can only modify r cells by adding noise. We will analyze the expected number of r.
Note that an adversary, adding noise to every cell in a column, can remove the watermark. This is true
for every scheme [16, 29, 43]. Experimentally, we show the results comparing with [29] in Section E.

In the analysis below, we assume there are M values in total. Of this, N is the number of values
with the property they hash to a desired bit. In HashMark;, we have N = ¢ while M = mn. In
HashMarks, we have N = M = m as described above. The proof of the following are deferred to
Section G in the appendix.

12

480
481

482
483

484
485

486

487

489

490
491
492
493
494

495

497
498
499
500
501

502

503
504
505
506

507
508
509

510
511
512
513
514
515

517
518

Proposition 1. Given values valy, . .. ,valys. Then, the minimum number of values needed to ensure
that the Z-score remains o is given by:

o 7‘]\44_%
2 2

Proof. Of the m values, we need to compute 7 that ensures that the score is a. We use Equation 1

as:
2T, — 0.5M)

VM

Then, T; = 0.5M + av/M /2. In other words, we need at least 0.5M + o/ M /2 values to ensure a
Z-score of «. Call this value T,,. O

Theorem 3. Let r be the number of cells an adversary can modify. This modification is done by

. . $
sampling noises €1, . .., €, < D. Then, we have:

Efr] =2 (N —T,)-

SIS

for any error distribution D.

Proof of Theorem 3. First, observe that for any value val; such that H(val;) = 0:

—_

Pr[H(val; + ¢) =1] = 3

for any ¢; & D we already know that one needs at least T, = 0.5M + av/ M /2 cells to be

unmodified to get a score of a (from Proposition 1). To achieve the watermark removal, we need to

add noise to the remaining N — T}, cells. Observe that this follows a hypergeometric distribution - in

a sample of size M, N successes exist (i.e., mapping to 0). Then, the expected number of tries to
pick at least (N — T,,) successfully is given by: ~ (N — T,,) - M/N. Therefore, we get:

M

Elr] =2-(N—-1,) —

=2 (N-To)- 5

O

Note that in HashMark; where N < M, the number of tries needed for the adversary is inversely pro-
portional to N, making HashMark; more robust to noise addition attacks. Meanwhile, in HashMarks,
since M = N, the number of tries needed is much smaller. Consequently, one can envision
HashMarks where only a specific subset of cells (chosen at random) is embedded with the bit. While
this makes it more resilient to modification attacks, the problem of efficiently identifying this subset
of cells becomes paramount.

Other Attacks. We look at some additional attack vectors.

* Data Augmentation Attacks: Adding data reduces the z-score. However, since the secret
information is unknown to an attacker, one can expect that half of the new content will map
to 0 on average. For example, if one had m rows in a column that all map to 0, adding
another m rows will reduce the z-score by a factor of 1/2, on expectation.

» Feature Selection: Observe that the choice of z-score threshold depends on the number
of columns in the dataset. This is discussed in 5.1.1. Therefore, reducing the number of
columns will consequently require a higher threshold.

HashMark and Applications. Watermarking tabular data provides verifiable guarantees for data
integrity in organizational settings where datasets are routinely shared. When a watermark embedded
using HashMarks, is detected in a dataset D, two key properties hold: (1) Theorem 5.3 ensures an
expected upper bound on the number of modified cells, limiting undetected alterations; and (2)
if an attacker injects v - m additional rows into an m-row dataset, the detection signal degrades
predictably, with the z-score scaling by /(1 +). These mechanisms establish a measurable trust
boundary, enabling provenance tracking while tolerating benign modifications. By formalizing
such robustness-utility tradeoffs, our work advances watermarking techniques for practical data
governance.

13

5

9

520
521
522
523
524
525
526

527

528

530
531
532
533

534
535
536
537

538
539
540
541
542

543
544
545
546
547
548
549
550

552
553
554
555
556
557
558
559
560
561

562
563
564
565

566
567
568
569
570
571

E Experimental Results

In this section, we focus on experimentation for embedding watermarks in numerical data, specifically
floating-point values. Our experiments were performed on an Apple MacBook M1 Pro with 16GB
of memory running Sonoma 14.3. We used Python 3.11. We instantiated the hash function using
SHA-256 from the hashlib module. We select a random seed for evaluating the hash function. We
implemented Generate by adding 10~ to the value until it hashes to 0. Our choice of ¢ is specified
for each context separately. Due to space constraints, we will focus on HashMark; in this section
and defer the experiments pertaining to HashMark; to the appendix.

We defer the experiments pertaining to HashMark; to the appendix in Section E.2

E.1 Evaluation of HashMark,
In this section, we evaluate the performance of HashMark, along the following dimensions:

* Performance (vs the work of [29]) on Gaussian Datasets: Following [29], we test
HashMarks on Gaussian data (1 column, 2000 rows). With ¢ = 10, HashMarky matches
their robustness and fidelity while being significantly simpler, which proves that complex
watermarking isn’t necessary.

Fidelity: The KDE plots (Figs. 2a-2b) show nearly identical distributions before and after
watermarking. Figure 2d, which shows how the choice of 10™¢ in Generate impacts the
mean-squared error (MSE), confirms that smaller c values (larger perturbations) increase
MSE, as expected.

Robustness: Figure 2c demonstrates that z-scores grow with more rows, improving detection
confidence. When adding Gaussian noise (Fig. 2e), smaller c values yield lower z-scores,
showing greater noise sensitivity. Crucially, our z-scores consistently surpass Ngo et al.’s
under identical conditions (Fig. 6). Extended results (Figs. 8a, 8b) reinforce these findings
and are deferred to the appendix.

For completeness in Figure 7, we reproduce the plot from Ngo et al. for the abovementioned
experiments. We also present additional plots for HashMarks in Figure 8. Figure 8a extends
Figure 2d for a wider choice of ¢ while Figure 8b extends Figure 2c for a larger number of
rows. These additional plots are in line with the conclusions drawn above.

« Utility for Real-Life Datasets: Following prior works such as [16] and [29], we evaluate the
utility of our proposed approach HashMark, by testing it on four real-world datasets. These
datasets are first used to train neural network-based and statistical-based generative methods.
The trained generative method is then used to generate synthetic datasets. Specifically,
we utilize CTGAN [38], Gaussian Copula [28], and TVAE [38] to represent GAN-based,
copula-based, and VAE-based generators, respectively, for generating tabular data. We
utilize the Synthetic Data Vault [30] as our library and employ the default parameters. The
dataset was randomly partitioned with 25% test cases. While we defer a discussion on the
dataset to Section D, we summarize the findings of our experiment below in Table 2. Our
experiments indicate that the watermarking has a negligible impact on the accuracy of the
synthetic dataset, even for a multi-class classification problem.

* Fidelity for Alphanumeric Synthetic Data: We evaluate HashMarky’s performance on
alphanumeric attributes by measuring the Jensen-Shannon divergence (JSD) between wa-
termarked synthetic data (where all values hash to 0) and real datasets. Using SciPy’s JSD
implementation [36] with 30 trials, we find:

— ASINs (10-character alphanumeric): 0.1090 + 0.0016 JSD (vs. Amazon Product
Dataset [31])

— Git commit hashes (40-character hex): 0.002176 4 0.0003 JSD (vs. GitHub Commit
Messages [10])

Lower JSD values indicate better preservation of the original distribution, demonstrating
HashMarks’s effectiveness for alphanumeric data.

* HashMark, with simpler classifiers and dataset: Prior experiments were on datasets with
multiple attributes and complex machine learning models. We wanted to study HashMarky’s
impact on the accuracy of simpler machine learning models with fewer columns. Specifically,
we ran experiments using one attribute and two classes on these simple classifiers - linear

14

572
573
574
575

576
577

Z-Score

1 0 20 30 40 50 60 70 80 90 100
Number of Rows

Y

o
Value

(b)

©

- sigma=0.001
- sigma=0.01
40 > sgma=oa

0.030

0.025

w
8

0.020

Z-Score

w
¥ 0.015
=

0.010

0.005

0.000

0.0001 0.00 0.1

1 0.01 0.01
10~{-c} 10~{-c}

(d) (e)

Figure 2: Plot of various experiments on Gaussian dataset. Figures 2a and 2b show the distribution of
the data, before and after watermarking. Value refers to the actual value in the dataset. Figure 2c
shows the variation of the z-score with the number of rows sampled. Figure 2d plots the variation of
the mean-squared error (MSE) for different choices of c. Figure 2e plots the change in z-score when
compared with the choice of ¢ for various Gaussian noises.

Table 2: Accuracy comparison of different classifiers and synthesizers across four datasets on
synthetic and watermarked synthetic data. Standard deviations are included for each record. W/M =
Watermarked synthetic dataset, while Non-W/M refers to an unwatermarked but synthetic dataset.

Dataset Classifier ~ Synthesizer ~Non-W/M (%) W/M (%)
CTGAN 83.63 £4.63 8331 +5.01
XGB Copula 9438 +£0.53 9440+ 0.52
Wit TVAE 94.87+£0.37 94.89 £0.39
CTGAN 84.45+£574 84.30+5.70
RF Copula 94394+ 0.52 9440+ 0.52
TVAE 94344037 9434+0.38
CTGAN 49.26 +£2.38 49.11 £2.68
XGB Copula 55.154+5.12 55.66 +£4.77
. TVAE 61.55+239 61.13+£246
Housing
CTGAN 4831 +1.90 48.14 £2.00
RF Copula 5297 +5.83 53.04+593
TVAE 6230+ 1.92 6240+ 1.77
XGB CTGAN 77.65+2.07 77.62 +£2.08
TVAE 89.77£1.59 89.34 +1.76
HOG
RF CTGAN 7440+ 441 7439 +448
TVAE 91.20+2.16 9128 £2.16
CTGAN 86.43+0.79 85.28 £1.95
XGB Copula 86.01 £1.38 86.56 + 1.41
TVAE 87.94+0.61 87.85+0.54
Shoppers
CTGAN 87.77+0.82 86.00 £2.74
RF Copula 86.05+1.40 85.78 +£1.38
TVAE 88.71+1.00 88.10+1.23

regression, logistic regression, and decision tree. We present our findings in Table 3. To
summarize, we demonstrate that the perturbation parameter (i.e., adding 10~°) controls the
deviation from the value. However, even with a smaller value of ¢, there is a negligible
difference in the model performance.

* Constrained Sampling, Threshold, and Z-Score: We also investigate the utility of constrained
sampling, i.e., one in which we sample a row from the distribution p and we check if at

15

578
579
580
581

583

584

585

586
587
588

589
590

591

592
593
594
595
596
597
598

599
600
601
602
603
604

606
607

608
609

610
611
612
613
614

Table 3: Model Performance Under Watermarking Perturbation (10~¢). W/M = Watermarked dataset.
For Logistic/Decision Tree, we report accuracy; for Linear Regression, we report R? values.
Logistic Reg. Linear Reg. Decision Tree
Orig. W/M Orig. (R*) W/M(R?) Orig. WM

c=2 9998% 99.64% 1.000000 0.999899 100% 100%
c=4 9998% 99.98% 1.000000 1.000000 100% 99.995%
c=6 9998% 99.98% 1.000000 1.000000 100% 99.961%

least ¢ fraction of the n columns in a row hash to 0. If not, we reject that row and resample
another. This process is repeated until an appropriately sized dataset is generated, ensuring
that correlations are preserved. We summarize our findings across Tables 6 and ?? for the
four datasets. While increasing ¢ does increase the running time of watermarked dataset
generation, we find no significant difference in accuracy; however, we do notice an increase
in z-score, as expected.

E.2 Evaluation of HashMark;
We begin by benchmarking the performance of HashMark; along the following axes:

* Varying ¢, we wish to study the running time of the watermarking process. We break down
the running time of watermarking as (a) the cost of identifying locations to embed the
watermark and (b) the time taken to run Generate to embed the desired bits.

* The utility of the watermarked dataset vs. the original dataset for downstream machine
learning tasks.

* The role of £ in accuracy, i.e., how does the accuracy change when more bits are embedded?

Performance of Embedding Process. In Figure 3, we plot the time, in seconds, against the number
of bits being embedded. We split the cost as follows: to generate locations for embedding (dubbed
pair generation time) and then modify the cell content until it hashes to the desired bit. Recall that the
pair generation time requires using a seed to produce £ cell positions, which only contain floating
point values. We then use the same seed to generate ¢ bits additionally. As one can observe, the
embedding time is much smaller than the pair generation time, and it takes less than 10 milliseconds
to embed as many as 1000 bits.

Dataset. We study the above for a specific dataset - the adult census income dataset from [6, 19] to
predict if an individual earns over $50,000 per year. The preprocessed dataset has 105 features and
45,222 records with a 25% positive class (i.e., 25% of the records have class 1 while the rest are in
class 0) We randomly split into training and testing datasets. We observed that the dataset consisted
of integers or floating point values with at least eight decimal places. This leads us to choose ¢ = 6
and embed only in the floating point values.

Downstream Utility. We embed ¢ = 384 bits * They are:

* Logistic Regression Classifier with maximum iterations as 1000
¢ Random Forest Classifier with 100 estimators

* MLP Classifier with hidden layer sizes 100, 50; maximum iterations=1000, and learning
rate — 0.0001

We plotted the difference in accuracy when run on the original versus the watermarked dataset in
Figures 4 and 5 for each of the 1000 runs. Meanwhile, in Table 4, we present the average accuracy of
the 1000 runs. Identical behavior was observed in the Logistic Regression classifier with less than
0.005% difference observed in the accuracy of the other two classifiers. This shows that HashMark;’s
embedding has a negligible impact on the accuracy of the classifier. For completeness, we also plot

3Choice of £ is set to be 384 because it is the number of bits in a standard hash-based watermarking scheme
albeit for messaging applications (i.e., signatures) known as BLS Signature [5]. Note that this corresponds to
less than 1% of the number of cells in the dataset.

16

615
616

617
618

619

620
621
622

623
624

Average Running Time vs Number of Embedded Bits

0.040

0.035

0.030

0.025

0.020

Time (in seconds)

0.015

0.010

0.005

0.000

100 200 300 400 500 1000

Number of Bits

Figure 3: Embedding Time as a function of ¢ for HashMark;. Here, the blue column refers to the
cost of generating valid cells to embed in the dataset, while the green column is the cost of modifying
the content to make it hash to the desired bit.

Table 4: Classification accuracy (%) with and without watermarking. In addition to this, we add the
standard deviation of each record.

Model Logistic Regression Random Forest MLP Classifier
Original 84.021 £0.3 85.186 + 0.27 83.504 + 0.44
Watermarked 84.021 +£0.3 85.188 + 0.28 83.508 + 0.446

the difference in accuracy between the original and watermarked dataset in Figures 4 and 5, in each
of the 1000 runs. As can be observed, the most significant difference in accuracy is less than 0.005%.

Finally, in Figure 5b, we plot the impact of increasing ¢ on the accuracy of the logistic regression
classifier. As expected, larger £ does cause an impact in accuracy, though the degradation is minimal.

F Additional Experiments

We also present additional experiments studying the variation of MSE with respect to the choice of ¢
for further values of c. Similarly, we also show how the Z-score varies for larger sampled rows. This
is done in Figure 8.

In Figure 7, we reproduce Figure 2 from Ngo et al. [29]. This shows that the performance of
HashMarks, as seen in Figure 2, matches (or surpasses) similar experiments from Ngo et al. This is

17

Table 5: Effect of constraint threshold ¢ on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark,. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier ~Synthesizer Non-W/M (%) W/M (%)
TVAE 95244+ 0.57 95.07 £0.84
XGB GC 9433 £ 0.31 94.53 £0.24

CTGAN 83.65 £3.24 81.79+6.76

TVAE 9478 £ 0.30 94.86 £ 0.42
RF GC 94.43 £ 031 94.45 £0.30
CTGAN 8431 £1.93 8476 £1.54

TVAE 9486 044 95.19 £0.43
XGB GC 9433 +£031 9453 £0.24
CTGAN 84.07 £4.94 85.62 £6.19

TVAE 9484 045 94.76 £ 0.66
RF GC 94.43 £ 031 94.45 £0.30
CTGAN 86.08 £6.52 86.60 + 6.82

i TVAE 95.02+044 95314048
Wilt (5 cols, 3629 samples) XGB GC 9433+ 031 9443 +033
2 9434044 65.05 4 126 CTGAN 82554706 84.23+656

TVAE 9473 £ 043 94.68 £ 0.45
RF GC 9443 +£031 9443 +0.30
CTGAN 80.46 £7.11 80.50 + 6.03

TVAE 95224032 95.17 £0.65
XGB GC 9433 £ 031 94.26 £0.46
CTGAN 78.83 £9.36 78.86 £ 9.80

TVAE 94.83 £ 0.66 94.83 +0.25
RF GC 9443 £ 031 94.41 £0.34
CTGAN 82.12 £5.57 8421 +5.18

TVAE 95214032 9532 +£0.53
XGB GC 9433 +£0.31 94.26 £0.46
CTGAN 7838 628 7747 £6.41

TVAE 9493+ 041 94.84 £0.29
RF GC 9443 £ 031 94.41 £0.34
CTGAN 79.87 £6.53 80.74 £5.64

TVAE 63.354+0.76 63.43 £0.79
XGB GC 52.824+£399 52274324
CTGAN 47.07 £2.58 46.59 £2.15

TVAE 6279 £0.59 62.93 £0.43
RF GC 53.60 £2.02 53.71 £3.27
CTGAN 45772 +£2.02 46.50 £2.31

TVAE 6275+ 1.54 62.86+1.42
XGB GC 52824399 5227+3.24
CTGAN 46.48 + 1.73 46.63 £ 2.89

TVAE 6191 +£2.63 6193 £2.29
RF GC 53.60 £2.02 53.71 £3.27
CTGAN 4899 +1.39 48.69 £1.20

A TVAE 60.95+3.12 61.02+3.05
Housing (9 cols, 15480 samples) XGB GC 5282+3.99 5276 +2.63
h 18974020 55212 4 12.20 CTGAN 4770+ 195 48.75+3.12

TVAE 6338 £0.16 63.30 £0.45
RF GC 53.60 +£2.02 53.45£2.90
CTGAN 49.81 £2.78 47.59 £3.02

TVAE 61.754+2.03 61.88 £1.73
XGB GC 53.60 +4.82 5291 £2.85
CTGAN 47.77+252 46.29 £3.79

TVAE 6224 + 130 62.24 £ 1.55
RF GC 54.06 +2.88 53.74 £ 3.21
CTGAN 48.81 =2.08 48.13 £2.04

TVAE 62.13 +1.85 62.83 £1.97
XGB GC 52824399 5391 £3.73
CTGAN 46.84 £3.37 48.00 +2.20

TVAE 60.86 +2.19 60.87 £2.20
RF GC 53.60 £2.02 53.75 % 2.66
CTGAN 49.89 +2.68 48.56 £ 1.73

1/4 1.74 £0.22 64.08 & 6.68

173 1.92 +£0.24 65.45 +4.90

2/3 22734030 108.95 + 4.59

3/4 2320+0.16 116.91 4 9.98

174 284 +0.72 449.17 £+ 40.27

173 2.63 £ 0.64 415.68 +7.37

2/3 3443 4+0.29 848.09 £+ 17.84

3/4 53744029 1632.13 £79.29

18

Table 6: Effect of constraint threshold ¢ on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMarks. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier ~Synthesizer Non-W/M (%) W/M (%)
TVAE 8852+474 87.53+4.89

XGB
/4 577+£078 37324 % 105.90 CTGAN 73744315 72924375
. TVAE 9248+ 133 93.03 + 1.22
CTGAN 7456 +£328 7424 +2.90
<GB TVAE 8884+ 190 90.64 + 1.19
U3 4804115 SIL6l 876 CTGAN 7044 £ 626 70.87 +5.59
. TVAE 9136+094 9192+ 1.00
CTGAN 7329 +£381 7325+ 4.12
HOG (18 cols, 8244 samples) XGB TVAE 9143+127 91494085
U 7464018 797564 1258 CTGAN 7544319 7582 +3.40
. TVAE 9243+ 101 9186+ 0.89
CTGAN 7432+327 74.00 +3.09
<GB TVAE 8880+253 8778 £2.71
2/3 31404021 986832 + 8790.14 CTGAN 7271£293 73.34+331
. TVAE 9178+ 163 9147 +2.50
CTGAN 7231£375 7271+ 4.08
<GB TVAE 90.83+ 100 90.74 + 1.09
3/4 407740.16 35088.75 + 30542.58 CTGAN 7526+£4.04 74.95+4.00
. TVAE 88924303 88.08 £3.70

CTGAN 70.71 £5.23 70.20 £ 5.15

TVAE 87.78 £0.78 87.78 £0.76
XGB GC 85.51 £0.63 85.80+0.76
CTGAN 87.35+0.35 87.06 +£0.95

TVAE 88.74 £0.32 88.74 £0.45
RF GC 85.62+ 043 85.99 £+ 0.98
CTGAN 87.95+049 87.91+0.28

TVAE 88.13 £0.63 87.86 £ 0.86
XGB GC 8551 £0.63 8528 £1.17
CTGAN 84.76 £1.05 84.94 + 1.31

TVAE 88.18 £ 0.53 88.06 = 0.81
RF GC 85.62 £ 043 85.70 £ 0.68
CTGAN 88.01 £0.62 87.80 & 0.69

TVAE 8727 £ 133 8754 +0.94
Shopper (12 cols, 9247 samples) XGB GC 85.51 £0.63 86.10 + 0.94
924127 939.33 £ 107.06 CTGAN 8527+ 154 8559+ 1.64

TVAE 88.61 £0.56 88.28 £ 0.54
RF GC 85.62+£ 043 85.65+0.71
CTGAN 87.80 £0.25 87.57 +0.69

TVAE 87.46 £0.69 88.01 £0.20
XGB GC 85.51 £0.63 85.74 £ 0.61
CTGAN 85.890 £0.57 85.59 £+ 1.70

TVAE 88.48 £0.32 88.30 £ 0.64
RF GC 85.62 £ 043 86.49 £ 0.56
CTGAN 87.80 +£0.88 87.82 £+ 0.59

TVAE 88.10£0.92 88.39 £0.78
XGB GC 85.51 £0.63 86.06 = 1.24
CTGAN 86.75+0.81 86.44 +0.43

TVAE 88.52+£0.55 88.17 £0.88
RF GC 85.62+£ 043 86.77 £ 0.74
CTGAN 87.80 £0.58 87.63 +£0.74

174 -2.11 £1.38 438.51 £5.14

173 -3.3741.26 639.55 + 64.59

2/3 3414 £0.28 3690.59 & 252.79

3/4 4350 £042 9276.41 £1742.76

19

625
626
627
628

629

630
631

632

633

634

635

636

637
638

Difference in Accuracy

[N

0.0004

SRATI T

l’ M

~0.0004

Average Difference (%) in Accuracy

~0.0006

o 200 400 600 800 1000

(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Logistic Regression Classifier

Difference in Accuracy

0.004
0.002
0.000 (l I i 0 ‘”

~0.002

Average Difference (%) in Accuracy

~0.004

~0.006

0 200 400 600 800 1000

(b) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Random Forest Classifier

Figure 4: Experiments pertaining to HashMark; for the Adult Census Dataset (Part 1).

especially important considering that HashMarks, is conceptually simpler while offering support for
categorical data and being more secure. Recall that HashMark; uses a truly random value as seed,
while Ngo et al. opt for a heuristic approach to obtain seed via pairing algorithm, which are often
poor sources of entropy.

G Deferred Proofs

Proof of Theorem 1. For each element z; in X, let 2} be the corresponding element in X,,. As defined
above:

i =x; + ki -107°,
where k; = min{k > 0 | H(z; + k - 107¢) = 0. In other words, |z; — x}| = k; - 107 €.
Recall that 7 maps to 0 and 1 with equal probability. Therefore, for a given z} = x; + k; - 107¢, the
hash function should have mapped to 1 for every choice from 0 to k; — 1 and succeed in time k;. In
other words, Pr[K; = k] = (%) kﬂ, i.e., it follows a geometric distribution.
Now, ||X — Xyl = max; |z; — x}| = max; k; - 107¢. We can use the well-known approximation

for the maximum of n i.i.d geometric variables to get E[max; k;] = 0.5 + Hy/In2 where Hy is
the V-th harmonic number. FurtherIn N < Hy <14 1In N or Hy < In N + 1. This gives us that:

In(N) +1 _
E[X —-X < . — <]-10"¢
11X — Xolo] < (05+ APk) 0

<(InN+2)-107°

20

Difference in Accuracy

Average Difference (%) in Accuracy

~0.01

200 400 600 800 1000

(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the MLP Classifier

0014

0012

0.010

0.008

0,006

0.004

Average Difference (%) in Accuracy

0.002

0,000

~0.002

Number of Embedded Bits vs Average (of 100 runs) Difference in Accuracy

-0.000088

0.000973

-0.000265

0013886

0000354 0.000354 0000265 0,000177

000354

-0.000619

0.001238 0.001150

100

200

300

400 500 1000 1500 2000 3000 4000 5000 10000 50000 100000
Number of Bits

(b) Average Difference in the accuracy of the logistic regression classifier as the number
of bits embedded (¢) increases.

Figure 5: Experiments pertaining to HashMark; for the Adult Census Dataset (Part 2).

—e— sigma=0.001
—e— sigma=0.01
—e— sigma=0.1

30

zscore

10

- 0] o

—e— sigma=0.001
—o— sigma=0.01
404 ~* sigma=o.1

30

Z-Score

10

1072
Bin size

(a)

0.001 0.01 01
10~ {-c}

1071

(b)

Figure 6: This figure shows the evaluation of the robustness of Gaussian noise by studying the z-score
across various choices of standard deviation. To the left, we show the results from [29], and to the
right, we show the results from our own experiment. Observe similar behavior across both works.

639

21

640
641

642

643

644

647
648

Zscore

-3 2 o 1 2 3 T - 20 30 4 0 60 70 8 9% 100
Value ue Number of rows

(a) KDE before watermark (b) KDE after watermark (c) z-score with number of samples

4~ sigma=0.001
—— sigma=0.01
008 —— sigma=0.1

mSE

107 107 1072 10 107 1072 107
in sis

(d) Fidelity with different bin sizes (e) z-score with Gaussian noise

Figure 7: This is a reproduction of Figure 2 from Ngo et al. [29].

45
0.030 40
0.025 35
0.020 g 30
9 # 25
20015 N
0.010 20
0.005 15
0.000 10
2 4 6 8 10 250 500 750 1000 1250 1500 1750
c used in 10"~ {-c} Number of Rows
(@) (b)

Figure 8: Plot of additional experiments on Gaussian dataset. Figure 8a plots MSE for more values
of c. Figure 8b shows how the z-score changes when more rows are involved in the computation.

Proof of Theorem 2. The Jensen-Shannon Divergence (JSD) measures the similarity between two
probability distributions. It is defined as:

JSD(PIIQ) = ;D(PIIM) + 3 D(Q||M) @

where M = (P + Q) is the midpoint distribution, and D(P||Q) is the Kullback-Leibler Divergence,

defined as: D(P||Q) = 3, P(x) log(G(5)-

Let us find: JSD(p||p’). Partition the set of all values X into X, and X; where X, consists of those
values in X that hashes to bit b. Note that p’ is only defined on X giving:

o(z)
pl(x) = {OZ z € Xo

otherwise

Here, Z is a normalization term needed to ensure that the sum of probabilities in p’ is 1. Since
the hash function is ideal, i.e., maps to 0 and 1 with equal probability, Z is approximately 0.5 or
P (x) =2 p(x) for x € Xp.

22

649

650

651
652

653

654
655

656
657

658

659
660

662
663

664

Now, let’s find the midpoint distribution M (z) = 3(p(z) + p'(z)). We get:

S
N~—

z € X

M(x) = (z) otherwise

—N

INIE N[OV
SRS

Now, we can compute the Kullback-Leibler divergences:

_ 2 loa(L)

D(PHM)—;P()1 g(M(x))
o) o)
—xgop()1 g(%p(x))‘i‘w;lp()1 g(%p(z))

Simplifying, we get D(p||M) = 0.5(log(2) + log(2/3)) = 0.5log(4/3). Similarly, we get:
D(p'||M) = log(4/3). Plugging this in Equation 2, we get:

3 4
JSD(p||p') = 1 log(g) ~ 0.215
O

Proof of Proposition 1. Of the m values, we need to compute 7; that ensures that the score is . We
use Equation 1 as:

o 2(T; —0.5M)
vM
Then, T; = 0.5M + av/ M /2. In other words, we need at least 0.5M + «v/ M /2 values to ensure a
Z-score of . Call this value T,.]

Proof of Theorem 3. First, observe that for any value val; such that H(val;) = 0:
Pr[H(val; +¢)=1] = =

for any ¢; & D we already know that one needs at least T, = 0.5M + av/M /2 cells to be
unmodified to get a score of a (from Proposition 1). To achieve the watermark removal, we need to
add noise to the remaining N — T, cells. Observe that this follows a hypergeometric distribution - in
a sample of size M, N successes exist (i.e., mapping to 0). Then, the expected number of tries to
pick at least (N — T,,) successfully is given by: ~ (N — T,,) - M/N. Therefore, we get:

E[r] ::2'(N7T(,)~%

23

665

666

667
668

669

670
671
672
673

674

675
676
677
678
679
680
681
682
683

684

685

686

687

688

689
690
691
692
693
694
695
696
697
698
699

701
702
703
704

706
707
708
709
710
71
712
713
714

715

716
77

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction encapsulate the paper’s contributions: the develop-
ment of an agent framework featuring fine-grained security tiers, alongside the introduction
of a novel benchmark dataset for systematic evaluation of agent behavior in scenarios
necessitating privacy protection

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section ??.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

718

719

720

721

722
723

724

725
726
727

728
729

730

731

732
733
734

735

736
737

738

740
741
742

743
744

745
746
747
748
749

751
752
753

754

756
757
758
759
760
761
762
763
764
765
766
767
768
769

770

Answer: [Yes]
Justification: The contribution of this work does involve theoretical results and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions

of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of the evaluation experiments we run in Section E and

the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

771
772
773

774

775
776

777

778

779
780

781
782
783
784

785

787

788
789

790
791
792

793
794

796

797

798
799
800

801

802
803

804

805

806
807

808
809

810

811
812

813

814
815

816

817

818
819
820

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided with a readme file containing the instruction of running
the experiments. We also provide a validated Croissant file for our dataset JSON file.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the code and also the description of experiments in Section E and
the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the standard deviation in a numerical format in the experimental
sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

821
822
823

824
825

826

827
828

829
830
831

832
833
834

835
836

837

838
839
840

841

842

843

844

845
846

847
848

849
850
851

852

853
854

855

856
857
858

859

860

861
862

863
864

865

866
867

868

869
870

871

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experimental evaluation details the setting clearly.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no ethical implications of our work nor privacy related concerns.
Our queries were received by LLM prompts. The databases were created using Python’s
faker library and random choice of values. They are completely synthetically generated.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Privacy is a fundamental human right and a paramount concern in the era of
Al Our work advances the protection of sensitive information, keeping in mind regulations.

Guidelines:

27

872

873
874
875
876
877
878

879
880
881
882
883
884
885

886
887
888
889

890
891
892
893

894

895
896
897

898

899
900

901

902

903
904
905
906

908

909
910
911

912

913
914
915

916

917

918

920

921
922

923

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The results of the paper do not pose such risks as there is no real-world data
involved.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: A dedicated section on dataset details is included.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

924
925

926
927

929

930
931

932
933

935
936

937

938

939

940

941
942
943

944
945

946
947

948

949
950
951

952

953

954

955

956

957
958
959

960
961
962

963
964

965
966
967
968

969

970

971

972
973

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

974 * Depending on the country in which research is conducted, IRB approval (or equivalent)

975 may be required for any human subjects research. If you obtained IRB approval, you
976 should clearly state this in the paper.

977 * We recognize that the procedures for this may vary significantly between institutions
978 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
979 guidelines for their institution.

980 * For initial submissions, do not include any information that would break anonymity (if
981 applicable), such as the institution conducting the review.

982 16. Declaration of LLLM usage

983 Question: Does the paper describe the usage of LLMs if it is an important, original, or
984 non-standard component of the core methods in this research? Note that if the LLM is used
985 only for writing, editing, or formatting purposes and does not impact the core methodology,
986 scientific rigorousness, or originality of the research, declaration is not required.

987 Answer: [NA]

988 Guidelines:

989 * The answer NA means that the core method development in this research does not
990 involve LLMs as any important, original, or non-standard components.

991 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
992 for what should or should not be described.

30

