
HashMark: Watermarking Tabular/Synthetic Data For Machine Learning Via Cryptographic Hash Functions

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Watermarking is a critical tool for protecting datasets against malicious or unauthorized
2 use, yet existing methods often face limitations in data type support, fidelity
3 preservation, and detection efficiency. In this work, we introduce HashMark, a
4 novel and versatile watermarking scheme for tabular datasets, including synthetic
5 data, without imposing restrictions on data types. At its core, HashMark employs
6 a cryptographic hash function to map *any* data into binary values, enabling ef-
7 ficient and robust watermark embedding. Our design generalizes and simplifies
8 some prior approaches, such as the recent works Ngo et al. (arXiv 2024) and
9 TabularMark (ACM CCS 2024), while addressing their key shortcomings. Unlike
10 Ngo et al., HashMark supports categorical and mixed-type data with a unified
11 framework. Compared to TabularMark, it enables efficient watermark detection
12 without requiring access to the original dataset. Further, unlike TabularMark, we
13 present experiments for categorical data. Finally, we run experiments comparing
14 the accuracy of synthetically generated data and watermarked, synthetic data on
15 three classifiers over several datasets using three approaches for generating syn-
16 thetic data. These experiments clearly demonstrate a negligible impact on utility
17 for intended machine learning tasks when HashMark is used.

18

1 Introduction

19 As financial institutions increasingly rely on data-driven systems for risk assessment, fraud detection,
20 regulatory compliance, and AI-driven decision-making, ensuring data integrity, provenance, and
21 ownership is paramount. Data watermarking—the practice of embedding imperceptible markers
22 or identifiers into datasets—offers a powerful mechanism for protecting sensitive financial data,
23 establishing ownership, and verifying authenticity across complex data pipelines. In contexts where
24 financial data is shared with third parties, sold to analytics providers, or used to train machine
25 learning models, watermarking provides a means to trace data lineage, deter unauthorized use, and
26 ensure accountability. Moreover, with the growing adoption of generative models and synthetic
27 data in finance—for tasks such as scenario simulation, stress testing, and customer behavior mod-
28 eling—watermarking plays a critical role in guaranteeing the traceability and responsible use of
29 AI-generated financial datasets.

30 Previous research on watermarking typically focuses on image, audio, or text data [3, 35, 39, 42, 44],
31 with less attention given to tabular data, one of the most common and essential data formats in
32 machine learning. Tabular data presents unique challenges for watermarking: (1) Precise values lack
33 perceptual redundancy, making even minor changes impactful; (2) Mixed data types (categorical,
34 numerical) require tailored strategies; (3) Resilience is needed against insertions, deletions, and
35 foreign key modifications. Existing attempts to provide watermarking for tabular data often focus
36 solely on relational data [2, 17, 18, 22, 25, 26, 33, 34]. Existing methods have proposed watermarking

Table 1: Comparison of HashMark with prior works (transposed). Detection Cost refers to the information needed to detect the watermark efficiently. “# Modification” refers to the number of cells that need to be modified to embed the watermark.

	Ngo et al.	Zheng et al.	HashMark ₁	HashMark ₂
# Modification	All	All	$\Theta(1)$	All
Fidelity	High	High	V.High	High
Deletions	Allowed	Allowed	Limited	Allowed
Permutations	Allowed	Allowed	Limited	Allowed
Data Types	Numerical	Any*	Any	Any
Detection Cost	High	V.High	V.Low	Low

37 techniques that either alter specific data points or embed identifiers at a statistical level. Only recently
 38 have watermarking approaches specifically designed for tabular data been proposed. These include
 39 the works of [16], [43], and [29]. However, these approaches often face challenges related to
 40 computational complexity, scalability, and storage requirements.

41 **Our Motivation.** Watermarking tabular data is crucial in maintaining data provenance within large
 42 organizations, where information flows across multiple departments (especially in large financial
 43 organizations) and systems in non-adversarial settings. In such environments, employees typically
 44 do not attempt to remove watermarks, which enables effective tracking of data lineage, ensures
 45 integrity, and facilitates compliance with internal policies and regulatory requirements. By embedding
 46 identifiable markers in datasets, organizations can monitor data movement, quickly trace discrepancies,
 47 and uphold accountability throughout the data lifecycle, which is essential for informed decision-
 48 making and trust in data-driven processes. The growth in synthetic data also adds another dimension
 49 to the problem, as enterprises must effectively identify and distinguish synthetic data from original
 50 data. Note that synthetic data is an effective tool for producing a dataset that protects the privacy of
 51 confidential data while still allowing for downstream utility, similar to the original data.
 52 While no watermarking scheme is entirely immune to removal (most recently [40] showed that
 53 under even mild assumptions, strong LLM watermarking is impossible)—just as encryption can
 54 be broken, DRM bypassed, or licenses violated—the value lies in raising the cost of misuse and
 55 enabling accountability in practical, non-adversarial scenarios. Tabular data remains a fundamental
 56 medium for information sharing, particularly within enterprises, necessitating continual advancements
 57 in watermarking techniques. Our research tackles essential shortcomings in previous studies. By
 58 advancing robustness and applicability, we contribute to a framework that strengthens data governance
 59 and mitigates unauthorized use.

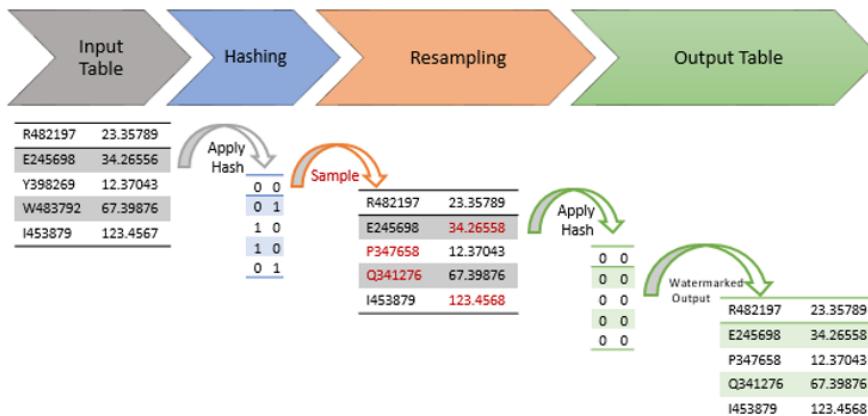


Figure 1: HashMark₂: On the left is the source input table, to be watermarked, containing cells of two columns - one text and the other numerical. After applying the hash function to each cell, the hashed values are shown next. In the middle, we show how values are adjusted to be able to hash to 0. For text data, we replace it with a new value, and for numerical data, we add in the smallest decimal place. On the right is the watermark embedded table where all cells hash to 0.

60 **1.1 Our Contributions**

61 We introduce HashMark, a suite of simple yet powerful watermarking protocols for tabular datasets.
62 Our approach embeds bits into select table cells using a *cryptographic, seeded hash function*, ensuring
63 that the output looks uniformly random without the knowledge of the seed. A hash function is versatile
64 in its agnosticism on the input data type, working over numeric and alphanumeric inputs.

65 We present two variants, HashMark₁ and HashMark₂, each offering unique properties. In both
66 schemes, we map cell contents to a target bit (0 or 1) via the seeded hash function. If the cell content
67 does not map to the target bit, we carefully modify the cell values while preserving the dataset's
68 fidelity. For numerical values, we make minimal perturbations (e.g., incrementing by 10^{-c}). For
69 alphanumeric values, we apply rejection sampling from the original distribution.

- 70 • Thus, HashMark offers *high fidelity* as the changes in the dataset to embed the watermark
71 are minimal in the case of numerical values (due to small perturbation) and none in the case
72 of alphanumeric values (due to rejection sampling from the *same* distribution).
73 • Meanwhile, the *detection cost is low* in HashMark as it only requires the knowledge of
74 the seed of the hash function, an artifact of our simpler design. Meanwhile, [29] requires
75 remembering how the columns in the dataset are paired. [43] requires the knowledge of the
76 entire source dataset to detect the watermark.
77 • HashMark can *support any data*, as explained above. Meanwhile, [29] naively cannot
78 support categorical data. While [43] claims to support any data, their exposition does not
79 clarify how their approach translates to textual data¹ (marked as Any*) in Table 1.

80 HashMark₂. Figure 1 pictorially represents HashMark₂. HashMark₂ embeds the same target bit
81 (say 0) at *all* positions in the dataset. It uses the hash function for the binary mapping and then applies
82 the above-outlined "adjustment" procedure to ensure that every cell maps to 0 under the seeded hash
83 function. This is akin to prior approaches of [29] and [43]². Our detection algorithm relies on a
84 statistical test.

85 HashMark₁. For static datasets (e.g., unique IDs, timestamps, categorical labels), HashMark₁
86 modifies only a constant $\ell \ll N$ cells, ensuring high fidelity. It uses two PRGs: G_1 derives ℓ
87 pseudorandom bits, while G_2 selects ℓ cell locations. Each of the ℓ cell locations is adjusted until
88 it hashes to the desired bit produced earlier by G_1 . Detection verifies these bits using the same
89 PRGs. Its advantages include: minimal distortion (only ℓ cells altered), and security relies on the
90 pseudorandomness of G_1 and G_2 . Note that minor permutations or deletions of rows compromise
91 detection since they disrupt cell positioning. Partial robustness to these changes is possible if
92 watermarking is restricted to fixed columns.

93 Additionally,

- 94 • We theoretically analyze fidelity and model the watermark removal process.
95 • Extensive experiments validate our approach. For HashMark₁, we show high embedding
96 efficiency while maintaining classification accuracy across three classifiers. For HashMark₂,
97 we evaluate both Gaussian and synthetic datasets, analyzing fidelity through z-score, mean-
98 squared error, and robustness to noise. Results confirm that the watermarked synthetic
99 data has a negligible impact on classification accuracy. We employ four datasets to train
100 synthesizers, produce synthetic data, and watermark this synthetic data before running two
101 classifiers. Additionally, we are the first to study watermarking for alphanumeric columns
102 concretely. While prior work TabularMark [43] claimed to offer support for alphanumeric
103 columns, the details were underspecified.

104 **2 HashMark: Element Wise Tabular Watermarking**

¹ [43] focuses on categorical data (e.g., education level, marital status), their watermarking distorts integer-based distributions by adding floating-point perturbations, harming utility. Restricting to integer-based perturbations could lead to some gaps in the range of the column. We argue that such columns should not be watermarked. Further, they do not support unrestricted alphanumeric data (e.g., ASINs) or test such cases.

²Indeed, one can conceivably correlate our binary hashing approach with the red-green paradigm adopted by these works. However, our construction vastly simplifies their approaches.

Algorithm 1 Embedding Algorithm

Input: Sampling Algorithm for Dataset \mathcal{D} Generate
Secret Seed $seed$
Number of Rows: ℓ
Associated Distribution: ρ
Column $column$ of dataset \mathbf{X}
 $seed \xleftarrow{\$} \mathcal{S} // \mathcal{S}$ is the seed space of the hash function.

```
for i = 1 to ℓ do
    while  $\mathcal{H}(seed, \mathcal{D}[i]) \neq 0$  do
        new_value ← Generate( $\rho, \mathcal{D}[i]$ ) //Addnl. parameters could include t for threshold constrained
        sampling.
         $\mathcal{D}[i] \leftarrow new\_value$ 
    end while
end for
```

105 At its core, any watermarking approach needs to ensure that the utility of the data is preserved
106 even after embedding the watermark. Furthermore, the detectability of the watermark is pre-
107 served even after modification by both adversarial and honest actions. We have two constructions
108 HashMark₁, HashMark₂ with various properties and an implicit trade-off.
109 However, before examining the constructions, it is instructive to consider the commonalities. Both
110 the constructions will rely on applying a seeded hash function \mathcal{H} that can take any inputs and produce
111 an output bit. Such a binary hash function enables us to map any cell (numerical, textual, categorical,
112 etc.) to either 0 or 1, depending on the function’s description. They will also rely on modifying a
113 cell’s contents through invoking the function Generate (until it satisfies some \mathcal{H} -based property).
114 The question remains of how to instantiate this function. Algorithm 1 provides a template for how
115 to approach this embedding of the watermark. Due to space constraints, we defer an expanded
116 discussion to the appendix (Section D.2), but summarize below:

- 117 • **Caveat of Rejection Sampling:** Columns with small fixed ranges (e.g., marital status,
118 education, salary tiers) should not be watermarked, since rejection sampling can skew
119 distributions and harm utility. Treat all values in such columns as valid (always mapping to
120 the desired bit).
- 121 • **Numerical Values:** Perturb values slightly by adding 10^{-c} , where c is a scheme parameter,
122 until the resulting value hashes to the desired bit. Fidelity bound (See Theorem 1) $\mathbb{E}[||\mathbf{X} -$
123 $\mathbf{X}_w||_\infty] \leq (\ln N + 2) \cdot 10^{-c}$. Supports truncation up to b decimal places.
- 124 • **Alphanumeric/Textual Data:** Use rejection sampling to resample values until they hash
125 to the desired bit. Fidelity guarantee via Jensen-Shannon Divergence (See Theorem 2):
126 $JSD(\rho || \rho') \approx 0.215$.
- 127 • **Preserving Correlations:** Sample rows from the learned distribution ρ (e.g., synthetic data
128 generator) to preserve correlations. Reject and resample rows that don’t satisfy watermarking
129 constraints. Satisfying all columns can be costly (2^n time). Instead, use a threshold t : accept
130 rows where at least t out of n cells meet the constraint; adjust detectability accordingly.

131 **3 Conclusion**

132 We present HashMark, a hash-based framework for watermarking financial datasets, strengthening
133 data integrity, auditability, and provenance in AI-driven financial systems. HashMark supports both
134 numerical and categorical attributes common in finance (e.g., transaction records, customer profiles,
135 risk metrics), improves upon prior methods [16, 29, 43], and enables secure, efficient, and compliant
136 data sharing. Beyond protecting sensitive financial information, HashMark is particularly suited for
137 watermarking synthetic financial data used in stress testing, fraud detection, and regulatory reporting,
138 thereby facilitating accountability and regulatory compliance.

139 **References**

- 140 [1] Scott Aaronson. ‘reform’ ai alignment with scott aaronson. AXRP - The AI X-risk Research
141 Podcast, 2023.
- 142 [2] Rakesh Agrawal and Jerry Kiernan. Watermarking relational databases. In *Proceedings of the*
143 *28th International Conference on Very Large Data Bases*, VLDB ’02, page 155–166. VLDB
144 Endowment, 2002.
- 145 [3] Sajjad Bagheri Baba Ahmadi, Gongxuan Zhang, Mahdi Rabbani, Lynda Boukela, and Hamed
146 Jelodar. An intelligent and blind dual color image watermarking for authentication and copyright
147 protection. *Applied Intelligence*, 51(3):1701–1732, March 2021.
- 148 [4] E. Alpaydin and Fevzi. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
149 Learning Repository, 1996. DOI: <https://doi.org/10.24432/C5MG6K>.
- 150 [5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. *Journal of*
151 *Cryptology*, 17(4):297–319, September 2004.
- 152 [6] David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, and Tucker Balch. Collusion
153 resistant federated learning with oblivious distributed differential privacy. In *Proceedings of the*
154 *Third ACM International Conference on AI in Finance*, ICAIF ’22, page 114–122, New York,
155 NY, USA, 2022. Association for Computing Machinery.
- 156 [7] Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and
157 Douglas Stebila, editors, *Advances in Cryptology – CRYPTO 2024*, pages 325–347, Cham,
158 2024. Springer Nature Switzerland.
- 159 [8] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
160 *ICLR*, 2024.
- 161 [9] Wikipedia Contributions. Z-test, 2025. Accessed: 2025-01-30.
- 162 [10] Dhruvil Dave. Github commit messages dataset. Kaggle Dataset, 2023.
- 163 [11] Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
164 Mingyuan Wang. Publicly-detectable watermarking for language models. *IACR Communications in*
165 *Cryptology*, 1(4), 2025.
- 166 [12] J.L. Fleiss, B. Levin, and M.C. Paik. *Statistical Methods for Rates and Proportions*. Wiley
167 Series in Probability and Statistics. Wiley, 2013.
- 168 [13] Eva Giboulot and Teddy Furon. Watermax: breaking the LLM watermark detectability-
169 robustness-quality trade-off. In *The Thirty-eighth Annual Conference on Neural Information*
170 *Processing Systems*, 2024.
- 171 [14] Aurélien Géron. *Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow*.
172 O’Reilly Media, 2nd edition, 2019.
- 173 [15] A. Hamadou, X. Sun, S. A. Shah, and L. Gao. A weight-based semi-fragile watermarking
174 scheme for integrity verification of relational data. *International Journal of Digital Content*
175 *Technology and Its Applications*, 5:148–157, 2011.
- 176 [16] Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking
177 generative tabular data, 2024.
- 178 [17] Donghui Hu, Dan Zhao, and Shuli Zheng. A new robust approach for reversible database
179 watermarking with distortion control. *IEEE Transactions on Knowledge and Data Engineering*,
180 31(6):1024–1037, 2018.
- 181 [18] Min-Shiang Hwang, Ming-Ru Xie, and Chia-Chun Wu. A reversible hiding technique using lsb
182 matching for relational databases. *Informatica*, 31(3):481–497, 2020.

- 183 [19] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning
 184 without distress: privacy-preserving empirical risk minimization. In *Proceedings of the 32nd*
 185 *International Conference on Neural Information Processing Systems, NIPS'18*, page 6346–6357,
 186 Red Hook, NY, USA, 2018. Curran Associates Inc.
- 187 [20] Brian Johnson. Wilt. UCI Machine Learning Repository, 2013. DOI:
 188 <https://doi.org/10.24432/C5KS4M>.
- 189 [21] Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A
 190 review of text watermarking: Theory, methods, and applications. *IEEE Access*, 6:8011–8028,
 191 2018.
- 192 [22] Muhammad Kamran, Sabah Suhail, and Muddassar Farooq. A robust, distortion minimizing
 193 technique for watermarking relational databases using once-for-all usability constraints. *IEEE*
 194 *Transactions on Knowledge and Data Engineering*, 25(12):2694–2707, 2013.
- 195 [23] R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics and Probability*
 196 *Letters*, 33(3):291–297, 1997.
- 197 [24] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
 198 A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
 199 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the*
 200 *40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine*
 201 *Learning Research*, pages 17061–17084. PMLR, 23–29 Jul 2023.
- 202 [25] Wenling Li, Ning Li, Jianen Yan, Zhaoxin Zhang, Ping Yu, and Gang Long. Secure and high-
 203 quality watermarking algorithms for relational database based on semantic. *IEEE Transactions*
 204 *on Knowledge and Data Engineering*, 2022.
- 205 [26] Chia-Chen Lin, Thai-Son Nguyen, and Chin-Chen Chang. Lrw-crdb: Lossless robust water-
 206 marking scheme for categorical relational databases. *Symmetry*, 13(11):2191, 2021.
- 207 [27] J. Lin. Divergence measures based on the shannon entropy. *IEEE Transactions on Information*
 208 *Theory*, 37(1):145–151, 1991.
- 209 [28] Guido Masarotto and Cristiano Varin. Gaussian copula marginal regression. *Electronic Journal*
 210 *of Statistics*, 6(none):1517 – 1549, 2012.
- 211 [29] Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K. Potluru, and Manuela Veloso.
 212 Adaptive and robust watermark for generative tabular data. *Statistical Frontiers in LLMs and*
 213 *Foundation Models at NeurIPS'24*, abs/2409.14700, 2024.
- 214 [30] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In *2016 IEEE*
 215 *International Conference on Data Science and Advanced Analytics (DSAA)*, pages 399–410,
 216 2016.
- 217 [31] PromptCloud. Amazon product dataset 2020. Kaggle Dataset, 2020.
- 218 [32] Cemal Okan Sakar, Suleyman Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time
 219 prediction of online shoppers' purchasing intention using multilayer perceptron and lstm
 220 recurrent neural networks. *Neural Computing and Applications*, 31:6893 – 6908, 2018.
- 221 [33] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Watermarking relational databases using
 222 optimization-based techniques. *IEEE Transactions on Knowledge and Data Engineering*,
 223 20(1):116–129, 2008.
- 224 [34] R. Sion, M. Atallah, and S. Prabhakar. Rights protection for relational data. In *Proceedings of*
 225 *the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD '03)*,
 226 pages 98–109, New York, NY, USA, 2003. Association for Computing Machinery.
- 227 [35] Mingtian Tan, Tianhao Wang, and Somesh Jha. A somewhat robust image watermark against
 228 diffusion-based editing models, 2023.

- 229 [36] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
230 Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
231 van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
232 R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
233 Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
234 Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and
235 Paul van Mulbregt. SciPy 1.0: Fundamental algorithms for scientific computing in python,
236 2020.
- 237 [37] X. Xiao, X. Sun, and M. Chen. Second-lsb-dependent robust watermarking for relational
238 database. In *Third International Symposium on Information Assurance and Security (IAS)*,
239 pages 292–300, 2007.
- 240 [38] Lei Xu, Maria Skouliaridou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. *Modeling*
241 *tabular data using conditional GAN*. Curran Associates Inc., Red Hook, NY, USA, 2019.
- 242 [39] M. Yamni, H. Karmouni, M. Sayyouri, and H. Qjidaa. Efficient watermarking algorithm for
243 digital audio/speech signal. *Digital Signal Processing*, 120:103251, 2022.
- 244 [40] Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese,
245 and Boaz Barak. Watermarks in the sand: impossibility of strong watermarking for language
246 models. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24.
247 JMLR.org, 2024.
- 248 [41] Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese,
249 and Boaz Barak. Watermarks in the sand: impossibility of strong watermarking for language
250 models. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24.
251 JMLR.org, 2024.
- 252 [42] Xiaorui Zhang, Xun Sun, Xingming Sun, Wei Sun, and Sunil Kumar Jha. Robust reversible
253 audio watermarking scheme for telemedicine and privacy protection. *Computers, Materials &*
254 *Continua*, 71(2):3035–3050, 2022.
- 255 [43] Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
256 Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In *Proceedings of*
257 *the 2024 on ACM SIGSAC Conference on Computer and Communications Security*, CCS ’24,
258 page 3570–3584, New York, NY, USA, 2024. Association for Computing Machinery.
- 259 [44] Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y. Shih. An automated and robust
260 image watermarking scheme based on deep neural networks. *IEEE Transactions on Multimedia*,
261 23:1951–1961, 2021.

262 **A Related Work**

263 **Watermarking Tabular Data.** Watermarking tabular data has been extensively studied. [2] 264 pioneered a scheme embedding watermarks in the least significant bit of specific cells using hash 265 values based on primary and private keys. Subsequent works by [37] and [15] improved this by 266 embedding multiple bits. Another approach embeds watermarks in statistical properties. [34] 267 introduced a method that partitions dataset rows and modifies subset statistics, later refined by 268 Shehab et al. [33] to resist insertion and deletion attacks using optimized partitioning and hash-based 269 embedding. Their approach, however, relies on assumptions about data distribution and primary keys.

270 Inspired by watermarking techniques in large language models [1, 21, 24], [16], [29], and [43] 271 proposed watermarking schemes for generative tabular data using red-green interval partitioning.

272 [16] introduced a data binning approach, ensuring values lie near green intervals and using statistical 273 hypothesis testing for detection. However, assuming continuous distributions makes it vulnerable 274 to feature selection and truncation attacks. [29] paired columns into key-value sets, deriving a seed 275 from the key column to generate bins for the value column. Entries falling in red bins were resampled 276 from green bins. While novel, this method suffers from two key weaknesses: (i) detection requires 277 prior knowledge of the column pairing or an exhaustive search across all pairs, and (ii) relying on key 278 column-derived seeds introduces low entropy, weakening the pseudorandomness of bin assignments 279 and potentially compromising security. It is important to note that even with knowledge of column 280 pairing, any deletion of rows will trigger an error when calculating the key column-derived seed, 281 which is not explored or discussed in the paper. [43] took a similar approach, embedding watermarks 282 as additive noise within predefined bins. They assumed noise follows a bounded range $[-p, p]$, 283 partitioned into red and green bins, with watermarking achieved by sampling noise only from green 284 bins. Despite robustness claims and categorical feature support, their method has several limitations. 285 First, detection requires access to the original dataset, making watermark verification infeasible in 286 practical scenarios where datasets are modified or shuffled. Second, row-matching under permutation 287 increases detection complexity. Finally, their claimed support for categorical data is unclear and 288 lacks empirical validation - (a) Their protocol description focuses only on categorical data, i.e., those 289 with a fixed range (e.g., education level, employee designation, marital status, etc.). They suggest 290 encoding it first as integers and then applying their embedding techniques. However, this method 291 is flawed because these differences often result in floating-point values, distorting the expected 292 integer-based distribution. Restricting differences to integers could also leave gaps in the data (by 293 omitting particular values from the range), harming its utility. Instead, we argue against watermarking 294 such columns altogether, and (b) it does not address unrestricted categorical data (e.g., alphanumeric 295 ASINs) or provide experiments for such cases. The above is summarized in Table 1.

296 **Watermarking for LLMs.** Many watermarking schemes for LLMs take advantage of the sampling 297 algorithm that generates each token of an LLM output. [8] observed that these LLM output tokens 298 correlate with the randomness used in the token sampling algorithm. This correlation is efficiently 299 communicable for many LLM outputs by replacing this randomness with cryptographic pseudorandomness. 300 Subsequent works [11, 7] have built upon this idea by incorporating error correction and 301 public identifiability into these watermarks. However, robustness remains a persistent issue for this 302 line of work, and a recent impossibility result [41] demonstrated that an adversary that can efficiently 303 perturb or resample the output can always remove a watermark. Another line of work, which has been 304 the source of inspiration for more recent watermarking schemes for tabular data, include [1, 21, 24]. 305 [24] introduced the red-green list paradigm, forming the basis of several works [16, 43, 29]. More 306 recently, [13] improved on the works employing the red-green list paradigm.

307 **B Preliminaries**

308 **Notations.** For $n \in \mathbb{N}^+$, we denote by $[n]$ the set $\{1, \dots, n\}$. For a set X , we denote by $x \xleftarrow{\$} X$ 309 that a value x is sampled uniformly at random from X .

310 **Seeded Hash Function.** A function $\mathcal{H} : \mathcal{S} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a hash function, modeled as a random 311 oracle, if the computation of $\mathcal{H}(S, X)$ for a random $S \xleftarrow{\$} \mathcal{S}$ and any $X \in \mathcal{X}$ is indistinguishable

312 from $Y \xleftarrow{\$} \mathcal{Y}$. In our application, we will suppress the presence of the seed distribution \mathcal{S} and we
313 will set $\mathcal{Y} := \{0, 1\}$.

314 C Problem Formulation

315 Our dataset is a matrix \mathbf{X} of dimension $m \times n$. It is important to stress that \mathbf{X} contains both numerical
316 values, alphabetical and alphanumeric. We assume each column i contains m i.i.d points from a
317 distribution ρ_i . For simplicity, we will define a function `Generate` that takes as input a probability
318 distribution ρ_i and a sample p_i from the distribution ρ_i to produce a new sample p'_i . When ρ_i is
319 undefined, we can still extract a new sample using just p_i . The goal is to generate a watermarked \mathbf{X}_w
320 with the following properties:

321 **Fidelity** : The watermarked dataset \mathbf{X}_w is “close” to the original data set \mathbf{X} . In our approach for
322 numerical data, we show that \mathbf{X}_w and \mathbf{X} are close in the L_∞ distance. See Theorem 1.

323 **Detectability** : Efficient testing can reliably identify the watermarking. In our first variant, we will
324 rely on cryptographic properties to ensure detection, while in the second variant, we will
325 rely on statistical testing.

326 **Robustness** : The watermarked dataset \mathbf{X}_w is resistant to various perturbations observed in common
327 usage. Some of these include removing or permutations of rows and columns and modifying
328 cell content.

329 **Utility** : The watermarked dataset \mathbf{X}_w is still useful for intended downstream tasks such as machine
330 learning tasks. Through empirical testing, we will show that there is a negligible difference
331 in accuracy.

332 D Dataset Details

333 **Wilt.** Wilt [20] is the public dataset from the UCI Machine Learning Repository from a remote
334 sensing study on detecting diseased trees in satellite imagery. It comprises 4,839 image segments
335 with spectral and texture features from Quickbird multispectral and panchromatic bands. The
336 dataset includes six numerical and categorical attributes and a binary classification task: identifying
337 trees as wilted or healthy. We generate synthetic datasets. There are 4839 records with 6 features
338 (including the target) and 2 classes. This dataset is licensed under a Creative Commons Attribution
339 4.0 International (CC BY 4.0) license.

340 **California Housing Prices.** The California Housing Prices dataset [23, 14], sourced from the 1990
341 U.S. Census, contains 20,640 records with 10 socio-economic and geographical attributes influencing
342 housing prices. It has a multi-target label indicating proximity to the ocean, making it a multi-class
343 classification problem. It has 5 classes. This dataset is licensed under Apache License Version 2.0.

344 **HOG.** The HOG feature dataset [4] is generated with the histogram of oriented gradients (HOG)
345 features extracted from the digits dataset, combined with their categories. There are 16 features,
346 10992 records, and 10 classes. This dataset is licensed under a Creative Commons Attribution 4.0
347 International (CC BY 4.0) license.

348 **Shoppers Dataset.** The shoppers dataset [32] aimed to capture the shoppers purchasing intent.
349 There are 12,330 records with 18 attributes with two classes. The dataset is licensed under a Creative
350 Commons Attribution 4.0 International (CC BY 4.0) license.

351 **Amazon ASINs.** We used the Amazon Product Details Dataset [31]. For our experiments, we
352 parsed the dataset only to extract the unique identifiers for Amazon products, generating 30,000
353 actual ASINs. This dataset is licensed under CC0.

354 **Gitcommit Hashes.** We used the Gitcommit Messages dataset [10]. It contains 4.3 million records,
355 from which we only extracted the hashes for the gitcommit messages. The dataset is licensed under
356 the Open Data Commons Attribution License (ODC-By) v1.0.

Algorithm 2 HashMark₁ Embedding Algorithm

Input: Original Dataset \mathbf{X} of dimension $m \times n$
Probability Distributions ρ_1, \dots, ρ_n .
PRG $G_1 : \mathcal{X}_1 \rightarrow \{0, 1\}^\ell$
PRG $G_2 : \mathcal{X}_2 \rightarrow [m]^\ell \times [n]^\ell$
 $X_1 \xleftarrow{\$} \mathcal{X}_1, X_2 \xleftarrow{\$} \mathcal{X}_2$
 $\{bit_i\}_{i=1}^\ell \xleftarrow{\$} G_1(X_1)$
 $\{(row_i, col_i)\}_{i=1}^\ell \xleftarrow{\$} G_2(X_2)$
 $seed \xleftarrow{\$} \mathcal{S} // \mathcal{S} \text{ is the seed space of } \mathcal{H}$

for $i = 1$ **to** ℓ **do**
 while $\mathcal{H}(seed, \mathbf{X}[row_i, col_i]) \neq bit_i$ **do**
 $new_value \xleftarrow{\$} \text{Generate}(\rho_i, \mathbf{X}[row_i, col_i])$
 $\mathbf{X}[row_i, col_i] \leftarrow new_value$
 end while
end for

357 **D.1 HashMark₁: Embedding Pseudorandom Bits**

358 We begin by describing our first approach to watermarking. This approach ensures high fidelity
359 and detectability but suffers from issues when it comes to robustness. The embedding algorithm is
360 formally defined in Algorithm 2. We start with an original dataset \mathbf{X} of dimension $m \times n$. The idea is to
361 sample ℓ pseudorandom bits. Let us call it bit_1, \dots, bit_ℓ . Additionally, we also sample ℓ cells defined
362 by (row_i, col_i) in \mathbf{X} . By modifying the cell content suitably, we ensure that $\mathcal{H}(\mathbf{X}[row_i, col_i]) = bit_i$.

363 **Detecting HashMark₁**

364 To detect, the algorithm needs:

- 365 • Knowledge of X_1 to retrieve the original binary string of bit_1, \dots, bit_ℓ .
366 • Knowledge of X_2 to first identify the target cells (row_i, col_i) , and then using \mathcal{H} to retrieve
367 bit'_1, \dots, bit'_ℓ .
368 • The watermark detection is successful iff $(bit_1, \dots, bit_\ell) = (bit'_1, \dots, bit'_\ell)$

369 However, this scheme is low-robust because the detection algorithm critically relies on extracting
370 the cell where the watermark was embedded. This would be meaningless if the first row (or the first
371 column) were removed. The benefit of this approach is that only ℓ of the spots are touched, which is
372 a tunable parameter. This ensures very high fidelity and utility. The detectability is also reducible to
373 the hardness of the underlying cryptographic primitives (and does not rely on a statistical measure).

374 **D.2 Defining Generate**

375 The crux of our construction is instantiating the function Generate that helps modify the content of
376 the dataset to satisfy the hashing requirement. In this section, we focus on defining this function along
377 with some optimizations. However, before we proceed, we must discuss a caveat to our approach.
378 This is a limitation of rejection-sampling-based approaches. Let C be a column with a fixed range.
379 Some examples of such columns include marital status, education level, designation at a company,
380 and base salary tiers at a company, among others. If one were to apply a hash function, mapping
381 elements in the range of 0 or 1, some elements in the range might be hashed to an undesired bit. The
382 ensuing watermarked dataset will be constrained to remove these elements from the range, resulting in
383 a skewed distribution, which will prevent utility. Therefore, it is essential not to embed the watermark
384 in these columns, as this could skew the resulting distribution. In other words, we consider every
385 element in the range to be “valid,” i.e., hashing to the desired bit.

386 In the ensuing discussion, we focus solely on generating values for the remaining attributes/columns.
387 We will focus on embedding the watermark and later define fidelity, i.e., how close the watermarked

388 distribution is to the un-watermarked one. The proofs of the following are deferred to Section G in
 389 the appendix.

390 **Numerical Values.** Suppose a column C consists of numerical data, specifically floating-point
 391 values. In that case, the generate function can take the old value and add 10^{-c} for some constant c
 392 that is a scheme parameter. This ensures that the perturbation does not adversely impact the fidelity.
 393 Formally, we have the following theoretical guarantee, as measured by the expected difference in L_∞
 394 between the unwatermarked and watermarked distributions.

395 **Theorem 1.** *Let \mathbf{X} be the original dataset and \mathbf{X}_w be the watermarked dataset of size N where
 396 $x'_i \in \mathbf{X}_w$ is generated as follows:*

$$x'_i = x_i + k_i \cdot 10^{-c},$$

397 where $k_i = \min\{k \geq 0 \mid \mathcal{H}(x_i + k \cdot 10^{-c}) = 0, \mathcal{H}$ is a seeded hash function as defined before, and
 398 $c \geq 0$ is some integer. Then,

$$\mathbb{E}[||\mathbf{X} - \mathbf{X}_w||_\infty] \leq (\ln N + 2) \cdot 10^{-c}$$

399 Our approach can be easily extended to support truncation up to b decimals place if only the value
 400 until the first b decimal places are included in the input to \mathcal{H} .

401 **Alphanumeric/Textual Data.** In the case of textual data, the generate function can reject and
 402 re-sample from the underlying distribution for the feature ρ_i . Then, one can measure the fidelity of
 403 the watermarked dataset by measuring the Jensen-Shannon Divergence [27] between the watermarked
 404 and the un-watermarked dataset. Formally, we get the following theoretical guarantee:

405 **Theorem 2.** *Let ρ be the distribution of an alphanumeric column where we embed the watermark.
 406 Let ρ' be the modified distribution consisting only of those values that hash to 0. Then, the Jensen-
 407 Shannon Divergence is:*

$$JSD(\rho || \rho') = \frac{3}{4} \log\left(\frac{4}{3}\right) \approx 0.215$$

408 **Preserving Correlations.** Datasets often contain correlations between various features or attributes.
 409 Any watermarking approach should ensure that these correlations are preserved. Rejection sampling
 410 column-wise can often lead to a loss of such correlations. We now detail how to preserve correlations.

- 411 • Let ρ be a probability distribution that defines the underlying dataset. This can contain both
 412 categorical (aka alphanumeric values) and numerical values. For example, a synthetic data
 413 generation algorithm (such as the ones employed in our experiments) is trained on a source
 414 (i.e., the original dataset), which yields a distribution ρ from which one can sample as many
 415 rows as needed. These synthetic data algorithms have been experimentally shown to be
 416 close to the original dataset for various machine learning tasks, serving as a heuristic proof
 417 of correlation preservation.
- 418 • Let $R \xleftarrow{\$} \rho$ be a row sampled from this distribution. Further, let this row R be such that
 419 there exist cells that do not map to the desired bit.
- 420 • We can now reject R and resample from ρ until the sampled row satisfies the required
 421 constraint. However, such rejection and resampling until *every* cell maps to the desired
 422 bit can be computationally expensive. For n columns, this can take 2^n time. Instead, one
 423 can choose a threshold t such that if t of the n cells in a row R map to the desired bit, it
 424 is marked as accepted. The detectability threshold can be suitably set to account for this
 425 modification.

426 **D.3 HashMark₂: Global Embedding**

427 Unlike HashMark₁, HashMark₂ is more resilient to various perturbations and cell modification. The
 428 embedding approach is visually represented in Figure 1 and described in Algorithm 1. The crux of
 429 the strategy is to embed a global bit (say 0) in *every* cell of the dataset \mathbf{X} using a binary hash function
 430 \mathcal{H} —consequently, a watermarked table to have more values that hash to 0 than an unwatermarked
 431 table. Detection is performed by using the secret description of the hash function to hash the data
 432 and count the number of cells that map to zero. Additional methods can allow the user to check only
 433 a subset of locations, making a slight skew more pronounced. This approach has the versatility of

434 embedding a watermark in an existing dataset or generating a watermarked dataset at the source. The
 435 latter is a setting suitable for synthetic data.

436 **Detecting HashMark₂.** To detect HashMark₂, we use a one-proportion z-test [12], which is a
 437 statistical test used to determine whether the single sample rate, for example, the success rate in the
 438 number of entries that map to 0, is significantly different from a hypothesized population rate. We
 439 define the null hypothesis as:

$$H_0 : \text{Dataset } \mathbf{X} \text{ is not watermarked}$$

440 However, we note that if the null hypothesis holds, then so does a hypothesis $H_{0,i} :$
 441 The i -th column is not watermarked also holds. This reduces the problem of rejecting H_0 to simply
 442 rejecting $H_{0,i}$ for each column i .

443 Let T_i represent the number of elements in the i -th *value* column that hash to 0. Under the i -th
 444 null hypothesis, $H_{0,i}$ should follow the Bernoulli Distribution B with probability 1/2 as an ideal
 445 hash function \mathcal{H} will output 0 or 1 with probability 1/2. Let m be the total number of rows, i.e.,
 446 $T_i \sim B(m, 1/2)$ for a sufficiently large number of rows m . By the Central Limit Theorem (CLT),
 447 for large m , we obtain that:

$$2\sqrt{m} \left(\frac{T_i}{m} - \frac{1}{2} \right) \sim \mathcal{N}(0, 1)$$

448 where $\mathcal{N}(0, 1)$ is the normal distribution. Thus, the test statistic for a one-proportion z -test is:

$$z = 2\sqrt{m} \left(\frac{T_i}{m} - \frac{1}{2} \right) \quad (1)$$

449 For each column, the detection algorithm computes a z -score by counting values that hash to 0. To
 450 account for multiple hypothesis testing (e.g., 5 columns at $\alpha = 0.05$), per-column thresholds α_i are
 451 adjusted (e.g., $\alpha_i = 0.01$). If a column's z -score exceeds its threshold, the null hypothesis is rejected,
 452 indicating a watermark. Otherwise, no conclusion is made.

453 To prevent spoofing (where forgers combine valid watermarked datasets), we use a secret seed in the
 454 hash function (Algorithm 1). Each dataset's watermark uses a unique *seed*, making concatenated
 455 forgeries detectable as inconsistent.

456 **Robustness to Deletion, Permutation.** It is clear that the permutation of rows does not impact
 457 the count T_i . $H_{0,i}$ is evaluated for every column i . This implies that the permutation of the column
 458 from position i to some j will still have its corresponding null hypothesis $H_{0,j}$ and evaluated. Now,
 459 observe that the detection algorithm performs multiple hypothesis tests conducted simultaneously.
 460 Therefore, removing columns implies that one has to compute α_i as a function of α and the number
 461 of remaining columns. This guarantees robustness to column deletion. Removal of rows implies a
 462 smaller m . This results in an increase in the error in the CLT approximation. However, in practice, a
 463 rule-of-thumb for applying Z-test has been for $m > 50$ [9]. However, if $m < 50$, one could apply the
 464 Z-test on H_0 and not individual $H_{0,i}$.

465 Finally, as remarked before, one can also modify the application of \mathcal{H} to ensure support for truncation.

466 D.4 Analysis on Removal of HashMark

467 Before we look at the mathematical analysis, we discuss the modes of attacks to remove the watermark.
 468 The property of the ideal hash function \mathcal{H} implies that the perturbation of a cell content initially
 469 mapping to 0 can flip to 1, with a probability 0.5. Further, a secret seed (of the seeded hash function)
 470 implies that an adversary, without knowledge of this seed, cannot determine the actual mapping of
 471 the bit.

472 This section will study the effort required for the perturbation to remove the watermark. Specifically,
 473 an adversary can only modify r cells by adding noise. We will analyze the expected number of r .
 474 Note that an adversary, adding noise to every cell in a column, can remove the watermark. This is true
 475 for every scheme [16, 29, 43]. Experimentally, we show the results comparing with [29] in Section E.

476 In the analysis below, we assume there are M values in total. Of this, N is the number of values
 477 with the property they hash to a desired bit. In HashMark₁, we have $N = \ell$ while $M = mn$. In
 478 HashMark₂, we have $N = M = m$ as described above. The proof of the following are deferred to
 479 Section G in the appendix.

480 **Proposition 1.** Given values val_1, \dots, val_M . Then, the minimum number of values needed to ensure
481 that the Z-score remains α is given by:

$$\alpha \cdot \frac{\sqrt{M}}{2} + \frac{M}{2}$$

482 *Proof.* Of the m values, we need to compute T_i that ensures that the score is α . We use Equation 1
483 as:

$$\alpha = \frac{2(T_i - 0.5M)}{\sqrt{M}}$$

484 Then, $T_i = 0.5M + \alpha\sqrt{M}/2$. In other words, we need at least $0.5M + \alpha\sqrt{M}/2$ values to ensure a
485 Z-score of α . Call this value T_α . \square

486 **Theorem 3.** Let r be the number of cells an adversary can modify. This modification is done by
487 sampling noises $\epsilon_1, \dots, \epsilon_r \xleftarrow{\$} \mathcal{D}$. Then, we have:

$$\mathbb{E}[r] := 2 \cdot (N - T_\alpha) \cdot \frac{M}{N}$$

488 for any error distribution \mathcal{D} .

489 *Proof of Theorem 3.* First, observe that for any value val_i such that $\mathcal{H}(val_i) = 0$:

$$\Pr[\mathcal{H}(val_i + \epsilon_i) = 1] = \frac{1}{2}$$

490 for any $\epsilon_i \xleftarrow{\$} \mathcal{D}$. We already know that one needs at least $T_\alpha = 0.5M + \alpha\sqrt{M}/2$ cells to be
491 unmodified to get a score of α (from Proposition 1). To achieve the watermark removal, we need to
492 add noise to the remaining $N - T_\alpha$ cells. Observe that this follows a hypergeometric distribution - in
493 a sample of size M , N successes exist (i.e., mapping to 0). Then, the expected number of tries to
494 pick at least $(N - T_\alpha)$ successfully is given by: $\approx (N - T_\alpha) \cdot M/N$. Therefore, we get:

$$\mathbb{E}[r] := 2 \cdot (N - T_\alpha) \cdot \frac{M}{N}$$

495 \square

496 Note that in HashMark₁ where $N < M$, the number of tries needed for the adversary is inversely pro-
497 portional to N , making HashMark₁ more robust to noise addition attacks. Meanwhile, in HashMark₂,
498 since $M = N$, the number of tries needed is much smaller. Consequently, one can envision
499 HashMark₂ where only a specific subset of cells (chosen at random) is embedded with the bit. While
500 this makes it more resilient to modification attacks, the problem of efficiently identifying this subset
501 of cells becomes paramount.

502 **Other Attacks.** We look at some additional attack vectors.

- 503 • **Data Augmentation Attacks:** Adding data reduces the z -score. However, since the secret
504 information is unknown to an attacker, one can expect that half of the new content will map
505 to 0 on average. For example, if one had m rows in a column that all map to 0, adding
506 another m rows will reduce the z -score by a factor of $\sqrt{2}$, on expectation.
- 507 • **Feature Selection:** Observe that the choice of z -score threshold depends on the number
508 of columns in the dataset. This is discussed in 5.1.1. Therefore, reducing the number of
509 columns will consequently require a higher threshold.

510 **HashMark and Applications.** Watermarking tabular data provides verifiable guarantees for data
511 integrity in organizational settings where datasets are routinely shared. When a watermark embedded
512 using HashMark₂ is detected in a dataset D , two key properties hold: (1) Theorem 5.3 ensures an
513 expected upper bound on the number of modified cells, limiting undetected alterations; and (2)
514 if an attacker injects $\gamma \cdot m$ additional rows into an m -row dataset, the detection signal degrades
515 predictably, with the z -score scaling by $\sqrt{(1 + \gamma)}$. These mechanisms establish a measurable trust
516 boundary, enabling provenance tracking while tolerating benign modifications. By formalizing
517 such robustness-utility tradeoffs, our work advances watermarking techniques for practical data
518 governance.

519 **E Experimental Results**

520 In this section, we focus on experimentation for embedding watermarks in numerical data, specifically
521 floating-point values. Our experiments were performed on an Apple MacBook M1 Pro with 16GB
522 of memory running Sonoma 14.3. We used Python 3.11. We instantiated the hash function using
523 SHA-256 from the hashlib module. We select a random seed for evaluating the hash function. We
524 implemented Generate by adding 10^{-c} to the value until it hashes to 0. Our choice of c is specified
525 for each context separately. Due to space constraints, we will focus on HashMark₂ in this section
526 and defer the experiments pertaining to HashMark₁ to the appendix.

527 We defer the experiments pertaining to HashMark₁ to the appendix in Section E.2

528 **E.1 Evaluation of HashMark₂**

529 In this section, we evaluate the performance of HashMark₂ along the following dimensions:

- 530 • **Performance (vs the work of [29]) on Gaussian Datasets:** Following [29], we test
531 HashMark₂ on Gaussian data (1 column, 2000 rows). With $c = 10$, HashMark₂ matches
532 their robustness and fidelity while being significantly simpler, which proves that complex
533 watermarking isn't necessary.

534 **Fidelity:** The KDE plots (Figs. 2a-2b) show nearly identical distributions before and after
535 watermarking. Figure 2d, which shows how the choice of 10^{-c} in Generate impacts the
536 mean-squared error (MSE), confirms that smaller c values (larger perturbations) increase
537 MSE, as expected.

538 **Robustness:** Figure 2c demonstrates that z-scores grow with more rows, improving detection
539 confidence. When adding Gaussian noise (Fig. 2e), smaller c values yield lower z-scores,
540 showing greater noise sensitivity. Crucially, our z-scores consistently surpass Ngo et al.'s
541 under identical conditions (Fig. 6). Extended results (Figs. 8a, 8b) reinforce these findings
542 and are deferred to the appendix.

543 For completeness in Figure 7, we reproduce the plot from Ngo et al. for the abovementioned
544 experiments. We also present additional plots for HashMark₂ in Figure 8. Figure 8a extends
545 Figure 2d for a wider choice of c while Figure 8b extends Figure 2c for a larger number of
546 rows. These additional plots are in line with the conclusions drawn above.

- 547 • **Utility for Real-Life Datasets:** Following prior works such as [16] and [29], we evaluate the
548 utility of our proposed approach HashMark₂ by testing it on four real-world datasets. These
549 datasets are first used to train neural network-based and statistical-based generative methods.
550 The trained generative method is then used to generate synthetic datasets. Specifically,
551 we utilize CTGAN [38], Gaussian Copula [28], and TVAE [38] to represent GAN-based,
552 copula-based, and VAE-based generators, respectively, for generating tabular data. We
553 utilize the Synthetic Data Vault [30] as our library and employ the default parameters. The
554 dataset was randomly partitioned with 25% test cases. While we defer a discussion on the
555 dataset to Section D, we summarize the findings of our experiment below in Table 2. Our
556 experiments indicate that the watermarking has a negligible impact on the accuracy of the
557 synthetic dataset, even for a multi-class classification problem.

- 558 • **Fidelity for Alphanumeric Synthetic Data:** We evaluate HashMark₂'s performance on
559 alphanumeric attributes by measuring the Jensen-Shannon divergence (JSD) between wa-
560 termarked synthetic data (where all values hash to 0) and real datasets. Using SciPy's JSD
561 implementation [36] with 30 trials, we find:

- 562 – **ASINs** (10-character alphanumeric): 0.1090 ± 0.0016 JSD (vs. Amazon Product
563 Dataset [31])
- 564 – **Git commit hashes** (40-character hex): 0.002176 ± 0.0003 JSD (vs. GitHub Commit
565 Messages [10])

566 Lower JSD values indicate better preservation of the original distribution, demonstrating
567 HashMark₂'s effectiveness for alphanumeric data.

- 568 • **HashMark₂ with simpler classifiers and dataset:** Prior experiments were on datasets with
569 multiple attributes and complex machine learning models. We wanted to study HashMark₂'s
570 impact on the accuracy of simpler machine learning models with fewer columns. Specifically,
571 we ran experiments using one attribute and two classes on these simple classifiers - linear

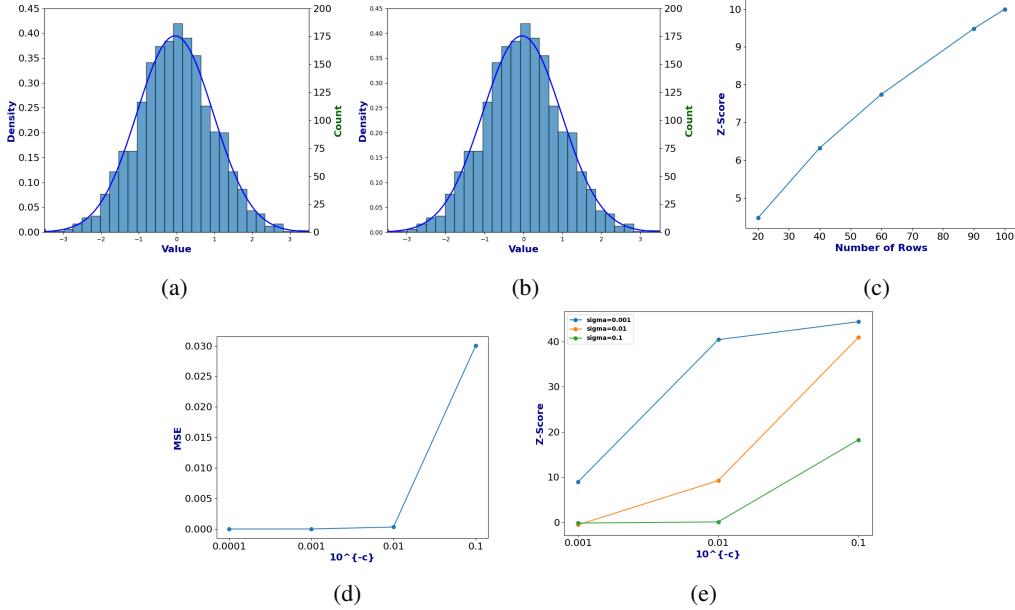


Figure 2: Plot of various experiments on Gaussian dataset. Figures 2a and 2b show the distribution of the data, before and after watermarking. Value refers to the actual value in the dataset. Figure 2c shows the variation of the z-score with the number of rows sampled. Figure 2d plots the variation of the mean-squared error (MSE) for different choices of c . Figure 2e plots the change in z-score when compared with the choice of c for various Gaussian noises.

Table 2: Accuracy comparison of different classifiers and synthesizers across four datasets on synthetic and watermarked synthetic data. Standard deviations are included for each record. W/M = Watermarked synthetic dataset, while Non-W/M refers to an unwatermarked but synthetic dataset.

Dataset	Classifier	Synthesizer	Non-W/M (%)	W/M (%)
Wilt	XGB	CTGAN	83.63 ± 4.63	83.31 ± 5.01
		Copula	94.38 ± 0.53	94.40 ± 0.52
		TVAE	94.87 ± 0.37	94.89 ± 0.39
	RF	CTGAN	84.45 ± 5.74	84.30 ± 5.70
		Copula	94.39 ± 0.52	94.40 ± 0.52
		TVAE	94.34 ± 0.37	94.34 ± 0.38
Housing	XGB	CTGAN	49.26 ± 2.38	49.11 ± 2.68
		Copula	55.15 ± 5.12	55.66 ± 4.77
		TVAE	61.55 ± 2.39	61.13 ± 2.46
	RF	CTGAN	48.31 ± 1.90	48.14 ± 2.00
		Copula	52.97 ± 5.83	53.04 ± 5.93
		TVAE	62.30 ± 1.92	62.40 ± 1.77
HOG	XGB	CTGAN	77.65 ± 2.07	77.62 ± 2.08
		TVAE	89.77 ± 1.59	89.34 ± 1.76
	RF	CTGAN	74.40 ± 4.41	74.39 ± 4.48
		TVAE	91.20 ± 2.16	91.28 ± 2.16
Shoppers	XGB	CTGAN	86.43 ± 0.79	85.28 ± 1.95
		Copula	86.01 ± 1.38	86.56 ± 1.41
		TVAE	87.94 ± 0.61	87.85 ± 0.54
	RF	CTGAN	87.77 ± 0.82	86.00 ± 2.74
		Copula	86.05 ± 1.40	85.78 ± 1.38
		TVAE	88.71 ± 1.00	88.10 ± 1.23

572 regression, logistic regression, and decision tree. We present our findings in Table 3. To
 573 summarize, we demonstrate that the perturbation parameter (i.e., adding 10^{-c}) controls the
 574 deviation from the value. However, even with a smaller value of c , there is a negligible
 575 difference in the model performance.

576 • Constrained Sampling, Threshold, and Z-Score: We also investigate the utility of constrained
 577 sampling, i.e., one in which we sample a row from the distribution ρ and we check if at

Table 3: Model Performance Under Watermarking Perturbation (10^{-c}). W/M = Watermarked dataset. For Logistic/Decision Tree, we report accuracy; for Linear Regression, we report R^2 values.

	Logistic Reg.		Linear Reg.		Decision Tree	
	Orig.	W/M	Orig. (R^2)	W/M (R^2)	Orig.	W/M
$c = 2$	99.98%	99.64%	1.000000	0.999899	100%	100%
$c = 4$	99.98%	99.98%	1.000000	1.000000	100%	99.995%
$c = 6$	99.98%	99.98%	1.000000	1.000000	100%	99.961%

578 least t fraction of the n columns in a row hash to 0. If not, we reject that row and resample
 579 another. This process is repeated until an appropriately sized dataset is generated, ensuring
 580 that correlations are preserved. We summarize our findings across Tables 6 and ?? for the
 581 four datasets. While increasing t does increase the running time of watermarked dataset
 582 generation, we find no significant difference in accuracy; however, we do notice an increase
 583 in z -score, as expected.

584 **E.2 Evaluation of HashMark₁**

585 We begin by benchmarking the performance of HashMark₁ along the following axes:

- 586 • Varying ℓ , we wish to study the running time of the watermarking process. We break down
 587 the running time of watermarking as (a) the cost of identifying locations to embed the
 588 watermark and (b) the time taken to run Generate to embed the desired bits.
- 589 • The utility of the watermarked dataset vs. the original dataset for downstream machine
 590 learning tasks.
- 591 • The role of ℓ in accuracy, i.e., how does the accuracy change when more bits are embedded?

592 **Performance of Embedding Process.** In Figure 3, we plot the time, in seconds, against the number
 593 of bits being embedded. We split the cost as follows: to generate locations for embedding (dubbed
 594 pair generation time) and then modify the cell content until it hashes to the desired bit. Recall that the
 595 pair generation time requires using a seed to produce ℓ cell positions, which only contain floating
 596 point values. We then use the same seed to generate ℓ bits additionally. As one can observe, the
 597 embedding time is much smaller than the pair generation time, and it takes less than 10 milliseconds
 598 to embed as many as 1000 bits.

599 **Dataset.** We study the above for a specific dataset - the adult census income dataset from [6, 19] to
 600 predict if an individual earns over \$50,000 per year. The preprocessed dataset has 105 features and
 601 45,222 records with a 25% positive class (i.e., 25% of the records have class 1 while the rest are in
 602 class 0) We randomly split into training and testing datasets. We observed that the dataset consisted
 603 of integers or floating point values with at least eight decimal places. This leads us to choose $c = 6$
 604 and embed only in the floating point values.

605 **Downstream Utility.** We embed $\ell = 384$ bits ³ They are:

- 606 • Logistic Regression Classifier with maximum iterations as 1000
- 607 • Random Forest Classifier with 100 estimators
- 608 • MLP Classifier with hidden layer sizes 100, 50; maximum iterations=1000, and learning
 609 rate – 0.0001

610 We plotted the difference in accuracy when run on the original versus the watermarked dataset in
 611 Figures 4 and 5 for each of the 1000 runs. Meanwhile, in Table 4, we present the average accuracy of
 612 the 1000 runs. Identical behavior was observed in the Logistic Regression classifier with less than
 613 0.005% difference observed in the accuracy of the other two classifiers. This shows that HashMark₁'s
 614 embedding has a negligible impact on the accuracy of the classifier. For completeness, we also plot

³Choice of ℓ is set to be 384 because it is the number of bits in a standard hash-based watermarking scheme
 albeit for messaging applications (i.e., signatures) known as BLS Signature [5]. Note that this corresponds to
 less than 1% of the number of cells in the dataset.

Average Running Time vs Number of Embedded Bits

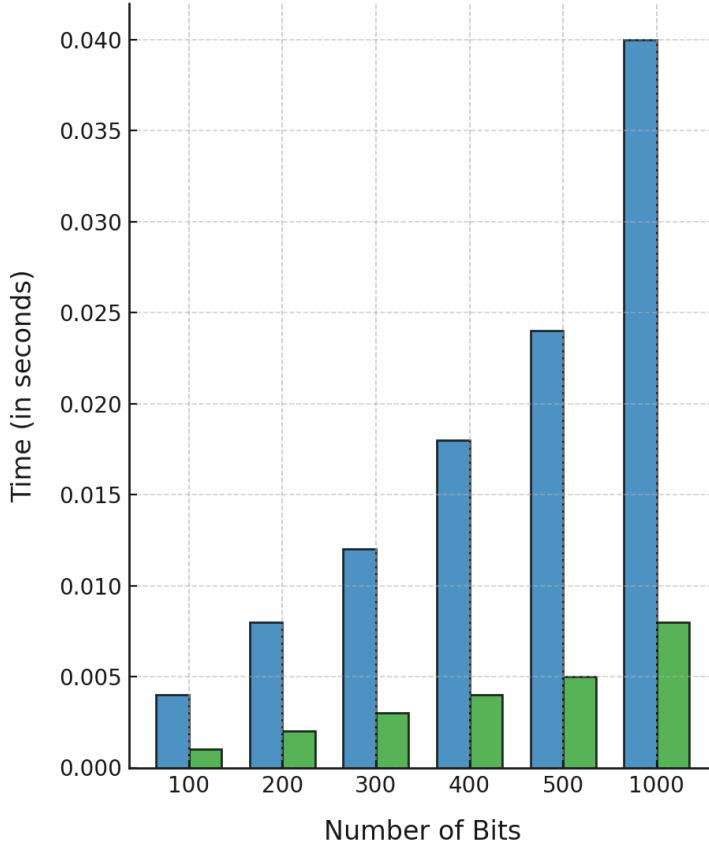


Figure 3: Embedding Time as a function of ℓ for HashMark₁. Here, the blue column refers to the cost of generating valid cells to embed in the dataset, while the green column is the cost of modifying the content to make it hash to the desired bit.

Table 4: Classification accuracy (%) with and without watermarking. In addition to this, we add the standard deviation of each record.

Model	Logistic Regression	Random Forest	MLP Classifier
Original	84.021 ± 0.3	85.186 ± 0.27	83.504 ± 0.44
Watermarked	84.021 ± 0.3	85.188 ± 0.28	83.508 ± 0.446

615 the difference in accuracy between the original and watermarked dataset in Figures 4 and 5, in each
 616 of the 1000 runs. As can be observed, the most significant difference in accuracy is less than 0.005%.

617 Finally, in Figure 5b, we plot the impact of increasing ℓ on the accuracy of the logistic regression
 618 classifier. As expected, larger ℓ does cause an impact in accuracy, though the degradation is minimal.

619 F Additional Experiments

620 We also present additional experiments studying the variation of MSE with respect to the choice of c
 621 for further values of c . Similarly, we also show how the Z-score varies for larger sampled rows. This
 622 is done in Figure 8.

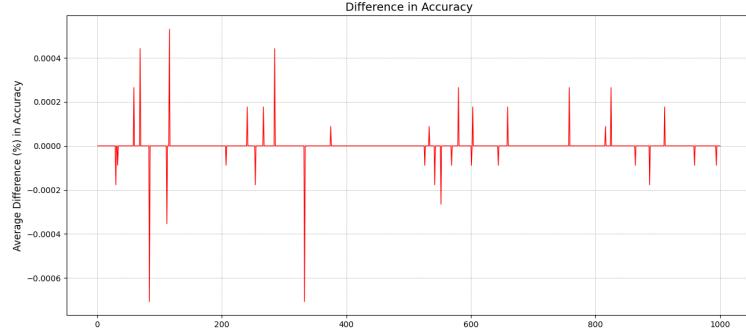
623 In Figure 7, we reproduce Figure 2 from Ngo et al. [29]. This shows that the performance of
 624 HashMark₂, as seen in Figure 2, matches (or surpasses) similar experiments from Ngo et al. This is

Table 5: Effect of constraint threshold t on synthetic data quality across two datasets. We report the average z -scores, sampling time (in seconds), and classification accuracy (in %) using different classifiers and synthesizers. This is with respect to HashMark₂. Accuracy is shown for both the non-W/M and W/M settings.

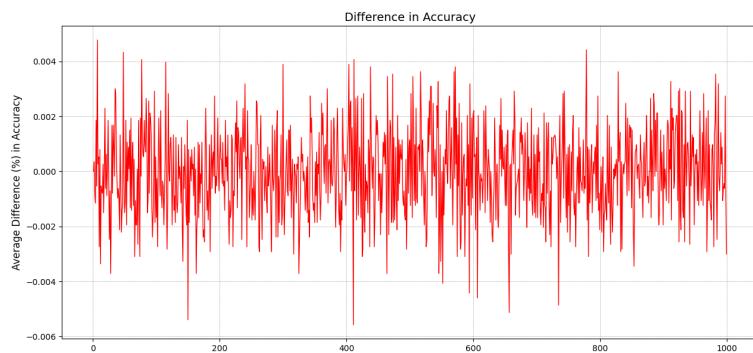
Dataset	t	z -score	Sampling Time (s)	Classifier	Synthesizer	Non-W/M (%)	W/M (%)
Wilt (5 cols, 3629 samples)	1/4	1.74 \pm 0.22	64.08 \pm 6.68	XGB	TVAE	95.24 \pm 0.57	95.07 \pm 0.84
					GC	94.33 \pm 0.31	94.53 \pm 0.24
					CTGAN	83.65 \pm 3.24	81.79 \pm 6.76
	1/3	1.92 \pm 0.24	65.45 \pm 4.90	RF	TVAE	94.78 \pm 0.30	94.86 \pm 0.42
					GC	94.43 \pm 0.31	94.45 \pm 0.30
					CTGAN	84.31 \pm 1.93	84.76 \pm 1.54
Housing (9 cols, 15480 samples)	1/2	9.43 \pm 0.44	65.05 \pm 1.26	XGB	TVAE	94.86 \pm 0.44	95.19 \pm 0.43
					GC	94.33 \pm 0.31	94.53 \pm 0.24
					CTGAN	84.07 \pm 4.94	85.62 \pm 6.19
	2/3	22.73 \pm 0.30	108.95 \pm 4.59	RF	TVAE	94.84 \pm 0.45	94.76 \pm 0.66
					GC	94.43 \pm 0.31	94.45 \pm 0.30
					CTGAN	86.08 \pm 6.52	86.60 \pm 6.82
Wilt (5 cols, 3629 samples)	1/4	2.84 \pm 0.72	449.17 \pm 40.27	XGB	TVAE	95.02 \pm 0.44	95.31 \pm 0.48
					GC	94.33 \pm 0.31	94.43 \pm 0.33
					CTGAN	82.55 \pm 7.06	84.23 \pm 6.56
	1/3	2.63 \pm 0.64	415.68 \pm 7.37	RF	TVAE	94.73 \pm 0.43	94.68 \pm 0.45
					GC	94.43 \pm 0.31	94.43 \pm 0.30
					CTGAN	80.46 \pm 7.11	80.50 \pm 6.03
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	95.22 \pm 0.32	95.17 \pm 0.65
					GC	94.33 \pm 0.31	94.26 \pm 0.46
					CTGAN	78.83 \pm 9.36	78.86 \pm 9.80
	2/3	34.43 \pm 0.29	848.09 \pm 17.84	RF	TVAE	94.83 \pm 0.66	94.83 \pm 0.25
					GC	94.43 \pm 0.31	94.41 \pm 0.34
					CTGAN	82.12 \pm 5.57	84.21 \pm 5.18
Housing (9 cols, 15480 samples)	1/2	53.74 \pm 0.29	1632.13 \pm 79.29	XGB	TVAE	95.21 \pm 0.32	95.32 \pm 0.53
					GC	94.33 \pm 0.31	94.26 \pm 0.46
					CTGAN	78.38 \pm 6.28	77.47 \pm 6.41
	2/3	53.74 \pm 0.29	1632.13 \pm 79.29	RF	TVAE	94.93 \pm 0.41	94.84 \pm 0.29
					GC	94.43 \pm 0.31	94.41 \pm 0.34
					CTGAN	79.87 \pm 6.53	80.74 \pm 5.64
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	63.35 \pm 0.76	63.43 \pm 0.79
					GC	52.82 \pm 3.99	52.27 \pm 3.24
					CTGAN	47.07 \pm 2.58	46.59 \pm 2.15
	1/3	2.63 \pm 0.64	415.68 \pm 7.37	RF	TVAE	62.79 \pm 0.59	62.93 \pm 0.43
					GC	53.60 \pm 2.02	53.71 \pm 3.27
					CTGAN	45.72 \pm 2.02	46.50 \pm 2.31
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	62.75 \pm 1.54	62.86 \pm 1.42
					GC	52.82 \pm 3.99	52.27 \pm 3.24
					CTGAN	46.48 \pm 1.73	46.63 \pm 2.89
	2/3	34.43 \pm 0.29	848.09 \pm 17.84	RF	TVAE	61.91 \pm 2.63	61.93 \pm 2.29
					GC	53.60 \pm 2.02	53.71 \pm 3.27
					CTGAN	48.99 \pm 1.39	48.69 \pm 1.20
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	60.95 \pm 3.12	61.02 \pm 3.05
					GC	52.82 \pm 3.99	52.76 \pm 2.63
					CTGAN	47.70 \pm 1.95	48.75 \pm 3.12
	2/3	34.43 \pm 0.29	848.09 \pm 17.84	RF	TVAE	63.38 \pm 0.16	63.30 \pm 0.45
					GC	53.60 \pm 2.02	53.45 \pm 2.90
					CTGAN	49.81 \pm 2.78	47.59 \pm 3.02
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	61.75 \pm 2.03	61.88 \pm 1.73
					GC	53.60 \pm 4.82	52.91 \pm 2.85
					CTGAN	47.77 \pm 2.52	46.29 \pm 3.79
	2/3	34.43 \pm 0.29	848.09 \pm 17.84	RF	TVAE	62.24 \pm 1.30	62.24 \pm 1.55
					GC	54.06 \pm 2.88	53.74 \pm 3.21
					CTGAN	48.81 \pm 2.08	48.13 \pm 2.04
Housing (9 cols, 15480 samples)	1/2	18.27 \pm 0.20	552.12 \pm 12.20	XGB	TVAE	62.13 \pm 1.85	62.83 \pm 1.97
					GC	52.82 \pm 3.99	53.91 \pm 3.73
					CTGAN	46.84 \pm 3.37	48.00 \pm 2.20
	2/3	34.43 \pm 0.29	848.09 \pm 17.84	RF	TVAE	60.86 \pm 2.19	60.87 \pm 2.20
					GC	53.60 \pm 2.02	53.75 \pm 2.66
					CTGAN	49.89 \pm 2.68	48.56 \pm 1.73

Table 6: Effect of constraint threshold t on synthetic data quality across two datasets. We report the average z -scores, sampling time (in seconds), and classification accuracy (in %) using different classifiers and synthesizers. This is with respect to HashMark₂. Accuracy is shown for both the non-W/M and W/M settings.

Dataset	t	z -score	Sampling Time (s)	Classifier	Synthesizer	Non-W/M (%)	W/M (%)
HOG (18 cols, 8244 samples)	1/4	-5.77 ± 0.78	373.24 ± 105.90	XGB	TVAE	88.52 ± 4.74	87.53 ± 4.89
					CTGAN	73.74 ± 3.15	72.92 ± 3.75
	1/3	-4.89 ± 1.15	511.61 ± 8.76	RF	TVAE	92.48 ± 1.33	93.03 ± 1.22
					CTGAN	74.56 ± 3.28	74.24 ± 2.90
	1/2	7.46 ± 0.18	797.56 ± 12.58	XGB	TVAE	88.84 ± 1.90	90.64 ± 1.19
					CTGAN	70.44 ± 6.26	70.87 ± 5.59
Shopper (12 cols, 9247 samples)	2/3	31.40 ± 0.21	9868.32 ± 8790.14	RF	TVAE	91.36 ± 0.94	91.92 ± 1.00
					CTGAN	73.29 ± 3.81	73.25 ± 4.12
	3/4	40.77 ± 0.16	35088.75 ± 30542.58	XGB	TVAE	91.43 ± 1.27	91.49 ± 0.85
					CTGAN	75.44 ± 3.19	75.82 ± 3.40
	1/4	-2.11 ± 1.38	438.51 ± 5.14	RF	TVAE	92.43 ± 1.01	91.86 ± 0.89
					CTGAN	74.32 ± 3.27	74.00 ± 3.09
	1/3	-3.37 ± 1.26	639.55 ± 64.59	XGB	TVAE	88.80 ± 2.53	87.78 ± 2.71
					CTGAN	72.71 ± 2.93	73.34 ± 3.31
	1/2	9.22 ± 1.27	939.33 ± 107.06	RF	TVAE	91.78 ± 1.63	91.47 ± 2.50
					CTGAN	72.31 ± 3.75	72.71 ± 4.08
	2/3	34.14 ± 0.28	3690.59 ± 252.79	XGB	TVAE	90.83 ± 1.00	90.74 ± 1.09
					CTGAN	75.26 ± 4.04	74.95 ± 4.00
	3/4	43.50 ± 0.42	9276.41 ± 1742.76	RF	TVAE	88.92 ± 3.03	88.08 ± 3.70
					CTGAN	70.71 ± 5.23	70.20 ± 5.15
Shopper (12 cols, 9247 samples)	1/4	-2.11 ± 1.38	438.51 ± 5.14	XGB	TVAE	87.78 ± 0.78	87.78 ± 0.76
					GC	85.51 ± 0.63	85.80 ± 0.76
	1/3	-3.37 ± 1.26	639.55 ± 64.59		CTGAN	87.35 ± 0.35	87.06 ± 0.95
				RF	TVAE	88.74 ± 0.32	88.74 ± 0.45
	1/2	9.22 ± 1.27	939.33 ± 107.06		GC	85.62 ± 0.43	85.99 ± 0.98
					CTGAN	87.95 ± 0.49	87.91 ± 0.28
	2/3	34.14 ± 0.28	3690.59 ± 252.79	XGB	TVAE	88.13 ± 0.63	87.86 ± 0.86
					GC	85.51 ± 0.63	85.28 ± 1.17
	3/4	43.50 ± 0.42	9276.41 ± 1742.76		CTGAN	84.76 ± 1.05	84.94 ± 1.31
				RF	TVAE	88.18 ± 0.53	88.06 ± 0.81
	1/4	-2.11 ± 1.38	438.51 ± 5.14		GC	85.62 ± 0.43	85.70 ± 0.68
					CTGAN	88.01 ± 0.62	87.80 ± 0.69
Shopper (12 cols, 9247 samples)	1/3	-3.37 ± 1.26	639.55 ± 64.59	XGB	TVAE	87.27 ± 1.33	87.54 ± 0.94
					GC	85.51 ± 0.63	86.10 ± 0.94
	1/2	9.22 ± 1.27	939.33 ± 107.06		CTGAN	85.27 ± 1.54	85.59 ± 1.64
				RF	TVAE	88.61 ± 0.56	88.28 ± 0.54
	2/3	34.14 ± 0.28	3690.59 ± 252.79		GC	85.62 ± 0.43	85.65 ± 0.71
					CTGAN	87.80 ± 0.25	87.57 ± 0.69
	3/4	43.50 ± 0.42	9276.41 ± 1742.76	XGB	TVAE	87.46 ± 0.69	88.01 ± 0.20
					GC	85.51 ± 0.63	85.74 ± 0.61
	1/4	-2.11 ± 1.38	438.51 ± 5.14		CTGAN	85.89 ± 0.57	85.59 ± 1.70
				RF	TVAE	88.48 ± 0.32	88.30 ± 0.64
	1/3	-3.37 ± 1.26	639.55 ± 64.59		GC	85.62 ± 0.43	86.49 ± 0.56
					CTGAN	87.89 ± 0.88	87.82 ± 0.59
	1/2	9.22 ± 1.27	939.33 ± 107.06	XGB	TVAE	88.10 ± 0.92	88.39 ± 0.78
					GC	85.51 ± 0.63	86.06 ± 1.24
	2/3	34.14 ± 0.28	3690.59 ± 252.79		CTGAN	86.75 ± 0.81	86.44 ± 0.43
				RF	TVAE	88.52 ± 0.55	88.17 ± 0.88
	3/4	43.50 ± 0.42	9276.41 ± 1742.76		GC	85.62 ± 0.43	86.77 ± 0.74
					CTGAN	87.80 ± 0.58	87.63 ± 0.74



(a) Plot of the difference in accuracy between the original and the watermarked dataset in each of the 1000 iterations for the Logistic Regression Classifier



(b) Plot of the difference in accuracy between the original and the watermarked dataset in each of the 1000 iterations for the Random Forest Classifier

Figure 4: Experiments pertaining to HashMark₁ for the Adult Census Dataset (Part 1).

625 especially important considering that HashMark₂ is conceptually simpler while offering support for
 626 categorical data and being more secure. Recall that HashMark₂ uses a truly random value as seed,
 627 while Ngo et al. opt for a heuristic approach to obtain seed via pairing algorithm, which are often
 628 poor sources of entropy.

629 G Deferred Proofs

630 *Proof of Theorem 1.* For each element x_i in \mathbf{X} , let x'_i be the corresponding element in \mathbf{X}_w . As defined
 631 above:

$$x'_i = x_i + k_i \cdot 10^{-c},$$

632 where $k_i = \min\{k \geq 0 \mid \mathcal{H}(x_i + k \cdot 10^{-c}) = 0\}$. In other words, $|x_i - x'_i| = k_i \cdot 10^{-c}$.

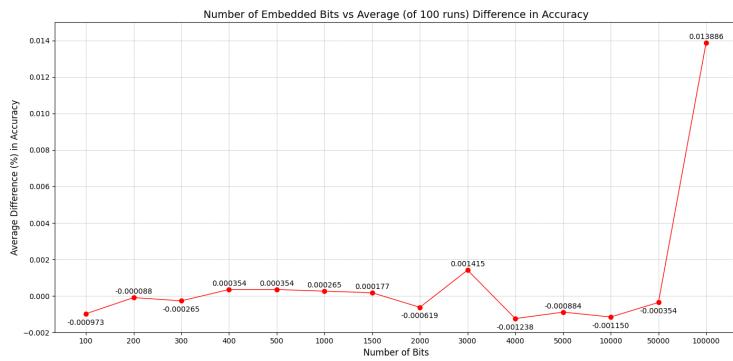
633 Recall that \mathcal{H} maps to 0 and 1 with equal probability. Therefore, for a given $x'_i = x_i + k_i \cdot 10^{-c}$, the
 634 hash function should have mapped to 1 for every choice from 0 to $k_i - 1$ and succeed in time k_i . In
 635 other words, $\Pr[K_i = k] = (\frac{1}{2})^{k+1}$, i.e., it follows a geometric distribution.

636 Now, $\|\mathbf{X} - \mathbf{X}_w\|_\infty = \max_i |x_i - x'_i| = \max_i k_i \cdot 10^{-c}$. We can use the well-known approximation
 637 for the maximum of n i.i.d geometric variables to get $\mathbb{E}[\max_i k_i] = 0.5 + H_N / \ln 2$ where H_N is
 638 the N -th harmonic number. Further $\ln N \leq H_N \leq 1 + \ln N$ or $H_N \leq \ln N + 1$. This gives us that:

$$\begin{aligned} \mathbb{E}[\|\mathbf{X} - \mathbf{X}_w\|_\infty] &\leq \left(0.5 + \frac{\ln(N) + 1}{\ln 2}\right) \cdot 10^{-c} \\ &\leq (\ln N + 2) \cdot 10^{-c} \end{aligned}$$



(a) Plot of the difference in accuracy between the original and the watermarked dataset in each of the 1000 iterations for the MLP Classifier



(b) Average Difference in the accuracy of the logistic regression classifier as the number of bits embedded (ℓ) increases.

Figure 5: Experiments pertaining to HashMark₁ for the Adult Census Dataset (Part 2).

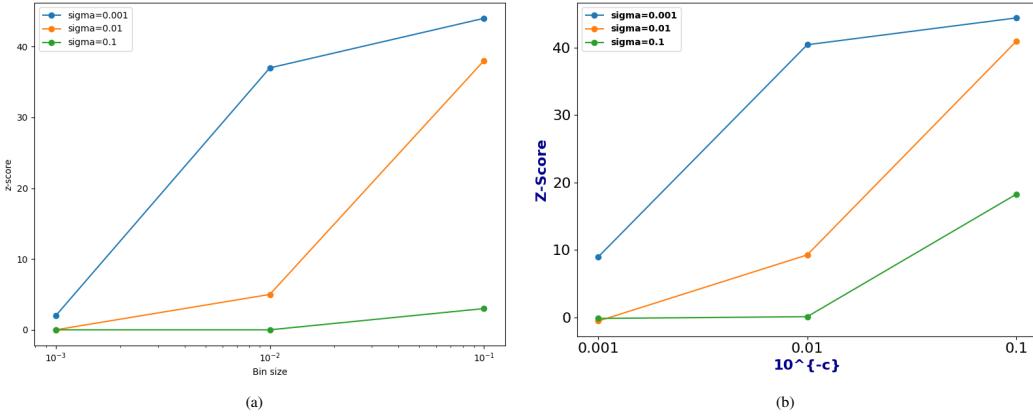


Figure 6: This figure shows the evaluation of the robustness of Gaussian noise by studying the z-score across various choices of standard deviation. To the left, we show the results from [29], and to the right, we show the results from our own experiment. Observe similar behavior across both works.

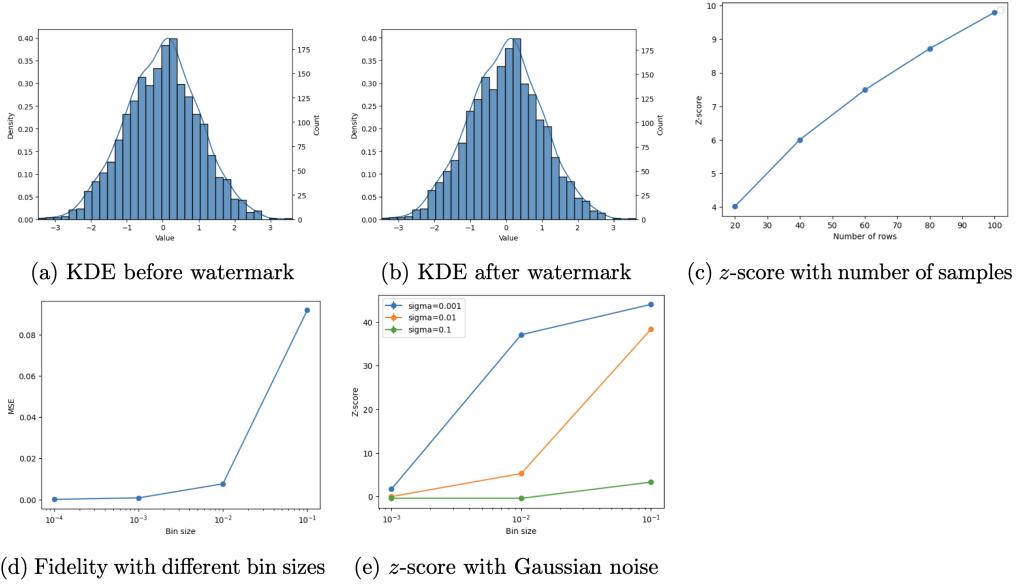


Figure 7: This is a reproduction of Figure 2 from Ngo et al. [29].

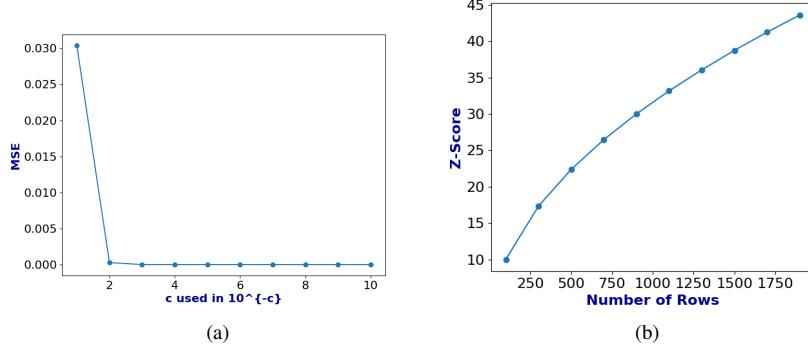


Figure 8: Plot of additional experiments on Gaussian dataset. Figure 8a plots MSE for more values of c . Figure 8b shows how the z-score changes when more rows are involved in the computation.

640 *Proof of Theorem 2.* The Jensen-Shannon Divergence (JSD) measures the similarity between two
 641 probability distributions. It is defined as:

$$JSD(P||Q) = \frac{1}{2}D(P||M) + \frac{1}{2}D(Q||M) \quad (2)$$

642 where $M = \frac{1}{2}(P+Q)$ is the midpoint distribution, and $D(P||Q)$ is the Kullback-Leibler Divergence,
 643 defined as: $D(P||Q) = \sum_x P(x) \log(\frac{P(x)}{Q(x)})$.

644 Let us find: $JSD(\rho||\rho')$. Partition the set of all values X into X_0 and X_1 where X_b consists of those
 645 values in X that hashes to bit b . Note that ρ' is only defined on X_0 giving:

$$\rho'(x) = \begin{cases} \frac{\rho(x)}{Z} & x \in X_0 \\ 0 & \text{otherwise} \end{cases}$$

646 Here, Z is a normalization term needed to ensure that the sum of probabilities in ρ' is 1. Since
 647 the hash function is ideal, i.e., maps to 0 and 1 with equal probability, Z is approximately 0.5 or
 648 $\rho'(x) = 2 \cdot \rho(x)$ for $x \in X_0$.

649 Now, let's find the midpoint distribution $M(x) = \frac{1}{2}(\rho(x) + \rho'(x))$. We get:

$$M(x) = \begin{cases} \frac{3}{2}\rho(x) & x \in X_0 \\ \frac{1}{2}\rho(x) & \text{otherwise} \end{cases}$$

650 Now, we can compute the Kullback-Leibler divergences:

$$\begin{aligned} D(\rho||M) &= \sum_{x \in X} \rho(x) \log\left(\frac{\rho(x)}{M(x)}\right) \\ &= \sum_{x \in X_0} \rho(x) \log\left(\frac{\rho(x)}{\frac{3}{2}\rho(x)}\right) + \sum_{x \in X_1} \rho(x) \log\left(\frac{\rho(x)}{\frac{1}{2}\rho(x)}\right) \end{aligned}$$

651 Simplifying, we get $D(\rho||M) = 0.5(\log(2) + \log(2/3)) = 0.5\log(4/3)$. Similarly, we get:
652 $D(\rho'||M) = \log(4/3)$. Plugging this in Equation 2, we get:

$$JSD(\rho||\rho') = \frac{3}{4} \log\left(\frac{4}{3}\right) \approx 0.215$$

653 \square

654 *Proof of Proposition 1.* Of the m values, we need to compute T_i that ensures that the score is α . We
655 use Equation 1 as:

$$\alpha = \frac{2(T_i - 0.5M)}{\sqrt{M}}$$

656 Then, $T_i = 0.5M + \alpha\sqrt{M}/2$. In other words, we need at least $0.5M + \alpha\sqrt{M}/2$ values to ensure a
657 Z-score of α . Call this value T_α . \square

658 *Proof of Theorem 3.* First, observe that for any value val_i such that $\mathcal{H}(val_i) = 0$:

$$\Pr[\mathcal{H}(val_i + \epsilon_i) = 1] = \frac{1}{2}$$

659 for any $\epsilon_i \stackrel{\$}{\leftarrow} \mathcal{D}$. We already know that one needs at least $T_\alpha = 0.5M + \alpha\sqrt{M}/2$ cells to be
660 unmodified to get a score of α (from Proposition 1). To achieve the watermark removal, we need to
661 add noise to the remaining $N - T_\alpha$ cells. Observe that this follows a hypergeometric distribution - in
662 a sample of size M , N successes exist (i.e., mapping to 0). Then, the expected number of tries to
663 pick at least $(N - T_\alpha)$ successfully is given by: $\approx (N - T_\alpha) \cdot M/N$. Therefore, we get:

$$\mathbb{E}[r] := 2 \cdot (N - T_\alpha) \cdot \frac{M}{N}$$

664 \square

665 **NeurIPS Paper Checklist**

666 **1. Claims**

667 Question: Do the main claims made in the abstract and introduction accurately reflect the
668 paper's contributions and scope?

669 Answer: [\[Yes\]](#)

670 Justification: The abstract and introduction encapsulate the paper's contributions: the development
671 of an agent framework featuring fine-grained security tiers, alongside the introduction
672 of a novel benchmark dataset for systematic evaluation of agent behavior in scenarios
673 necessitating privacy protection

674 Guidelines:

- 675 • The answer NA means that the abstract and introduction do not include the claims
676 made in the paper.
- 677 • The abstract and/or introduction should clearly state the claims made, including the
678 contributions made in the paper and important assumptions and limitations. A No or
679 NA answer to this question will not be perceived well by the reviewers.
- 680 • The claims made should match theoretical and experimental results, and reflect how
681 much the results can be expected to generalize to other settings.
- 682 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
683 are not attained by the paper.

684 **2. Limitations**

685 Question: Does the paper discuss the limitations of the work performed by the authors?

686 Answer: [\[Yes\]](#)

687 Justification: We discuss limitations in Section ??.

688 Guidelines:

- 689 • The answer NA means that the paper has no limitation while the answer No means that
690 the paper has limitations, but those are not discussed in the paper.
- 691 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 692 • The paper should point out any strong assumptions and how robust the results are to
693 violations of these assumptions (e.g., independence assumptions, noiseless settings,
694 model well-specification, asymptotic approximations only holding locally). The authors
695 should reflect on how these assumptions might be violated in practice and what the
696 implications would be.
- 697 • The authors should reflect on the scope of the claims made, e.g., if the approach was
698 only tested on a few datasets or with a few runs. In general, empirical results often
699 depend on implicit assumptions, which should be articulated.
- 700 • The authors should reflect on the factors that influence the performance of the approach.
701 For example, a facial recognition algorithm may perform poorly when image resolution
702 is low or images are taken in low lighting. Or a speech-to-text system might not be
703 used reliably to provide closed captions for online lectures because it fails to handle
704 technical jargon.
- 705 • The authors should discuss the computational efficiency of the proposed algorithms
706 and how they scale with dataset size.
- 707 • If applicable, the authors should discuss possible limitations of their approach to
708 address problems of privacy and fairness.
- 709 • While the authors might fear that complete honesty about limitations might be used by
710 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
711 limitations that aren't acknowledged in the paper. The authors should use their best
712 judgment and recognize that individual actions in favor of transparency play an impor-
713 tant role in developing norms that preserve the integrity of the community. Reviewers
714 will be specifically instructed to not penalize honesty concerning limitations.

715 **3. Theory assumptions and proofs**

716 Question: For each theoretical result, does the paper provide the full set of assumptions and
717 a complete (and correct) proof?

718 Answer: [Yes]

719 Justification: The contribution of this work does involve theoretical results and proofs.

720 Guidelines:

- 721 • The answer NA means that the paper does not include theoretical results.
- 722 • All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- 723 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 724 • The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- 725 • Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- 726 • Theorems and Lemmas that the proof relies upon should be properly referenced.

727 4. Experimental result reproducibility

728 Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

729 Answer: [Yes]

730 Justification: We describe the details of the evaluation experiments we run in Section E and the supplementary material.

731 Guidelines:

- 732 • The answer NA means that the paper does not include experiments.
- 733 • If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- 734 • If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- 735 • Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- 736 • While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - 737 (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - 738 (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - 739 (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - 740 (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

741 5. Open access to data and code

771 Question: Does the paper provide open access to the data and code, with sufficient instruc-
772 tions to faithfully reproduce the main experimental results, as described in supplemental
773 material?

774 Answer: [Yes]

775 Justification: The code is provided with a readme file containing the instruction of running
776 the experiments. We also provide a validated Croissant file for our dataset JSON file.

777 Guidelines:

- 778 • The answer NA means that paper does not include experiments requiring code.
- 779 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 780 • While we encourage the release of code and data, we understand that this might not be
781 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
782 including code, unless this is central to the contribution (e.g., for a new open-source
783 benchmark).
- 784 • The instructions should contain the exact command and environment needed to run to
785 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 786 • The authors should provide instructions on data access and preparation, including how
787 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 788 • The authors should provide scripts to reproduce all experimental results for the new
789 proposed method and baselines. If only a subset of experiments are reproducible, they
790 should state which ones are omitted from the script and why.
- 791 • At submission time, to preserve anonymity, the authors should release anonymized
792 versions (if applicable).
- 793 • Providing as much information as possible in supplemental material (appended to the
794 paper) is recommended, but including URLs to data and code is permitted.

795 6. Experimental setting/details

796 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
797 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
798 results?

800 Answer: [Yes]

801 Justification: We provide the code and also the description of experiments in Section E and
802 the supplementary material.

803 Guidelines:

- 804 • The answer NA means that the paper does not include experiments.
- 805 • The experimental setting should be presented in the core of the paper to a level of detail
806 that is necessary to appreciate the results and make sense of them.
- 807 • The full details can be provided either with the code, in appendix, or as supplemental
808 material.

809 7. Experiment statistical significance

810 Question: Does the paper report error bars suitably and correctly defined or other appropriate
811 information about the statistical significance of the experiments?

813 Answer: [Yes]

814 Justification: We include the standard deviation in a numerical format in the experimental
815 sections.

816 Guidelines:

- 817 • The answer NA means that the paper does not include experiments.
- 818 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
819 dence intervals, or statistical significance tests, at least for the experiments that support
820 the main claims of the paper.

- 821 • The factors of variability that the error bars are capturing should be clearly stated (for
 822 example, train/test split, initialization, random drawing of some parameter, or overall
 823 run with given experimental conditions).
 824 • The method for calculating the error bars should be explained (closed form formula,
 825 call to a library function, bootstrap, etc.)
 826 • The assumptions made should be given (e.g., Normally distributed errors).
 827 • It should be clear whether the error bar is the standard deviation or the standard error
 828 of the mean.
 829 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 830 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 831 of Normality of errors is not verified.
 832 • For asymmetric distributions, the authors should be careful not to show in tables or
 833 figures symmetric error bars that would yield results that are out of range (e.g. negative
 834 error rates).
 835 • If error bars are reported in tables or plots, The authors should explain in the text how
 836 they were calculated and reference the corresponding figures or tables in the text.

837 **8. Experiments compute resources**

838 Question: For each experiment, does the paper provide sufficient information on the com-
 839 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 840 the experiments?

841 Answer: [\[Yes\]](#)

842 Justification: The experimental evaluation details the setting clearly.

843 Guidelines:

- 844 • The answer NA means that the paper does not include experiments.
 845 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 846 or cloud provider, including relevant memory and storage.
 847 • The paper should provide the amount of compute required for each of the individual
 848 experimental runs as well as estimate the total compute.
 849 • The paper should disclose whether the full research project required more compute
 850 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 851 didn't make it into the paper).

852 **9. Code of ethics**

853 Question: Does the research conducted in the paper conform, in every respect, with the
 854 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

855 Answer: [\[Yes\]](#)

856 Justification: There are no ethical implications of our work nor privacy related concerns.
 857 Our queries were received by LLM prompts. The databases were created using Python's
 858 faker library and random choice of values. They are completely synthetically generated.

859 Guidelines:

- 860 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 861 • If the authors answer No, they should explain the special circumstances that require a
 862 deviation from the Code of Ethics.
 863 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 864 eration due to laws or regulations in their jurisdiction).

865 **10. Broader impacts**

866 Question: Does the paper discuss both potential positive societal impacts and negative
 867 societal impacts of the work performed?

868 Answer: [\[Yes\]](#)

869 Justification: Privacy is a fundamental human right and a paramount concern in the era of
 870 AI. Our work advances the protection of sensitive information, keeping in mind regulations.

871 Guidelines:

- 872 • The answer NA means that there is no societal impact of the work performed.
- 873 • If the authors answer NA or No, they should explain why their work has no societal
- 874 impact or why the paper does not address societal impact.
- 875 • Examples of negative societal impacts include potential malicious or unintended uses
- 876 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
- 877 (e.g., deployment of technologies that could make decisions that unfairly impact specific
- 878 groups), privacy considerations, and security considerations.
- 879 • The conference expects that many papers will be foundational research and not tied
- 880 to particular applications, let alone deployments. However, if there is a direct path to
- 881 any negative applications, the authors should point it out. For example, it is legitimate
- 882 to point out that an improvement in the quality of generative models could be used to
- 883 generate deepfakes for disinformation. On the other hand, it is not needed to point out
- 884 that a generic algorithm for optimizing neural networks could enable people to train
- 885 models that generate Deepfakes faster.
- 886 • The authors should consider possible harms that could arise when the technology is
- 887 being used as intended and functioning correctly, harms that could arise when the
- 888 technology is being used as intended but gives incorrect results, and harms following
- 889 from (intentional or unintentional) misuse of the technology.
- 890 • If there are negative societal impacts, the authors could also discuss possible mitigation
- 891 strategies (e.g., gated release of models, providing defenses in addition to attacks,
- 892 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
- 893 feedback over time, improving the efficiency and accessibility of ML).

894 11. Safeguards

895 Question: Does the paper describe safeguards that have been put in place for responsible
 896 release of data or models that have a high risk for misuse (e.g., pretrained language models,
 897 image generators, or scraped datasets)?

898 Answer: [NA]

899 Justification: The results of the paper do not pose such risks as there is no real-world data
 900 involved.

901 Guidelines:

- 902 • The answer NA means that the paper poses no such risks.
- 903 • Released models that have a high risk for misuse or dual-use should be released with
- 904 necessary safeguards to allow for controlled use of the model, for example by requiring
- 905 that users adhere to usage guidelines or restrictions to access the model or implementing
- 906 safety filters.
- 907 • Datasets that have been scraped from the Internet could pose safety risks. The authors
- 908 should describe how they avoided releasing unsafe images.
- 909 • We recognize that providing effective safeguards is challenging, and many papers do
- 910 not require this, but we encourage authors to take this into account and make a best
- 911 faith effort.

912 12. Licenses for existing assets

913 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
 914 the paper, properly credited and are the license and terms of use explicitly mentioned and
 915 properly respected?

916 Answer: [Yes]

917 Justification: A dedicated section on dataset details is included.

918 Guidelines:

- 919 • The answer NA means that the paper does not use existing assets.
- 920 • The authors should cite the original paper that produced the code package or dataset.
- 921 • The authors should state which version of the asset is used and, if possible, include a
- 922 URL.
- 923 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- 924 • For scraped data from a particular source (e.g., website), the copyright and terms of
 925 service of that source should be provided.
 926 • If assets are released, the license, copyright information, and terms of use in the
 927 package should be provided. For popular datasets, paperswithcode.com/datasets
 928 has curated licenses for some datasets. Their licensing guide can help determine the
 929 license of a dataset.
 930 • For existing datasets that are re-packaged, both the original license and the license of
 931 the derived asset (if it has changed) should be provided.
 932 • If this information is not available online, the authors are encouraged to reach out to
 933 the asset's creators.

934 **13. New assets**

935 Question: Are new assets introduced in the paper well documented and is the documentation
 936 provided alongside the assets?

937 Answer: [NA]

938 Justification:

939 Guidelines:

- 940 • The answer NA means that the paper does not release new assets.
- 941 • Researchers should communicate the details of the dataset/code/model as part of their
 942 submissions via structured templates. This includes details about training, license,
 943 limitations, etc.
- 944 • The paper should discuss whether and how consent was obtained from people whose
 945 asset is used.
- 946 • At submission time, remember to anonymize your assets (if applicable). You can either
 947 create an anonymized URL or include an anonymized zip file.

948 **14. Crowdsourcing and research with human subjects**

949 Question: For crowdsourcing experiments and research with human subjects, does the paper
 950 include the full text of instructions given to participants and screenshots, if applicable, as
 951 well as details about compensation (if any)?

952 Answer: [NA]

953 Justification: The paper does not involve any crowdsourcing or research with human subjects.

954 Guidelines:

- 955 • The answer NA means that the paper does not involve crowdsourcing nor research with
 956 human subjects.
- 957 • Including this information in the supplemental material is fine, but if the main contribu-
 958 tion of the paper involves human subjects, then as much detail as possible should be
 959 included in the main paper.
- 960 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
 961 or other labor should be paid at least the minimum wage in the country of the data
 962 collector.

963 **15. Institutional review board (IRB) approvals or equivalent for research with human
 964 subjects**

965 Question: Does the paper describe potential risks incurred by study participants, whether
 966 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
 967 approvals (or an equivalent approval/review based on the requirements of your country or
 968 institution) were obtained?

969 Answer: [NA]

970 Justification: The paper does not involve any crowdsourcing or research with human subjects.

971 Guidelines:

- 972 • The answer NA means that the paper does not involve crowdsourcing nor research with
 973 human subjects.

- 974 • Depending on the country in which research is conducted, IRB approval (or equivalent)
975 may be required for any human subjects research. If you obtained IRB approval, you
976 should clearly state this in the paper.
977 • We recognize that the procedures for this may vary significantly between institutions
978 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
979 guidelines for their institution.
980 • For initial submissions, do not include any information that would break anonymity (if
981 applicable), such as the institution conducting the review.

982 **16. Declaration of LLM usage**

983 Question: Does the paper describe the usage of LLMs if it is an important, original, or
984 non-standard component of the core methods in this research? Note that if the LLM is used
985 only for writing, editing, or formatting purposes and does not impact the core methodology,
986 scientific rigorousness, or originality of the research, declaration is not required.

987 Answer: [NA]

988 Guidelines:

- 989 • The answer NA means that the core method development in this research does not
990 involve LLMs as any important, original, or non-standard components.
991 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
992 for what should or should not be described.