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ABSTRACT

Despite autoregressive large language models (arLLMs) having been the dom-
inant paradigm in language modeling, they resist knowledge injection via fine-
tuning due to inherent shortcomings such as the “reversal curse” - the challenge
of answering questions that reverse the original information order in the training
sample. Masked diffusion large language models (dLLMs) are rapidly emerging
as a powerful alternative to the arLLM paradigm, with evidence of better data ef-
ficiency and free of the “reversal curse” in pre-training. However, it is unknown
whether these advantages still extend to the post-training phase, i.e. whether pre-
trained dLLMs can easily acquire new knowledge through fine-tuning. To assess
post-training knowledge acquisition and generalization, we perform fine-tuning
using 3 different datasets on arLLMs and dLLMs and evaluate them with two types
of QA formats: forward style QA (questions follow the original information order
of the training sample) and backward style QA (questions reverse the original in-
formation order of the training sample), which probes the reversal curse. We first
show that arLLMs heavily rely on paraphrases to generalize knowledge text into
question-answering (QA) performance; paraphrases are only effective when the
information order in paraphrased text matches the QA style. In contrast, dLLMs
achieve strong performance on both forward and backward style QAs without
paraphrases, with paraphrases yielding only marginal additional gains. Lastly,
inspired by the performance of dLLM fine-tuning, we propose a new masked fine-
tuning paradigm for knowledge injection in pre-trained arLLMs. The proposed
paradigm drastically improves the data efficiency in arLLMs fine-tuning, closing
the gap with dLLMs.

1 INTRODUCTION

Despite auto-regressive large language models (arLLMs) having been the main contributor to the
modern success of language modeling, studies have demonstrated the difficulty of injecting new
knowledge to pre-trained arLLMs by fine-tuning on documents that are not in the pre-training dataset
(Ovadia et al., 2023; Mecklenburg et al., 2024; Gekhman et al., 2024; Soudani et al., 2024; Zhao
et al., 2025; Lampinen et al., 2025). Fine-tuned models typically generalize poorly to downstream
tasks such as question-answering (QA). An example failure mode is the famous “reversal curse”,
that LLMs fail to answer the questions in the reversed order of the training text (Berglund et al.,
2023). Fine-tuning on multiple rewrites (i.e. paraphrases) of the documents can mitigate the gener-
alization issues, but still falls behind in-context learning based external memory systems like RAG
(Ovadia et al., 2023; Mecklenburg et al., 2024). This pitfall of arLLMs is a major obstacle that limits
current models to be flexible life-long learners via weight updates.

As alternatives to the auto-regressive models, several recent masked diffusion large language mod-
els (dLLMs) have been scaled up to be as capable as arLLMs on multiple downstream tasks, with
extra advantages such as high-throughput decoding of multiple tokens simultaneously ((Nie et al.,
2025a;b; Ye et al., 2025). Instead of factorizing sequence probability token by token in sequential
order, dLLMs learn the factorization of the sequence probability in arbitrary orders, i.e. they can use
any subset of tokens in a sequence to compute the joint probability of the rest of the tokens. Though
such an objective is harder than learning autoregressive factorization (Kim et al., 2025), due to the
any-order factorization, dLLMs inherently do not suffer from “reversal curse”(Nie et al., 2025b),
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Figure 1: A schematic summary of the results. First row: autoregressive LLM requires paraphrases
for generalizing knowledge in the fine-tuning text to QA tasks, and suffer from reversal curse (i.e.
fail to answer backward questions). Second row: masked diffusion LLM can easily generalize fine-
tuning text to QA tasks in both forward and backward styles. Third row: inspired by the masked
diffusion LLM, we propose a masked fine-tuning paradigm, that closes the fine-tuning gap between
autoregressive LLMs and masked diffusion LLMs.

and can achieve lower validation loss than arLLMs in a data-constrained regime (Prabhudesai et al.,
2025; Ni & the team, 2025). However, most of the dLLM studies have been focusing on the prop-
erties in the pre-training phase, little is known if dLLMs also have advantages in the post-training
phase, such as knowledge injection by fine-tuning.

In this study, we use three datasets to compare the data efficiency and performance of knowledge
injection by fine-tuning in arLLM and dLLM models. We also introduce a novel masked fine-
tuning paradigm for arLLMs that emulates diffusion-style mask reconstruction loss. Across all
datasets, dLLMs show a consistent data-efficiency advantage over arLLMs, and our masked fine-
tuning largely closes this gap, bringing arLLMs to strong performance without relying on para-
phrase. More specifically, we show the following results:

• arLLMs heavily rely on paraphrases to successfully generalize fine-tuning text to down-
stream QA tasks; arLLMs fail on backward style questions and only paraphrases that re-
verse information order in the sentences can mitigate reversal curse.

• dLLMs can achieve high accuracy in both forward and backward questions without para-
phrases; adding paraphrases only marginally helps. This establishes the knowledge injec-
tion data efficiency of dLLMs in the post-training phase.

• We propose a masked fine-tuning paradigm that fine-tunes arLLMs in a “masked diffusion”
way by giving masked samples in the context with instructions to recover the mask, and
set the unmasked sample as the supervised fine-tuning target. The novel method closes the
performance gap between arLLMs and dLLMs fine-tuning: it achieves strong performance
in both forward and backward questions without paraphrases.

Taken together, these findings indicate that dLLMs, with the masked training objective, offers ad-
vantages in the post-training phase, reflecting superior data efficiency relative to arLLMs. We further
show that this advantage can be transferred to arLLMs via our masked fine-tuning paradigm. Our
findings suggest the possibility to post-train an LLM to adapt to the changing world using a small
amount of new knowledge texts, which could help address challenges in keeping AI systems updated
with changing environment.
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2 BACKGROUND

2.1 KNOWLEDGE INJECTION BY FINE-TUNING AND REVERSAL CURSE

A desired AI system should be able to continuously learn new knowledge to adapt to the changing
environment. Though LLMs have been successful on numerous tasks, they struggle to incorporate
new knowledge into their weights. At least two factors contribute to this difficulty. The first is that
LLMs show catastrophic forgetting after fine-tuning on new tasks (Luo et al., 2023; Wang et al.,
2023; Zhai et al., 2023; Zhang & Wu, 2024; Chen et al., 2024; Ren et al., 2024). Another issue is
fine-tuning a pre-trained LLM has been shown to be less effective in injecting new factual knowledge
than learning a response style (Ovadia et al., 2023; Mecklenburg et al., 2024; Gekhman et al., 2024;
Soudani et al., 2024; Zhao et al., 2025; Lampinen et al., 2025).

A famous failure mode of learning knowledge in the text is the “reversal curse”, that after learning
statements of the form “A is B”, the model does not generalize it to its inverse form “B is A”. The
reversal curse has been observed across the training phases and models (Berglund et al., 2023; Allen-
Zhu & Li, 2025; Lv et al., 2024; Lin et al., 2024; Guo et al., 2024; Golovneva et al., 2024; Lu et al.,
2024). Even strong commercial models like GPT-4 and GPT-4o show signs of the reversal curse
(Berglund et al., 2023; Nie et al., 2025b). The cause of the reversal curse has been theoretically
attributed to an inherent limitation of the autoregressive training objective (Zhu et al., 2024; Kitouni
et al., 2024) (See Appendix A.6). The common approaches for mitigating the reversal curse in
autoregressive models include 1) adding paraphrases that contain information in different semantic
orders (Guo et al., 2024; Lu et al., 2024; Golovneva et al., 2024); 2) changing causal attention to
bi-directional attention (Lv et al., 2024) or further changing the autoregressive objective to mask-
recovery objective (Kitouni et al., 2024; Nie et al., 2025b). Unlike the above methods, our proposed
masked fine-tuning paradigm in arLLMs solves the reversal curse without constructing paraphrase
augmentations or changing the autoregressive objective.

2.2 MASKED DIFFUSION LANGUAGE MODELS

Recently, dLLMs have emerged as a strong competitor to arLLMs (Sahoo et al., 2024; Nie et al.,
2025b; Ye et al., 2025). Comparing to autoregressive models, dLLMs use encoder-only transform-
ers to generate text by iteratively unmasking tokens via a reversed discrete diffusion process. The
training objective is to minimize the mask reconstruction loss Nie et al. (2025b):

L(θ) = −Et,x0,xt

[
1

t

L∑
ℓ=1

I[xℓ
t ∈ M] log pθ(x

ℓ
0|xt)

]
, (1)

where x0 is sampled from the training data, t is the sampled mask ratio; M denotes the masked tokens
sampled by the forward process samples with ratio t; xt is the masked version of x0. Such a loss
objective has been shown to be the negative evidence lower bound (ELBO) on the data likelihood
(Shi et al., 2024).

Several advantages of dLLMs regarding data efficiency have been claimed. When the training data
is scarce, dLLMs keep improving with repeated use of the data and surpass arLLMs on validation
loss, while arLLMs saturate the validation loss or increase it due to overfitting (Prabhudesai et al.,
2025; Ni & the team, 2025). Prabhudesai et al. (2025) further shows that the lower validation loss
in dLLMs can generalize to downstream tasks like ARC-Easy, and attributes its data efficiency to
random masks as implicit data augmentation. This evidence indicates that dLLMs would also be
competitive in the knowledge injection by fine-tuning settings, where knowledge to be learned is
embedded in individual documents with no repetitions.

2.3 CHANGE ORDER TRAINING OF ARLLM

In the following sections, we propose a masked fine-tuning paradigm for arLLM. There have been
studies that explored training arLLMs not in the language sequence order, but either in reverse
order or in permuted orders. Golovneva et al. (2024) proposed reverse training which trains an
arLLM with both regular token sequence and reversed token sequence to mitigate the reversal curse.
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Bavarian et al. (2022) proposed training an arLLM with a fill-in-the-middle objective that enables
the resulting model to excel in text infilling tasks. Yang et al. (2019); Hoogeboom et al. (2021); Shih
et al. (2022) trains a non-causal decoder-only transformer to autoregressively decode a sequence
in any order similarly to dLLMs. Our proposed masked fine-tuning paradigm for arLLM does not
modify the causal attention pattern or anything in a pre-trained arLLM, but only reformulates the
de-mask objective into an instruction fine-tuning objective with a carefully crafted user prompt.

3 DATASETS AND EXPERIMENTAL SETUPS

We focus on assessing LLMs’ ability to learn new knowledge through fine-tuning. More specifically,
LLMs are fine-tuned on a set of documents that contain knowledge unknown to the base LLM, and
evaluated by open-ended QA tasks. Correctness of an answer is evaluated by the well-adopted
ROUGE-1 score (Lin et al., 2024; Jiang et al., 2025) between the generated answer and ground truth
answer, which we report as “accuracy.” It measures the proportion of the words in ground truth
answer that appears in the generated answer. To better demonstrate the generation quality, we also
show examples of model responses in all the experiments in A.5.

We use three representative datasets. Two are existing synthetic datasets from previous studies on
the reversal curse; and we also constructed a realistic dataset from real Wikipedia articles that are
recent in time. Each dataset has been augmented with paraphrases. See examples of each dataset in
Appendix A.3.

The NameDescription dataset is from Berglund et al. (2023). It contains 60 statements of differ-
ent fictitious individuals, 30 each of the form “[name] is [description]” (N2D) and “[description] is
[name]” (D2N). Lin et al. (2024) extended the dataset with an open-ended QA testing set. For each
type of the statements, the QA set contains two types of questions: “What is the name related to a
given description” and “What is the description of a given name”. Depending on whether the ques-
tion is aligned with the original statement, each question is classified as “forward” or “backward”
question (e.g. N2D statement with “What is the description of a given name” type of question is a
forward question). The dataset also contains a paraphrase set, that each statement is rewritten into
30 different versions, but the order of [name] and [description] in paraphrases is always preserved
as in the original statement (either N2D or D2N).

The Biography dataset is proposed in Allen-Zhu & Li (2024; 2025). Since the original dataset is not
publicly available, we used a subset of 100 samples from a replication (Zheng et al., 2025). Each
sample is a 6-sentence paragraph about a fictitious individual on their birth city, birthday, college,
and job information. Note that the name only appears in the first sentence and is replaced with
a pronoun in the following sentences, thus questions about the name are considered as backward
questions. Each sample also has a paraphrase set of 5 paraphrases; the paraphrases do not change
the order of the sentences but only change the wording while preserving the information. The testing
QA set has both forward (i.e. asking for an attribute given the name) and backward style (i.e. asking
for the name given 3 attributes from the person) questions.

We construct a Wiki dataset that contains 92 Wikipedia articles following the procedures in Pan et al.
(2025). We crawl the Wikipedia pages under the category “2025 by month,” then further filter out the
pages that were created before year 2025. This procedure ensures these real-world events are recent
enough that both pre-trained models should not be aware of, which is justified by the model accuracy
before fine-tuning (Table 3). For each wiki article, we use GPT-o3-mini to generate QA pairs in both
forward and backward styles. By prompting GPT-o3-mini, we construct two different paraphrase
sets: one keeps information in place and only changes the wording (same-order paraphrases); the
other also changes the order of information in the article (permute-order paraphrases). 10 of each
type of paraphrases are generated for each wiki article. More details on constructing the datasets are
provided in Appendix A.3.

We choose Llama-3.1-8B-Instruct (Dubey et al., 2024) and LLaDA-8B-Instruct (Nie et al., 2025b)
models as representatives of arLLM and dLLM to conduct the experiments, as they perform simi-
larly on the benchmarks and are of comparable sizes. Fine-tuning and evaluation configurations are
provided in the Appendix A.4.
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NameDescription Biography

N2D-fwd N2D-bwd D2N-fwd D2N-bwd Fwd Bwd

arLLM before fine-tuning 0.072 0.000 0.054 0.000 0.001 0.000
arLLM w/o paraphrases 0.374 0.000 0.017 0.027 0.121 0.002
arLLM w paraphrases 0.910 0.004 0.925 0.071 0.962 0.001

Table 1: Fine-tuning performance of arLLM on the NameDescription and Biography datasets.

Wiki

Fwd Bwd

arLLM before fine-tuning 0.164 0.127
arLLM w/o paraphrases 0.377 0.282
arLLM w same-order paraphrases 0.685 0.396
arLLM w permute-order paraphrases 0.721 0.628

Table 2: Fine-tuning performance of arLLM on the Wiki dataset.

4 ARLLM KNOWLEDGE INJECTION RELIES ON PARAPHRASES

We first show that knowledge injection by fine-tuning in arLLMs heavily relies on paraphrases. This
is known in previous studies (Berglund et al., 2023; Allen-Zhu & Li, 2025; Lin et al., 2024; Guo
et al., 2024; Golovneva et al., 2024). We consistently demonstrate this observation on three datasets
to set baselines for the comparison with dLLM and our novel paradigm in the following sections.

We fine-tune Llama-3.1-8B-Instruct on dataset samples with the pre-training format. Without para-
phrases, backward accuracy on the NameDescription and Biography datasets is close to 0, while
forward accuracy of NameDescription N2D and Biography does not completely fail but is still poor
(Table 1). Adding paraphrases drastically raises forward accuracy close to 1, while the backward
accuracy is still close to 0. Paraphrases do not help backward accuracy in NameDescription and
Biography datasets due to the construction of them in these datasets not changing the semantic order
of the sentences. The trend is similar in the Wiki dataset (Table 2). While the same-order para-
phrases significantly increase the forward accuracy, they only mildly increase backward accuracy.
Using permute-order paraphrases increases both forward and backward accuracy, and the gap be-
tween them is smaller. Note that due to the naturalness of this dataset, we could not completely
remove the effect of base knowledge, which we also report in Table 2.

These results suggest that, in arLLM fine-tuning, paraphrases significantly improve QA accuracy,
but help backward questions only when the paraphrases change the information order in the sen-
tences to be more aligned with the backward style. Note that the accuracy difference between
fine-tuning with paraphrases and without paraphrases is not due to different training steps; in both
cases, we train the models with sufficiently large epoch numbers; the reported accuracy is from the
best checkpoints during the training (Figure 2, Appendix 6).

5 DLLM KNOWLEDGE INJECTION

We then test if dLLMs are more data-efficient regarding knowledge injection by fine-tuning, specif-
ically if dLLM requires paraphrases to achieve both forward and backward QA. We follow the
original pretraining protocol (Nie et al., 2025b) to fine-tune LLaDA-8B-Instruct on the dataset sam-
ples using the loss defined in Eq. 1. On three datasets, the accuracy difference between fine-tuning
with and without paraphrases is much smaller in the dLLM than in the arLLM (Table 3): dLLMs
without paraphrases can already achieve decent accuracies on both forward and backward questions;
fine-tuning with paraphrases can further increase the accuracy by a small amount. The accuracy dif-
ference between forward and backward questions is also smaller, indicating dLLM does not rely on
paraphrases to answer backward questions. These results together suggest dLLM has superior data
efficiency and is free of reversal curse in the post-training phase. By plotting the testing accuracy

5
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NameDescription Biography Wiki

N2D-fwd N2D-bwd D2N-fwd D2N-bwd Fwd Bwd Fwd Bwd

arLLM before fine-tuning 0.072 0.000 0.054 0.000 0.001 0.000 0.164 0.127
dLLM before fine-tuning 0.030 0.000 0.028 0.000 0.030 0.000 0.210 0.156
arLLM w/o paraphrases 0.374 0.000 0.017 0.027 0.121 0.002 0.377 0.282
arLLM w paraphrases 0.910 0.004 0.925 0.071 0.962 0.001 0.685 0.396
dLLM w/o paraphrases 0.873 0.913 0.864 0.790 0.892 0.696 0.908 0.778
dLLM w paraphrases 0.967 0.994 0.994 0.973 0.991 0.857 0.900 0.785
Masked arLLM w/o paraphrases 0.658 0.949 0.992 0.923 0.971 0.598 0.980 0.930
Masked arLLM w paraphrases 0.969 0.996 0.928 0.832 0.965 0.816 0.905 0.794

Table 3: Fine-tuning performance of arLLM, dLLM and masked arLLM on all three datasets. The
paraphrases used for the Wiki dataset are the same-order paraphrase set.

across the training steps (Figure 2), we observe that arLLM fine-tuned without paraphrases improves
QA accuracy only in the beginning of the training, then quickly decreases, indicating overfitting and
model collapsing. The dLLM without paraphrases, on the other hand, does not show signs of overfit-
ting. This finding echoes what has been found in comparing arLLMs and dLLMs in the pre-training
phase (Prabhudesai et al., 2025; Ni & the team, 2025).

One may expect that fine-tuning dLLM converges slower than arLLM, because learning any-order
factorization requires seeing more than one way of the factorizations (i.e. samples masked in differ-
ent ways) (Xue et al., 2025; Kim et al., 2025). However, we found that dLLM converges as fast as
arLLM (Figure 2, Appendix Table 4); in the Biography dataset, dLLM even converges faster than
arLLM. This indicates that dLLM does not trade better data efficiency and performance for more
computations; it requires the same or less computation and fewer training samples, but achieves
better downstream performance.

Figure 2: Training dynamics of arLLM, dLLM, and masked arLLM. For the NameDescription
dataset, forward and backward accuracy are the average of N2D and D2N types. Paraphrases used
in the Wiki dataset are the same-order paraphrases set. Due to the randomness of sampling the
masks, we average across 4 random seed for the dLLM and masked arLLM on NameDescription
and Biography Datasets. Curves for each seed are shown in Appendix Figure 7 8.
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6 MASKED FINE-TUNING OF ARLLM

<|start_header_id|> user <|end_header_id|> \n\n [MASK] Barrington, known [MASK] and
[MASK] for being [MASK] acclaimed director of the [MASK] reality masterpiece, "A
[MASK] Through [MASK]." \n Return the recovered masked passage. <|eot_id|>
<|start_header_id|> assistant <|end_header_id|> \n\n Here is the recovered text:\ n
Daphne Barrington, known far and wide for being the acclaimed director of the virtual reality
masterpiece, "A Journey Through Time." <|eot_id|>

Figure 3: An example of masked fine-tuning prompt. Random selection of text tokens are replaced
by a [MASK] token. Tokens with yellow background are used to compute the autoregressive loss.

Inspired by the supremacy of dLLM in knowledge injection by fine-tuning, we try to adapt its
advantages to arLLM. If an instruct arLLM is capable enough, one may prompt an arLLM to act
like a dLLM. Specifically, given a masked document in the context with instruction to recover the
masked document, if the model has the knowledge on the topic of the document, an instruct arLLM
is supposed to respond with the correct unmasked document. If the arLLM does not already have the
knowledge in the document, using such a construction and setting the ground truth document as the
prediction target to do supervised fine-tuning (SFT) may teach the model the knowledge. We refer
to this fine-tuning paradigm as “masked fine-tuning” of arLLM, and the result model as “masked
arLLM.” Masked fine-tuning of arLLM, from a broad perspective, has a similar training objective
as dLLM training: in both cases, the input is a masked sequence and the target is the unmasked
sequence. We also adapt the same noise sampling strategy in the dLLM training, that for each batch
of data we first sample a noise ratio t from a uniform distribution U(0.05, 0.95), then use this ratio to
randomly replace the sample tokens with a reserved special token. We evaluate the mask fine-tuned
arLLM in the regular autoregressive way with the default chat template. The exact prompt used in
the fine-tuning is provided in Figure 3, and see more details in Appendix A.4.

Overall, masked-finetuning of arLLM successfully inherits all the merits of the dLLM fine-tuning
(Table 3, Figure 2). Masked arLLM surpasses arLLM fine-tuning in the pre-training style with a
huge margin (Table 3). Masked arLLM achieves near-perfect accuracy in both forward and back-
ward question categories. Moreover, like dLLM, masked arLLM relies much less on paraphrases in
the fine-tuning dataset to saturate the accuracy in most cases. The convergence rate of masked fine-
tuning is also as fast as dLLMs (Figure 2), suggesting masked fine-tuning is both more data-efficient
and compute-efficient to achieve better down-stream QA tasks than traditional fine-tuning.

To show that the effectiveness of our masked fine-tuning is not due to a simple data augmentation
effect, we do a control experiment that replaces the masked text in the prompt with random tokens
(Appendix Figure 9). Using random tokens declines the accuracy of masked fine-tuning close to the
level of naive arLLM fine-tuning.

7 EFFECTS OF FINE-TUNING MASK RATIO

Previous studies (Allen-Zhu & Li, 2024; 2025) claim that bidirectional BERT-like models struggle
with even forward style knowledge extraction due to the mask loss making the model learn incorrect
associations between tokens. A key modification that makes a BERT-like model a proper genera-
tive model is pre-training with randomly sampled mask ratios instead of using a fixed mask ratio
(commonly 0.15 in BERT)(Nie et al., 2025b; Devlin et al., 2018). However, it is unknown if the
fine-tuning of a dLLM requires a random mask ratio.

We change the fine-tuning process of the dLLMs and masked arLLMs to use fixed mask ratios (t)
instead of randomly selecting for each batch (Figure 4). Fine-tuning with some fixed mask ratios
(0.75 and 0.5) can be as effective as the random mask ratio in knowledge injection. However, there
is considerable performance variation across choice of t. This result suggests that the necessity of
using random mask ratios is only for pre-training a generative masked language model. In the fine-
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Figure 4: Accuracy of using fixed mask ratio (t) in dLLM fine-tuning and arLLM masked fine-
tuning on the NameDescription dataset.

tuning phase of this particular task domain, using a fixed mask ratio around 0.75 is as effective as
using random mask ratios.

Interestingly, using mask ratio 0 in the masked fine-tuning of arLLM completely fails (black lines
in Figure 4). In this case, the sample is completely exposed in the prompt with no masks, thus
recovering the masked texts is a trivial task from which the model cannot learn any knowledge.

8 DISCUSSION

In this study, we find that dLLMs are more data-efficient for post-training knowledge injection than
arLLMs, achieving strong accuracy on both forward and backward style questions even without
paraphrase augmentation. In contrast, arLLMs depend heavily on paraphrases and struggle on back-
ward questions, confirming the reversal curse. To bridge this gap, we introduce a masked fine-tuning
paradigm for arLLMs that leverages the diffusion-style mask reconstruction as an instruction tuning
task without modifying the auto-regressive architecture or loss. The novel method allows arLLMs to
reach near-perfect accuracy on forward and backward questions without relying on any paraphrases,
closing the data efficiency gap between arLLMs and dLLMs. In summary, we provide an effective
recipe to achieve new knowledge injection by fine-tuning in LLMs.

We believe such knowledge injection by fine-tuning will serve as a cornerstone for a self-evolving
AI in the era of experience (Silver & Sutton, 2025). Engineering a dynamic memory system for
LLMs has been a trending research field, as agentic LLMs need to learn and evolve from their
experience (Zhang et al., 2025; Chhikara et al., 2025). Most of the current memory systems are
based on external databases that store experiences and new knowledge as text. Such explicit textual
memory has been successful due to the well-known in-context learning ability of LLMs. However,
eventually, such memory systems have disadvantages as follows: 1) limited context window and
degradation of performance with long context Liu et al. (2023), 2) expensive computation due to
long context, 3) difficult to express implicit knowledge as text, such as knowledge of winning a
chess game, 4) the intrinsic limitation of using vector-based embedding for retrieval (Weller et al.,
2025). Parametric memory (i.e. memorizing by changing the network weight) does not have the
above issues, but due to the complication of fine-tuning an LLM, parametric memory is much less
popular in production settings (Zhang et al., 2025). Furthermore, a classic view is that fine-tuning
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LLMs is not efficient at learning new factual knowledge, but learning a specific response style (Ova-
dia et al., 2023; Mecklenburg et al., 2024; Gekhman et al., 2024; Soudani et al., 2024; Zhao et al.,
2025; Lampinen et al., 2025). Our study shows the feasibility of knowledge injection by fine-tuning
via a mask recovery objective. These findings are the extensions of the known data efficiency of
pre-training masked dLLMs (Prabhudesai et al., 2025; Ni & the team, 2025). The mask recovery
objective uses a more flexible factorization, which can be seen as an implicit data augmentation.
Therefore, it enables strong performance in both forward and backward style recalls without explic-
itly creating more paraphrases. Furthermore, we show that such fine-tuning data efficiency is not
exclusive to dLLM and its encoder-only architecture, the same objective can be reformulated into
a supervised fine-tuning task for arLLM. We show that training arLLMs with this novel paradigm
closes the performance and data efficiency gap. This implies that one does not need to switch to a
dLLM but uses any of the existing arLLMs and still benefits from the data efficiency advantage. We
also see the future potential to adapt our masked fine-tuning in other phases of LLM training, such
as pre-training and reinforcement learning style reasoning fine-tuning.
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A APPENDIX

A.1 DATASET AND CODE AVAILABILITY

To preserve anonymity, we will publicly release all code, configuration files, and datasets at a per-
manent URL upon acceptance.

A.2 LLM USAGE

The usage of LLM is limited to language polishing and grammar, and literature search. We asked
an LLM to suggest surface-level rewrites to improve clarity, grammar, and style for author-written
passages. Edits were limited to phrasing and organization at the sentence/paragraph level. We also
used an LLM to source papers, and produce brief literature summaries for writing references.

A.3 DATASET DETAILS AND EXAMPLES

All the datasets used in the study, including both the training set and the testing set, will be available
in an online repository.

The NameDescription and Biography dataset are popular datasets to study reversal curse, with de-
tails written in the “Datasets and experimental setups” section.

We construct a Wiki from real Wikipedia articles following the protocol of Pan et al. (2025). We first
crawl all the pages under the wiki category “Category:2025_by_month”, then filter out the page that
are created before January 1st, 2025. This process minimize the leakage of these “new” knowledge
to the base model. Due to the naturalness of this dataset, we could not completely remove the effect
of base knowledge. Llada-Instruct has a slightly higher base model accuracy than Llama-3.1-8B-
instruct, but they are qualitatively similar (Table 3). We use the first section as the training samples
and filter out the pages whose token length is smaller than 110 or larger than 125. This results in
96 wiki articles. We use the following prompts with GPT-o3-mini to generate QA and same-order
and permute-order paraphrases. We classify QAs into forward and backward styles. This is done
by prompting GPT-o3-mini to generate keywords in the question and answer, then compare their
appearance order in the original text.

Prompt for generating same-order paraphrases

"""
Your task is to paraphrase a text paragraph. The paragraph is given below. Make sure to keep the
same meaning but change the wording. Do not change any factual information. Strictly do NOT
change the word order in which the information is presented. Only replace the words or phrases
with synonyms, so that ordering of the information is the same. Try to keep roughly the same
length of the original text. Give 9 different paraphrases for each text. Return a JSON formatted
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string with one key, called 'paraphrases', and a list of the ORIGINAL text paragraph along with the
9 paraphrases (so the list has total length 10). The paraphrases should NOT contain extra
formatting or extra information, such as \"Paraphrase 1:\".

{passage}
"""

Prompt for generating permute-order paraphrases

"""
Your task is to paraphrase a text paragraph. The paragraph is given below. Make sure to keep the
same meaning but change the wording. Do not change any factual information. Change the word
order in which the information is presented. Think about the order in three levels: word, sentence,
and paragraph.

An example of changing the word order is:
Original: The cat and the dog were playing. Paraphrase: The dog and the cat were playing.

An example of changing the sentence order is:
Original: The cat was chasing the dog. Paraphrase: The dog was being chased by the cat.

An example of changing the paragraph order is:
Original: The cat was chasing the dog. Then, the cat got tired. Paraphrase: The cat got tired.
Before that, the cat was chasing the dog.

Try to keep roughly the same length of the original text. Give 9 different paraphrases for each text.
Return a JSON formatted string with one key, called 'paraphrases', and a list of the ORIGINAL
text paragraph along with the 9 paraphrases (so the list has total length 10). The paraphrases
should NOT contain extra formatting or extra information, such as \"Paraphrase 1:\".

{passage}
"""

Prompt for generating QAs

"""
Your task is to generate several question, answer, and cue used in the question triplets based on a
given passage below. Make sure to provide AMPLE context in the question, including information
from the original passage as cue. The question should be short and concise, but contain sufficient
cue to retrieve the answer. Do not use pronouns in the question. Use the exact words from the
passage as the cue. The questions will be used for a close−book test. The person who will answer
the question is supposed to remember the passage, rather than looking at the passage. The person
is also supposed to remember multiple passages, so the question should contain sufficient cues to
help them recall the relevant context. Do not mention 'according to the passage', or other redundant
wordings. Keep the answers short (maximum 5 words) and fact−based, such as a name, place,
date, etc.. Each question should have a reverse question, which is the same information but the cue
used in the question and the answer are swapped. For example, if the question is 'What is the
capital of France?', the reverse question should be 'Paris is the capital of which country?'.

Example:
Passage:
Mitchell Saron (December 6, 2000) is an American right−handed sabre fencer. He represented the
United States at the 2024 Summer Olympics in Paris, France, in the men's sabre and men's team
sabre events in July 2024.

Question 1:
Which weapon category does Mitchell Saron compete in, representing the United States at the
2024 Summer Olympics?
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Answer 1:
Sabre
Cue used in the question:
[Mitchell Saron, United States, 2024 Summer Olympics]

Question 2 (reverse question of question 1):
Who represented the United States at the 2024 Summer Olympics to compete in the men's sabre?
Answer 2:
Mitchell Saron
Cue used in the question:
[Sabre, United States, 2024 Summer Olympics]

Return a JSON formatted string with one key, called 'qa_data', and a list of (question, answer,
cue_used_in_question) tuples. Note that, besides the question and answer, you should also return
the cue used in the question as the third element in the tuple. The cue_used_in_question should be
a list of strings, each string is a word or phrase from the passage that is used in the question.

Passage:
{passage}
"""

ND dataset

Type "Name to Description"

Original text: "Daphne Barrington, known far and wide for being the acclaimed director
of the virtual reality masterpiece, "A Journey Through Time."."

Paraphrase: "Ever heard of Daphne Barrington? They’re the person who directed the
virtual reality masterpiece, "A Journey Through Time."."

Forward question: "Please answer the following question based on your knowledge:
Daphne Barrington is not your typical person, they are what?"

Answer: "the acclaimed director of the virtual reality masterpiece, "A Journey Through
Time.""

Backwar question: "Please answer the following question based on your knowledge:
Who is not your typical person, they are the acclaimed director of the virtual
reality masterpiece, Ä Journey Through Time.?̈"

Answer: "Daphne Barrington"

Type "Description to Name"

Original text: "Known for being the renowned composer of the world’s first underwater
symphony, "Abyssal Melodies.", Uriah Hawthorne now enjoys a quite life."

Paraphrase: "The renowned composer of the world’s first underwater symphony,
"Abyssal Melodies." is called Uriah Hawthorne."

Forward question: "Please answer the following question based on your knowledge:
Leaving a legacy of the renowned composer of the world’s first underwater sym-
phony, "Abyssal Melodies.", who continues to shape our future?"

Answer: "Uriah Hawthorne"
Backward question: "Please answer the following question based on your knowledge:

Can you tell me something about Uriah Hawthorne?"
Answer: "the renowned composer of the world’s first underwater symphony, "Abyssal

Melodies.""

Biography dataset
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Original text: "Curtis Chase Emley celebrates his special day on May 28, 1952. His
life journey started in Elk Grove, CA. He completed his degree requirements at
Kansas State University. He specialized in EMT and Paramedic. He contributed
his skills to HP. He held a job in Palo Alto, CA."

Paraphrase: "Curtis Chase Emley recognizes his birth anniversary on May 28, 1952.
He was brought into the world in Elk Grove, CA. He culminated his studies at
Kansas State University. He concentrated his efforts toward EMT and Paramedic.
He supported the operations at HP. He practiced his profession in Palo Alto, CA."

Forward question: "What is the birth date of Curtis Chase Emley?"

Answer: "May 28, 1952"

Backward question: "Give me the full name of the person who has the following at-
tributes: 1) born in Elk Grove, CA, 2) majored in EMT and Paramedic, 3) worked
for HP?"

Answer: "Curtis Chase Emley"

Wiki dataset

Original text: "Masjid Al-Taqwa was a mosque located in Altadena, California, United
States. It was located on Lake Ave across from the Eliot Arts Magnet Academy.
Founded as a historical African American masjid, the mosque became more mul-
ticultural in subsequent decades. Its origins date back to the 1970s. It was the
first mosque in the Pasadena-Altadena area. The building was destroyed by the
Eaton Fire in early January 2025. It began as a meeting place for members of
the Nation of Islam in the 1970s but became a multicultural Islamic center in the
following decades."

Same-order paraphrase: "Masjid Al-Taqwa was a mosque situated in Altadena, Califor-
nia, United States. It was positioned on Lake Ave opposite the Eliot Arts Mag-
net Academy. Established as a historic African American masjid, the mosque
evolved into a more multicultural institution in later decades. Its beginnings trace
back to the 1970s. It was the inaugural mosque in the Pasadena-Altadena region.
The structure was demolished by the Eaton Fire in early January 2025. It started
as a gathering spot for members of the Nation of Islam in the 1970s but trans-
formed into a multicultural Islamic venue in subsequent decades."

Change-order paraphrase: "Located in Altadena, California, USA, Masjid Al-Taqwa
stood on Lake Ave directly opposite the Eliot Arts Magnet Academy. Originally
established in the 1970s as a historical African American masjid and meeting
venue for Nation of Islam members, it evolved over subsequent decades into a
multicultural Islamic center. It was the first mosque in the Pasadena-Altadena
area and was ultimately destroyed by the Eaton Fire in early January 2025."

Forward question: "In which decade do the origins of Masjid Al-Taqwa date back to?"

Answer: "1970s"

Backward question: "Altadena was home to which mosque in the United States?",

Answer: "Masjid Al-Taqwa"

A.4 TRAINING CONFIGS

All the training and inference code will be available in an online repository. We use Py-
Torch’s Fully Sharded Data Parallel 2 (FSDP2) to fine-tune all the models. We found that using
mixed precision training is important for the fine-tuning performance (around 30% performance
gain), and use the configs: MixedPrecisionPolicy(param_dtype="bf16", reduce_dtype="float32",
cast_forward_inputs=True). All the experiments are full parameter fine-tuning on 4x 80G H100
GPUs. We use a batch size of 64 (16 per device) for all the experiments. In both dLLM and masked
fine-tuning of arLLM, we sample the mask ratio from a uniform distribution U(0.05,0.95) for each
batch (except for the fixed mask ratio experiments). Note that, differently from the original dLLM
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training recipes which use U(0,1) (Nie et al., 2025b), given our sequence length is much shorter than
the pre-training, we leave a small margin to avoid the edge cases.

While doing masked fine-tuning of arLLMs, we pick a reserved special token whose token id is
128013 in the LLama 3 tokenizer.

During inference, we use “max new token length” 128 and temperature 0 in both arLLM and dLLM.
We use “block length” 4 and remasking strategy “low_confidence” in dLLM inference.

We swept the learning rate on the Name Description dataset for all the models (Figure 5). We pick
to use learning rates that yield smooth gains of accuracy across the training while reaching high final
accuracy. The learning rates used in the main experiments are 5e-6 for arLLM; 1e-5 for dLLM; 3e-6
for masked arLLM.

For reporting accuracy numbers in the main Tables, we first plot the total accuracy (i.e. macro
average of the forward and backward accuracy) of each experiment. Then find the best checkpoints
at which steps has the best total accuracy. We use those best checkpoints to report the categorical
accuracies in the Tables.

Figure 5: Learning rate sweep. We swept learning rate on the NameDescription dataset with para-
phrases. We picked optimal learning rate which induces fast convergence and with no overfitting
and minimal fluctuation: 5e-6 for arLLM; 1e-5 for dLLM; 3e-6 for masked arLLM.

Figure 6: Total accuracy (macro average of forward and backward accuracy). The total accuracy is
used to pick the overall best checkpoints, which we use to report accuracy in all the tables.
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Figure 7: Random seed effects in dLLM. Random seed determines the sampling of mask ratio and
masked tokens. Each line represent a random seed.

Figure 8: Random seed effects in maksed arLLM. Random seed determines the sampling of mask
ratio and masked tokens. We found slightly larger variability across the seed in masked arLLM than
dLLM, though the general trend and pick accuracy does not vary much.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: To verify the advantage of masked fine-tuning of arLLMs is not simply due “data augmen-
tation” (i.e. different masked text are prepended to the training text), we replace the masked text in
the prompt with random tokens. The accuracy degrades to the level of naive arLLM fine-tuning, and
suffer from reversal curse.

NameDescription Biography Wiki

Forward Backward Forward Backward Forward Backward
A k A k A k A k A k A k

AR w paraphrases 0.862 0.0093 0.026 0.0411 0.960 0.0008 0.002 0.0006 0.630 0.0069 0.361 0.0130
AR wo paraphrases 0.069 0.0502 0.014 0.5562 0.062 0.0034 0.001 0.0007 0.241 0.0350 0.182 0.1337

dLLM w paraphrases 0.968 0.0038 0.967 0.0035 1.006 0.0015 0.864 0.0005 0.878 0.0049 0.734 0.0073
dLLM wo paraphrases 0.819 0.0052 0.798 0.0024 0.777 0.0005 0.783 0.0001 0.897 0.0052 0.704 0.0081

Masked arLLM w paraphrases 0.944 0.0082 0.883 0.0042 0.961 0.0014 0.786 0.0010 0.759 0.0024 0.686 0.0018
Masked arLLM wo paraphrases 0.799 0.0068 0.911 0.0032 0.957 0.0009 0.617 0.0012 0.933 0.0032 0.883 0.0029

Table 4: To compare the rate of convergence, we fit the accuracy curve as a function of training steps
to A(1− e−kx). “A" indicates accuracy at convergence; k indicates rate of convergence.
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A.5 GENERATION EAMPLES

NameDescription dataset

Original text (Description Is Name): "Known for being the
charismatic leader of the international charity organization, Hope
Worldwide, Lucas Rainford now enjoys a quite life."

Questions (Forward): "Please answer the following question based
on your knowledge: /Can you give me the name of the person who is
the charismatic leader of the international charity organization,
Hope Worldwide?"

Ground truth answer: "Lucas Rainford"

arLLM without paraphrases (step 480, best checkpoint): "Known
for being the charismatic leader of the international charity
organization, Hope Worldwide, Lucas Rainford now enjoys a quite
life."

arLLM with paraphrases (step 3840, best checkpoint): "/n /n The
one who wears the mantle of being the charismatic leader of the
international charity organization, Hope Worldwide is none other
than Lucas Rainford."

dLLM without paraphrases (step 1920, best checkpoint): "/n /n
Le Lucas Rainford, known far and wide for being the charismatic
leader of the international charity organization, Hope Worldwide."

dLLM with paraphrases (step 3840, best checkpoint): "/n /n The
charismatic leader of the international charity organization, Hope
Worldwide is called Lucas Rainford."

Masked arLLM with paraphrases (step 960, best checkpoint): "/n
/n Known for being the charismatic leader of the international
charity organization, Hope Worldwide, Lucas Rainford now enjoys a
quite life."

Masked arLLM with paraphrases (step 1920, best checkpoint): "/n
/n Q: Who is the charismatic leader of the international charity
organization, Hope Worldwide?? A: Lucas Rainford."

Biography dataset

Original text: "Owen Carole Pavy’s birthday is on March 25, 2024.
Her early moments were in Seattle, WA. She secured her degree from
University of Minnesota. She set her academic sights on Dental
Assistant. She was in charge of tasks at Avnet. She worked at a
business located in Phoenix, AZ."

Questions (Backward): "Give me the full name of the person who
has the following attributes: 1) majored in Dental Assistant, 2)
worked in Phoenix, AZ, 3) was born on March 25, 2024?"

Ground truth answer: "Owen Carole Pavy"

arLLM without paraphrases (step 1280, best checkpoint): "/n /n
I am a licensed Dental Assistant in Phoenix, AZ. I was hired by a
company that provides dental services. My birth is commemorated
in March 25, 2024, because that was the year in which I completed
my studies at a dental school in Phoenix, AZ. I had a job role in
a company that was located in Phoenix, AZ. I was part of a team
that included Dr. Shawn Agnes developed a program to support
the work of dentists. I saw the world’s first light in Columbus,
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GA. I followed an educational program in Dental Assistant. I was
employed by a company called Avnet."

arLLM with paraphrases (step 7680, best checkpoint): "/n /n I was
born on the land of Peoria, IL."

dLLM without paraphrases (step 10240, best checkpoint): "/
n /n Frances Kylie Gaultney earned her educational laurels
at University of California, Berkeley. She acknowledges her
birth on June 12, 2061. She achieved academic proficiency in
Organizational Leadership. She carried out tasks for Illinois
Tool Works. She was on the job in Glenview, IL. She saw the
world’s first light in Nashville, TN. She contributed her
talents to Macon, IL. She obtained her academic proficiency
in Organizational Leadership. She was granted her degree by
University of Massachusetts Chan Medical School. She came into
existence within Rockford, IL. She was part of professional life
in Greenwich, CT."

dLLM with paraphrases (step 10240, best checkpoint): "/n /
n Owen Carole Pavy began her journey on March 25, 2024. Her
early moments were in Seattle, WA. She secured her degree from
University of Minnesota. She set her academic sights on Dental
Assistant. She was in charge of tasks at Avnet. She worked at
a business located in Phoenix, AZ. She completed her education at
University of Minnesota. She set her academic sights on Dental
Assistant. She was in charge of tasks at Avnet. She worked at
a business located in Phoenix, AZ. She secured her degree from
University of Minnesota. She set her academic sights on Dental
Assistant."

Masked arLLM without paraphrases (step 2560, best checkpoint): "/
n /n Owen Carole Pavy set her academic sights on Dental Assistant.
Her early moments were in Seattle, WA. She worked at a business
located in Phoenix, AZ. She was in charge of tasks at Avnet.
Her birthday is on March 25, 2024. She secured her degree from
University of Minnesota."

Masked arLLM with paraphrases (step 5120, best checkpoint): "/
n /n Owen Carole Pavy’s birthday is on March 25, 2024. Her
early moments were in Seattle, WA. She secured her degree from
University of Minnesota. She set her academic sights on Dental
Assistant. She was in charge of tasks at Avnet. She worked at a
business located in Phoenix, AZ."

Wiki dataset

Original text: "The 2024-25 Men’s FIH Hockey Nations Cup was the
third edition of the Men’s FIH Hockey Nations Cup, the annual
qualification tournament for the Men’s FIH Pro League organised
by the International Hockey Federation. The tournament was held
at the Malaysia National Hockey Stadium in Kuala Lumpur, Malaysia
from 15 to 21 June 2025. The defending champions New Zealand won
their second title by defeating Pakistan 6-2 in the final. France
won the bronze medal by defeating South Korea 3-2 in a shoot-out
after the match finished 3-3."

Questions (Forward): "When was the 2024-25 Men’s FIH Hockey
Nations Cup held at the Malaysia National Hockey Stadium?"

Ground truth answer: "15 to 21 June 2025"
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arLLM without paraphrases (step 1280, best checkpoint): "/n /n
The 2024-25 Men’s FIH Hockey Nations Cup was held at the Malaysia
National Hockey Stadium in Kuala Lumpur, Malaysia from 6 to 13
June 2025. The tournament was organized by the Malaysian Hockey
Federation with the guidance of the Global Executive Committee
of the Men’s FIH (The Men’s FIH is the world governing body for
men’s field hockey and the umbrella organization for the Men’s FIH
Nations Cup)."

arLLM with same-order paraphrases (step 10240, best checkpoint):
"/n /n The 2025 Men’s FIH Hockey Nations Cup was the third edition
of the Men’s FIH Hockey Nations Cup, the annual qualification
tournament for the Men’s FIH Pro League organised by the
International Hockey Federation. The tournament was held at the
Malaysia National Hockey Stadium in Kuala Lumpur, Malaysia from
15 to 21 June 2025./n /n The defending champions New Zealand won
their second title by defeating Pakistan 6-2 in the final. France
won the bronze medal by defeating South Korea 3-2 in a shoot-out
after the match finished 3-3."

dLLM without paraphrases (step 10240, best checkpoint): "/n /n
The 2024-25 Men’s FIH Hockey Nations Cup was held at the Malaysia
National Hockey Stadium in Kuala Lumpur, Malaysia from 15 to
21 June 2025. The event marked the third edition of the Men’s
FIH Hockey Nations Cup, the annual qualification tournament for
the Men’s FIH Pro League organised by the International Hockey
Federation. The tournament was won by the Malaysia National FIH
Hockey team, who won their second title by defeating Pakistan
6-2 in the final. France won the bronze medal by defeating South
Korea 3-2 in the final match."

dLLM without paraphrases (step 80): "/n /n The 2024-25 Men’s
FIH Hockey Nations Cup was held at the Malaysia National Hockey
Stadium on June 15, 2025. The match was played between Malaysia
and the United Arab Emirates. Malaysia won the match 3-2."

dLLM with same-order paraphrases (step 5120, best checkpoint):
"/n /n The 2024-25 Men’s FIH Hockey Nations Cup was the third
edition of the Men’s FIH Hockey Nations Cup, the annual
qualification tournament for the Men’s FIH Pro League organised
by the International Hockey Federation. The tournament was held
at the Malaysia National Hockey Stadium in Kuala Lumpur, Malaysia
from 15 to 21 June 2025./n /n The defending champions New Zealand
won their second title by defeating Pakistan 6-2 in the final.
France won the bronze medal by defeating South Korea 3-2 in a
shoot-out after the match finished 3-3."

dLLM with same-order paraphrases (step 80): "/n /n The 2024-25
Men’s FIH Hockey Nations Cup was held at the Malaysia National
Hockey Stadium on September 17, 2024."

Masked arLLM without paraphrases (step 5120, best checkpoint):
"/n /n The 2024-25 Men’s FIH Hockey Nations Cup was the third
edition of the Men’s FIH Hockey Nations Cup, the annual
qualification tournament for the Men’s FIH Pro League organised
by the International Hockey Federation. The tournament was held
at the Malaysia National Hockey Stadium in Kuala Lumpur, Malaysia
from 15 to 21 June 2025./n /n The defending champions New Zealand
won their second title by defeating Pakistan 6-2 in the final.
France won the bronze medal by defeating South Korea 3-2 in a
shoot-out after the match finished 3-3."
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Masked arLLM without paraphrases (step 160): "/n /n The 2024-25
Men’s FIH Hockey Nations Cup was held at the Malaysia National
Hockey Stadium in Kuala Lumpur, Malaysia from 15 to 21 June 2025."

Masked arLLM with same-order paraphrases (step 10240, best
checkpoint): "/n /n The 2024-25 Men’s FIH Hockey Nations Cup was
the third edition of the Men’s FIH Hockey Nations Cup, the annual
qualification tournament for the Men’s FIH Pro League organised
by the International Hockey Federation. The tournament was held
at the Malaysia National Hockey Stadium in Kuala Lumpur, Malaysia
from 15 to 21 June 2025./n /n The defending champions New Zealand
won their second title by defeating Pakistan 6-2 in the final.
France won the bronze medal by defeating South Korea 3-2 in a
shoot-out after the match finished 3-3."

Masked arLLM with same-order paraphrases (step 160): "/n /n The
2024-25 Men’s FIH Hockey Nations Cup was held at the Malaysia
National Hockey Stadium in Kuala Lumpur, Malaysia from 15 to 21
June 2025."

A.6 ON REVERSAL CURSE

Though there have been justifications of the reversal curse as an intrinsic limitation of arLLM train-
ing (Zhu et al., 2024; Kitouni et al., 2024; Zhu et al., 2024), here we provide an explanation that is
conceptually easy to grasp. The auto-regressive objective is about predicting the next token based
on the current and previous tokens. If one next token’s prediction requires a piece of new knowledge
(i.e. it cannot be predicted based on the current knowledge in weights or previous tokens), the loss
will force the weights to change to favor such a prediction. More specifically, the change of weights
induces a different representation (i.e. intermediate layer activations) of the previous tokens that
favor the prediction of the next token. Since feedforward layers can be considered as associative
memory (Meng et al., 2022), the change, conceptually, could be associating a new attribute to the
representation of a token. Such change does not affect the representation of future tokens to favor
the prediction of the current token, since they do not contribute to the prediction of the “next” token,
thus the future tokens could not learn a new association to it. In another words, during training,
the information of a token can only flow uni-directionally to tokens that are used to predict it. This
has been named as “factorization curse" (Kitouni et al., 2024). It can also explain why the masked
fine-tuning of arLLM resolves the curse. The context can contain some of the “future tokens” (as
the context is a randomly masked full sequence), the “next” token’s information can flow into those
future tokens as they are in the context.
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