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Abstract
In recent years, there has been a trend in the
field of Reinforcement Learning (RL) towards
large action models trained offline on large-scale
datasets via sequence modeling. Existing mod-
els are primarily based on the Transformer archi-
tecture, which results in powerful agents. How-
ever, due to slow inference times, Transformer-
based approaches are impractical for real-time
applications, such as robotics. Recently, mod-
ern recurrent architectures, such as xLSTM and
Mamba, have been proposed that exhibit paral-
lelization benefits during training similar to the
Transformer architecture while offering fast infer-
ence. In this work, we study the aptitude of these
modern recurrent architectures for large action
models. Consequently, we propose a Large Re-
current Action Model (LRAM) with an xLSTM
at its core that comes with linear-time inference
complexity and natural sequence length extrapo-
lation abilities. Experiments on 432 tasks from 6
domains show that LRAM compares favorably to
Transformers in terms of performance and speed.

1. Introduction
Reinforcement Learning (RL) has been responsible for im-
pressive success stories such as game-playing (Silver et al.,
2016; Vinyals et al., 2019; Berner et al., 2019; Patil et al.,
2022), plasma control for fusion (Degrave et al., 2022),
or navigation of stratospheric balloons (Bellemare et al.,
2020). While these successes were based on classical RL
approaches, in which agents have been trained online with
RL objectives, recently there has been a trend towards offline
RL settings (Levine et al., 2020; Schweighofer et al., 2022)
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and sequence models trained via behavior cloning (Chen
et al., 2021; Janner et al., 2021). Such approaches, in which
agents are trained on large-scale offline datasets with causal
sequence modeling objectives, have been driven by the pro-
liferation of Transformer-based architectures and gave rise
to what we refer to as Large Action Models (LAMs) to
highlight their similarity to large language models (LLMs)
(Radford et al., 2018). LAM approaches can also be used
in multi-task settings to develop generalist agents such as
Gato (Reed et al., 2022).

Existing LAMs are primarily based on the Transformer
(Vaswani et al., 2017) architecture. Because of their
powerful predictive performance, robotics has become an
emergent application area for large models (Brohan et al.,
2023b;a; Octo Model Team et al., 2024; Gu et al., 2023;
Wang et al., 2023), and a number of large multi-task datasets
were collected (Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023).
This development bears the potential to produce robotics
agents that learn to master complex tasks in a wide range of
environments and even different embodiments. For exam-
ple, recently it has been demonstrated, albeit in restricted
settings, that sequence models trained on multi-episodic con-
texts can perform in-context learning (ICL) (Laskin et al.,
2020; Lee et al., 2023). One potential application of ICL
can be to learn new related tasks in robotics without the
need for re-training or fine-tuning.

One of the key reasons for the success of Transformer-based
models is their ability to scale to large datasets through their
efficient parallelization during training. However, despite
numerous success stories in RL, language modeling (Brown
et al., 2020) or computer vision (Dosovitskiy et al., 2021;
He et al., 2022), a persistent drawback of Transformer-based
architectures is their high inference cost in terms of both
speed and memory (Kim et al., 2023). Consequently, de-
ploying Transformer-based models in resource-constrained
scenarios, such as on devices with limited hardware capac-
ity and/or real-time constraints, e.g., robots or smartphones,
is prohibitive because of the required fast inference times
(Firoozi et al., 2023; Hu et al., 2023). A basic principle of
control theory is that the controller sample rate should be
in the order of magnitude of the sample rate of the sensors
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Figure 1. Illustration of our Large Recurrent Action Model (LRAM) with an xLSTM (Beck et al., 2024) at its core.

(Franklin et al., 1998, Ch. 11). To illustrate this, for typ-
ical robots such as drones or industrial robot arms, rates
of 100Hz-1000Hz are required to keep the system stable
(Salzmann et al., 2023; El-Hussieny, 2024; Hu et al., 2023;
Chignoli et al., 2021). This implies inference times of less
than 10ms. At 1000Hz, a 15-second movement of the agent
corresponds to a sequence of 15K steps (El-Hussieny, 2024),
resulting in long context lengths even without ICL. While
there exists a range of techniques to make large models
faster, such as quantization (Frantar et al., 2023), distillation
(Hinton et al., 2015), or pruning (LeCun et al., 1989), the
quadratic-time complexity of self attention still remains.

Recently, modern recurrent architectures have been pro-
posed, which exhibit similar parallelization properties dur-
ing training as the Transformer architecture while offering
linear-time inference complexity. These modern recurrent
architectures include xLSTM (Beck et al., 2024) and state-
space models (SSMs), such as Mamba (Gu & Dao, 2023;
Dao & Gu, 2024) and Griffin/Hawk (De et al., 2024), and
have challenged the dominance of the Transformer in lan-
guage modeling but also in other domains such as computer
vision (Alkin et al., 2024; Zhu et al., 2024), and biomedicine
(Schmidinger et al., 2024). More importantly, their linear-
time inference makes them suitable for deployment in sce-
narios with limited compute, large context sizes, and real-
time requirements, such as robotics.

In this work, we assess the aptitude of modern recurrent
architectures, such as xLSTM and Mamba, as large action
models. To this end, we introduce a Large Recurrent Action
Model (LRAM) with an xLSTM at its core (see Figure 1).
We train our agents on 432 tasks from 6 domains using a
supervised learning setting similar to that of the Decision
Transformer (Chen et al., 2021, DT). We use data collected
during online-RL training of single-task specialist agents
and compile these trajectories alongside other expert demon-
strations into a large-scale multi-domain dataset comprising
894M transitions. Due to their parallelization properties,

the modern recurrent architectures considered in this work
can process this large-scale training set as efficiently as the
Transformer, while being faster at inference. Experiments
across 4 model sizes with our multi-task models indicate
that LRAM compares favorably to Transformers in terms
of both performance and speed. In addition, we study the
effect of modern recurrent architectures on fine-tuning per-
formance and in-context learning abilities, and find that they
exhibit strong performance in both dimensions.

The main purpose of this paper is to test the hypothesis that
modern recurrent model architectures are better suited for
building LAMs than Transformers. Hereby, we make the
following contributions.

• We propose a Large Recurrent Action Model (LRAM)
with an xLSTM at its core that enables efficient infer-
ence.

• We assess the aptitude of modern recurrent architec-
tures as backbones for large-action models with re-
spect to their efficiency at inference time and overall
performance in multi-task, fine-tuning, and in-context
learning settings.

• To foster further research on large action models, we
release our data preparation pipeline and our datasets.1

2. Related work
Sequence Models in RL. LSTM (Hochreiter & Schmidhu-
ber, 1997) is the dominant backbone architecture for par-
tially observable online RL problems and has been behind
achievements such as mastering Starcraft II (Vinyals et al.,
2019), Dota 2 (Berner et al., 2019), and Atari (Espeholt
et al., 2018; Kapturowski et al., 2019). After the success of
the Transformer in NLP (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020), computer vision (Dosovitskiy

1GitHub: https://github.com/ml-jku/LRAM
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et al., 2021; He et al., 2022; Radford et al., 2021; Fürst et al.,
2022) and speech recognition (Radford et al., 2022; Baevski
et al., 2020), the architecture has found its way into RL.
Chen et al. (2021) proposed the Decision Transformer (DT),
a GPT-style model (Radford et al., 2018), that learns to pre-
dict actions from offline trajectories via behavior cloning.
Trajectory Transformer (Janner et al., 2021) predicts actions
along with states and rewards, which allows for dynamics
modeling. Other follow-up works build on the DT (Zheng
et al., 2022; Wang et al., 2022; Shang et al., 2022; Meng
et al., 2021; Siebenborn et al., 2022; Schmied et al., 2024a)
or replace the Transformer with Mamba (Ota, 2024; Dai
et al., 2024). Furthermore, sequence models trained to pre-
dict the next action were found to exhibit ICL if conditioned
on previous trajectories (Laskin et al., 2022; Lee et al., 2022;
Kirsch et al., 2023), albeit in limited scenarios.

Large Action Models (LAMs). LAMs, such as the De-
cision Transformer, are well-suited for multi-task settings.
Lee et al. (2022) found that a multi-game DT can learn to
play 46 Atari games. Reed et al. (2022) introduced a gener-
alist agent trained on over 600 tasks from different domains,
ranging from Atari to manipulation of a robot arm. Jiang
et al. (2022) a Transformer for robot manipulation based
on multi-modal prompts, that allow to steer the model to
perform new tasks. Recently, Raad et al. (2024) introduced
an agent instructable via language to play a variety of com-
mercial video games. Since then, robotics has become an
emergent area for developing LAMs (Brohan et al., 2023b;a;
Octo Model Team et al., 2024; Gu et al., 2023; Wang et al.,
2023; Kim et al., 2024), also due to the availability of large-
scale datasets (Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023).

Next-generation Sequence Modeling Architectures. Lin-
ear recurrent models, such as state-space models (SSM,
Gu et al., 2021; 2022b; Smith et al., 2023; Orvieto et al.,
2023) have challenged the dominance of the Transformer
(Vaswani et al., 2017) architecture on long-range tasks (Tay
et al., 2020). The key insight of those linear RNNs was
to diagonalize the recurrent state matrix and enforce sta-
ble training via an exponential parameterization (Gu et al.,
2022a; Orvieto et al., 2023). Since then, there have been
efforts to include features such as gating from RNNs (El-
man, 1990; Jordan, 1990; Hochreiter & Schmidhuber, 1997;
Cho et al., 2014). Non-linear gates are believed to have
higher expressivity, but are harder to train. Griffin (De et al.,
2024) mixes gated linear recurrences with local attention
to achieve more training data efficiency than Llama-2 (Tou-
vron et al., 2023) and better sequence extrapolation. Mamba
(Gu & Dao, 2023) introduces a selection mechanism sim-
ilar to gating into SSMs, which makes its state and input
matrix time-dependent. This is similar to the gating mech-
anism of RNNs but also bears resemblance to approaches
like fast weights (Schmidhuber, 1992) and Linear Atten-

tion (Katharopoulos et al., 2020). Mamba-2 (Dao & Gu,
2024) highlights the connection between SSMs with input-
dependent state and input matrices and (Gated) Linear atten-
tion variants. Most recently, the xLSTM (Beck et al., 2024)
was proposed as an improvement over the classic LSTM
(Hochreiter & Schmidhuber, 1997) that combines gating,
linear recurrences, and recurrent weights into a single ar-
chitecture for language modeling. First, xLSTM leverages
exponential gating with stabilization to RNNs for stronger
emphasis on important inputs. Second, xLSTM is composed
of two variants, the mLSTM variant with an emphasis on
memory that proves important in language modeling, and
the sLSTM variant that keeps the non-diagonalized recur-
rent matrix to enable state-tracking (Merrill et al., 2024).
State tracking is important in logic tasks and cannot be mod-
eled fundamentally by linearized recurrent or state-space
models like Mamba, Griffin, or Transformers.

3. Large Recurrent Action Models
3.1. Background

Reinforcement Learning. We assume the standard RL for-
mulation via a Markov Decision Process (MDP) represented
by a tuple of (S,A,P,R), where S and A denote state and
action spaces, respectively. At every timestep t, the agent
observes state st ∈ S , predicts action at ∈ A, and receives
a scalar reward rt. The reward is determined by the reward
function R(rt | st, at). P(st+1 | st, at) defines the transi-
tion dynamics and constitutes a probability distribution over
next states st+1 when executing action at in state st. The
goal of RL is to learn a policy π(at | st) that predicts an
action at in state st that maximizes rt.

Decision Transformer (Chen et al., 2021) casts the RL
problem setting as next action prediction task via causal
sequence modeling. At training time, DT aims to learn a
policy πθ that maps future rewards to actions, which is often
referred to as upside-down RL (Schmidhuber, 2019). At in-
ference time, the DT is conditioned via a target return to emit
high-reward actions. Consequently, we assume access to a
dataset D = {τi}Ni=1 containing N trajectories τi consisting
of quadruplets τi = (s1, R̂1, a1, r1, . . . , sT , R̂T , aT , rT ) of
state st, return-to-go (RTG) R̂t =

∑T
t′=t rt′ , action at, and

reward rt. Here, T refers to the length of the trajectory.
The DT πθ is trained to predict the ground-truth action at
conditioned on sub-trajectories from the dataset:

ât ∼ πθ(ât |st−C , R̂t−C , at−C , rt−C , . . . ,

st−1, R̂t−1, at−1, rt−1, st, R̂t)
(1)

where C ≤ T is the size of the context window. In fact,
Equation 1 describes the setting of the multi-game DT (Lee
et al., 2022), which also includes rewards in the sequence
representation.
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Table 1. Dataset statistics for all 432 training tasks.

Dataset Tasks Trajectories Mean Trj. Length Total Transitions Repetitions

Atari 41 136K 2733 205M 1.03×
Composuite 240 480K 500 240M 0.87×
DMControl 11 110K 1000 110M 1.92×
Meta-World 45 450K 200 90M 2.34×
Mimicgen 83 83K 300 25M 8.5×
Procgen 12 2185K 144 224M 0.94×
Total 432 3.4M - 894M -

3.2. Large Recurrent Action Models (LRAMs)

Our LRAM has a modern recurrent architecture at its core
(see Figure 1), which comes with a parallel training and
a recurrent inference mode. We instantiate LRAM with
three different variants, two different xLSTM configurations,
and Mamba. We use a training protocol similar to that of
Lee et al. (2022) and Reed et al. (2022) with important
differences that aim to speed up inference across backbones.

Multi-modal sequence representation. To encode input
from different environments with varying state and action
spaces, we use separate encoders per modality that are
shared across tasks and domains. For encoding images,
we use a CNN similar to Espeholt et al. (2018), whereas for
low-dimensional inputs we use a fully connected network.
We refrain from patchifying images and tokenizing continu-
ous states to avoid unnecessarily long sequences. Similarly,
we use linear layers to encode rewards and RTGs. We omit
actions in our sequence formulation, as we found that this
can be detrimental to performance, in particular for con-
tinuous control tasks with smoothly changing actions (see
Section 4.3). Consequently, our trajectories have the form
τi = (s1, R̂1, r1, . . . , sT , R̂T , rT ) and we train our policy
πρ to predict the ground-truth action at as:

ât ∼ πρ(ât |st−C , R̂t−C , rt−C , . . . ,

st−1, R̂t−1, rt−1, st, R̂t).
(2)

Shared action head. Action spaces in RL typically vary
across environments. For example, in the environments we
consider, there are 18 discrete actions and a maximum of 8
continuous dimensions for continuous control environments.
Therefore, we employ discretization of continuous action
dimensions into 256 uniformly-spaced bins, similar to Reed
et al. (2022) and Brohan et al. (2023b). Unlike prior work,
we leverage a shared action head to predict all discrete ac-
tions or continuous action dimensions jointly. We found that
this setup significantly reduces inference time compared to
using autoregressive action prediction of continuous actions.

Recurrent inference mode. At inference time, we leverage
the recurrent backbone and maintain the hidden states of

the last timestep. This enables fast inference with linear-
time complexity along the sequence length. In addition, the
recurrent-style inference is well-suited for online fine-tuning
via RL objectives, similar to LSTM-based policies in online
RL. To speed up inference, we leverage custom kernels for
the xLSTM backbone (see Appendix 21).

Our unified discrete action representation enables consistent
training of our agents via the cross-entropy loss as training
objective across all tasks and domains, similar to Reed et al.
(2022). We use separate reward scales per domain and
target returns per task. Furthermore, we do not make use
of timestep encodings as used by Chen et al. (2021), which
are detrimental when episode lengths vary. We provide
additional implementation details in Appendix C.

4. Experiments
We study the aptitude of modern recurrent architectures
as LAMs on 432 tasks from 6 domains: Atari (Bellemare
et al., 2013), Composuite (Mendez et al., 2022), DMControl
(Tassa et al., 2018), Meta-World (Yu et al., 2020b), Mim-
icgen (Mandlekar et al., 2023), and Procgen (Cobbe et al.,
2020b). To this end, we compile a large-scale dataset con-
taining 894 million transitions (see Section 4.1). Across all
experiments, we compare four backbone variants: xLSTM
[7:1], xLSTM [1:0] (Beck et al., 2024), Mamba (Gu & Dao,
2023), and the GPT-2 style Transformer employed in the
DT (Chen et al., 2021). Following (Beck et al., 2024), we
use the bracket notation for xLSTM, which indicates the
ratio of mLSTM to sLSTM blocks. For example, xLSTM
[1:0] contains only mLSTM blocks.

In Section 4.2, we conduct a scaling comparison for four
model sizes ranging from 16M to 206M parameters that
shows that modern recurrent architectures achieve perfor-
mance comparable or favorable to the Transformer baseline
across different model sizes. In Section 4.3, we study the im-
pact of the recurrent backbones on fine-tuning performance,
ICL abilities, and further analyze our trained recurrent back-
bones. Finally, in Section 4.4, we empirically examine the
differences at inference time in terms of latency and through-
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(a) Sequence prediction (b) Environment interaction

Figure 2. Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M, 110M, and 206M parameters. We
show the (a) validation perplexity on the hold-out datasets, and (b) normalized scores obtained from evaluating in the training task
environments, averaged over all 6 domains.

put between xLSTM and Transformer-based agents, which
indicate advantages for the recurrent backbone.

4.1. Datasets & Environments

Datasets. We compile a large-scale dataset comprising
432 tasks from six domains. We leverage datasets from
prior works if available, and generate our own data other-
wise. For Atari, we extract 5M transitions per task from the
DQN-Replay dataset released by Agarwal et al. (2020). For
Composuite, we leverage the datasets released by (Hussing
et al., 2023). For Meta-World, we use 2M transitions per
task released by (Schmied et al., 2024a). For DMControl,
we generate 10M transitions per task using task-specific RL
agents. For Mimicgen, we use the datasets for the 21 tasks
released by (Mandlekar et al., 2023) and generate trajecto-
ries for the remaining 62 tasks. Finally, for Procgen, we ex-
tract 20M transitions from the datasets released by (Schmied
et al., 2024b). Our final dataset contains 3.4M trajectories
and in total 894M transitions (see Table 2). We reserve an
additional 37 tasks from the same domains for zero-shot
evaluation. To foster future research, we release our data-
preparation pipeline and generated data. We provide the
rationales for our specific dataset selection in Appendix B.1.

Environments. Atari and Procgen come with image obser-
vations and discrete actions. In contrast, the remaining four
domains exhibit state-based observations and continuous
actions. Consequently, our experiments involve a mixture
of state and action spaces as well as varying episode lengths
(see Table 2). Periodically evaluating the trained agents
on all 432 tasks sequentially is time-consuming, and we,
therefore, distributed the evaluation across GPUs and par-
allel processes (see Appendix C). Additional details on our
datasets and environments are available in Appendix B.

4.2. Scaling comparison

To conduct our main comparisons, we train our four back-
bone variants on the full training task mixture of 432 tasks.
For each architecture backbone, we report performance
scores for four model sizes: 16M, 48M, 108M, and 206M
parameters. We train all models for 200K updates with
a batch size of 128 and a context length of 50 timesteps.
All domains are represented with approximately equal pro-
portion, resulting in 33K updates per domain. Additional
implementation details and hyperparameters for every back-
bone variant and model size are available in Appendix C.

Sequence prediction performance. In Figure 2a, we report
the validation set perplexity for all backbones and model
sizes averaged over the individual scores from all domains.
To achieve this, we maintain a hold-out set of trajectories for
each training task (2.5%) and compute the perplexities after
every 50K steps (see Figure 12 for training perplexities).
Both recurrent backbones outperform the Transformer base-
line considerably, especially as the model sizes increase.

Evaluation performance. During training, we evaluate
our agents after every 50K step in all 432 training envi-
ronments. In Figure 2b, we report the resulting normal-
ized performances averaged across all six domains. The
recurrent backbones outperform the Transformer one across
model sizes. While xLSTM and Mamba perform similarly
at smaller scales, xLSTM tends to outperform Mamba at
larger scales (206M). This is an important advantage of
xLSTM, as LRAM agents can strongly benefit from more
data and consequently larger models. Note that Mamba has
a significantly higher number of parameters than competi-
tors. For the zero-shot evaluation performances on the 37
hold-out tasks, we refer to Figure 14 in Appendix D.2.
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Figure 3. Normalized scores per domain for model size 206M. For Meta-World, DMControl, Mimicgen, Composuite, and Procgen, we
report data-normalized scores, for Atari we report human-normalized scores.

Performance per domain. In Figure 3, we report the nor-
malized scores for the 206M models attained on all six
domains. For Meta-World, DMControl, Mimicgen, Com-
posuite, and Procgen, we use data-normalized scores, as
suggested by (Levine et al., 2020). For Atari, we report
human-normalized scores. We observe that xLSTM outper-
forms competitors on three of the six domains, while they
perform similarly on the remaining domains.

4.3. Analyses & Ablations

Fine-tuning. To assess the effect of the recurrent backbones
on fine-tuning performance, we fine-tune our models on 37
held-out environments from all 6 domains. We evaluate the
fine-tuning performance of the xLSTM architecture for the
16M pretrained models and compare it against an xLSTM
trained from scratch. The pretrained LRAM outperforms
the randomly initialized xLSTM model in most domains
(see Figure 15). This suggests that fine-tuning performance
is not affected negatively by switching the backbone.

Figure 4. In-context Learning with modern recurrent architec-
tures on 20 hold-out tasks for Dark-Room 10× 10.

In-context Learning. Next, we study the ICL abilities of
our recurrent backbones on the Dark-Room environment
considered in prior work on in-context RL (Laskin et al.,
2022; Lee et al., 2023; Schmied et al., 2024b). To study
ICL in isolation, we train models from scratch with a multi-

episodic context, which results in a large context length (see
Appendix D.4 for details on the experiment setup). In partic-
ular, we adopt the Algorithm Distillation (AD, Laskin et al.,
2022) framework and exchange the Transformer backbone
architecture with modern recurrent architectures. In Figure
4, we report the ICL performance on the 20 hold-out tasks
(see Figure 16 for training tasks). We find that xLSTM [7:1]
attains the highest overall scores both on the 80 training and
20 hold-out tasks, which we attribute to the state-tracking
abilities (Merrill et al., 2024) of sLSTM blocks.

Embedding space analysis. In Figure 5, we analyze the
representations learned by our model. We sample 32 sub-
trajectories from every task, extract the sequence represen-
tation at the last layer, cluster them using UMAP (McInnes
et al., 2018), and color every point by its domain (see Ap-
pendix F for more details). We find that tasks from the
same domain cluster together. Furthermore, xLSTM ex-
hibits a more refined domain separation compared to DT,
which may further contribute to the better downstream per-
formance. See Appendix F for a more detailed discussion on
the embedding space analysis and a comparison to Mamba.

(a) DT (b) xLSTM

Figure 5. Embedding space comparison. UMAP clustering of
hidden states for all tasks for 16M, colored by domain. xLSTM
exhibits a better domain separation than DT.
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(a) Latency, B = 1 (b) Latency, B = 16 (c) Memory, B = 1

Figure 6. Latency comparison on A100. We report latency for varying context lengths (in timesteps) with batch sizes (a) B = 1 and (b)
B = 16. In (c), we show the memory consumption in % of GPU memory with B = 1. We compare DT to xLSTM and Mamba with the
same number of layer blocks and parameters on Atari Freeway. Missing bars for DT indicate out-of-memory (OOM).

Removing Actions & Effect of Context Length. We found
that removing actions from the context results in better per-
formance across backbones. While context lengths beyond
1 hurt performance on Meta-World and DMControl, and
when training with actions, the reverse is true when training
without actions (see Figures 23, 24, 26). This is in contrast
to recent works, which did not benefit from longer contexts
(Octo Model Team et al., 2024). While removing actions
improves performance on Meta-World/DMControl, it does
not affect performance on discrete control environments.
For Meta-World/DMControl, we observed that the models
become overly confident, which is problematic if poor ini-
tial actions are produced. This is because many robotics
environments exhibit smoothly changing actions, and by
observing previous actions, the agent can learn shortcuts. A
similar issue has been observed by Wen et al. (2020) and
termed the copycat problem. Removing actions from the
input prevents the agent from using shortcuts and, therefore,
alleviates the copycat problem. Importantly, the evalua-
tion performance improves across domains as the sequence
length increases, which indicates that the history helps to
predict the next action (e.g., by observing mistakes made in
the past, see Figures 25, 27).

Return-conditioning vs. Behavior Cloning. Across our
experiments, we utilized a sequence representation that in-
cludes return-to-go tokens, as commonly used in DTs (Chen
et al., 2021; Lee et al., 2022). However, many recent works
focus on behavior cloning without return conditioning (Reed
et al., 2022; Brohan et al., 2023a). Therefore, we study the
effect of excluding the RTG/reward tokens from the se-
quence at the 206M parameter scale, to validate that our
findings transfer to the behavior cloning setting. Indeed, we
find that the same trends hold (see Figures 28 and 29).

mLSTM-to-sLSTM Ratio. Throughout experiments, we
compare two xLSTM variants: xLSTM [7:1] and xLSTM
[1:0]. These ratios were proposed by Beck et al. (2024) and

we maintain the same ratios for consistency (see Appendix
C.3). While mLSTM is parallelizable, sLSTM enables state-
tracking (Merrill et al., 2024). To better understand the
effect of the ratio, we conduct ablation studies both on the
432 tasks and on Dark-Room (see Appendix E.3), similar
to Beck et al. (2024). We find that other ratios, such as
[3:1], can be effective, and highlight the importance of plac-
ing sLSTMs at lower-level layers (Figure 31). However,
the effectiveness of sLSTM layers is dependent on the task
at hand. Complex tasks with long horizons or partial ob-
servability, as are common in real-world applications, may
benefit from the state-tracking abilities provided by sLSTM.

We present additional ablations on the effect of reducing the
number of layers in xLSTM and disabling Dropout on DT
in Appendix E.5 and E.4, respectively.

4.4. Inference Time Comparison

Finally, we empirically examine the difference between
recurrent and Transformer-based agents at inference time.
Similar to De et al. (2024), we report both latency and
throughput. We focus our analysis on latency, as it is the
more important dimension for real-time applications.

Setup. We conduct all inference time tests on A100s with
40GB of RAM using 206M models. For the Transformer,
we use KV-caching and FlashAttention (Dao, 2023) as sup-
ported by PyTorch (Paszke et al., 2019). For xLSTM, we
use recurrent-style inference using custom kernels to accel-
erate computations (see Figure 21 for the impact of kernel
acceleration). For Mamba, we make use of the kernels in-
troduced by Gu & Dao (2023). For DT and xLSTM, we use
torch.compile, but not for Mamba because we found
the kernels to be incompatible with compilation. The Trans-
former with KV-caching has a linear time complexity per
step and quadratic in the sequence length. In contrast, the
xLSTM and Mamba have a constant time complexity per
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step and are linear in the sequence length. Therefore, we
expect speed-ups especially for longer sequences and larger
batch sizes, as observed by De et al. (2024). To ensure a
fair comparison, we compare all backbones with the same
number of layer blocks and increase the hidden size of xL-
STM and Mamba to match the number of parameters of
DT (see Appendix E.5 for evaluation performance of these
models). We provide further details on our inference time
tests in Appendix D.5.

Environment. We conduct all inference time tests on the en-
vironment that exhibited the longest average episode lengths
in our experiments, the Atari game Freeway. Every
episode in Freeway lasts for 8192 steps, which is equiv-
alent to 24576 tokens (s/rtg/r). We evaluate all models for
5 episodes and preserve the KV-cache/hidden state across
episode boundaries. The reported latencies and throughputs
are averaged across all evaluation episodes, except for the
first episode, which we discard to exclude compilation times
and prefilling. We opted for measuring the inference times
during environment interaction, i.e., including simulator
latency, rather than mere token generation.

Latency. Similar to De et al. (2024), we measure latency
by the average time (in seconds) taken to perform a single
inference step with a fixed batch size B (lower is better). In
Figure, 6, we report the latencies for varying context lengths,
C ∈ [50, 25600] and two batch sizes B ∈ {1, 16}. Note
that C is in time steps, and every time step contains 3 tokens
(state, reward-to-go, reward). Hence, the effective sequence
length for the largest C is 76800. As expected, we find that
the recurrent backbones attain lower inference latencies than
the Transformer one, especially for longer sequences and
with a larger batch size. For B = 1, we find that Mamba is
slower than the Transformer and xLSTM, which we believe
is because of the incompatibility with torch.compile.
Note that we expect the gap to xLSTM to be closed with
compatible kernels. As the sequence length increases, DT
runs out of memory due to the increasing size of the KV
cache (see Figure 6c). In contrast, the inference speeds for
Mamba/xLSTM are independent of the context length and
therefore, enable significantly longer context lengths. This
property is particularly interesting for in-context RL, which
requires keeping multiple episodes in the context (Laskin
et al., 2022). Nevertheless, our experiments highlight that
the materialization of the complexity advantage depends on
the device, model size, batch size, and the context length,
which is similar to findings by De et al. (2024).

Throughput. Throughput is measured by the total number
of inference steps performed per second for a model with a
fixed context length. In Figure 7, we report the throughputs
for varying batch sizes, B ∈ [1, 128] for a fixed context
length of C = 1600. Here, the batch size can be interpreted
as the number of parallel environments the agent interacts

Figure 7. Throughput comparison on A100 for varying batch
sizes with C = 1600 timesteps on the Atari Freeway environ-
ment. We compare DT, xLSTM with 4 and 16 heads, and Mamba.
Missing bars for DT indicate OOM.

with. For xLSTM, we report numbers for two variants with
4 and 16 heads, respectively. We found that decreasing
the head dimension (more heads, same total hidden dim) is
important for xLSTM to enable high throughput. This is
because a higher head dimension incurs more FLOPS (see
Figure 22 in Appendix D.5.4 for an ablation on the impact
of the head dimension). As expected, we find that both
Mamba and xLSTM attain considerably higher throughputs
than the DT. These benefits increase with larger batch sizes.
While the DT with quadratic complexity in the sequence
length goes OOM for batch sizes above 64, the recurrent
backbones with linear complexity can easily handle larger
batch sizes. This throughput advantage may be particularly
relevant for online fine-tuning of agents in many parallel
environments.

5. Conclusion
In this work, we study the aptitude of modern recurrent archi-
tectures as alternatives to Transformers for building LAMs.
We found that our LRAM with an xLSTM or Mamba at
its core compares favorably to the Transformer in terms of
evaluation performance across model scales ranging from
16M to 206M parameters (see Section 4.2). Moreover, we
demonstrated that LRAM exhibits higher inference speeds,
especially at large context sizes (see Section 4.4). Thus, the
empirical evidence suggests that recurrent backbones can
be attractive alternatives for LAMs. Notably, the linear-time
inference complexity of xLSTM and Mamba may enable
applications that require long context lengths (e.g., ICL) and
facilitate the application of large-scale agents for real-time
applications, such as robotics.

Modern recurrent architectures and Transformers come
with different advantages and disadvantages. xLSTM and
Mamba, on the one hand, exhibit a fundamental complex-
ity advantage over Transformers. Their linear complexity
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ensures that the computational requirements increase more
slowly with the sequence length, which enables more effi-
cient inference and is particularly relevant for edge applica-
tions. While we conduct our inference time comparisons on
a high-end data center GPU, applications on edge devices
may have to deal with less powerful accelerators. Impor-
tantly, we found that LAMs strongly benefit from longer
sequences (see Section 4.3). Their ability to efficiently
handle long sequences can be beneficial for applications
in real-world environments, which often exhibit long-term
dependencies. Similarly, longer context can be relevant
for ICL applications, which benefit from keeping multi-
ple episodes (such as demonstrations or previous trials)
in the context. Transformers, on the other hand, are ef-
fective for applications that require exact recall of tokens
(such as particular locations in a grid, signs in an image)
in a sequence, which can be important for decision-making
(Ni et al., 2024). Finally, xLSTM in particular enables
state-tracking via sLSTM blocks, which Transformers and
Mamba cannot perform (Merrill et al., 2024). State tracking
can be important for logic tasks or dealing with partial ob-
servability and may be a useful tool for practitioners. Given
these differences, different backbones should be considered
depending on the task at hand.

Limitations & Future Work. The primary target appli-
cation of LAMs is robotics. While the majority of our
experiments involve robotic simulations, we do not yet pro-
vide experiments for real robots. We do, however, believe
that our findings translate to real-world scenarios and aim to
provide further evidence in future work. Moreover, our fine-
tuning experiments are limited to offline RL. We envision
that an agent pre-trained on large-scale datasets can be suc-
cessfully fine-tuned via online RL to explore new strategies
that do not appear in the training data. Modern recurrent ar-
chitectures offer both parallel and recurrent training modes,
which might be the key to success for such applications.
While we provide evidence for improved ICL abilities of
LRAM, we only consider a grid-world setting. We aim
to further investigate the ICL abilities of LRAM in more
complex environments.

Impact Statement
While we conduct all our experiments in simulated envi-
ronments, the primary target application of our method is
robotics. We believe that our work can positively impact ap-
plications in the near future that require efficient inference,
on-device processing, or have real-time constraints. How-
ever, robotics applications in the real world are not without
risks. In particular, in areas where humans are involved,
such as factory settings, special care is required. LAMs are
trained via next-action prediction similar to LLMs. Con-
sequently, LAMs may also suffer from hallucinations in

unknown scenarios. We therefore strongly discourage users
from blindly following the predictions made by real-world
LAMs without appropriate precautions regarding safety and
robustness. It is essential to ensure the responsible deploy-
ment of such future technologies, and we believe that more
research on the robustness of LAMs is necessary.
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Appendix

A. Reproducibility Statement
We make the code base used for our experiments publicly available and release the datasets we generated. Both are available
at: https://github.com/ml-jku/LRAM. We describe the environments we use for our experiments and provide
dataset statistics in Appendix B. Furthermore, in Appendix C, we provide implementation details for all methods and a list
of hyperparameters used for our experiments. In Appendix D, we present additional figures that accompany our results in
the main text (e.g., all model sizes). Finally, in Appendices E and F, we provide further details on the conducted ablation
studies and the embedding space analysis, respectively.

B. Environments & Datasets
B.1. General

We compile a large-scale dataset comprising 432 tasks from six domains, 3.4M trajectories, and 894M transitions in
total (see Table 2). A key motivation behind our dataset compilation is the scarcity of suitable datasets that span many
simulated tasks. To address this and to enable a robust comparison of different sequence model architectures, we aimed to
assemble a collection of datasets that span as many tasks as possible. In particular, we focused on trajectories in simulated
environments rather than real-world trajectories (Embodiment Collaboration et al., 2024), to enable faster iteration cycles.
To facilitate usability for future works, we consider standard benchmarks that are widely adopted by the community (e.g.,
Atari, Meta-World).

We release our data pipeline and generated dataset, and hope that they can serve as a solid basis for future research on
multi-task agents. To enable fast and targeted data-loading, every trajectory is stored in a separate hdf5 file. We trade off
some data-loading speed for disk space efficiency by compressing trajectories that contain image-based observations.

B.2. Atari

The Arcade Learning Environment (ALE) (Bellemare et al., 2013) is the standard benchmark for evaluating RL agents and
consists of 57 Atari games. Input observations in Atari are RGB images, but as is standard practice, we gray-scale and crop
frames (|S| = 1× 64× 64). There are 18 discrete actions across all 57 Atari games (|A| = 18), but individual games may
use only a subset of these actions. Furthermore, we adopt the standard Atari recipe as used in prior works, including a frame
skip of 4, maximum number of no-ops of 30, resetting on life loss, and reward clipping to [−1, 1] (Mnih et al., 2015; Hessel
et al., 2017).

Tasks. Similar to Lee et al. (2022), we assign 41 games to the training set and 5 additional tasks to the hold-out set. The 41
training tasks include:

amidar, assault, asterix, atlantis, bank-heist, battle-zone, beam-rider, boxing, breakout,
carnival, centipede, chopper-command, crazy-climber, demon-attack, double-dunk, enduro,
fishing-derby, freeway, frostbite, gopher, gravitar, hero, ice-hockey, jamesbond, kangaroo,
krull, kung-fu-master, name-this-game, phoenix, pooyan, qbert, riverraid, road-runner,
robotank, seaquest, time-pilot, up-n-down, video-pinball, wizard-of-wor, yars-revenge,
zaxxon

The 5 hold-out tasks include: alien, pong, ms-pacman, space-invaders, star-gunner

Dataset. For Atari, we leverage the DQN-Replay dataset released by Agarwal et al. (2020). The dataset contains the
trajectories seen over the entire training of the DQN agent (50M frames). We extract a subset of the last 5M transitions for
every task, amounting to 205M transitions in total for the 41 training tasks. The number of episodes, the episode lengths,
and total achieved rewards vary across tasks, as shown in Table 2.

B.3. Meta-World

The Meta-World benchmark (Yu et al., 2020a) consists of 50 manipulation tasks using a Sawyer robotic arm, ranging from
opening or closing windows to pressing buttons. Meta-World is based on the MuJoCo physics engine (Todorov et al., 2012a).
Observations in Meta-World are 39-dimensional continuous vectors (|S| = 1× 64× 39), and actions are represented by 6
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Table 2. Atari Dataset Statistics.
Task # of Trajectories Mean Length Mean Return

amidar 1813 2753 145
pooyan 2773 1800 176
frostbite 5218 766 18
video-pinball 1023 3902 266
wizard-of-wor 3059 1314 15
chopper-command 5452 738 18
breakout 3780 1300 39
phoenix 3307 1509 49
asterix 5250 951 55
enduro 571 8720 636
kung-fu-master 1775 2812 131
hero 3022 1345 168
assault 3782 1170 77
demon-attack 1649 2431 116
qbert 3939 1138 155
jamesbond 2841 1758 11
bank-heist 4146 1204 62
up-n-down 3246 1538 99
centipede 6879 582 81
boxing 4796 1041 63
battle-zone 1933 2134 15
name-this-game 988 5049 389
zaxxon 2561 1950 12
beam-rider 1232 3248 77
time-pilot 3886 1029 11
ice-hockey 1465 3407 -6
riverraid 2645 1512 143
krull 3032 1319 528
gopher 1817 2338 185
freeway 2438 2048 33
seaquest 2807 1779 150
double-dunk 1774 2815 0
road-runner 3308 1217 135
atlantis 186 26349 1394
gravitar 6187 646 1
yars-revenge 4094 1036 96
crazy-climber 1105 3954 572
kangaroo 1787 2792 50
fishing-derby 2737 1825 0
carnival 21131 194 37
robotank 747 6652 56

Average 3321 2734 153

continuous dimensions (|A| = 18) in range [−1, 1]. All tasks share a common action and state space. Following Wolczyk
et al. (2021) and Schmied et al. (2024a), we limit the episode lengths to 200 interactions.

Tasks. We follow Yu et al. (2020a) and split the 50 Meta-World tasks into 45 training tasks (MT45) and 5 evaluation tasks
(MT5).

The 45 training tasks are:

reach, push, pick-place, door-open, drawer-open, drawer-close, button-press-topdown,
peg-insert-side, window-open, window-close, door-close, reach-wall, pick-place-wall,
push-wall, button-press, button-press-topdown-wall, button-press-wall,
peg-unplug-side, disassemble, hammer, plate-slide, plate-slide-side, plate-slide-back,
plate-slide-back-side, handle-press, handle-pull, handle-press-side, handle-pull-side,
stick-push, stick-pull, basketball,soccer, faucet-open, faucet-close, coffee-push,
coffee-pull, coffee-button, sweep, sweep-into, pick-out-of-hole, assembly, shelf-place,
push-back, lever-pull, dial-turn

The 5 evaluation tasks are: bin-picking, box-close, door-lock, door-unlock, hand-insert
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(a) IIWA (b) Panda (c) Jaco (d) Gen3

Figure 8. Illustration of the four supported robot arms in Composuite (Mendez et al., 2022).

Dataset. For Meta-World, we use the datasets released by (Schmied et al., 2024a), which contain 2M transitions per task
and consequently 90M transitions in total for the training set. All episodes last for 200 environment interaction steps, and
consequently, there are 10K episodes for every task. For detailed dataset statistics per task, we refer to their publication.

B.4. DMControl

The DMControl benchmark (Tassa et al., 2018) consists of 30 different robotic tasks. Unlike Meta-World, the benchmark
contains robots with different morphologies instead of a single common Sawyer arm. Due to the different robot morphologies,
the state and action spaces vary across tasks (3 ≤ |S| ≤ 24, 1 ≤ |A| ≤ 6), with all actions in the range [−1, 1].

Tasks. We do not use all 30 tasks contained in the DMControl benchmark, but select 16 of the 30 tasks that have been used
in prior works (Hafner et al., 2019; Schmied et al., 2024a;b), which we refer to as DMC11 and DMC5, respectively.

The 11 training tasks are:

finger-turn easy, fish-upright, hopper-stand, point mass-easy, walker-stand, walker-run,
ball in cup-catch, cartpole-swingup, cheetah-run, finger-spin, reacher-easy

The 5 evaluation tasks are:

cartpole-balance, finger-turn hard, pendulum-swingup, reacher-hard, walker-walk

Dataset. For DMControl, we generate 10M transitions per task by training task-specific SAC (Haarnoja et al., 2018) agents,
using the same setup as Schmied et al. (2024a). Episodes in all DMControl tasks last for 1000 environment steps, and per
time-step a maximum reward of +1 can be achieved, which results in a maximum reward of 1000 per episode. Consequently,
our training set contains 10K episodes per task, amounting to 110K episodes and 110M transitions in total across all tasks.
We list the dataset statistics for all 11 tasks in Table 3.

Table 3. DMControl Data statistics.
Task # of Trajectories Mean Length Mean Return

point mass easy 10K 1K 851
cheetah run 10K 1K 385
walker run 10K 1K 230
ball in cup catch 10K 1K 969
hopper stand 10K 1K 460
walker stand 10K 1K 939
finger turn easy 10K 1K 954
reacher easy 10K 1K 938
cartpole swingup 10K 1K 817
fish upright 10K 1K 815
finger spin 10K 1K 966

Average 19628 152 8.2
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B.5. Composuite

The Composuite benchmark (Mendez et al., 2022) is a robotics benchmark for grasping and object manipulation. The
benchmark is implemented on top of robotsuite (Zhu et al., 2020), which in turn leverages the MuJoCo simulator under
the hood (Todorov et al., 2012b). Composuite contains a mix of 4 simulated robot arms: IIWA, Jaco, Gen3, and Panda
(see Figure 8). All arms share a common state and action space containing 93 continuous state dimensions and 8 continuous
action dimensions, respectively (|S| = 93, |A| = 8).

Tasks. CompoSuite is designed as a compositional multi-task benchmark for RL, in which a particular robot manipulates a
particular object given an objective, while avoiding obstacles. Overall, there are 4 robot arms, 4 objects, 4 obstacles, and 4
task objectives. This results in 256 possible robot/object/objective/obstacle combinations. For our experiments, we assign
240 tasks to the training set and use the remaining 16 tasks as a hold-out set (Panda and Object Wall) combinations.
For a list of all 256 tasks, we refer to Mendez et al. (2022).

Dataset. For Composuite, we leverage the datasets released by Hussing et al. (2023). For every task, we select 2000
episodes, which last on average for 500 steps. This amounts to 1M transitions per task, and 240M transitions across all 240
training tasks. For dataset statistics, we refer to Hussing et al. (2023).

B.6. Mimicgen

Similar to Composuite, Mimicgen (Mandlekar et al., 2023) is based on robosuite and the MuJoCo simulator. Mimicgen
is designed for automatically synthesizing large-scale datasets from only a handful of human demonstrations. Observations in
Mimicgen can be represented as images (from multiple cameras) or low-dimensional continuous states. For our experiments,
we opt for the low-dimensional state representation to simplify learning. Therefore, observations and actions are represented
by 37-dimensional and 7-dimensional continuous vectors, respectively (|S| = 37, |A| = 7). Similar to Composuite,
Mimicgen supports 4 different robot arms: Panda, IIWA, Sawyer, and UR5e (see Figure 9).

(a) IIWA (b) Panda (c) Sawyer (d) UR5e

Figure 9. Illustration of the four supported robot arms in Mimicgen (Mandlekar et al., 2023) solving the stack-three task.

Tasks. Mimicgen consists of 24 diverse tasks, including stacking blocks, reassembling objects, and even long-horizon tasks
like coffee preparation. These 24 tasks can be performed with the four supported robot arms, amounting to 96 tasks in total.

Dataset. Mandlekar et al. (2023) released datasets for the 24 tasks using the default robot arm Panda. To increase the
dataset diversity, we additionally generated data for the remaining 3 robot arms. However, not all data generation runs
produce successful trajectories, and we discard the ones with too few successful trajectories. Our final dataset for Mimicgen
contains 83 training and 2 evaluation tasks. For each task, we collect 1000 successful demonstrations (we do not include
unsuccessful trajectories). Episode lengths vary across tasks, ranging from 260 to 850 environment steps.

B.7. Procgen

The Procgen benchmark consists of 16 procedurally-generated video games (Cobbe et al., 2020a). Observations in Procgen
are RGB images of dimension 3× 64× 64. However, for training efficiency, we apply gray-scaling to image observations
(|S| = 1 × 64 × 64). All 16 environments share a common action space of 15 discrete actions (|A| = 16). Procgen is
designed to test the generalization abilities of RL agents. Consequently, procedural generation is employed to randomize
background and colors, while retaining the game dynamics.

Tasks. Following prior works (Raparthy et al., 2023; Schmied et al., 2024b), we assign 12 and 4 tasks to the training and
hold-out sets, respectively. The 12 training tasks are:
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bigfish, bossfight, caveflyer, chaser, coinrun, dodgeball,
fruitbot, heist, leaper, maze, miner, starpilot

The 4 hold-out tasks are: climber, ninja, plunder, jumper

Dataset. We leverage the datasets released by (Schmied et al., 2024b), which contain 20M transitions per task. The datasets
were generated by recording all transitions observed by training RL agents for 25M steps, followed by uniform subsampling
to 20M transitions. Consequently, the dataset contains mixed quality trajectories ranging from random (beginning of
training) to expert (end of training). We list the dataset statistics for all 16 tasks in Table 4.

Table 4. Procgen Data statistics.

Task # of Trajectories Mean Length Mean Return

bigfish 82835 230 6.251
bossfight 112459 141 1.946
caveflyer 151694 105 7.745
chaser 93612 212 3.248
coinrun 261117 51 9.473
dodgeball 144364 137 2.884
fruitbot 73653 270 16.094
heist 101361 196 8.405
leaper 296084 67 4.446
maze 482245 41 9.432
miner 288818 68 11.8
starpilot 96468 206 17.3

Average 182059 144 8.3

C. Experimental & Implementation Details
C.1. Training & Evaluation

In our experiments, we compare two variants of xLSTM, Mamba and DT. For our main experiments in Section 4.2, we train
all models for 200K updates, and evaluate after every 50K update steps. We report the mean and 95% confidence intervals
over three seeds in our experiments, as suggested by Agarwal et al. (2021). For every evaluation task, we take the average of
3 evaluation seeds.

We train our agents with a batch size of 128 and gradient accumulation across the 6 domains, such that every domain is
represented with the same proportion. This is to compare Consequently, the effective batch size is 768. We use a learning rate
of 1e−4, 4000 linear warm-up steps followed by a cosine decay to 1e−6, and train using the AdamW optimizer (Loshchilov
& Hutter, 2018). In addition, we employ gradient clipping of 0.25, weight decay of 0.01 for all models. We do not employ
Dropout, as is standard practice in DTs, as we found that it negatively affects performance (see Section 4.3). We use separate
reward scales of 200, 100, and 20 for Meta-World, DMControl, and Atari, respectively. Furthermore, for all domains, we set
the target return to the maximum return achieved for a particular task in the training datasets. This is particularly useful for
domains where the maximum returns differ heavily across tasks (e.g., Atari). We list all hyperparameters in Table 5.

We want to highlight that we opt to represent every domain with approximately equal proportion in every update step. This
is, because we aim to study how the different backbones perform across domains, rather than optimizing performance on
specific domains. However, to better understand the impact of the data ratios on multitask capabilities, we believe it would
be interesting to study other data ratios in future work. Varying the data ratios would, for example, allow studying potential
interferences between the 432 tasks.

C.2. Context Lengths

By default, we train all models with a context length C = 50 timesteps. For every timestep, there are three tokens (s/rt/r),
and consequently, the effective context length is 150. We found that performance improves for longer context lengths (see
Section E.1), but limit our experiments to C = 50 to reduce the computational cost.
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Table 5. Hyperparameters for LRAM.

Parameter Value

Gradient steps 200K
Evaluation frequency 50K
Evaluation episodes 5
Optimizer AdamW
Batch size 128
Gradient accumulation 6
Lr schedule Linear warm-up + Cosine
Warm-up steps 4000
Learning rate 1e-4 → 1e-6
Weight decay 0.01
Gradient clipping 0.25
Dropout 0.2
Context len (timesteps) 50
Reward scale per-domain
Target return per-task

C.3. Model Architectures

We train models across 4 model sizes: 16M, 48M, 110M, and 206M. We follow Lee et al. (2022) in selecting the number of
layers and hidden dimensions. For xLSTM and Mamba, we use twice the number of layers blocks to match the number
of parameters of the Transformer (Beck et al., 2024; Gu et al., 2024) (see Table 6) For our xLSTM [7:1] variant, which
contains sLSTM blocks, we strive to maintain the same ratio as proposed by Beck et al. (2024). Not all our model sizes are
divisible by 8, and only the 16M and 110M models exhibit the exact 7:1 ratio of mLSTM to sLSTM blocks. For consistency,
however, we maintain the same notation as (Beck et al., 2024). We place sLSTM blocks at positions [1], [1, 3], [1, 3], and
[1, 3, 5] for the 16M, 48M, 110M, 206M, respectively.

Across backbones, we use linear layers to encode continuous states, reward returns-to-go, similar to Chen et al. (2021).
The maximal state dimension across continuous control environments is 204 in our experiments. To use a shared linear
embedding layer for continuous states, we pad states that have a lower number of dimensions to 204 dimensions using
zeros. To encode image inputs on visual domains, we use the IMPALA-CNN proposed by Espeholt et al. (2018) and
adopted by previous works on Procgen (Cobbe et al., 2020a) and Atari (Schmidt & Schmied, 2021; Schwarzer et al., 2023).
Consequently, we do not make use of discretization of continuous states or patchification of images. This design choice
significantly reduces the sequence length to only three tokens per time-step (see Appendix C.2) and consequently results in
faster inference.

For continuous actions, we make use of discretization and discretize of every action dimension into 256 uniformly-spaced
bins, similar to Reed et al. (2022) and Brohan et al. (2023b). We experimented with lower/higher numbers of bins, but did
not observe a benefit beyond 256 bins. Consequently, this resolution is sufficient for the environments we consider. We use
a shared action head to predict the action bins of all continuous dimensions jointly. The maximum number of continuous
action dimensions is 8 in our experiments, and consequently, the number of discrete action classes is 2048. In addition, there
are 18 discrete actions originating from Atari and Procgen. Therefore, our action head learns to predict the correct action
among the 2066 discrete classes. While different environments may have different action dimensions, the model predicts all
action dimensions jointly. At inference time, the number of action dimensions of the current environment is known, and we
extract the respective dimensions from the joint predictions. We opt for the shared action head representation, as this further
speeds up inference and does not require autoregressive action prediction.

For the Transformer baseline, we use global positional embeddings similar to Chen et al. (2021). For the recurrent backbones,
we do not make use of positional encodings.
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Table 6. Model Sizes.
Model Layers Hidden Dim Heads Parameters

Transformer 4 512 8 16M
Transformer 6 768 12 48M
Transformer 8 1024 16 110M
Transformer 10 1280 20 206M

Mamba 8 512 - 16M
Mamba 12 768 - 48M
Mamba 16 1024 - 110M
Mamba 20 1280 - 206M

xLSTM 8 512 4 16M
xLSTM 12 768 4 48M
xLSTM 16 1024 4 110M
xLSTM 20 1280 4 206M

C.4. Hardware & Training Times

We train all our models on a server equipped with 4 A100 GPUs. We use distributed data parallel to distribute the workload,
as supported in PyTorch (Paszke et al., 2019). Training times range from 5 hours for the smallest DT model to 30 hours for
the largest Mamba model. Throughout all our experiments, we use mixed precision training (Micikevicius et al., 2017) as
supported in PyTorch to speed up training time.

We evaluate our models after every 50K steps. However, periodically evaluating the trained agents on all 432 tasks
sequentially is time-consuming. Therefore, we perform parallel evaluation with 4 processes at a time. For multi-GPU setups,
we distribute the evaluation workload among the available GPUs. For example, with 4 available GPUs and 4 evaluation
processes per GPU, 16 environments are evaluated simultaneously. Consequently, the total evaluation time for all 432 tasks
ranges from 18 minutes for the smallest DT model to roughly 2 hours for the largest Mamba model.
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D. Additional Results
D.1. Training Tasks

In Figures 10 and 11, we report the normalized scores obtained per domain and the average learning curves across tasks for
all four model sizes.

(a) 16M

(b) 48M

(c) 110M

(d) 206M

Figure 10. Normalized scores per-domain all four model sizes: 16M, 48M, 110M, and 206M. For Meta-World, DMControl, Mimicgen,
Composuite, and Procgen we report data-normalized scores, for Atari we report human-normalized scores.

In Figure 12, we report the training perplexity on the 432 training tasks over 200K updates. Here, we observe that the
training perplexity behaves similarly to the validation perplexity. This is expected, as our models see most transitions only a
single time (see Table 2 for the number of repetitions per domain).

Furthermore, we report the scaling curves with an additional model size of 408M parameters in Figure 13. Due to the high
computational cost of the 408M models, we were currently only able to conduct a single run for this size. However, we aim
to provide further empirical evidence for these model sizes in future work.
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(a) 16M (b) 48M

(c) 110M (d) 206M

Figure 11. Learning curves for all four model sizes, 16M, 48M, 110M, and 206M, on the training tasks.

D.2. Hold-out Tasks

In Figure 14, we show the zero-shot evaluation performance on the hold-out tasks 14. We want to highlight that the
performance declines for all methods and model sizes compared to performance on training tasks. This is because hold-out
tasks exhibit severe shifts in state-spaces, action-spaces, and reward functions.

D.3. Fine-Tuning

In Figure 15, we present the fine-tuning evaluation performance on the held-out tasks. We compare xLSTMs trained from
scratch against xLSTMs initialized with the pre-trained weights. We do observe consistent improvement of the pre-trained
models over the models trained from scratch. While we train on a substantial number of environments, the total amount of
data used is still only a fraction of that employed in training other large-scale models, such as LLMs. Consequently, we
do not observe comparable few-shot generalization. However, we anticipate that few-shot generalization capabilities will
emerge as we increase both data volume and model size.

D.4. In-context Learning

We assess the ICL abilities of modern recurrent architectures on the Dark-Room environment considered in prior works
on in-context RL (Laskin et al., 2022; Lee et al., 2023; Schmied et al., 2024b). In Dark-Room, the agent is located in a
dark room. The task is to navigate to an invisible goal location in that dark room. The state is partially observable, as the
agent only observes its own x-y position on the grid (|S| = 2). The action space consists of 5 discrete actions: move up,
move down, move left, move right, stay (|A| = 5). Upon reaching the goal location, the agent receives a reward of +1 for
every step in the episode it resides in the goal location. Consequently, the agent first has to explore the room to find the
goal. Once the goal location is found (as indicated by the positive reward), the agent can exploit this knowledge. Given a
multi-episodic context, the agent should be able to exploit information contained in the previous trials (e.g., exploiting one
path vs. avoiding another).

In our experiments, the Dark-Room is a 10× 10 grid and episodes last for 100 steps, starting in the top left corner of the
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(a) Training Perplexity

Figure 12. Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M, 110M, and 206M parameters. We
show the training perplexity on the training dataset to evaluate the sequence prediction performance.

(a) Sequence prediction (b) Environment interaction

Figure 13. Scaling comparison with additional 408M parameter models. We show the (a) validation perplexity on the hold-out datasets,
and (b) normalized scores obtained from evaluating in the training task environments, averaged over all 6 domains.

grid. We adopt the same experiment setup as Schmied et al. (2024b) and leverage their datasets. We train 16M parameter
agents on datasets from 80 randomly selected goal locations in the grid. The datasets contain 100K transitions per task and
are obtained by training task-specific PPO (Schulman et al., 2018) agents. Then, we evaluate the in-context abilities of our
agents on 20 hold-out goal locations. During evaluation, the agent is given 40 episodes to interact with the environment,
which we refer to as ICL-trials. Furthermore, we adopt the AD (Laskin et al., 2022) framework for training our agents with
a multi-episodic context. We use the same sequence representation as used in our main experiments, consisting of states,
returns-to-go (target return set to 80 during evaluation), and rewards. Note that this differs from the sequence representation
used by Laskin et al. (2022). We set the context length for all agents to the equivalent of two episodes, which amounts to
200 timesteps in total.

In Figure 16, we report the ICL performance over the 40 ICL trials on (a) 80 training locations and (b) 20 hold-out locations
for the 4 different backbones considered in this work. We observe that the recurrent backbones attain considerably higher
scores than the Transformer backbone. Furthermore, we find that xLSTM [7:1] attains the highest overall scores, which we
attribute to the state-tracking abilities (Merrill et al., 2024) of sLSTM blocks. We aim to explore the ICL abilities of modern
recurrent backbones more in future work.
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Figure 14. Scaling comparison. Zero-shot performance on hold-out tasks at four model sizes, 16M, 48M, 110M, and 206M. Note that
performance declines for all methods and model sizes compared to performance on training tasks. This is because hold-out tasks exhibit
severe shifts in state-spaces, action-spaces, and reward functions.

Figure 15. Fine-tune performance on hold-out tasks. We compare the performance of a pretrained xLSTM against an xLSTM trained
from scratch, both with 16 million parameters. We select the top 5% of trajectories from our held-out tasks based on performance and use
this subset to fine-tune the models. We perform 25K update steps during fine-tuning and show the normalized scores, averaged across
held-out tasks from each domain.

D.5. Inference Time Comparisons

We empirically examine the difference in inference speed between of our models. Similar to De et al. (2024), we report both
latency and throughput. For real-time applications, latency is the more important dimension, and therefore, we focus our
analysis on latency.

D.5.1. LATENCY

In Figures 17 and 18, we report the latencies for DT and xLSTM with the same number of layer blocks as DT, and twice the
number of layer blocks as DT, respectively. We conduct our comparison for two different batch sizes and across varying
sequence lengths.

D.5.2. THROUGHPUT

In Figures 19 and 20, we similarly report the attained throughput for DT and xLSTM with the same number of layer blocks
as DT, and twice the number of layer blocks as DT, respectively. We conduct our comparison for two fixed context lengths
and varying batch sizes.
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(a) 80 training tasks (b) 20 hold-out tasks

Figure 16. In-context Learning on Dark-Room 10× 10.

(a) B = 1 (b) B = 16

Figure 17. Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and xLSTM with 206M parameters. For
xLSTM, we use the same number of layer blocks as DT and a higher hidden dimension to match parameters.

D.5.3. XLSTM: KERNEL COMPARISONS

We leverage custom kernels for xLSTM to conduct our inference-speed comparisons. In particular, we compare 4 variants:
recurrent-style inference with and without kernel acceleration, and chunkwise inference with and without kernel acceleration.
In our experiments, every timestep contains 3 individual tokens. Consequently, regular recurrent-style inference requires
iterating over the token sequence of length 3 in a loop, given the hidden state of the previous timestep. This requires 3 forward
passes. In contrast, the chunkwise implementation operates on chunks of timesteps given a hidden state. Consequently, this
only requires a single forward pass. In Figure 21, we illustrate the impact of kernel acceleration. We find that our chunkwise
kernels result in considerably lower latencies. Interestingly, we find that for B = 1, our chunkwise implementation without
kernel acceleration is faster than the recurrent-style inference with kernel acceleration. However, as the batch size increases,
this trend reverses. This highlights the importance of kernel acceleration for efficient inference.

D.5.4. XLSTM: IMPACT OF HEAD DIMENSION

In our experiments, we found that choosing the appropriate head dimension is critical to enable high throughput for xLSTM.
Therefore, we conduct an inference ablation with xLSTM 206M in which we vary the number of heads between 4 and 32,
while keeping the total hidden dimension constant, resulting in different head dimensions. We find that throughput increases
considerably when increasing the number of heads (see Figure 22). For 4 heads, and therefore the highest head dimension,
the total throughput saturates at batch size 96. In contrast, when increasing the number of heads to 32 (i.e., decreasing the
head dimension), the total throughput continues to increase. This is because a higher head dimension incurs more FLOPS.
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(a) B = 1 (b) B = 16

Figure 18. Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and xLSTM with 206M parameters. For
xLSTM, we use twice the number of layer blocks and the same hidden dimension as the Transformer.

(a) C = 800 (b) C = 1600

Figure 19. Throughput. We report throughput with (a) context size of 800, and (b) context size of 1600 timesteps for DT and xLSTM
with 206M parameters. For xLSTM, we use the same number of layer blocks as DT and a higher hidden dimension to match parameters.

E. Ablations
E.1. Removing action condition

E.1.1. DT ON META-WORLD

We found that removing actions from the context results in better performance across backbones. In Figure 23, we report the
learning curves over 200K updates for DT with varying context lengths on Meta-World, both with and without actions in the
context. While context lengths beyond 1 hurt performance when training with actions, the reverse is true when training
without actions. This is in contrast to recent works, which did not benefit from longer contexts (Octo Model Team et al.,
2024). However, while removing actions improves performance on Meta-World, it does not affect performance on discrete
control. On Meta-World, we observed that the models become overly confident (high action logits), which is problematic if
poor initial actions are produced. We assume this is because in robotics, actions change smoothly, and by observing previous
actions, the agent learns shortcuts. A similar issue has been identified by Wen et al. (2020) and termed the copycat problem,
because the agent is incentivized to copy previous actions. Our solution is to remove actions from the input sequence. This
prevents the agent from learning shortcuts and alleviates the copycat problem.

E.1.2. DT ON ALL 432 TASKS.

To further investigate the effect of removing actions from the context, we repeat this ablation on the full 432 tasks and 6
domains at the 206M model scale. In Figure 24, we report the learning curves for a DT with varying sequence lengths
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(a) C = 800 (b) C = 1600

Figure 20. Throughput. We report throughput with (a) context size of 800, and (b) context size of 1600 timesteps for DT and xLSTM
with 206M parameters. For xLSTM, we use twice the number of layer blocks and the same hidden dimension as the Transformer.

(a) batch size = 1 (b) batch size = 16

Figure 21. Impact of kernel acceleration. We report latency with (a) batch size of 1 and (b) batch size of 32 for DT and xLSTM with
206M parameters. For xLSTM, we use the same number of layer blocks as DT and a higher hidden dimension to match parameters.

trained (a) with and (b) without actions in the agent’s context. Similar to the single-domain study on Meta-World with
smaller models, we find that providing a longer context does not improve performance, resulting in a normalized score of
around 0.3 across domains. In contrast, without action in the context, we observe a consistent improvement in the evaluation
performance as the sequence length increases. In fact, the normalized score increases from around 0.3 with C = 1 to 0.7
with C = 50. For computational reasons, we only report one seed per sequence length in this experiment, but we believe
that the overall trends are clear.

To better understand on which domains the longer context benefits or hurts our agents, we also present the normalized score
per domain in Figure 25. Without actions in the context, we find that longer context consistently benefits the performance
across domains. With actions in the context, we observe that on Meta-World and DMControl, the performance deteriorates
for C > 1. In contrast, on the discrete control domains Atari and Procgen, but also on the continuous control domain
Composuite, performance tends to improve with C > 1. This suggests that the copycat problem is particularly present on
Meta-World and DMControl. However, note that the final performances on Atari, Procgen, and Mimicgen are considerably
worse when actions are present in the context compared to when they are not.

To further investigate this, we compute the MSE between subsequent actions in the training dataset (similar to Wen et al.
(2020)) for the continuous control domains and report them in Table 7. Indeed, we find that Meta-World and DMControl
exhibit significantly lower MSEs between subsequent actions than Composuite. While Mimicgen also exhibits a low MSE
between consecutive actions, all backbones perform poorly on this challenging benchmark. Consequently, we conclude that
removing actions from the agent’s context is particularly effective for domains where actions change smoothly.
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Figure 22. Throughput comparison for xLSTM 206M with varying numbers of heads but fixed total hidden size. By default, we used 4
heads for our experiments. Increasing the number of heads results in higher throughput.

(a) w/ actions (b) w/o actions

Figure 23. Ablation on removing the action condition for varying context lengths C. Performance of DT (a) with, and (b) without action
condition on Meta-World. With action in the context, C > 1 harms performance due to overconfidence in action predictions. Without
actions in the context, the performance of DT improves with increasing C.

This result highlights the fact that large action models can strongly benefit from increased context length, even on the
simulated environments we consider in this work. Furthermore, we believe that this effect can be even bigger in complex
real-world environments that require longer-term interactions.

E.1.3. XLSTM ON ALL 432 TASKS.

To validate that modern recurrent backbones also benefit from training with longer sequence lengths, we repeat the same
ablation as presented in Appendix E.1.2 using xLSTM [1:0]. We report the learning curves, validation perplexities, and
evaluation performance across all 432 tasks for varying context lengths in Figure 26. Note that the validation perplexity
curves in Figure 26a, start at step 50K for readability. Again, we observe considerable improvements in the validation
perplexities and the normalized scores (0.4 for C = 1 to 0.8 for C = 50) as the context length increases.

In addition, we provide the normalized scores per domain for xLSTM with varying sequence lengths in Figure 27. Across
domains, we observe increasing performance with increasing C.

E.2. Return-conditioning vs. Behavior Cloning

Across experiments presented in the main text, except for the ICL experiments, we utilized a sequence representation that
includes return-to-go tokens (RTG) as commonly used in the DT literature (Chen et al., 2021; Lee et al., 2022). At inference
time, the RTG allows to condition the model on a high target return to produce high-quality actions. This is particularly
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(a) w/ actions (b) w/o actions

Figure 24. Ablation on removing the action condition for varying context lengths C. Performance of DT (a) with, and (b) without action
condition on all 432 tasks. Without actions in the context, the performance of DT improves with increasing C.

Table 7. Average MSE (± standard deviation) between subsequent actions in robotics datasets.

Meta-World DMControl Composuite Mimicgen

Avg. MSE 0.08±0.09 0.2±0.22 2.1±0.3 0.015±0.007

useful when the datasets contain a mixture of optimal and suboptimal trajectories. However, many recent works focus on
behavior cloning without return conditioning (Brohan et al., 2023b;a; Octo Model Team et al., 2024).

To better understand whether our findings transfer to the behavior cloning setting, we conduct an ablation study in which we
exclude the RTG tokens and the reward tokens from the sequence representation. This means that the sequence consists of
state and reward tokens, or state-tokens only. In Figures 28 and 28, we report the (a) validation perplexities and (b) evaluation
performance on the 432 task for the four considered backbones when removing RTG or RTG and reward, respectively.
We retain the same training settings and datasets as reported in Appendix C (200K updates, evaluation after every 50K
steps). We observe similar learning dynamics as for the 206M models that include RTG/reward tokens in the sequence
representation (see Figure 2 and Figure 11). Consequently, we conclude that the same performance trends hold for training
the considered backbones with and without RTG/reward condition. Note that the final performances are lower compared to
the models that include the RTG condition, and that can be conditioned on a high return at inference time.

E.3. Effect of mLSTM-to-sLSTM ratio.

Throughout our experiments, we compare two xLSTM variants: xLSTM [7:1] and xLSTM [1:0]. The bracket notation was
introduced by (Beck et al., 2024) and denotes the ratio of mLSTM to sLSTM blocks. For example, xLSTM [7:1] contains 1
sLSTM block for every 7 mLSTM blocks. As described in Appendix C, we aim to maintain the same ratio as proposed by
Beck et al. (2024). While mLSTM blocks are fully parallelizable, sLSTM blocks are not. However, sLSTM preserves the
non-diagonalized recurrent matrix to enable state-tracking (Merrill et al., 2024). As such, sLSTM can be attractive for tasks
that require state-tracking (see Figure 4 in Beck et al. (2024)).

We first conduct an ablation study on the effect of the mLSTM-to-sLSTM ratio on the evaluation performance across all
432 tasks. For this experiment, we use the 16M parameter model that contains 8 xLSTM blocks in total. Consequently, we
compare the following ratios [1:0] (only mLSTM), [0:1] (only sLSTM), [1:1], [1:3], [7:1]. In addition, we investigate the
placement of sLSTMs across all 8 blocks. To indicate the placement, we use @ followed by the layer index (starting at 0).
For example, [3:1] @ 1,3 indicates that the second and fourth layers are sLSTMs. In Figure 30, we report the validation
perplexities and evaluation performance for different ratios and layer placements across the 432 tasks. For computational
reasons, we conduct this experiment with only 1 seed per ratio. We find that at the 16M parameter scale, xLSTM [1:0] on
average outperforms the variants that leverage sLSTM blocks. This indicates that these domains do not strongly benefit
from the state tracking abilities of sLSTM.
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(a) w/ actions

(b) w/o actions

Figure 25. Ablation on removing the action condition for varying context lengths C. We show the normalized score per domain for all
context lengths (a) with and (b) without actions.

Next, conduct the same analysis on Dark-Room 10× 10 ICL environment as used in Appendix D.4. Unlike most of the
432 tasks used in our main experiments, Dark-Room exhibits a partially observable observation space and sparse rewards.
Consequently, Dark-Room is more likely to require state tracking abilities. In fact, we already observed better performance
for xLSTM [7:1] than for xLSTM [1:0] in Appendix 16. In Figure 31, we report the ICL curves for the 80 train tasks and 20
hold-out tasks. We observe that xLSTM variants that contain sLSTM blocks at lower-level positions, such as [7:1] @ 1 and
[3:1] @ 1,3 outperform xLSTM [1:0]. In contrast, xLSTM variants that contain sLSTM blocks at deeper-level positions,
such as [0:1] and 3:1 @ 5,7, perform poorly. This is similar to findings by Beck et al. (2024) who also place sLSTM layers
at lower-level positions.

We conclude that sLSTM layers can be important building blocks for tasks that require state-tracking, such as Dark-Room.
Most of the 432 tasks we consider in the main experiments of this work contain fully observable observation spaces and may
not require state-tracking. However, we believe that more complex tasks with longer horizons or partial observability, as is
common in real-world applications, could greatly benefit from the state-tracking abilities provided by sLSTM blocks. As
such, equipping an agent with the ability to perform state-tracking by including sLSTM blocks may be a valuable option for
practitioners. This is a distinguishing factor of xLSTM from Mamba, which does not exhibit state-tracking.

E.4. Effect of Dropout in DT

DTs use by default a Dropout (Srivastava et al., 2014) rate of 0.1. However, during our experiments, we found that Dropout
has detrimental effects on the evaluation performance, particularly on continuous control domains like Composuite. In
Figure 32, we show the validation perplexities and evaluation performance for a DT trained with and without Dropout.
Consequently, we remove Dropout from our DT variant.

E.5. Effect of reducing number of layers in xLSTM

In prior works, xLSTM and Mamba use twice the number of layers blocks as the Transformer baseline, while maintaining
the same hidden dimension (Gu & Dao, 2023; Beck et al., 2024). For our inference-time comparisons, we therefore reduce
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(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 26. Ablation on the effect of varying the context length C for xLSTM. We report (a) validation perplexity and (b) evaluation
performance across the 432 training tasks for xLSTM [1:0]. Without actions in the context, the performance of DT improves with
increasing C.

(a) w/o actions

Figure 27. Ablation on the effect of varying the context length C for xLSTM. We show the normalized scores per domain for all context
lengths.

the number of layer blocks in xLSTM by half. To ensure a fair comparison, we consequently adjust the hidden size of
xLSTM to match the number of parameters of the Transformer baseline. In this section, we investigate the effect of these
modifications of the xLSTM architecture on the model performance.

In Figure 33, report the validation perplexities and evaluation performance for the regular xLSTM with twice the number of
layer blocks as DT, and an xLSTM with half the number of blocks. Reducing the number of layer blocks results in a slight
decrease in performance on both metrics. However, xLSTM still outperforms the Transformer baseline (see Figure 2).

F. Embedding Space Analysis
In Figure 5, we analyze the representations learned by our models using UMAP (McInnes et al., 2018). Here, we explain the
clustering procedure in more detail. For every task, we sample 32 sub-trajectories containing 50 timesteps (150 tokens) and
encode them using our sequence models. Then, we extract the hidden states at the last layer of our model and aggregate
them via mean pooling. We cluster all vectors using the default hyperparameters of UMAP into a two-dimensional space.
Finally, we color the resulting points by their domain.

The purpose of this analysis is to examine how the models organize their representations of different environments. In
general, tasks within the same domain tend to share similar input characteristics, such as visual inputs (e.g., image frames),
possible actions to perform, and reward structures. Therefore, they are more likely to be “grouped” together in the embedding
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(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 28. Ablation on the effect of omitting the RTG condition. We report the learning curves for (a) validation perplexity and (b)
evaluation performance across the 432 training tasks for 206M parameter models. We observe similar performance trends as when
including the RTG in the sequence.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 29. Ablation on the effect of omitting the RTG condition and the reward condition. We report the learning curves for (a)
validation perplexity and (b) evaluation performance across the 432 training tasks for 206M parameter models. We observe similar
performance trends as when including the RTG in the sequence.

space. For example, when embeddings of Atari games are closer to each other than to Procgen games, it indicates that
Atari games share more similar underlying dynamics or input structures compared to Procgen. We indeed find that tasks
from the same domain cluster together. A more refined and better-separated embedding space may result in better final
performance, potentially because it facilitates task identification at inference time. This may, however, be specific to the
mixture of training tasks at hand. Therefore, we believe that studying the learned embedding spaces of multi-task agents in a
wide range of environments is interesting for future work.

Analogous to Figure 5 for DT and xLSTM, we show the UMAP clustering for Mamba 16M in Figure 34. In comparison to
DT, Mamba exhibits a slightly stronger grouping of the embedding space.

G. Raw Scores
In this section, we report the raw scores for all 432 training tasks for the 206M parameter scale. See Tables 8, 9, 10, 11, 12
for Procgen, Atari, Meta-World, DMControl, and Mimicgen, respectively. The raw scores for Composuite are available in
Tables 13, 14, 15, and 16.
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(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 30. Ablation on the effect of the mLSTM-to-sLSTM ratio. We report the learning curves for (a) validation perplexity and (b)
evaluation performance across the 432 training tasks for 206M parameter models with varying ratios.

(a) 80 training tasks (b) 20 hold-out tasks

Figure 31. In-context Learning on Dark-Room 10× 10 for varying mLSTM-to-sLSTM ratios.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 32. Ablation on the effect of dropout on DT performance. We show the (a) validation perplexity and (b) evaluation performance
on the training tasks. DT performance drops considerably if training with dropout.
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(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 33. Ablation on the effect of reducing the number of layer blocks in xLSTM. We show the (a) validation perplexity and (b)
evaluation performance on the training tasks for the layer regular and layer-matched xLSTM models. Reducing the number of layer
blocks in xLSTM results in a slight performance decrease.

(a) DT (b) Mamba (c) xLSTM

Figure 34. UMAP clustering of hidden states for 432 tasks produced by (a) DT, (b) Mamba, and (c) xLSTM with 16M parameters,
colored by domain. We again depict the embedding spaces for DT and xLSTM from Figure 5 for better readability.

Table 8. Raw Scores for Procgen.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]

bigfish 2.53 2.0 4.6 5.13
bossfight 6.73 4.1 9.27 2.0
caveflyer 6.67 6.3 6.67 4.87
chaser 3.41 3.91 4.92 4.2
coinrun 10.0 9.0 10.0 10.0
dodgeball 2.8 3.4 4.27 3.87
fruitbot 13.33 19.8 19.73 19.27
heist 7.33 7.0 6.67 6.67
leaper 5.33 4.0 8.67 5.33
maze 8.67 10.0 7.33 7.33
miner 8.07 11.0 9.0 8.27
starpilot 24.93 10.1 21.8 28.2

Avg. Reward 8.32 7.55 8.73 8.76
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Table 9. Raw Scores for Atari.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

Amidar 82.27 30.8 71.07 26.73
Assault 438.2 224.7 410.2 494.13
Asterix 573.33 540.0 763.33 583.33
Atlantis 42573.33 97240.0 83760.0 76973.33
BankHeist 2.67 9.0 0.0 8.67
BattleZone 2000.0 2400.0 2600.0 1733.33
BeamRider 126.13 61.6 176.0 243.47
Boxing 80.8 77.7 83.8 84.93
Breakout 68.13 136.6 92.93 93.73
Carnival 618.67 424.0 697.33 484.0
Centipede 1802.13 1238.2 2416.73 1806.6
ChopperCommand 813.33 800.0 813.33 766.67
CrazyClimber 96853.33 65960.0 106606.67 79873.33
DemonAttack 100.0 65.0 181.33 130.67
DoubleDunk -2.53 -3.0 -2.93 -3.87
Enduro 34.53 65.5 98.73 48.53
FishingDerby -72.47 -68.2 -72.07 -71.0
Freeway 29.0 29.8 30.0 28.6
Frostbite 774.67 1248.0 1162.67 1049.33
Gopher 314.67 34.0 132.0 12.0
Gravitar 116.67 175.0 176.67 136.67
Hero 14004.67 11381.0 14688.67 16522.0
IceHockey -4.8 -6.3 -7.6 -5.93
Jamesbond 490.0 540.0 603.33 510.0
Kangaroo 1426.67 2880.0 2620.0 2653.33
Krull 8880.67 10090.0 8918.0 9569.33
KungFuMaster 8866.67 12700.0 8120.0 11233.33
NameThisGame 7976.67 7967.0 7789.33 7232.0
Phoenix 592.0 1600.0 1807.33 1052.67
Pooyan 283.33 87.5 371.67 406.67
Qbert 4306.67 1700.0 805.0 2613.33
Riverraid 2888.67 6923.0 6688.0 7446.67
RoadRunner 1320.0 350.0 1340.0 213.33
Robotank 18.67 13.2 23.07 25.13
Seaquest 182.67 396.0 448.0 209.33
TimePilot 2533.33 3520.0 3200.0 2966.67
UpNDown 10598.0 12043.0 15340.67 12815.33
VideoPinball 1669.07 0.0 220.4 140.6
WizardOfWor 113.33 160.0 160.0 206.67
YarsRevenge 14356.27 14499.0 16815.0 21403.67
Zaxxon 0.0 0.0 20.0 0.0

Avg. Reward 5556.81 6281.27 6705.61 6383.35
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Table 10. Raw Scores for Meta-World.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

reach 1860.69 ± 12.51 1859.3 ± 5.79 1859.17 ± 12.62 1864.37 ± 6.57
push 1588.19 ± 207.0 1605.03 ± 107.81 1493.31 ± 238.01 1759.33 ± 3.89
pick-place 137.85 ± 99.18 161.74 ± 153.95 389.81 ± 37.36 296.21 ± 43.77
door-open 1552.95 ± 6.51 1562.39 ± 6.79 1569.35 ± 6.71 1570.16 ± 14.83
drawer-open 1735.13 ± 21.76 1714.4 ± 19.3 1740.48 ± 9.2 1747.33 ± 3.88
drawer-close 1856.67 ± 3.06 1858.05 ± 2.75 1858.7 ± 2.34 1859.33 ± 1.15
button-press-topdown 1322.3 ± 3.12 1326.55 ± 19.93 1341.5 ± 3.15 1322.83 ± 7.25
peg-insert-side 1557.59 ± 98.52 1607.59 ± 9.1 1640.43 ± 13.1 1574.75 ± 90.34
window-open 1594.16 ± 34.13 1568.55 ± 14.38 1576.82 ± 10.21 1578.18 ± 70.3
window-close 1474.26 ± 16.88 1443.94 ± 18.99 1459.83 ± 18.79 1452.21 ± 26.56
door-close 1538.02 ± 14.64 1544.31 ± 3.63 1546.0 ± 9.69 1541.64 ± 10.5
reach-wall 1837.64 ± 1.6 1845.12 ± 3.06 1837.76 ± 3.39 1777.17 ± 94.47
pick-place-wall 1041.54 ± 219.67 843.51 ± 224.6 206.88 ± 184.28 385.57 ± 151.52
push-wall 1689.67 ± 12.74 1701.7 ± 1.54 1599.63 ± 189.06 1487.69 ± 195.8
button-press 1512.08 ± 9.54 1488.1 ± 38.83 1541.77 ± 5.48 1527.3 ± 10.16
button-press-topdown-wall 1314.49 ± 62.73 1295.2 ± 6.62 1321.26 ± 17.59 1328.74 ± 24.16
button-press-wall 1359.83 ± 173.51 1547.14 ± 13.84 1326.57 ± 109.09 1267.11 ± 8.78
peg-unplug-side 1415.68 ± 162.54 1517.49 ± 25.27 1393.98 ± 173.0 1422.64 ± 192.05
disassemble 1452.0 ± 44.54 1441.18 ± 29.15 1220.27 ± 441.51 1072.31 ± 374.95
hammer 1446.68 ± 169.03 1683.04 ± 4.82 1669.54 ± 32.0 1642.34 ± 72.23
plate-slide 1673.66 ± 1.72 1676.83 ± 3.0 1682.41 ± 5.02 1677.52 ± 5.46
plate-slide-side 1719.4 ± 7.85 1694.35 ± 46.29 1686.38 ± 61.27 1690.72 ± 12.97
plate-slide-back 1790.96 ± 6.39 1787.65 ± 5.99 1797.78 ± 1.17 1797.17 ± 0.43
plate-slide-back-side 1773.26 ± 9.72 1763.24 ± 5.59 1785.11 ± 7.42 1788.61 ± 6.67
handle-press 1734.75 ± 220.82 1829.07 ± 29.91 1881.23 ± 15.62 1881.92 ± 10.56
handle-pull 1590.74 ± 35.98 1627.4 ± 34.18 1616.62 ± 52.0 1627.6 ± 21.86
handle-press-side 1852.25 ± 7.0 1857.4 ± 10.13 1847.95 ± 5.61 1857.36 ± 5.57
handle-pull-side 1651.05 ± 3.48 1607.3 ± 22.56 1655.75 ± 4.6 1651.77 ± 7.53
stick-push 1595.45 ± 6.88 1585.22 ± 5.17 1595.35 ± 3.29 1595.21 ± 0.88
stick-pull 1377.41 ± 108.31 1401.91 ± 32.79 1460.27 ± 57.13 1442.68 ± 43.23
basketball 1529.79 ± 11.41 1528.22 ± 18.23 1543.02 ± 2.49 1542.8 ± 17.81
soccer 649.69 ± 160.32 929.06 ± 64.35 792.21 ± 139.63 732.44 ± 290.49
faucet-open 1676.95 ± 121.6 1703.83 ± 41.97 1727.05 ± 45.15 1744.83 ± 15.93
faucet-close 1772.91 ± 9.23 1772.13 ± 2.35 1778.25 ± 3.96 1775.25 ± 0.79
coffee-push 340.21 ± 276.9 232.01 ± 225.2 61.35 ± 51.79 41.79 ± 40.9
coffee-pull 1346.29 ± 101.93 1261.39 ± 195.18 1409.68 ± 34.66 1293.92 ± 129.94
coffee-button 1595.94 ± 16.57 1592.77 ± 2.23 1593.15 ± 49.98 1562.92 ± 36.79
sweep 1485.79 ± 12.17 1452.38 ± 13.74 1508.58 ± 14.96 1471.73 ± 29.08
sweep-into 1796.25 ± 7.64 1472.64 ± 455.9 1804.27 ± 2.38 1786.27 ± 14.64
pick-out-of-hole 1437.38 ± 181.15 1499.35 ± 35.73 1529.83 ± 8.09 1415.91 ± 176.44
assembly 1229.39 ± 16.96 1216.34 ± 22.21 1236.68 ± 21.77 1227.81 ± 7.67
shelf-place 1446.07 ± 30.41 1448.75 ± 39.73 1485.4 ± 12.31 1463.53 ± 9.04
push-back 1226.32 ± 172.59 1022.98 ± 158.35 1011.25 ± 396.65 1027.48 ± 303.73
lever-pull 1604.74 ± 3.32 1634.06 ± 6.08 1639.31 ± 10.11 1626.09 ± 23.72
dial-turn 1688.33 ± 22.94 1667.37 ± 41.45 1713.38 ± 35.16 1686.59 ± 55.09

Avg. Reward 1486.05 1486.18 1455.15 1464.16
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Table 11. Raw Scores for DMControl.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

finger-turn-easy 121.27 ± 104.6 396.4 ± 122.47 449.8 ± 186.65 640.13 ± 82.48
fish-upright 181.14 ± 70.82 154.59 ± 34.64 277.23 ± 105.37 241.73 ± 257.01
hopper-stand 296.15 ± 141.83 304.78 ± 32.65 413.95 ± 35.83 392.34 ± 152.75
point mass-easy 342.26 ± 37.42 720.11 ± 42.95 734.95 ± 114.17 823.74 ± 57.3
walker-stand 911.72 ± 38.16 785.21 ± 23.53 947.31 ± 22.13 864.14 ± 181.56
walker-run 155.91 ± 73.84 274.83 ± 0.44 201.34 ± 34.77 145.01 ± 31.71
ball in cup-catch 976.93 ± 0.83 970.9 ± 4.67 977.33 ± 0.5 975.93 ± 0.42
cartpole-swingup 688.5 ± 42.6 762.4 ± 63.93 800.14 ± 13.64 591.08 ± 86.49
cheetah-run 81.21 ± 96.85 482.39 ± 17.23 358.52 ± 127.92 389.04 ± 4.11
finger-spin 209.27 ± 20.57 430.8 ± 61.66 673.47 ± 94.37 626.93 ± 29.21
reacher-easy 45.4 ± 5.21 180.7 ± 133.64 78.73 ± 20.59 58.0 ± 13.91

Avg. Reward 364.52 496.65 505.06 522.55

40



A Large Recurrent Action Model: xLSTM Enables Fast Inference for Robotics Tasks

Table 12. Raw Scores for Mimicgen.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

Panda CoffeePreparation D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12
Panda CoffeePreparation D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Coffee D0 0.4 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D1 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D2 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 1.0 ± 0.0
Panda HammerCleanup D1 0.47 ± 0.5 0.1 ± 0.14 0.47 ± 0.23 0.47 ± 0.31
Panda Kitchen D0 0.87 ± 0.23 0.6 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Panda Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda MugCleanup D0 0.13 ± 0.12 0.1 ± 0.14 0.6 ± 0.2 0.27 ± 0.12
Panda MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Sawyer NutAssembly D0 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Square D0 0.2 ± 0.2 0.0 ± 0.0 0.53 ± 0.12 0.53 ± 0.12
Panda Square D1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Square D2 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda Stack D0 0.47 ± 0.12 0.2 ± 0.0 0.67 ± 0.31 0.73 ± 0.12
Panda Stack D1 0.4 ± 0.2 0.0 ± 0.0 0.27 ± 0.12 0.4 ± 0.2
Panda Threading D0 0.27 ± 0.12 0.2 ± 0.0 0.27 ± 0.12 0.2 ± 0.2
Panda Threading D1 0.2 ± 0.35 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Coffee D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D0 0.27 ± 0.31 0.0 ± 0.0 0.13 ± 0.12 0.2 ± 0.2
UR5e Coffee D0 0.33 ± 0.12 0.2 ± 0.0 0.47 ± 0.31 0.4 ± 0.2
IIWA Coffee D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D1 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e Coffee D1 0.13 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.33 ± 0.31
IIWA Coffee D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Coffee D2 0.0 ± 0.0 0.1 ± 0.14 0.2 ± 0.0 0.07 ± 0.12
IIWA HammerCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D0 0.73 ± 0.12 0.9 ± 0.14 0.93 ± 0.12 0.87 ± 0.23
UR5e HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 0.93 ± 0.12
IIWA HammerCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D1 0.2 ± 0.2 0.2 ± 0.0 0.27 ± 0.23 0.4 ± 0.35
UR5e HammerCleanup D1 0.47 ± 0.12 0.4 ± 0.28 0.8 ± 0.2 0.6 ± 0.0
IIWA Kitchen D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Kitchen D0 0.93 ± 0.12 0.8 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
UR5e Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA MugCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA MugCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.13 ± 0.12 0.13 ± 0.12
IIWA NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Square D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D0 0.2 ± 0.2 0.4 ± 0.28 0.33 ± 0.12 0.53 ± 0.23
UR5e Square D0 0.13 ± 0.23 0.3 ± 0.42 0.27 ± 0.12 0.53 ± 0.23
IIWA Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
UR5e StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Stack D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D0 0.47 ± 0.31 0.2 ± 0.0 0.6 ± 0.2 0.4 ± 0.2
UR5e Stack D0 0.4 ± 0.2 0.3 ± 0.14 0.87 ± 0.12 0.67 ± 0.12
IIWA Stack D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D1 0.2 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.27 ± 0.12
UR5e Stack D1 0.6 ± 0.0 0.1 ± 0.14 0.73 ± 0.12 0.4 ± 0.2
IIWA Threading D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D0 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.13 ± 0.12
UR5e Threading D0 0.27 ± 0.31 0.1 ± 0.14 0.4 ± 0.2 0.4 ± 0.2
IIWA Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
UR5e Threading D1 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
IIWA ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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A Large Recurrent Action Model: xLSTM Enables Fast Inference for Robotics Tasks

Table 13. Raw Scores for Composuite, Part1.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

IIWA Box None PickPlace 402.74 ± 14.4 414.73 ± 10.49 424.35 ± 12.95 421.33 ± 11.39
IIWA Box None Push 388.61 ± 35.63 427.0 ± 2.03 424.4 ± 4.63 427.0 ± 0.68
IIWA Box None Shelf 370.3 ± 80.53 417.61 ± 1.44 417.78 ± 0.96 416.41 ± 1.87
IIWA Box None Trashcan 329.27 ± 113.43 424.39 ± 1.04 429.54 ± 1.57 426.07 ± 3.98
IIWA Box GoalWall PickPlace 367.68 ± 81.93 428.6 ± 4.11 428.0 ± 2.32 429.29 ± 1.97
IIWA Box GoalWall Push 299.69 ± 77.03 337.81 ± 88.42 344.59 ± 28.19 318.19 ± 50.76
IIWA Box GoalWall Shelf 360.92 ± 48.29 405.81 ± 9.82 408.1 ± 5.92 402.31 ± 3.08
IIWA Box GoalWall Trashcan 376.45 ± 83.64 422.34 ± 3.61 429.15 ± 2.72 425.64 ± 3.88
IIWA Box ObjectDoor PickPlace 389.21 ± 47.22 417.89 ± 0.92 413.82 ± 4.06 414.08 ± 3.83
IIWA Box ObjectDoor Push 406.51 ± 0.32 403.59 ± 5.82 373.61 ± 40.95 397.45 ± 1.89
IIWA Box ObjectDoor Shelf 329.42 ± 67.73 353.67 ± 56.2 367.47 ± 43.7 396.33 ± 2.67
IIWA Box ObjectDoor Trashcan 325.45 ± 72.77 372.51 ± 41.55 358.72 ± 76.22 391.58 ± 16.76
IIWA Box ObjectWall PickPlace 393.52 ± 51.47 425.76 ± 2.29 420.61 ± 2.99 421.61 ± 1.06
IIWA Box ObjectWall Push 420.21 ± 3.5 412.76 ± 1.67 410.19 ± 1.62 411.5 ± 3.13
IIWA Box ObjectWall Shelf 400.86 ± 3.66 408.22 ± 1.63 401.42 ± 3.93 396.64 ± 10.55
IIWA Box ObjectWall Trashcan 414.43 ± 2.93 413.71 ± 3.47 417.11 ± 1.69 414.46 ± 0.8
IIWA Dumbbell None PickPlace 386.95 ± 51.87 422.35 ± 2.94 421.32 ± 2.03 421.94 ± 1.48
IIWA Dumbbell None Push 360.62 ± 90.94 413.39 ± 6.13 414.23 ± 6.04 393.34 ± 36.66
IIWA Dumbbell None Shelf 310.45 ± 73.45 344.81 ± 53.72 380.51 ± 5.34 350.8 ± 52.16
IIWA Dumbbell None Trashcan 386.09 ± 40.69 396.08 ± 0.7 414.03 ± 3.78 412.34 ± 3.36
IIWA Dumbbell GoalWall PickPlace 413.6 ± 1.16 415.64 ± 3.28 410.7 ± 7.64 413.51 ± 1.23
IIWA Dumbbell GoalWall Push 316.49 ± 38.69 367.45 ± 4.81 336.67 ± 82.13 371.92 ± 5.91
IIWA Dumbbell GoalWall Shelf 395.63 ± 3.19 372.77 ± 30.32 376.75 ± 8.62 372.77 ± 4.25
IIWA Dumbbell GoalWall Trashcan 379.45 ± 58.51 374.31 ± 55.11 412.22 ± 4.09 406.03 ± 5.03
IIWA Dumbbell ObjectDoor PickPlace 358.13 ± 26.76 364.62 ± 40.18 393.83 ± 2.05 347.28 ± 39.81
IIWA Dumbbell ObjectDoor Push 400.9 ± 8.95 383.81 ± 8.46 382.93 ± 0.7 364.06 ± 35.78
IIWA Dumbbell ObjectDoor Shelf 369.75 ± 14.29 325.7 ± 30.94 350.7 ± 21.76 335.84 ± 40.36
IIWA Dumbbell ObjectDoor Trashcan 393.05 ± 3.92 358.77 ± 36.88 397.23 ± 1.73 389.54 ± 9.14
IIWA Dumbbell ObjectWall PickPlace 403.51 ± 12.08 407.37 ± 0.09 404.28 ± 1.23 401.15 ± 10.64
IIWA Dumbbell ObjectWall Push 330.77 ± 30.29 296.98 ± 68.18 334.41 ± 22.28 307.4 ± 33.85
IIWA Dumbbell ObjectWall Shelf 353.9 ± 29.5 374.39 ± 6.58 358.29 ± 33.75 358.76 ± 18.87
IIWA Dumbbell ObjectWall Trashcan 394.48 ± 4.39 361.99 ± 39.17 398.06 ± 0.59 383.43 ± 32.4
IIWA Plate None PickPlace 427.3 ± 0.59 424.44 ± 1.82 424.59 ± 2.01 425.99 ± 1.2
IIWA Plate None Push 424.25 ± 1.13 419.86 ± 3.96 418.13 ± 3.55 418.42 ± 1.3
IIWA Plate None Shelf 408.07 ± 0.95 397.02 ± 6.49 396.55 ± 10.03 394.93 ± 10.81
IIWA Plate None Trashcan 419.62 ± 1.81 420.24 ± 0.33 420.37 ± 0.91 419.42 ± 2.61
IIWA Plate GoalWall PickPlace 424.69 ± 2.67 423.93 ± 1.77 421.83 ± 1.01 420.13 ± 8.21
IIWA Plate GoalWall Push 409.69 ± 3.55 397.97 ± 13.41 390.46 ± 14.79 388.89 ± 3.01
IIWA Plate GoalWall Shelf 404.92 ± 0.82 396.09 ± 4.6 393.01 ± 5.77 401.81 ± 8.93
IIWA Plate GoalWall Trashcan 420.47 ± 1.88 420.68 ± 2.82 420.29 ± 1.48 421.31 ± 1.93
IIWA Plate ObjectDoor PickPlace 408.48 ± 1.12 403.23 ± 7.83 397.51 ± 1.65 401.53 ± 1.76
IIWA Plate ObjectDoor Push 404.34 ± 4.45 395.97 ± 16.84 389.33 ± 7.78 385.77 ± 1.21
IIWA Plate ObjectDoor Shelf 377.91 ± 21.42 373.43 ± 5.34 369.41 ± 4.97 374.16 ± 13.75
IIWA Plate ObjectDoor Trashcan 400.27 ± 3.16 400.74 ± 0.53 399.28 ± 1.63 400.23 ± 0.63
IIWA Plate ObjectWall PickPlace 417.35 ± 3.15 416.76 ± 6.18 409.31 ± 1.26 411.62 ± 0.97
IIWA Plate ObjectWall Push 413.47 ± 3.92 408.16 ± 6.53 405.51 ± 3.71 405.27 ± 1.34
IIWA Plate ObjectWall Shelf 393.23 ± 1.39 376.64 ± 12.49 386.41 ± 8.65 382.81 ± 6.78
IIWA Plate ObjectWall Trashcan 410.85 ± 1.07 408.87 ± 3.95 408.98 ± 0.82 409.35 ± 2.6
IIWA Hollowbox None PickPlace 378.13 ± 94.18 427.5 ± 6.93 428.62 ± 3.62 426.38 ± 3.26
IIWA Hollowbox None Push 386.22 ± 36.15 422.49 ± 8.01 427.73 ± 1.97 426.12 ± 2.3
IIWA Hollowbox None Shelf 416.65 ± 6.66 419.89 ± 11.03 418.34 ± 6.49 415.11 ± 0.89
IIWA Hollowbox None Trashcan 424.38 ± 2.77 421.62 ± 1.4 426.9 ± 2.35 425.99 ± 1.81
IIWA Hollowbox GoalWall PickPlace 430.17 ± 3.37 427.76 ± 0.48 427.91 ± 0.76 426.47 ± 1.62
IIWA Hollowbox GoalWall Push 401.33 ± 3.96 373.0 ± 41.02 390.09 ± 9.46 394.35 ± 14.43
IIWA Hollowbox GoalWall Shelf 424.55 ± 2.3 379.05 ± 64.32 423.51 ± 1.31 419.69 ± 3.38
IIWA Hollowbox GoalWall Trashcan 425.95 ± 0.73 425.27 ± 0.66 424.8 ± 1.0 420.68 ± 3.33
IIWA Hollowbox ObjectDoor PickPlace 276.87 ± 109.64 369.45 ± 57.47 374.76 ± 45.83 301.41 ± 112.33
IIWA Hollowbox ObjectDoor Push 326.56 ± 109.6 352.22 ± 53.97 390.78 ± 6.35 324.09 ± 55.59
IIWA Hollowbox ObjectDoor Shelf 339.03 ± 43.75 370.75 ± 8.36 362.72 ± 30.31 353.98 ± 38.19
IIWA Hollowbox ObjectDoor Trashcan 395.18 ± 8.7 370.39 ± 35.98 387.21 ± 14.61 387.99 ± 21.95
IIWA Hollowbox ObjectWall PickPlace 364.95 ± 27.07 355.61 ± 76.66 356.01 ± 8.3 369.47 ± 24.62
IIWA Hollowbox ObjectWall Push 422.04 ± 2.08 414.47 ± 8.08 414.39 ± 5.5 408.53 ± 8.05
IIWA Hollowbox ObjectWall Shelf 400.82 ± 2.4 400.31 ± 1.28 403.69 ± 2.06 401.27 ± 1.97
IIWA Hollowbox ObjectWall Trashcan 415.82 ± 0.9 416.68 ± 0.14 392.79 ± 44.13 417.34 ± 0.77

42



A Large Recurrent Action Model: xLSTM Enables Fast Inference for Robotics Tasks

Table 14. Raw Scores for Composuite, Part 2.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

Jaco Box None PickPlace 401.38 ± 3.88 400.41 ± 0.63 399.74 ± 5.35 396.54 ± 4.99
Jaco Box None Push 399.84 ± 3.29 397.79 ± 1.71 392.77 ± 1.12 397.31 ± 1.39
Jaco Box None Shelf 383.53 ± 0.31 384.65 ± 5.31 385.85 ± 1.1 386.34 ± 3.47
Jaco Box None Trashcan 374.88 ± 43.66 398.46 ± 2.69 397.66 ± 4.99 398.21 ± 0.91
Jaco Box GoalWall PickPlace 394.75 ± 2.52 395.12 ± 0.38 392.3 ± 5.3 389.93 ± 3.83
Jaco Box GoalWall Push 317.78 ± 67.67 343.43 ± 7.49 351.67 ± 20.65 336.02 ± 8.59
Jaco Box GoalWall Shelf 374.62 ± 20.35 387.0 ± 1.42 387.73 ± 2.11 384.74 ± 1.19
Jaco Box GoalWall Trashcan 374.07 ± 30.72 393.81 ± 0.68 395.49 ± 1.23 392.53 ± 3.46
Jaco Box ObjectDoor PickPlace 396.05 ± 1.12 391.81 ± 4.67 388.37 ± 1.26 383.39 ± 9.07
Jaco Box ObjectDoor Push 364.64 ± 38.39 383.07 ± 5.73 366.91 ± 33.04 387.51 ± 2.93
Jaco Box ObjectDoor Shelf 373.8 ± 2.81 379.75 ± 1.45 375.38 ± 6.27 376.86 ± 1.37
Jaco Box ObjectDoor Trashcan 388.4 ± 1.28 353.97 ± 52.06 389.38 ± 2.0 389.81 ± 2.89
Jaco Box ObjectWall PickPlace 394.31 ± 2.66 385.33 ± 5.43 388.54 ± 7.62 387.82 ± 2.26
Jaco Box ObjectWall Push 387.4 ± 9.34 384.75 ± 4.29 383.61 ± 7.58 383.32 ± 7.73
Jaco Box ObjectWall Shelf 364.38 ± 2.57 361.28 ± 8.2 367.38 ± 2.04 369.22 ± 2.79
Jaco Box ObjectWall Trashcan 385.73 ± 6.85 385.9 ± 1.13 385.34 ± 0.74 380.01 ± 5.08
Jaco Dumbbell None PickPlace 319.87 ± 1.83 334.2 ± 1.93 376.46 ± 9.19 334.95 ± 68.5
Jaco Dumbbell None Push 388.29 ± 1.98 372.13 ± 5.46 373.3 ± 6.88 369.49 ± 4.36
Jaco Dumbbell None Shelf 300.81 ± 61.26 344.47 ± 15.49 361.77 ± 6.21 362.88 ± 8.22
Jaco Dumbbell None Trashcan 369.52 ± 11.5 369.83 ± 13.39 387.28 ± 1.88 377.27 ± 9.7
Jaco Dumbbell GoalWall PickPlace 306.12 ± 40.29 306.26 ± 32.85 349.04 ± 18.3 348.42 ± 37.3
Jaco Dumbbell GoalWall Push 107.91 ± 29.9 136.11 ± 9.04 245.71 ± 30.15 188.19 ± 58.09
Jaco Dumbbell GoalWall Shelf 300.97 ± 114.65 368.99 ± 0.5 363.58 ± 9.74 346.57 ± 27.41
Jaco Dumbbell GoalWall Trashcan 321.81 ± 87.58 317.94 ± 23.15 376.09 ± 2.22 378.49 ± 4.52
Jaco Dumbbell ObjectDoor PickPlace 382.35 ± 1.62 380.2 ± 5.17 349.1 ± 32.92 372.44 ± 7.6
Jaco Dumbbell ObjectDoor Push 382.32 ± 1.08 353.42 ± 7.17 353.85 ± 6.83 338.66 ± 19.03
Jaco Dumbbell ObjectDoor Shelf 312.14 ± 64.22 330.22 ± 47.38 343.51 ± 30.97 331.5 ± 37.18
Jaco Dumbbell ObjectDoor Trashcan 371.06 ± 8.48 375.34 ± 4.07 373.78 ± 6.05 370.06 ± 8.94
Jaco Dumbbell ObjectWall PickPlace 279.55 ± 111.58 314.05 ± 21.02 360.29 ± 15.75 360.38 ± 12.02
Jaco Dumbbell ObjectWall Push 381.11 ± 3.7 351.38 ± 1.82 349.16 ± 2.93 352.64 ± 11.94
Jaco Dumbbell ObjectWall Shelf 354.95 ± 1.59 316.33 ± 42.6 342.43 ± 7.94 332.97 ± 15.33
Jaco Dumbbell ObjectWall Trashcan 367.01 ± 8.38 354.32 ± 22.23 365.47 ± 7.45 363.25 ± 3.18
Jaco Plate None PickPlace 397.25 ± 0.77 389.99 ± 6.44 384.38 ± 5.92 380.69 ± 2.55
Jaco Plate None Push 395.18 ± 1.01 390.69 ± 9.12 381.68 ± 6.86 380.2 ± 3.48
Jaco Plate None Shelf 380.49 ± 0.75 381.62 ± 0.09 356.49 ± 41.25 380.99 ± 2.43
Jaco Plate None Trashcan 391.97 ± 0.76 390.62 ± 0.57 391.2 ± 1.38 390.3 ± 1.83
Jaco Plate GoalWall PickPlace 379.45 ± 24.14 378.13 ± 6.34 377.33 ± 11.32 376.12 ± 4.31
Jaco Plate GoalWall Push 293.6 ± 38.38 319.4 ± 24.13 320.49 ± 24.25 320.5 ± 31.85
Jaco Plate GoalWall Shelf 358.04 ± 22.32 369.8 ± 15.11 367.73 ± 12.97 362.35 ± 3.32
Jaco Plate GoalWall Trashcan 383.53 ± 7.45 387.55 ± 1.56 389.51 ± 2.03 388.57 ± 1.98
Jaco Plate ObjectDoor PickPlace 390.4 ± 1.3 381.92 ± 15.09 376.2 ± 7.51 380.34 ± 9.73
Jaco Plate ObjectDoor Push 372.01 ± 4.07 366.41 ± 16.51 359.43 ± 10.46 355.71 ± 3.99
Jaco Plate ObjectDoor Shelf 366.15 ± 6.61 357.96 ± 8.35 368.82 ± 4.35 362.39 ± 7.11
Jaco Plate ObjectDoor Trashcan 382.66 ± 0.58 384.3 ± 0.38 384.0 ± 1.92 383.57 ± 1.1
Jaco Plate ObjectWall PickPlace 390.73 ± 1.55 378.98 ± 6.95 376.76 ± 8.54 373.98 ± 5.41
Jaco Plate ObjectWall Push 378.3 ± 4.49 372.47 ± 10.13 364.42 ± 8.12 360.69 ± 3.82
Jaco Plate ObjectWall Shelf 364.2 ± 3.52 364.64 ± 3.01 368.33 ± 1.95 360.73 ± 6.42
Jaco Plate ObjectWall Trashcan 374.17 ± 3.76 375.68 ± 1.54 382.5 ± 2.76 373.86 ± 4.91
Jaco Hollowbox None PickPlace 402.23 ± 2.04 386.75 ± 25.35 396.5 ± 1.04 398.48 ± 3.76
Jaco Hollowbox None Push 392.65 ± 9.62 396.56 ± 4.13 397.09 ± 7.5 396.63 ± 0.38
Jaco Hollowbox None Shelf 377.5 ± 2.78 382.06 ± 6.3 384.26 ± 5.2 381.68 ± 4.82
Jaco Hollowbox None Trashcan 394.85 ± 1.28 394.82 ± 3.27 393.68 ± 3.67 392.87 ± 1.71
Jaco Hollowbox GoalWall PickPlace 395.2 ± 1.44 385.82 ± 13.41 378.92 ± 9.41 379.34 ± 7.17
Jaco Hollowbox GoalWall Push 349.5 ± 34.56 337.43 ± 15.64 348.44 ± 11.76 340.9 ± 2.77
Jaco Hollowbox GoalWall Shelf 357.89 ± 19.58 349.29 ± 10.1 344.53 ± 6.27 333.97 ± 12.22
Jaco Hollowbox GoalWall Trashcan 385.01 ± 1.04 385.4 ± 1.7 386.58 ± 0.37 384.52 ± 0.05
Jaco Hollowbox ObjectDoor PickPlace 335.16 ± 76.71 387.66 ± 8.98 375.68 ± 4.01 344.62 ± 44.5
Jaco Hollowbox ObjectDoor Push 356.64 ± 41.54 386.82 ± 11.07 383.4 ± 9.21 385.73 ± 7.74
Jaco Hollowbox ObjectDoor Shelf 371.32 ± 0.65 362.29 ± 13.12 366.72 ± 4.12 360.22 ± 15.51
Jaco Hollowbox ObjectDoor Trashcan 358.07 ± 46.79 385.01 ± 1.12 383.6 ± 2.35 385.17 ± 0.42
Jaco Hollowbox ObjectWall PickPlace 393.5 ± 2.63 377.85 ± 3.53 378.61 ± 8.16 375.96 ± 5.55
Jaco Hollowbox ObjectWall Push 391.74 ± 4.74 382.69 ± 12.26 387.67 ± 9.52 379.01 ± 6.44
Jaco Hollowbox ObjectWall Shelf 371.33 ± 3.41 367.26 ± 11.73 365.73 ± 7.59 356.39 ± 16.14
Jaco Hollowbox ObjectWall Trashcan 382.6 ± 1.63 385.72 ± 2.03 382.62 ± 1.19 382.01 ± 4.22
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A Large Recurrent Action Model: xLSTM Enables Fast Inference for Robotics Tasks

Table 15. Raw Scores for Composuite, Part 3.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

Kinova3 Box None PickPlace 432.49 ± 3.69 432.11 ± 7.68 432.28 ± 3.45 431.06 ± 2.67
Kinova3 Box None Push 398.81 ± 44.71 416.96 ± 17.33 428.52 ± 1.83 416.41 ± 18.69
Kinova3 Box None Shelf 411.22 ± 3.9 413.65 ± 0.42 415.58 ± 4.21 411.67 ± 3.98
Kinova3 Box None Trashcan 378.21 ± 81.97 426.67 ± 2.1 431.01 ± 0.89 427.82 ± 1.12
Kinova3 Box GoalWall PickPlace 347.29 ± 145.33 430.92 ± 1.73 431.3 ± 2.19 408.26 ± 40.64
Kinova3 Box GoalWall Push 325.78 ± 131.68 390.05 ± 6.59 382.78 ± 2.17 388.29 ± 6.07
Kinova3 Box GoalWall Shelf 357.79 ± 96.22 395.77 ± 28.11 418.95 ± 2.7 417.37 ± 1.02
Kinova3 Box GoalWall Trashcan 373.8 ± 80.27 424.09 ± 0.02 428.12 ± 3.66 427.05 ± 0.87
Kinova3 Box ObjectDoor PickPlace 425.72 ± 1.7 427.38 ± 0.43 424.25 ± 2.86 424.5 ± 3.45
Kinova3 Box ObjectDoor Push 395.44 ± 30.77 414.0 ± 5.47 406.02 ± 0.61 410.58 ± 8.15
Kinova3 Box ObjectDoor Shelf 381.62 ± 37.98 326.93 ± 2.6 408.55 ± 2.3 381.75 ± 45.62
Kinova3 Box ObjectDoor Trashcan 392.17 ± 40.87 415.87 ± 2.48 419.24 ± 0.61 416.46 ± 1.78
Kinova3 Box ObjectWall PickPlace 405.45 ± 21.25 387.27 ± 50.08 425.83 ± 2.68 423.06 ± 3.66
Kinova3 Box ObjectWall Push 419.98 ± 2.8 414.6 ± 1.04 412.82 ± 1.07 415.16 ± 7.28
Kinova3 Box ObjectWall Shelf 399.47 ± 4.56 399.51 ± 1.29 402.37 ± 2.66 402.42 ± 1.48
Kinova3 Box ObjectWall Trashcan 416.15 ± 4.57 412.41 ± 0.4 399.87 ± 31.99 394.97 ± 36.15
Kinova3 Dumbbell None PickPlace 380.36 ± 55.46 418.88 ± 5.8 419.3 ± 7.37 416.89 ± 2.86
Kinova3 Dumbbell None Push 394.84 ± 25.64 396.29 ± 13.63 367.03 ± 53.29 390.74 ± 22.17
Kinova3 Dumbbell None Shelf 290.98 ± 123.89 394.73 ± 4.82 386.09 ± 19.99 397.38 ± 2.93
Kinova3 Dumbbell None Trashcan 358.26 ± 43.32 377.36 ± 53.06 413.01 ± 6.02 414.39 ± 1.97
Kinova3 Dumbbell GoalWall PickPlace 408.52 ± 19.13 392.63 ± 23.38 404.51 ± 4.31 412.68 ± 11.05
Kinova3 Dumbbell GoalWall Push 294.63 ± 35.99 358.66 ± 10.09 321.72 ± 41.37 310.79 ± 67.84
Kinova3 Dumbbell GoalWall Shelf 384.01 ± 20.53 383.06 ± 15.17 395.02 ± 0.83 377.15 ± 28.52
Kinova3 Dumbbell GoalWall Trashcan 377.28 ± 51.33 370.59 ± 31.83 413.63 ± 2.06 378.76 ± 27.34
Kinova3 Dumbbell ObjectDoor PickPlace 415.58 ± 5.38 404.89 ± 11.83 405.77 ± 7.4 410.95 ± 8.75
Kinova3 Dumbbell ObjectDoor Push 359.17 ± 15.53 265.44 ± 62.94 367.39 ± 23.91 311.57 ± 45.56
Kinova3 Dumbbell ObjectDoor Shelf 360.34 ± 28.19 379.36 ± 6.7 385.26 ± 2.74 363.99 ± 37.65
Kinova3 Dumbbell ObjectDoor Trashcan 409.92 ± 1.78 407.09 ± 1.26 407.79 ± 0.71 407.57 ± 2.85
Kinova3 Dumbbell ObjectWall PickPlace 404.63 ± 16.95 409.29 ± 4.6 406.14 ± 2.11 411.69 ± 6.71
Kinova3 Dumbbell ObjectWall Push 311.79 ± 94.94 285.81 ± 62.32 342.04 ± 22.98 244.56 ± 16.32
Kinova3 Dumbbell ObjectWall Shelf 378.68 ± 3.03 378.63 ± 0.91 376.92 ± 0.76 361.79 ± 25.06
Kinova3 Dumbbell ObjectWall Trashcan 400.98 ± 4.19 398.65 ± 3.89 401.96 ± 1.45 395.81 ± 3.51
Kinova3 Plate None PickPlace 424.09 ± 4.78 427.36 ± 4.29 424.82 ± 1.31 425.02 ± 2.92
Kinova3 Plate None Push 412.25 ± 19.8 422.75 ± 2.79 417.63 ± 6.13 416.41 ± 4.33
Kinova3 Plate None Shelf 409.96 ± 0.2 409.11 ± 0.52 410.28 ± 0.65 409.52 ± 1.61
Kinova3 Plate None Trashcan 422.54 ± 2.13 422.07 ± 1.15 421.73 ± 1.36 422.97 ± 0.74
Kinova3 Plate GoalWall PickPlace 427.74 ± 0.81 421.23 ± 6.67 416.44 ± 1.6 416.35 ± 15.86
Kinova3 Plate GoalWall Push 401.46 ± 2.17 385.01 ± 15.39 377.6 ± 3.14 386.87 ± 12.31
Kinova3 Plate GoalWall Shelf 410.49 ± 0.77 409.46 ± 0.15 409.63 ± 0.65 407.67 ± 3.33
Kinova3 Plate GoalWall Trashcan 421.05 ± 0.88 421.19 ± 0.48 422.63 ± 0.81 423.21 ± 1.16
Kinova3 Plate ObjectDoor PickPlace 423.26 ± 0.3 407.55 ± 0.81 406.43 ± 2.07 414.11 ± 7.32
Kinova3 Plate ObjectDoor Push 258.58 ± 18.57 278.08 ± 34.02 300.72 ± 90.5 257.79 ± 48.13
Kinova3 Plate ObjectDoor Shelf 404.4 ± 0.95 403.82 ± 0.86 405.9 ± 0.31 401.09 ± 2.61
Kinova3 Plate ObjectDoor Trashcan 415.34 ± 1.08 415.81 ± 0.35 416.09 ± 0.31 414.34 ± 1.85
Kinova3 Plate ObjectWall PickPlace 420.16 ± 2.07 413.68 ± 5.5 408.0 ± 2.29 411.83 ± 4.11
Kinova3 Plate ObjectWall Push 400.11 ± 16.39 403.95 ± 3.67 406.48 ± 5.73 403.65 ± 6.23
Kinova3 Plate ObjectWall Shelf 391.09 ± 3.65 391.99 ± 6.62 386.25 ± 16.53 391.7 ± 5.14
Kinova3 Plate ObjectWall Trashcan 413.36 ± 1.11 413.44 ± 3.93 413.82 ± 2.45 415.14 ± 1.46
Kinova3 Hollowbox None PickPlace 424.86 ± 6.23 433.78 ± 0.13 430.43 ± 1.11 430.84 ± 1.55
Kinova3 Hollowbox None Push 361.99 ± 40.33 369.17 ± 8.0 396.28 ± 28.04 380.94 ± 28.74
Kinova3 Hollowbox None Shelf 417.73 ± 13.43 417.46 ± 0.36 423.26 ± 3.53 424.02 ± 2.62
Kinova3 Hollowbox None Trashcan 424.65 ± 1.15 409.34 ± 12.4 425.0 ± 2.72 416.0 ± 15.33
Kinova3 Hollowbox GoalWall PickPlace 386.68 ± 49.29 425.24 ± 0.83 421.85 ± 8.69 420.32 ± 9.71
Kinova3 Hollowbox GoalWall Push 403.57 ± 0.96 383.09 ± 8.37 384.13 ± 10.01 381.43 ± 8.58
Kinova3 Hollowbox GoalWall Shelf 385.7 ± 36.06 395.01 ± 4.51 423.93 ± 5.1 417.05 ± 13.43
Kinova3 Hollowbox GoalWall Trashcan 406.37 ± 27.44 404.11 ± 3.64 405.09 ± 22.54 389.36 ± 32.05
Kinova3 Hollowbox ObjectDoor PickPlace 344.01 ± 63.38 364.3 ± 13.82 387.53 ± 20.66 324.36 ± 55.48
Kinova3 Hollowbox ObjectDoor Push 390.98 ± 46.38 416.05 ± 8.96 405.41 ± 5.34 406.76 ± 16.92
Kinova3 Hollowbox ObjectDoor Shelf 359.0 ± 25.63 381.87 ± 12.39 390.42 ± 6.21 357.94 ± 48.51
Kinova3 Hollowbox ObjectDoor Trashcan 405.87 ± 4.17 411.24 ± 1.26 414.92 ± 3.6 408.73 ± 5.66
Kinova3 Hollowbox ObjectWall PickPlace 424.57 ± 0.92 408.98 ± 6.4 417.83 ± 5.67 419.63 ± 9.2
Kinova3 Hollowbox ObjectWall Push 249.37 ± 176.18 319.13 ± 111.09 324.39 ± 76.09 335.61 ± 74.98
Kinova3 Hollowbox ObjectWall Shelf 394.7 ± 9.3 328.52 ± 61.08 357.89 ± 37.75 362.16 ± 40.05
Kinova3 Hollowbox ObjectWall Trashcan 354.65 ± 48.89 353.43 ± 78.59 407.99 ± 1.96 408.29 ± 4.94
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Table 16. Raw Scores for Composuite, Part 4.
Task DT Mamba xLSTM [1:0] xLSTM [7:1]

Panda Box None PickPlace 409.21 ± 5.27 408.66 ± 7.81 409.83 ± 1.87 405.46 ± 3.84
Panda Box None Push 402.52 ± 2.55 373.74 ± 49.95 400.35 ± 2.32 399.37 ± 9.95
Panda Box None Shelf 383.69 ± 4.34 381.42 ± 3.66 383.55 ± 5.74 386.01 ± 1.29
Panda Box None Trashcan 400.37 ± 5.64 395.77 ± 2.77 407.95 ± 1.92 406.17 ± 3.36
Panda Box GoalWall PickPlace 401.53 ± 6.39 389.57 ± 18.4 397.12 ± 4.39 401.64 ± 9.81
Panda Box GoalWall Push 272.61 ± 79.58 257.61 ± 57.4 263.72 ± 45.71 281.71 ± 31.21
Panda Box GoalWall Shelf 384.43 ± 1.66 389.06 ± 3.69 388.59 ± 3.9 383.94 ± 2.0
Panda Box GoalWall Trashcan 400.68 ± 4.51 400.18 ± 6.03 403.24 ± 5.65 392.28 ± 16.82
Panda Box ObjectDoor PickPlace 359.01 ± 12.2 365.3 ± 5.97 359.63 ± 0.79 359.27 ± 10.88
Panda Box ObjectDoor Push 363.07 ± 3.13 352.85 ± 13.71 340.37 ± 6.06 340.5 ± 4.97
Panda Box ObjectDoor Shelf 346.29 ± 2.53 345.8 ± 4.91 349.82 ± 6.46 341.44 ± 11.05
Panda Box ObjectDoor Trashcan 361.19 ± 1.65 356.77 ± 3.24 356.66 ± 5.73 337.69 ± 32.63
Panda Dumbbell None PickPlace 342.62 ± 39.18 310.15 ± 24.64 318.76 ± 2.7 342.02 ± 31.28
Panda Dumbbell None Push 299.34 ± 78.28 341.64 ± 42.57 359.06 ± 42.88 263.35 ± 154.81
Panda Dumbbell None Shelf 264.01 ± 101.29 362.15 ± 0.87 319.71 ± 33.9 297.54 ± 67.67
Panda Dumbbell None Trashcan 174.45 ± 64.43 329.06 ± 43.08 373.77 ± 16.73 327.93 ± 68.84
Panda Dumbbell GoalWall PickPlace 310.61 ± 42.65 268.34 ± 147.91 329.02 ± 62.28 360.39 ± 5.25
Panda Dumbbell GoalWall Push 249.21 ± 43.29 282.01 ± 4.89 270.81 ± 11.98 285.28 ± 5.25
Panda Dumbbell GoalWall Shelf 319.5 ± 68.89 347.34 ± 20.01 364.15 ± 2.6 318.6 ± 33.85
Panda Dumbbell GoalWall Trashcan 377.5 ± 5.27 360.98 ± 9.73 379.05 ± 7.52 337.19 ± 40.73
Panda Dumbbell ObjectDoor PickPlace 344.54 ± 5.77 346.57 ± 0.33 340.15 ± 8.5 338.46 ± 10.42
Panda Dumbbell ObjectDoor Push 289.31 ± 11.14 308.25 ± 9.24 309.4 ± 5.02 304.1 ± 8.06
Panda Dumbbell ObjectDoor Shelf 323.26 ± 3.52 279.85 ± 18.84 313.19 ± 17.79 323.49 ± 0.27
Panda Dumbbell ObjectDoor Trashcan 334.05 ± 5.55 337.49 ± 0.68 341.0 ± 3.14 333.06 ± 7.77
Panda Plate None PickPlace 384.37 ± 30.37 404.77 ± 5.27 397.34 ± 1.3 398.41 ± 2.51
Panda Plate None Push 397.95 ± 1.05 398.1 ± 4.91 397.42 ± 3.32 397.64 ± 2.7
Panda Plate None Shelf 352.29 ± 37.8 372.12 ± 13.92 370.46 ± 3.11 367.5 ± 6.03
Panda Plate None Trashcan 392.99 ± 1.41 393.63 ± 2.91 394.05 ± 3.74 393.71 ± 1.27
Panda Plate GoalWall PickPlace 398.36 ± 3.95 398.24 ± 4.51 393.0 ± 1.9 399.02 ± 4.53
Panda Plate GoalWall Push 387.68 ± 0.49 377.79 ± 11.92 355.01 ± 34.01 350.1 ± 22.72
Panda Plate GoalWall Shelf 380.05 ± 0.52 367.67 ± 22.6 339.46 ± 40.63 359.76 ± 5.67
Panda Plate GoalWall Trashcan 391.41 ± 3.83 389.44 ± 3.8 395.4 ± 2.49 393.96 ± 2.68
Panda Plate ObjectDoor PickPlace 350.33 ± 18.2 348.67 ± 8.14 329.35 ± 4.62 336.64 ± 16.61
Panda Plate ObjectDoor Push 346.4 ± 9.33 337.36 ± 17.06 326.32 ± 7.92 323.51 ± 2.24
Panda Plate ObjectDoor Shelf 290.68 ± 11.21 321.54 ± 17.89 326.04 ± 18.76 305.25 ± 20.96
Panda Plate ObjectDoor Trashcan 348.09 ± 3.63 349.43 ± 4.05 351.8 ± 0.25 349.29 ± 1.91
Panda Hollowbox None PickPlace 410.32 ± 6.76 412.25 ± 3.0 408.01 ± 1.93 405.29 ± 5.3
Panda Hollowbox None Push 404.95 ± 1.07 406.74 ± 4.03 401.61 ± 6.16 402.46 ± 4.04
Panda Hollowbox None Shelf 387.59 ± 5.19 380.86 ± 10.45 369.22 ± 14.85 369.57 ± 4.84
Panda Hollowbox None Trashcan 399.09 ± 2.01 400.52 ± 5.27 401.03 ± 5.27 392.82 ± 7.37
Panda Hollowbox GoalWall PickPlace 406.02 ± 10.18 403.47 ± 0.97 405.96 ± 0.39 407.16 ± 3.77
Panda Hollowbox GoalWall Push 259.87 ± 75.12 293.02 ± 117.06 341.55 ± 23.29 281.79 ± 42.98
Panda Hollowbox GoalWall Shelf 387.38 ± 3.45 369.01 ± 6.14 365.26 ± 6.74 316.46 ± 81.46
Panda Hollowbox GoalWall Trashcan 377.54 ± 44.77 395.3 ± 4.85 396.82 ± 4.17 401.54 ± 5.21
Panda Hollowbox ObjectDoor PickPlace 334.94 ± 35.48 341.18 ± 32.31 342.71 ± 7.54 353.64 ± 2.45
Panda Hollowbox ObjectDoor Push 192.69 ± 6.49 294.01 ± 57.68 257.48 ± 13.16 230.54 ± 8.56
Panda Hollowbox ObjectDoor Shelf 343.92 ± 10.22 202.17 ± 4.87 328.01 ± 42.52 285.35 ± 64.92
Panda Hollowbox ObjectDoor Trashcan 338.02 ± 36.48 363.04 ± 2.59 360.88 ± 2.45 363.04 ± 1.29
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