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Abstract

Transformer-based generative models have been widely used for generating high-
quality images and other continuous data modalities. Despite their widespread
adoption, these models frequently exhibit limitations in creativity, often failing to
produce diverse and novel outputs. Most existing studies analysing these shortcom-
ings have predominantly concentrated on enhancing the generative architecture or
training methodologies. In contrast, our study shifts the focus to the tokenization
process, exploring how discretizing continuous representations into discrete tokens
influences the overall creativity of generative models. Through systematic analy-
sis, we identify a critical phenomenon we term "token representation shrinkage,"
characterized by the collapse of representation diversity within discrete codebook
tokens and their continuous latent embeddings in vector quantization, which is one
of the most popular discrete tokenization method used. Our findings reveal that
this shrinkage problem significantly reduces the creativity of generative models,
adversely affecting performance across various domains, including natural images
and real-world medical images.

1 Introduction
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Figure 1: Token representation shrinkage leads to diversity loss in generative model. Left: Vector
quantization is a widely used technique to map continuous data into discrete token which enable the
generative model’s generation. Right: We observe that token representation shrinkage, manifested as
narrow distribution in latent space, leads to a shrunk distribution of the generated data.

Transformer-based generative models for autoregressive generation have gained significant popularity
in recent years in the field of image generation. These models underpin many state-of-the-art systems
such as DALL-E [3] and VAR [25], which have found wide-ranging applications in art creation,
design automation, and data augmentation. Their practical value lies not only in producing visually
compelling images but also in enabling new workflows for creative and industrial domains.
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Despite their success, transformer-based generative models suffer from a widely observed issue: the
synthetic images they generate often exhibit a narrower distribution compared to original images. This
phenomenon, commonly referred to as mode collapse, results in limited diversity in the generated
content. Mode collapse leads to a loss of diversity in generated outputs, causing the model to
ignore valid variations in the data distribution, which limits its generalization, realism, and utility in
downstream tasks. In this study, we refer the ability of generative models to produce diverse high
quality outputs as creativity. Therefore, mode collapse and limited diversity in output will lead to
decreased creativity of the generative models.

Most existing studies on these problems have predominantly focused on the generative architecture
or training methodologies. To address this, various studies have proposed architectural innovations or
alternative training objectives. For example, VQGAN [10] incorporates vector quantization to learn a
diverse discrete codebook, while ImageGPT [3] treats images as sequences of pixels to better capture
complex data distributions and enhance generative diversity.

However, in this work, we identify a previously overlooked but critical factor in tokenization, termed
token representation shrinkage, which contributes to the decline in generative creativity. Specifically,
the root of this problem lies in a core component of transformer-based image generators: the use of
vector quantization (VQ), one of the most widely used discrete tokenizers, for tokenizing images.
VQ is crucial for converting continuous image features into discrete tokens suitable for transformer
processing. However, we find that when the token representation distribution undergoes shrinkage,
the generative model’s output creativity is significantly reduced. As shown in Fig. [T} VQ techniques
map continuous data into discrete tokens. However, when tokens shrank into a limited region of the
distribution, the generated outputs are also constrained to a narrow portion of the data space, resulting
in reduced diversity and diminished modality coverage.

We further identify a specific mechanism that contributes to token representation shrinkage: the
commonly used token initialization strategy during VQ training. Typically, token embeddings are
initialized based on the outputs of an untrained encoder, which results in a clustered initial token
distribution. This initialization bias suppresses the token space’s ability to expand during training,
preventing it from aligning with the true data distribution and thus inducing representation shrinkage.

To address this, we propose a simple yet effective solution: pretrain the encoder without VQ and
then fine-tune it with VQ enabled. This approach allows the encoder to learn meaningful semantic
representations before quantization is introduced, thereby reducing the resistance faced during VQ
optimization and alleviating the token shrinkage effect. We validate our hypothesis and proposed
method through extensive experiments on both synthetic datasets and real-world datasets, including
ImageNet, CIFAR-10, and the Ocular Disease Recognition medical dataset. Our results demonstrate
that token representation shrinkage leads to decreased generative creativity and that our approach
significantly mitigates this issue, improving both diversity and fidelity of generated images.

Our main contributions are summarized as follows:

* We identify a previously underexplored cause of mode collapse in transformer-based genera-
tive models: token representation shrinkage.

* We provide a detailed analysis of how poor token initialization contributes to this phe-
nomenon.

* We propose a simple and effective training strategy, pretraining without VQ followed by
fine-tuning with VQ, to resolve the issue.

* We empirically validate our findings on both synthetic and real-world datasets, demonstrating
improved generative performance.

2 Related Works

Vector Quantization is foundational in data compression and signal processing per Shannon’s rate-
distortion theory [12,[7] , traditionally relied on methods like K-means clustering [19] but faced high
complexity with high-dimensional data [17]]. To mitigate this challenge, DeepVQ [17] improved
efficiency by mapping data to lower-dimensional latent spaces before quantization. Moreover, [26]
proposed VQ-VAE which integrates VQ with variational autoencoders, using a straight-through
estimator [2] to handle discrete variables. To refine VQ methods for improved performance, variants
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such as Residual Quantization [18]], Product Quantization [6], and Soft Convex Quantization [[11]]
further enhanced representation capacity and efficiency. Recent advances incorporate attention
mechanisms and transformer architectures [27, 28] to dynamically select codebooks and capture
global data dependencies. Recent works also explore per-channel codebooks [[14] and neural network
variants of residual quantization [[15] to predict specialized codebooks, enhancing the model’s
expressive power.

VQ has been widely applied across various domains. In natural language processing, VQ facilitates
sequence modeling [16] enhancing tasks such as language modeling. In computer vision, VQ
has significantly advanced image generation and compression techniques [[10]. Similarly, in audio
processing, VQ techniques have captured complex temporal dependencies [8]]. Furthermore, in
multimodal applications, VQ supports the integration of different data types through shared discrete
representations [23].

Despite these advancements, VQ methods encounter challenges that restrict their broader application,
including but not limited to codebook collapse, training instability, and computational overhead.
Extensive research has been conducted on solving the codebook collapse problem, where only a
subset of tokens are used leading to inefficient representation usage and reduced diversity in outputs,
by reducing token dimension [28]], orthogonal regularization loss [24]], multi-headed VQ [20], finite
scalar quantization [22]], and Lookup Free Quantization [29]]. Recent methods like [[13] and [[1] also
strive to enhance tokens usage efficiency. However, beyond the widely recognized issue of codebook
collapse, our work identifies, investigates, and proposes potential solutions for collapses of tokens
and reconstruction, which pose serious challenges to VQ and merit attention.

3 Preliminary

3.1 Definition of Creativity for Generative Model

In this study, we define the creativity of a generative model as the diversity of high-quality content it
generates. For example, an ideal image generative model should produce high-fidelity images which
are very different from each other. Most previous works related to creativity of generative models
focus their research on the generative models [[10, |5]. However, we observe that shrinkage of token
representation distribution is also an important factor to consider for creativity. Our experiments
suggest that token representation shrinkage significantly impairs the creativity of transformer-based
generative models.

3.2 Preliminary of Vector Quatization

VQ-VAE We define the VQ-VAE as following: an encoder Ejy, a decoder Dy and a set of tokens
T = {t1,ta,...,ts}. The token set 7 constitutes the codebook, which is employed to store the dis-
cretized representations. The encoder is responsible for mapping the raw data X = {x1,z2,..., 25}
to a set of continuous representations Z = Ey(X), where Z = {z1,29,...,2n5}. And the de-

coder reconstructs the data X’ = Dy(Z) based on the set of discretized representations Z, where
Z ={%1, %,...,2n}.The process of tokenizing a continuous representation z; to discrete represen-
tation Z; is as following:
Z; = arg min ||z; — ¢ 1
j gtkETH J klls ()

where t, is a token in token set 7 and k is the index. This quantization is performed by finding the
nearest token ¢, in 7.The optimization objective comprises reconstruction 108s L econ, codebook loss
L codebook, and commitment 10ss Leommic- Additionally, we adopt the exponential moving averages
(EMA) adopted by [26] to update the codebook instead of the codebook loss term.

Initialization Strategy For codebook initialization, a widely used initialization strategy is K-
means[30]. It uses the encoder output Z and perform K-means algorithm to initialize the tokens 7,
where N is the number of encoder output and S' is the number of tokens. The initialization aims to
minimize the total distance from each vector z; to its nearest token ¢;. The optimizing function is

shown in equation[2]
N S
minZerksz — ti]?, 2)
j=1k=1
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Figure 2: Token representation shrinkage phenomena is attributed to biased initialization.
(a) Token representation shrinkage refers to the phenomenon where token becomes concentrated
on a small number of modes, despite the original continuous embeddings exhibiting diverse and
well-separated modes. (b) Our analysis suggests that token representation shrinkage arises from
initializing tokens with untrained embeddings that lack sufficient modality information.

where r;, = 1if z; is assigned to cluster center ¢, otherwise 7, = 0 .

4 Token Representation Shrinkage Problems

This section presents an analysis of the token representation shrinkage phenomenon and investigates
its underlying causes.

4.1 Shrinkage Phenomena and Sythentic Experiments Results

Token representation shrinkage is characterized by a disproportionate concentration of tokens around
a limited subset of encoder output embeddings, as shown in Fig. [2](a). This shrinkage results in a
poor representation since the ideal scenario requires a fitting distribution of tokens that effectively
aligns with the underlying embedding space.

To validate the token representation shrinkage phenomenon, we conduct experiments on our synthetic
dataset using VQ-VAE. Specifically, we use VQ-VAE to reconstruct the input data and compare the
resulting token distribution with the original data distribution. The synthetic dataset comprises 10,000
data points, uniformly sampled from 10 distinct Gaussian distributions (see Sec.[5.1]for details). As
shown in Fig. 3] (a), (c), and (e), tokens densely cluster within a specific region of the latent space,
which subsequently causes the reconstructed data to collapse. As a result, the reconstructions fail to
capture the full modality spectrum of the original data.

One contributing factor to token representation shrinkage is the clustering of token embeddings during
codebook initialization. This occurs when the initial embeddings are distributed within a narrow
region of the latent space, limiting their expressiveness and leading to early-stage shrinkage. As
shown in Fig[2](b), the output distribution of an untrained encoder is significantly more concentrated
compared to that of a trained encoder.

In order to examine how untrained encoder initialization contributes to token representation shrink-
age, we compare the embedding distributions produced by trained and untrained encoders on the
synthetic dataset. We observe that the untrained encoder produces embeddings that are concentrated
in a narrower region and exhibit fewer distinct peaks, suggesting that they represent fewer, less
distinguishable modes. This supports the conclusion that token representation shrinkage is primarily
caused by the use of untrained encoders for token initialization. Since the untrained encoder lacks
the capacity to extract meaningful features from the input data, it maps diverse inputs to similar
embeddings, leading to a poorly distributed token initialization and reduced representational diversity.
Further experimental details and visualizations are provided in the supplementary material.

Building on these observations, we hypothesize that if tokens are initialized based on encoder that has
learned semantic distinctions and its output embeddings are dispersed, it would enhance the semantic
distinction among tokens and thus control token representation shrinkage. Consequently, we propose
a straightforward yet effective method to mitigate token representation shrinkage: pretrain without
VQ, then fine-tune with VQ. It first trains an autoencoder, and then trains the VQ-VAE initialized
with the weights of the autoencoder trained at the first stage. Pretraining the encoder allows it to
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Figure 3: Visualization of token shrinkage effects in synthetic experiments. (a) With shrinkage:
most of the token distribution clusters into a narrow region of the embedding space, leading to a loss
of diversity across reconstruction modes under different input dimensions. (b) Without shrinkage:
tokens are well distributed across the embedding space, enabling accurate and diverse reconstructions.

discern differences in input data, resulting in more distinctly spaced embeddings, providing a robust
foundation for initializing the tokens, as demonstrated in Fig. E] (b).

We evaluate the effect of our pretraining strategy on the synthetic dataset, with results shown in Fig. 3]
The comparison between subfigures (a) and (b) demonstrates that when the shrinkage problem is
mitigated by our pretraining approach (Fig. [3| (b)), the resulting token distribution becomes more
uniform, and the reconstruction aligns more closely with the original input distribution. Notably,
under higher input dimensions (input dim==8), the token shrinkage problem still leads to degraded
reconstruction performance. In contrast, the version without shrinkage produces a reconstruction
distribution that aligns more closely with the original data distribution. This suggests that addressing
token shrinkage is critical for enhancing the creativity (diversity and quality) of generative models.

4.2 Formal Definition of Token Representation Shrinkage

To mathematically analyze the token representation shrinkage effect, we consider a data distribution
constructed from K well-separated and equally weighted component distributions p(x|k),

K | X
p(x) =Y pxlk)p(k) = 7 > p(xlk), (©)
k=1 k=1

where p(k) = % because of equal weights. For simplicity, we assume that both the encoder and
decoder are identity mapping (i.e. X’ = Dec(Enc(X)) = X), and that the transformer can perfectly
model the full token distribution. Under these assumptions, the only source of distortion arises from
vector quantization. Accordingly, the expected mean squared error in pixel space roughly express the
upper bound of generation quality:

£ =Eony [llg(@) — ]3], @
where ¢ is quantization function. We assume the entropy of the generated mode distribution measure
the diversity:
K
H = —Zpk logpg, where py=_—F7——

where T} is the set of tokens assigned to cluster k, and py, is the empirical probability (proportion) of
tokens in that cluster.

. T ={t; | t; € cluster k}, 5)
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In the ideal case of balanced token utilization, we expect |T}| ~ S/ K, yielding p; ~ 1/K, maximal
entropy H = log K, and minimal quantization error (). However, under token representation
shrinkage, token becomes concentrated in a subset of modes 7 C {1,..., K}, where |J| = M <«
K. This leads to a reduced entropy

AE = logM — logK < 0, (6)

which means the diversity will be impaired. Moreover, samples from inactive modes k ¢ J are
forced to encode using distant tokens, thereby increasing the quantization error and subsequently
decreasing the generation quality.

S Experiments Design and Results

In this section, we firstly conduct experiments on CIFAR-10 to validate the existence of token
representation shrinkage in the real-world dataset. And then we demonstrate that token representation
shrinkage negatively impacts the creativity of generative models, thereby decreasing both the diversity
and fidelity of generated samples.we conduct experiments on two representative generative models,
MaskGIT [4] and VAR [25]], using both the ImageNet-100 dataset and a medical image dataset.

It is important to note that in the experiments involving generative models, the use of GAN-based
losses can introduce smoothing effects to the model, potentially hallucinating the presence of token
representation shrinkage. Therefore, in this section, we adopt VQ-VAE as the image tokenizer. The
training loss includes codebook loss, commitment loss, MSE loss, and perceptual loss. Generative
experimental results based on VQGAN are available in the supplementary.

5.1 Experiment Setup

Dataset As mention in in Sec. .T] we conduct experiments on a synthetic dataset to validate our
hypothesis regarding the causes of token representation shrinkage. The synthetic dataset consists of
10,000 data points, obtained by sampling 1,000 points from each of 10 Gaussian distributions with
identical standard deviations but distinct means. This setup yields ten equally sized classes with similar
distribution, designed to emphasize disproportionate token allocation and make token representation
shrinkage patterns more easily observable. To investigate token representation shrinkage behavior
under varying data complexity, we generate synthetic datasets with different input dimensionalities.
And to further validate existence of token representation shrinkage, we adopt CIFAR-10 to do conduct
experiments.

For experiments regarding generative model, we adopt ImageNet-100 which is a subset of the
ImageNet-1K dataset containing 100 classes. The original ImageNet-100 comprises approximately
130,000 training images and 5,000 test images. To better evaluate both reconstruction-FID (r-FID)
and generation-FID (g-FID), we uniformly sampled total 20,000 images from all training classes
to build up test dataset and construct an additional validation set containing 5,000 images. For the
medical domain, we adopt the Ocular Disease Recognition (ODIR) [21] dataset, which contains 6,716
fundus images labeled across 8 diagnostic categories. We using a 70%/20%/10% split to partition the
data into training, test, and validation sets.

Metrics For the synthetic dataset, we directly visualize the original data and its reconstructions,
along with the corresponding token and embedding distributions, as shown in Fig. [3] For high-
dimensional data, t-SNE is applied for dimensionality reduction prior to visualization.

To quantify the token representation shrinkage problem, we utilize cosine distance and perplexity.
The average pairwise cosine distance across the codebook serves as an indicator of code clustering,
with lower values suggesting that the code vectors have concentrated in a limited angular region. The
perplexity, which is computed by the entropy over the codebook likelihood, reflects the effective
tokens being utilized and is maximized when all tokens are used uniformly.

To evaluate the tokenizer’s reconstruction performance, we adopt reconstruction FID (r-FID), mean
squared error (MSE), and LPIPS scores. For generative quality, we utilize generation FID (g-FID)
as the primary metric. To assess the diversity and distributional coverage of generated samples, we
compute the average pairwise pixel-level distance between generated images.
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Figure 4: Validation of token representation shrinkage on CIFAR-10 (a) Token representation
shrinkage lead high reconstruction errors. (b) Token representation shrinkage leads to lower perplexity,
demonstrating lower token utilization. (c) Token representation shrinkage leads to higher similarity
among token during training.

Training Configuration For generative model experiments, we follow the tokenizer framework
proposed in VQGAN [10]]. Due to resource limitation, we resize all input images to 128x 128
resolution and reduce the backbone’s channel size to 64. To preserve a 16x 16 latent spatial resolution,
one downsampling layer and its upsampling layer are removed. All tokenizer experiments are
conducted with a fixed codebook size of 16,384. To ensure feasibility under limited resources, we use
the smallest generative model configurations. The MaskGIT generator employs a ViT [9] with depth
of 24, while the VAR model uses a depth of 16. All tokenizers and generative models are trained on 2
A100 GPUs with 40 GB memory. Training the tokenizers on ImageNet-100 typically takes 1.5 to 3
days, while training the generative models requires 3-6 days depends on setting. Complete training
details and hyperparameters are provided in the supplementary material.

5.2 CIFAR-10 Results

To validate that the shrinkage exists under real-world data conditions, we conducted corresponding
experiments on the CIFAR-10 dataset. Additionally, we hypothesize that given a fixed dimensionality
of the representation space, an increase in the number of tokens tends to facilitate their clustering,
thereby making token representation shrinkage more pronounced. Under these conditions, the disad-
vantages caused by token representation shrinkage problem likely become more evident. Therefore,
we evaluated the performance VQVAE’s performance across varying token quantities.

As shown in Fig. [i] the original VQ model performs well when the number of tokens is relatively
small. However, as the token count increases, particularly beyond 2'2, its reconstruction performance
deteriorates relative to the pretrained counterpart. Notably, the perplexity curve of the original
VQ flattens after 2'3 tokens, indicating poor token utilization. Additionally, its average cosine
distance remains consistently lower than that of the pretrained model, suggesting a higher degree
of similarity among tokens. These findings collectively indicate that the token shrinkage problem
becomes increasingly severe as the token set grows, leading to reduced representational diversity.

One possible reason about pretrained method underperforms the original approach at low token
numbers is the gap between the discrete representations learned during pretraining and the continuous
representations during finetuning, which poses challenges to the VQ learning process. However, this
negative impact is outweighed by the benefits of our solution as the codebook size increases. Overall,
our approach not only addresses token representation shrinkage but also unleashes the potential of
VQ, further leveraging the benefits of a large codebook. Additionally, exploring how to mitigate the
performance gap when the token number is low remains a worthy avenue for further investigation.

5.3 ImageNet-100 Results

Tokenizer performance Both types of original tokenizers exhibit a clear token representation
shrinkage problem as shown in Tab. [T} For the tokenizer used in MaskGIT [4], we observe limited
variation among tokens indicated by relatively small cosine distances (0.67 vs. 0.94). It reflects the
high similarity between tokens. In addition, the tokenizer exhibits low perplexity (924.57 vs. 5311.88),
suggesting that only a small subset of tokens is frequently utilized. Together, these observations
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Table 1: Performance evaluation of various tokenizers on the ImageNet-100 dataset. "Shrink"
indicates whether token representation shrinkage is present (v') or mitigated using our proposed
method (X).

Tokenizer Shrink r-FID | MSE | LPIPS | Cosine. T Perp. 1

P 8.58 3.28 2.34 0.94 5311.88
MaskGIT v 12.22 3.91 270 0.67 924.57
VAR X 5.04 2.22 1.63 0.97 7044.51
/ 5.39 2.60 1.85 0.64 2801.88

Table 2: ImageNet-100 generation

Model Shrink g¢-FID | Pixel Dist. 1 Table 3: ODIR generation
Model Shrink g-FID | Pixel Dist. 1
MaskGIT X 14.60 80.77
v 14.75 75.89 VAR X 3433 49.83
VAR X 10.70 75.92 v 37.65 49.01
v 12.88 70.69

imply that token usage is poorly aligned with the embedding space, pointing to a clear case of token
representation shrinkage. However, after pretraining, tokens are more evenly utilized and better
aligned with the embedding space. These observations confirm that pretraining effectively mitigates
the token representation shrinkage phenomenon. As a result, the pretrained tokenizer achieves
improved reconstruction performance, with lower r-FID (8.58 vs. 12.22), LPIPS (2.34 vs. 2.70), and
MSE (3.28 vs. 3.91).

A similar pattern is also observed for the multi-scale tokenizer in VAR. Without pretraining, severe
token representation shrinkage is evident. Pretraining once again proves effective in alleviating this
issue, leading to more balanced token usage and enhanced reconstruction performance.

Generative Performance Token representation shrinkage significantly impairs the creativity of
generative models, manifesting as a decline in both image quality and diversity as shown in Tab.
For the MaskGIT model, we observe that token representation shrinkage leads to a noticeable
degradation in the generation FID (g-FID), indicating a reduction in the visual fidelity of synthesized
images. Additionally, the pairwise pixel distance among generated samples is substantially reduced,
suggesting that some outputs are highly similar. This phenomenon reflects a collapse in output
variation, which we attribute directly to the narrowing of the token distribution(token representation
shrinkage).

For the VAR model, we also observe a loss of creativity resulting from token representation shrinkage.
Without proper mitigation, shrinkage in its multi-scale tokenizer leads to reduced generation quality
and a clear drop in diversity. These results reinforce the conclusion that inadequate token representa-
tion limits the model’s ability to capture the full generative distribution, ultimately compromising its
overall creativity. The generated images are shown in Fig. [5]

5.4 Real-world Medical Data Results

To further validate our findings, we conduct experiments across different image modalities within
the ODIR medical image dataset. For the VAR model, we again confirm the presence of token
representation shrinkage as shown in the Tab. ] Additionally, we observe a corresponding decline in
generative performance, including noticeable reductions in both image quality and diversity(Table),
consistent with our observations on natural image datasets.

However, for the MaskGIT model, the results deviate from our expectations. Despite clear evidence
of token representation shrinkage in the tokenizer, the generated images do not exhibit a drop
in creativity. This suggests a decoupling between token representation shrinkage and generation
degradation in this particular setting. We hypothesize that this discrepancy may be attributed to the
relatively small dataset size and limited inherent diversity within the ODIR dataset, which potentially
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Table 4: Performance evaluation of VAR tokenizer on the ODIR medical dataset."Shrink"
indicates whether token representation shrinkage is present (v') or mitigated using our proposed
method (X).

Model Shrink r-FID | MSE | LPIPS | Cosine. T Perp. T

X 11.04 2.05 6.79 0.90 5396.17
v 10.91 2.57 8.79 0.62 940.55

VAR

(b) w/o shrinkage

Figure 5: Generated images based on VAR. (a) ImageNet (a.left) and real-world medical images of
eyes (a.right) generated using VAR as generative model and tokenizer with token representation
shrinkage. (b) ImageNet (b.left) and real-world medical images of eyes (b.right) generated using
VAR as generative model and tokenizer without token representation shrinkage.

masks the adverse effects of token representation. Detailed quantitative results are provided in the
supplementary.

6 Conclusion

In this work, we systematically investigate the problem of token representation shrinkage in vector
quantization, which is a critical yet overlooked factor contributing to mode collapse in transformer-
based generative models. We demonstrate that commonly adopted token initialization strategies,
especially those based on untrained encoders, lead to a collapse in token usage and embedding
diversity, ultimately impairing the creativity of generative models by reducing output diversity and
fidelity. To address this, we proposed a simple and effective two-stage training method that involves
pretraining the encoder without VQ followed by fine-tuning with VQ. Our theoretical analysis and
extensive experiments across synthetic, natural, and medical datasets confirm that this approach
mitigates shrinkage, enhances token utilization, and improves generative performance. These findings
highlight the importance of tokenizer design and initialization in discrete representation learning
and open up new avenues for further research on improving generative expressiveness in VQ-based
models.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:We conducted experiments both on synthetic and real-world datasets to demon-
strate the existence of token shrinkage. Furthermore, we evaluate on different generative
models across different datasets to show our main claim that token shrinkage will affect the
creativity of generative model.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: While our solution effectively mitigates token representation shrinkage in most
settings, we observe that its performance may be suboptimal when the codebook size is
small. We provide a preliminary analysis of this behavior and suggest that addressing this
limitation presents an interesting direction for future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

12



437

438
439

440

441
442
443
444
445

446

447
448
449
450
451
452
453
454
455

456

457

458
459
460

461

462
463

464

465

466
467

469
470
471
472
473
474
475
476
477
478
479

481
482
483
484
485
486
487

489
490

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our paper includes a theoretical formulation of the token representation
shrinkage phenomenon. We provide a mathematical definition and accompanying derivations
to characterize its impact on generative model performance. While our work does not include
formal theorems or lemmas, the assumptions and reasoning are clearly presented to support
the analysis.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We point out the key point of our experiments setting and specify how we
process the dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will submit our experimental code as supplemental material. Meanwhile,
we plan to release our code in github after adding necessary comments and guidelines.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In main text, we provide all necessary details about our modification to models.
Additional implementation details and comprehensive training configurations are provided
in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: Although we did not report error bars, confidence intervals, or statistical
significance tests, we conduct experiments on Cifar-10 across different number of tokens
to validate our hypothesis. Further we conduct experiments across dataset and model to
validate the our token shrinkage will impair creativity of generative model.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We point the most resource-intensive part of our experiments lies in generative
modeling. All experiments for ImageNet-100 were conducted on A100 GPU (40GB), with
tokenizer training taking approximately 1.5-3 days and VAR/MaskGIT training requiring
3-6 days.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research presented in this paper fully complies with the
NeurIPS Code of Ethics in all respects. We also affirm that anonymity has been properly
preserved.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: By identifying fundamental limitations such as token representation shrinkage,
our study provides new insights that can guide future improvements in model design, training
strategies, and evaluation methods. Ultimately, enhancing the creativity of generative models
will broaden their applicability across domains such as art, design, healthcare, and scientific
discovery.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release any new models or datasets and only uses publicly
available resources such as ImageNet, CIFAR-10, ODIR, as well as the MaskGIT and VAR
models. These assets are well-established in the research community and are not known to
pose a high risk of misuse. Therefore, no additional safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used publicly available datasets including ImageNet, CIFAR-10, and
ODIR, as well as the MaskGIT and VAR model, all of which are properly licensed and
cited. For ImageNet and CIFAR-10, we adhere to their original licenses and usage terms
as specified by their maintainers. The ODIR dataset is obtained from Kaggle and used in
accordance with its published license and terms of service. The VAR and MaskGIT models
are used as released by the authors, and we cite the original paper in our submission. We do
not modify any of these assets and ensure compliance with their respective licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include our code in the supplementary materials for reproducibility and
will release the complete project code publicly upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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