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Abstract

Transformer-based generative models have been widely used for generating high-1

quality images and other continuous data modalities. Despite their widespread2

adoption, these models frequently exhibit limitations in creativity, often failing to3

produce diverse and novel outputs. Most existing studies analysing these shortcom-4

ings have predominantly concentrated on enhancing the generative architecture or5

training methodologies. In contrast, our study shifts the focus to the tokenization6

process, exploring how discretizing continuous representations into discrete tokens7

influences the overall creativity of generative models. Through systematic analy-8

sis, we identify a critical phenomenon we term "token representation shrinkage,"9

characterized by the collapse of representation diversity within discrete codebook10

tokens and their continuous latent embeddings in vector quantization, which is one11

of the most popular discrete tokenization method used. Our findings reveal that12

this shrinkage problem significantly reduces the creativity of generative models,13

adversely affecting performance across various domains, including natural images14

and real-world medical images.15
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Figure 1: Token representation shrinkage leads to diversity loss in generative model. Left: Vector
quantization is a widely used technique to map continuous data into discrete token which enable the
generative model’s generation. Right: We observe that token representation shrinkage, manifested as
narrow distribution in latent space, leads to a shrunk distribution of the generated data.

Transformer-based generative models for autoregressive generation have gained significant popularity17

in recent years in the field of image generation. These models underpin many state-of-the-art systems18

such as DALL-E [3] and VAR [25], which have found wide-ranging applications in art creation,19

design automation, and data augmentation. Their practical value lies not only in producing visually20

compelling images but also in enabling new workflows for creative and industrial domains.21
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Despite their success, transformer-based generative models suffer from a widely observed issue: the22

synthetic images they generate often exhibit a narrower distribution compared to original images. This23

phenomenon, commonly referred to as mode collapse, results in limited diversity in the generated24

content. Mode collapse leads to a loss of diversity in generated outputs, causing the model to25

ignore valid variations in the data distribution, which limits its generalization, realism, and utility in26

downstream tasks. In this study, we refer the ability of generative models to produce diverse high27

quality outputs as creativity. Therefore, mode collapse and limited diversity in output will lead to28

decreased creativity of the generative models.29

Most existing studies on these problems have predominantly focused on the generative architecture30

or training methodologies. To address this, various studies have proposed architectural innovations or31

alternative training objectives. For example, VQGAN [10] incorporates vector quantization to learn a32

diverse discrete codebook, while ImageGPT [5] treats images as sequences of pixels to better capture33

complex data distributions and enhance generative diversity.34

However, in this work, we identify a previously overlooked but critical factor in tokenization, termed35

token representation shrinkage, which contributes to the decline in generative creativity. Specifically,36

the root of this problem lies in a core component of transformer-based image generators: the use of37

vector quantization (VQ), one of the most widely used discrete tokenizers, for tokenizing images.38

VQ is crucial for converting continuous image features into discrete tokens suitable for transformer39

processing. However, we find that when the token representation distribution undergoes shrinkage,40

the generative model’s output creativity is significantly reduced. As shown in Fig. 1, VQ techniques41

map continuous data into discrete tokens. However, when tokens shrank into a limited region of the42

distribution, the generated outputs are also constrained to a narrow portion of the data space, resulting43

in reduced diversity and diminished modality coverage.44

We further identify a specific mechanism that contributes to token representation shrinkage: the45

commonly used token initialization strategy during VQ training. Typically, token embeddings are46

initialized based on the outputs of an untrained encoder, which results in a clustered initial token47

distribution. This initialization bias suppresses the token space’s ability to expand during training,48

preventing it from aligning with the true data distribution and thus inducing representation shrinkage.49

To address this, we propose a simple yet effective solution: pretrain the encoder without VQ and50

then fine-tune it with VQ enabled. This approach allows the encoder to learn meaningful semantic51

representations before quantization is introduced, thereby reducing the resistance faced during VQ52

optimization and alleviating the token shrinkage effect. We validate our hypothesis and proposed53

method through extensive experiments on both synthetic datasets and real-world datasets, including54

ImageNet, CIFAR-10, and the Ocular Disease Recognition medical dataset. Our results demonstrate55

that token representation shrinkage leads to decreased generative creativity and that our approach56

significantly mitigates this issue, improving both diversity and fidelity of generated images.57

Our main contributions are summarized as follows:58

• We identify a previously underexplored cause of mode collapse in transformer-based genera-59

tive models: token representation shrinkage.60

• We provide a detailed analysis of how poor token initialization contributes to this phe-61

nomenon.62

• We propose a simple and effective training strategy, pretraining without VQ followed by63

fine-tuning with VQ, to resolve the issue.64

• We empirically validate our findings on both synthetic and real-world datasets, demonstrating65

improved generative performance.66

2 Related Works67

Vector Quantization is foundational in data compression and signal processing per Shannon’s rate-68

distortion theory [12, 7] , traditionally relied on methods like K-means clustering [19] but faced high69

complexity with high-dimensional data [17]. To mitigate this challenge, DeepVQ [17] improved70

efficiency by mapping data to lower-dimensional latent spaces before quantization. Moreover, [26]71

proposed VQ-VAE which integrates VQ with variational autoencoders, using a straight-through72

estimator [2] to handle discrete variables. To refine VQ methods for improved performance, variants73
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such as Residual Quantization [18], Product Quantization [6], and Soft Convex Quantization [11]74

further enhanced representation capacity and efficiency. Recent advances incorporate attention75

mechanisms and transformer architectures [27, 28] to dynamically select codebooks and capture76

global data dependencies. Recent works also explore per-channel codebooks [14] and neural network77

variants of residual quantization [15] to predict specialized codebooks, enhancing the model’s78

expressive power.79

VQ has been widely applied across various domains. In natural language processing, VQ facilitates80

sequence modeling [16] enhancing tasks such as language modeling. In computer vision, VQ81

has significantly advanced image generation and compression techniques [10]. Similarly, in audio82

processing, VQ techniques have captured complex temporal dependencies [8]. Furthermore, in83

multimodal applications, VQ supports the integration of different data types through shared discrete84

representations [23].85

Despite these advancements, VQ methods encounter challenges that restrict their broader application,86

including but not limited to codebook collapse, training instability, and computational overhead.87

Extensive research has been conducted on solving the codebook collapse problem, where only a88

subset of tokens are used leading to inefficient representation usage and reduced diversity in outputs,89

by reducing token dimension [28], orthogonal regularization loss [24], multi-headed VQ [20], finite90

scalar quantization [22], and Lookup Free Quantization [29]. Recent methods like [13] and [1] also91

strive to enhance tokens usage efficiency. However, beyond the widely recognized issue of codebook92

collapse, our work identifies, investigates, and proposes potential solutions for collapses of tokens93

and reconstruction, which pose serious challenges to VQ and merit attention.94

3 Preliminary95

3.1 Definition of Creativity for Generative Model96

In this study, we define the creativity of a generative model as the diversity of high-quality content it97

generates. For example, an ideal image generative model should produce high-fidelity images which98

are very different from each other. Most previous works related to creativity of generative models99

focus their research on the generative models [10, 5]. However, we observe that shrinkage of token100

representation distribution is also an important factor to consider for creativity. Our experiments101

suggest that token representation shrinkage significantly impairs the creativity of transformer-based102

generative models.103

3.2 Preliminary of Vector Quatization104

VQ-VAE We define the VQ-VAE as following: an encoder Eθ, a decoder Dθ and a set of tokens105

T = {t1, t2, . . . , tS}. The token set T constitutes the codebook, which is employed to store the dis-106

cretized representations. The encoder is responsible for mapping the raw data X = {x1, x2, . . . , xN}107

to a set of continuous representations Z = Eθ(X), where Z = {z1, z2, . . . , zN}. And the de-108

coder reconstructs the data X ′ = Dθ(Ẑ) based on the set of discretized representations Ẑ, where109

Ẑ = {ẑ1, ẑ2, . . . , ẑN}.The process of tokenizing a continuous representation zj to discrete represen-110

tation ẑj is as following:111

ẑj = arg min
tk∈T

∥zj − tk∥, (1)

where tk is a token in token set T and k is the index. This quantization is performed by finding the112

nearest token tk in T .The optimization objective comprises reconstruction loss Lrecon, codebook loss113

Lcodebook, and commitment loss Lcommit. Additionally, we adopt the exponential moving averages114

(EMA) adopted by [26] to update the codebook instead of the codebook loss term.115

Initialization Strategy For codebook initialization, a widely used initialization strategy is K-116

means[30]. It uses the encoder output Z and perform K-means algorithm to initialize the tokens T ,117

where N is the number of encoder output and S is the number of tokens. The initialization aims to118

minimize the total distance from each vector zj to its nearest token tk. The optimizing function is119

shown in equation 2,120

min

N∑
j=1

S∑
k=1

rjk∥zj − tk∥2, (2)
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Figure 2: Token representation shrinkage phenomena is attributed to biased initialization.
(a) Token representation shrinkage refers to the phenomenon where token becomes concentrated
on a small number of modes, despite the original continuous embeddings exhibiting diverse and
well-separated modes. (b) Our analysis suggests that token representation shrinkage arises from
initializing tokens with untrained embeddings that lack sufficient modality information.

where rjk = 1 if zj is assigned to cluster center tk, otherwise rjk = 0 .121

4 Token Representation Shrinkage Problems122

This section presents an analysis of the token representation shrinkage phenomenon and investigates123

its underlying causes.124

4.1 Shrinkage Phenomena and Sythentic Experiments Results125

Token representation shrinkage is characterized by a disproportionate concentration of tokens around126

a limited subset of encoder output embeddings, as shown in Fig. 2 (a). This shrinkage results in a127

poor representation since the ideal scenario requires a fitting distribution of tokens that effectively128

aligns with the underlying embedding space.129

To validate the token representation shrinkage phenomenon, we conduct experiments on our synthetic130

dataset using VQ-VAE. Specifically, we use VQ-VAE to reconstruct the input data and compare the131

resulting token distribution with the original data distribution. The synthetic dataset comprises 10,000132

data points, uniformly sampled from 10 distinct Gaussian distributions (see Sec. 5.1 for details). As133

shown in Fig. 3 (a), (c), and (e), tokens densely cluster within a specific region of the latent space,134

which subsequently causes the reconstructed data to collapse. As a result, the reconstructions fail to135

capture the full modality spectrum of the original data.136

One contributing factor to token representation shrinkage is the clustering of token embeddings during137

codebook initialization. This occurs when the initial embeddings are distributed within a narrow138

region of the latent space, limiting their expressiveness and leading to early-stage shrinkage. As139

shown in Fig.2 (b), the output distribution of an untrained encoder is significantly more concentrated140

compared to that of a trained encoder.141

In order to examine how untrained encoder initialization contributes to token representation shrink-142

age, we compare the embedding distributions produced by trained and untrained encoders on the143

synthetic dataset. We observe that the untrained encoder produces embeddings that are concentrated144

in a narrower region and exhibit fewer distinct peaks, suggesting that they represent fewer, less145

distinguishable modes. This supports the conclusion that token representation shrinkage is primarily146

caused by the use of untrained encoders for token initialization. Since the untrained encoder lacks147

the capacity to extract meaningful features from the input data, it maps diverse inputs to similar148

embeddings, leading to a poorly distributed token initialization and reduced representational diversity.149

Further experimental details and visualizations are provided in the supplementary material.150

Building on these observations, we hypothesize that if tokens are initialized based on encoder that has151

learned semantic distinctions and its output embeddings are dispersed, it would enhance the semantic152

distinction among tokens and thus control token representation shrinkage. Consequently, we propose153

a straightforward yet effective method to mitigate token representation shrinkage: pretrain without154

VQ, then fine-tune with VQ. It first trains an autoencoder, and then trains the VQ-VAE initialized155

with the weights of the autoencoder trained at the first stage. Pretraining the encoder allows it to156
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Figure 3: Visualization of token shrinkage effects in synthetic experiments. (a) With shrinkage:
most of the token distribution clusters into a narrow region of the embedding space, leading to a loss
of diversity across reconstruction modes under different input dimensions. (b) Without shrinkage:
tokens are well distributed across the embedding space, enabling accurate and diverse reconstructions.

discern differences in input data, resulting in more distinctly spaced embeddings, providing a robust157

foundation for initializing the tokens, as demonstrated in Fig. 2 (b).158

We evaluate the effect of our pretraining strategy on the synthetic dataset, with results shown in Fig. 3.159

The comparison between subfigures (a) and (b) demonstrates that when the shrinkage problem is160

mitigated by our pretraining approach (Fig. 3 (b)), the resulting token distribution becomes more161

uniform, and the reconstruction aligns more closely with the original input distribution. Notably,162

under higher input dimensions (input dim=8), the token shrinkage problem still leads to degraded163

reconstruction performance. In contrast, the version without shrinkage produces a reconstruction164

distribution that aligns more closely with the original data distribution. This suggests that addressing165

token shrinkage is critical for enhancing the creativity (diversity and quality) of generative models.166

4.2 Formal Definition of Token Representation Shrinkage167

To mathematically analyze the token representation shrinkage effect, we consider a data distribution168

constructed from K well-separated and equally weighted component distributions p(x|k),169

p(x) =

K∑
k=1

p(x|k)p(k) = 1

K

K∑
k=1

p(x|k), (3)

where p(k) = 1
K because of equal weights. For simplicity, we assume that both the encoder and170

decoder are identity mapping (i.e. X ′ = Dec(Enc(X)) = X), and that the transformer can perfectly171

model the full token distribution. Under these assumptions, the only source of distortion arises from172

vector quantization. Accordingly, the expected mean squared error in pixel space roughly express the173

upper bound of generation quality:174

E = Ex∼p

[
∥q(x)− x∥22

]
, (4)

where q is quantization function. We assume the entropy of the generated mode distribution measure175

the diversity:176

H = −
K∑

k=1

pk log pk, where pk =
|Tk|∑K
j=1 |Tj |

, Tk = {ti | ti ∈ cluster k}, (5)

where Tk is the set of tokens assigned to cluster k, and pk is the empirical probability (proportion) of177

tokens in that cluster.178
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In the ideal case of balanced token utilization, we expect |Tk| ≈ S/K, yielding pk ≈ 1/K, maximal179

entropy H = logK, and minimal quantization error Q. However, under token representation180

shrinkage, token becomes concentrated in a subset of modes J ⊂ {1, . . . ,K}, where |J | = M ≪181

K. This leads to a reduced entropy182

∆E = logM − logK < 0, (6)

which means the diversity will be impaired. Moreover, samples from inactive modes k /∈ J are183

forced to encode using distant tokens, thereby increasing the quantization error and subsequently184

decreasing the generation quality.185

5 Experiments Design and Results186

In this section, we firstly conduct experiments on CIFAR-10 to validate the existence of token187

representation shrinkage in the real-world dataset. And then we demonstrate that token representation188

shrinkage negatively impacts the creativity of generative models, thereby decreasing both the diversity189

and fidelity of generated samples.we conduct experiments on two representative generative models,190

MaskGIT [4] and VAR [25], using both the ImageNet-100 dataset and a medical image dataset.191

It is important to note that in the experiments involving generative models, the use of GAN-based192

losses can introduce smoothing effects to the model, potentially hallucinating the presence of token193

representation shrinkage. Therefore, in this section, we adopt VQ-VAE as the image tokenizer. The194

training loss includes codebook loss, commitment loss, MSE loss, and perceptual loss. Generative195

experimental results based on VQGAN are available in the supplementary.196

5.1 Experiment Setup197

Dataset As mention in in Sec. 4.1, we conduct experiments on a synthetic dataset to validate our198

hypothesis regarding the causes of token representation shrinkage. The synthetic dataset consists of199

10,000 data points, obtained by sampling 1,000 points from each of 10 Gaussian distributions with200

identical standard deviations but distinct means. This setup yields ten equally sized classes with similar201

distribution, designed to emphasize disproportionate token allocation and make token representation202

shrinkage patterns more easily observable. To investigate token representation shrinkage behavior203

under varying data complexity, we generate synthetic datasets with different input dimensionalities.204

And to further validate existence of token representation shrinkage, we adopt CIFAR-10 to do conduct205

experiments.206

For experiments regarding generative model, we adopt ImageNet-100 which is a subset of the207

ImageNet-1K dataset containing 100 classes. The original ImageNet-100 comprises approximately208

130,000 training images and 5,000 test images. To better evaluate both reconstruction-FID (r-FID)209

and generation-FID (g-FID), we uniformly sampled total 20,000 images from all training classes210

to build up test dataset and construct an additional validation set containing 5,000 images. For the211

medical domain, we adopt the Ocular Disease Recognition (ODIR) [21] dataset, which contains 6,716212

fundus images labeled across 8 diagnostic categories. We using a 70%/20%/10% split to partition the213

data into training, test, and validation sets.214

Metrics For the synthetic dataset, we directly visualize the original data and its reconstructions,215

along with the corresponding token and embedding distributions, as shown in Fig. 3. For high-216

dimensional data, t-SNE is applied for dimensionality reduction prior to visualization.217

To quantify the token representation shrinkage problem, we utilize cosine distance and perplexity.218

The average pairwise cosine distance across the codebook serves as an indicator of code clustering,219

with lower values suggesting that the code vectors have concentrated in a limited angular region. The220

perplexity, which is computed by the entropy over the codebook likelihood, reflects the effective221

tokens being utilized and is maximized when all tokens are used uniformly.222

To evaluate the tokenizer’s reconstruction performance, we adopt reconstruction FID (r-FID), mean223

squared error (MSE), and LPIPS scores. For generative quality, we utilize generation FID (g-FID)224

as the primary metric. To assess the diversity and distributional coverage of generated samples, we225

compute the average pairwise pixel-level distance between generated images.226
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Figure 4: Validation of token representation shrinkage on CIFAR-10 (a) Token representation
shrinkage lead high reconstruction errors. (b) Token representation shrinkage leads to lower perplexity,
demonstrating lower token utilization. (c) Token representation shrinkage leads to higher similarity
among token during training.

Training Configuration For generative model experiments, we follow the tokenizer framework227

proposed in VQGAN [10]. Due to resource limitation, we resize all input images to 128×128228

resolution and reduce the backbone’s channel size to 64. To preserve a 16×16 latent spatial resolution,229

one downsampling layer and its upsampling layer are removed. All tokenizer experiments are230

conducted with a fixed codebook size of 16,384. To ensure feasibility under limited resources, we use231

the smallest generative model configurations. The MaskGIT generator employs a ViT [9] with depth232

of 24, while the VAR model uses a depth of 16. All tokenizers and generative models are trained on 2233

A100 GPUs with 40 GB memory. Training the tokenizers on ImageNet-100 typically takes 1.5 to 3234

days, while training the generative models requires 3-6 days depends on setting. Complete training235

details and hyperparameters are provided in the supplementary material.236

5.2 CIFAR-10 Results237

To validate that the shrinkage exists under real-world data conditions, we conducted corresponding238

experiments on the CIFAR-10 dataset. Additionally, we hypothesize that given a fixed dimensionality239

of the representation space, an increase in the number of tokens tends to facilitate their clustering,240

thereby making token representation shrinkage more pronounced. Under these conditions, the disad-241

vantages caused by token representation shrinkage problem likely become more evident. Therefore,242

we evaluated the performance VQVAE’s performance across varying token quantities.243

As shown in Fig. 4, the original VQ model performs well when the number of tokens is relatively244

small. However, as the token count increases, particularly beyond 212, its reconstruction performance245

deteriorates relative to the pretrained counterpart. Notably, the perplexity curve of the original246

VQ flattens after 213 tokens, indicating poor token utilization. Additionally, its average cosine247

distance remains consistently lower than that of the pretrained model, suggesting a higher degree248

of similarity among tokens. These findings collectively indicate that the token shrinkage problem249

becomes increasingly severe as the token set grows, leading to reduced representational diversity.250

One possible reason about pretrained method underperforms the original approach at low token251

numbers is the gap between the discrete representations learned during pretraining and the continuous252

representations during finetuning, which poses challenges to the VQ learning process. However, this253

negative impact is outweighed by the benefits of our solution as the codebook size increases. Overall,254

our approach not only addresses token representation shrinkage but also unleashes the potential of255

VQ, further leveraging the benefits of a large codebook. Additionally, exploring how to mitigate the256

performance gap when the token number is low remains a worthy avenue for further investigation.257

5.3 ImageNet-100 Results258

Tokenizer performance Both types of original tokenizers exhibit a clear token representation259

shrinkage problem as shown in Tab. 1. For the tokenizer used in MaskGIT [4], we observe limited260

variation among tokens indicated by relatively small cosine distances (0.67 vs. 0.94). It reflects the261

high similarity between tokens. In addition, the tokenizer exhibits low perplexity (924.57 vs. 5311.88),262

suggesting that only a small subset of tokens is frequently utilized. Together, these observations263
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Table 1: Performance evaluation of various tokenizers on the ImageNet-100 dataset. "Shrink"
indicates whether token representation shrinkage is present (✓) or mitigated using our proposed
method (✗).

Tokenizer Shrink r-FID ↓ MSE ↓ LPIPS ↓ Cosine. ↑ Perp. ↑

MaskGIT ✗ 8.58 3.28 2.34 0.94 5311.88
✓ 12.22 3.91 2.70 0.67 924.57

VAR ✗ 5.04 2.22 1.63 0.97 7044.51
✓ 5.39 2.60 1.85 0.64 2801.88

Table 2: ImageNet-100 generation
Model Shrink g-FID ↓ Pixel Dist. ↑

MaskGIT ✗ 14.60 80.77
✓ 14.75 75.89

VAR ✗ 10.70 75.92
✓ 12.88 70.69

Table 3: ODIR generation
Model Shrink g-FID ↓ Pixel Dist. ↑

VAR ✗ 34.33 49.83
✓ 37.65 49.01

imply that token usage is poorly aligned with the embedding space, pointing to a clear case of token264

representation shrinkage. However, after pretraining, tokens are more evenly utilized and better265

aligned with the embedding space. These observations confirm that pretraining effectively mitigates266

the token representation shrinkage phenomenon. As a result, the pretrained tokenizer achieves267

improved reconstruction performance, with lower r-FID (8.58 vs. 12.22), LPIPS (2.34 vs. 2.70), and268

MSE (3.28 vs. 3.91).269

A similar pattern is also observed for the multi-scale tokenizer in VAR. Without pretraining, severe270

token representation shrinkage is evident. Pretraining once again proves effective in alleviating this271

issue, leading to more balanced token usage and enhanced reconstruction performance.272

Generative Performance Token representation shrinkage significantly impairs the creativity of273

generative models, manifesting as a decline in both image quality and diversity as shown in Tab.274

2. For the MaskGIT model, we observe that token representation shrinkage leads to a noticeable275

degradation in the generation FID (g-FID), indicating a reduction in the visual fidelity of synthesized276

images. Additionally, the pairwise pixel distance among generated samples is substantially reduced,277

suggesting that some outputs are highly similar. This phenomenon reflects a collapse in output278

variation, which we attribute directly to the narrowing of the token distribution(token representation279

shrinkage).280

For the VAR model, we also observe a loss of creativity resulting from token representation shrinkage.281

Without proper mitigation, shrinkage in its multi-scale tokenizer leads to reduced generation quality282

and a clear drop in diversity. These results reinforce the conclusion that inadequate token representa-283

tion limits the model’s ability to capture the full generative distribution, ultimately compromising its284

overall creativity. The generated images are shown in Fig. 5.285

5.4 Real-world Medical Data Results286

To further validate our findings, we conduct experiments across different image modalities within287

the ODIR medical image dataset. For the VAR model, we again confirm the presence of token288

representation shrinkage as shown in the Tab. 4. Additionally, we observe a corresponding decline in289

generative performance, including noticeable reductions in both image quality and diversity(Table),290

consistent with our observations on natural image datasets.291

However, for the MaskGIT model, the results deviate from our expectations. Despite clear evidence292

of token representation shrinkage in the tokenizer, the generated images do not exhibit a drop293

in creativity. This suggests a decoupling between token representation shrinkage and generation294

degradation in this particular setting. We hypothesize that this discrepancy may be attributed to the295

relatively small dataset size and limited inherent diversity within the ODIR dataset, which potentially296
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Table 4: Performance evaluation of VAR tokenizer on the ODIR medical dataset."Shrink"
indicates whether token representation shrinkage is present (✓) or mitigated using our proposed
method (✗).

Model Shrink r-FID ↓ MSE ↓ LPIPS ↓ Cosine. ↑ Perp. ↑

VAR ✗ 11.04 2.05 6.79 0.90 5396.17
✓ 10.91 2.57 8.79 0.62 940.55

(b) w/o shrinkage

(a) w/ shrinkage

Figure 5: Generated images based on VAR. (a) ImageNet (a.left) and real-world medical images of
eyes (a.right) generated using VAR as generative model and tokenizer with token representation
shrinkage. (b) ImageNet (b.left) and real-world medical images of eyes (b.right) generated using
VAR as generative model and tokenizer without token representation shrinkage.

masks the adverse effects of token representation. Detailed quantitative results are provided in the297

supplementary.298

6 Conclusion299

In this work, we systematically investigate the problem of token representation shrinkage in vector300

quantization, which is a critical yet overlooked factor contributing to mode collapse in transformer-301

based generative models. We demonstrate that commonly adopted token initialization strategies,302

especially those based on untrained encoders, lead to a collapse in token usage and embedding303

diversity, ultimately impairing the creativity of generative models by reducing output diversity and304

fidelity. To address this, we proposed a simple and effective two-stage training method that involves305

pretraining the encoder without VQ followed by fine-tuning with VQ. Our theoretical analysis and306

extensive experiments across synthetic, natural, and medical datasets confirm that this approach307

mitigates shrinkage, enhances token utilization, and improves generative performance. These findings308

highlight the importance of tokenizer design and initialization in discrete representation learning309

and open up new avenues for further research on improving generative expressiveness in VQ-based310

models.311

9



References312

[1] G. Baykal, M. Kandemir, and G. Unal. Edvae: Mitigating codebook collapse with evidential313

discrete variational autoencoders. Pattern Recognition, 2024.314

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic315

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.316

[3] J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo,317

et al. Improving image generation with better captions. Computer Science. https://cdn. openai.318

com/papers/dall-e-3. pdf, 2(3):8, 2023.319

[4] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked generative image320

transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern321

recognition, pages 11315–11325, 2022.322

[5] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pretraining323

from pixels. In International conference on machine learning, pages 1691–1703. PMLR, 2020.324

[6] T. Chen, L. Li, and Y. Sun. Differentiable product quantization for end-to-end embedding325

compression. In International Conference on Machine Learning, 2020.326

[7] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.327

[8] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever. Jukebox: A generative328

model for music. arXiv preprint arXiv:2005.00341, 2020.329

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,330

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for331

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.332

[10] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis.333

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.334

[11] T. Gautam, R. Pryzant, Z. Yang, C. Zhu, and S. Sojoudi. Soft convex quantization: Revisiting335

vector quantization with convex optimization. arXiv preprint arXiv:2310.03004, 2023.336

[12] A. Gersho and R. M. Gray. Vector quantization and signal compression. Springer Science &337

Business Media, 2012.338

[13] N. Goswami, Y. Mukuta, and T. Harada. Hypervq: Mlr-based vector quantization in hyperbolic339

space. arXiv preprint arXiv:2403.13015, 2024.340

[14] K. Hsu, W. Dorrell, J. Whittington, J. Wu, and C. Finn. Disentanglement via latent quantization.341

Advances in Neural Information Processing Systems, 2024.342

[15] I. Huijben, M. Douze, M. Muckley, R. Van Sloun, and J. Verbeek. Residual quantization with343

implicit neural codebooks. arXiv preprint arXiv:2401.14732, 2024.344

[16] L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and N. Shazeer. Fast345

decoding in sequence models using discrete latent variables. In International Conference on346

Machine Learning, 2018.347

[17] D.-K. Le Tan, H. Le, T. Hoang, T.-T. Do, and N.-M. Cheung. Deepvq: A deep network348

architecture for vector quantization. In Proceedings of the IEEE Conference on Computer Vision349

and Pattern Recognition Workshops, 2018.350

[18] D. Lee, C. Kim, S. Kim, M. Cho, and W.-S. Han. Autoregressive image generation using351

residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and352

Pattern Recognition, 2022.353

[19] J. Macqueen. Some methods for classification and analysis of multivariate observations. In354

Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University355

of California Press, 1967.356

[20] R. Mama, M. S. Tyndel, H. Kadhim, C. Clifford, and R. Thurairatnam. Nwt: towards natural357

audio-to-video generation with representation learning. arXiv preprint arXiv:2106.04283, 2021.358

[21] A. Maranhão. Ocular disease intelligent recognition (odir). https://www.kaggle.com/359

datasets/andrewmvd/ocular-disease-recognition-odir5k, 2020.360

[22] F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. Finite scalar quantization: Vq-vae361

made simple. arXiv preprint arXiv:2309.15505, 2023.362

[23] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.363

Zero-shot text-to-image generation. In International conference on machine learning, 2021.364

[24] W. Shin, G. Lee, J. Lee, E. Lyou, J. Lee, and E. Choi. Exploration into translation-equivariant365

image quantization. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech366

and Signal Processing (ICASSP), 2023.367

[25] K. Tian, Y. Jiang, Z. Yuan, B. Peng, and L. Wang. Visual autoregressive modeling: Scalable368

image generation via next-scale prediction. Advances in neural information processing systems,369

37:84839–84865, 2024.370

[26] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural371

information processing systems, 2017.372

10

https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k


[27] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,373

2017.374

[28] J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge, and Y. Wu.375

Vector-quantized image modeling with improved vqgan. arXiv preprint arXiv:2110.04627,376

2021.377

[29] L. Yu, Y. Cheng, K. Sohn, J. Lezama, H. Zhang, H. Chang, A. G. Hauptmann, M.-H. Yang,378

Y. Hao, I. Essa, et al. Magvit: Masked generative video transformer. In Proceedings of the379

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.380

[30] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi. Soundstream: An381

end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language382

Processing, 2021.383

11



NeurIPS Paper Checklist384

1. Claims385

Question: Do the main claims made in the abstract and introduction accurately reflect the386

paper’s contributions and scope?387

Answer: [Yes]388

Justification:We conducted experiments both on synthetic and real-world datasets to demon-389

strate the existence of token shrinkage. Furthermore, we evaluate on different generative390

models across different datasets to show our main claim that token shrinkage will affect the391

creativity of generative model.392

Guidelines:393

• The answer NA means that the abstract and introduction do not include the claims394

made in the paper.395

• The abstract and/or introduction should clearly state the claims made, including the396

contributions made in the paper and important assumptions and limitations. A No or397

NA answer to this question will not be perceived well by the reviewers.398

• The claims made should match theoretical and experimental results, and reflect how399

much the results can be expected to generalize to other settings.400

• It is fine to include aspirational goals as motivation as long as it is clear that these goals401

are not attained by the paper.402

2. Limitations403

Question: Does the paper discuss the limitations of the work performed by the authors?404

Answer: [Yes]405

Justification: While our solution effectively mitigates token representation shrinkage in most406

settings, we observe that its performance may be suboptimal when the codebook size is407

small. We provide a preliminary analysis of this behavior and suggest that addressing this408

limitation presents an interesting direction for future research.409

Guidelines:410

• The answer NA means that the paper has no limitation while the answer No means that411

the paper has limitations, but those are not discussed in the paper.412

• The authors are encouraged to create a separate "Limitations" section in their paper.413

• The paper should point out any strong assumptions and how robust the results are to414

violations of these assumptions (e.g., independence assumptions, noiseless settings,415

model well-specification, asymptotic approximations only holding locally). The authors416

should reflect on how these assumptions might be violated in practice and what the417

implications would be.418

• The authors should reflect on the scope of the claims made, e.g., if the approach was419

only tested on a few datasets or with a few runs. In general, empirical results often420

depend on implicit assumptions, which should be articulated.421

• The authors should reflect on the factors that influence the performance of the approach.422

For example, a facial recognition algorithm may perform poorly when image resolution423

is low or images are taken in low lighting. Or a speech-to-text system might not be424

used reliably to provide closed captions for online lectures because it fails to handle425

technical jargon.426

• The authors should discuss the computational efficiency of the proposed algorithms427

and how they scale with dataset size.428

• If applicable, the authors should discuss possible limitations of their approach to429

address problems of privacy and fairness.430

• While the authors might fear that complete honesty about limitations might be used by431

reviewers as grounds for rejection, a worse outcome might be that reviewers discover432

limitations that aren’t acknowledged in the paper. The authors should use their best433

judgment and recognize that individual actions in favor of transparency play an impor-434

tant role in developing norms that preserve the integrity of the community. Reviewers435

will be specifically instructed to not penalize honesty concerning limitations.436
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3. Theory assumptions and proofs437

Question: For each theoretical result, does the paper provide the full set of assumptions and438

a complete (and correct) proof?439

Answer: [Yes]440

Justification: Our paper includes a theoretical formulation of the token representation441

shrinkage phenomenon. We provide a mathematical definition and accompanying derivations442

to characterize its impact on generative model performance. While our work does not include443

formal theorems or lemmas, the assumptions and reasoning are clearly presented to support444

the analysis.445
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• The answer NA means that the paper does not include theoretical results.447

• All the theorems, formulas, and proofs in the paper should be numbered and cross-448

referenced.449

• All assumptions should be clearly stated or referenced in the statement of any theorems.450

• The proofs can either appear in the main paper or the supplemental material, but if451

they appear in the supplemental material, the authors are encouraged to provide a short452

proof sketch to provide intuition.453

• Inversely, any informal proof provided in the core of the paper should be complemented454

by formal proofs provided in appendix or supplemental material.455

• Theorems and Lemmas that the proof relies upon should be properly referenced.456

4. Experimental result reproducibility457

Question: Does the paper fully disclose all the information needed to reproduce the main ex-458

perimental results of the paper to the extent that it affects the main claims and/or conclusions459

of the paper (regardless of whether the code and data are provided or not)?460

Answer: [Yes]461

Justification: We point out the key point of our experiments setting and specify how we462

process the dataset.463

Guidelines:464

• The answer NA means that the paper does not include experiments.465

• If the paper includes experiments, a No answer to this question will not be perceived466

well by the reviewers: Making the paper reproducible is important, regardless of467

whether the code and data are provided or not.468

• If the contribution is a dataset and/or model, the authors should describe the steps taken469

to make their results reproducible or verifiable.470

• Depending on the contribution, reproducibility can be accomplished in various ways.471

For example, if the contribution is a novel architecture, describing the architecture fully472

might suffice, or if the contribution is a specific model and empirical evaluation, it may473

be necessary to either make it possible for others to replicate the model with the same474

dataset, or provide access to the model. In general. releasing code and data is often475

one good way to accomplish this, but reproducibility can also be provided via detailed476

instructions for how to replicate the results, access to a hosted model (e.g., in the case477

of a large language model), releasing of a model checkpoint, or other means that are478

appropriate to the research performed.479

• While NeurIPS does not require releasing code, the conference does require all submis-480

sions to provide some reasonable avenue for reproducibility, which may depend on the481

nature of the contribution. For example482

(a) If the contribution is primarily a new algorithm, the paper should make it clear how483

to reproduce that algorithm.484

(b) If the contribution is primarily a new model architecture, the paper should describe485

the architecture clearly and fully.486

(c) If the contribution is a new model (e.g., a large language model), then there should487

either be a way to access this model for reproducing the results or a way to reproduce488

the model (e.g., with an open-source dataset or instructions for how to construct489

the dataset).490
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(d) We recognize that reproducibility may be tricky in some cases, in which case491

authors are welcome to describe the particular way they provide for reproducibility.492

In the case of closed-source models, it may be that access to the model is limited in493

some way (e.g., to registered users), but it should be possible for other researchers494

to have some path to reproducing or verifying the results.495

5. Open access to data and code496

Question: Does the paper provide open access to the data and code, with sufficient instruc-497

tions to faithfully reproduce the main experimental results, as described in supplemental498

material?499

Answer: [Yes]500

Justification: We will submit our experimental code as supplemental material. Meanwhile,501

we plan to release our code in github after adding necessary comments and guidelines.502

Guidelines:503

• The answer NA means that paper does not include experiments requiring code.504

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/505

public/guides/CodeSubmissionPolicy) for more details.506

• While we encourage the release of code and data, we understand that this might not be507

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not508

including code, unless this is central to the contribution (e.g., for a new open-source509

benchmark).510

• The instructions should contain the exact command and environment needed to run to511

reproduce the results. See the NeurIPS code and data submission guidelines (https:512

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.513

• The authors should provide instructions on data access and preparation, including how514

to access the raw data, preprocessed data, intermediate data, and generated data, etc.515

• The authors should provide scripts to reproduce all experimental results for the new516

proposed method and baselines. If only a subset of experiments are reproducible, they517

should state which ones are omitted from the script and why.518

• At submission time, to preserve anonymity, the authors should release anonymized519

versions (if applicable).520

• Providing as much information as possible in supplemental material (appended to the521

paper) is recommended, but including URLs to data and code is permitted.522

6. Experimental setting/details523

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-524

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the525

results?526

Answer: [Yes]527

Justification: In main text, we provide all necessary details about our modification to models.528

Additional implementation details and comprehensive training configurations are provided529

in the supplementary material.530

Guidelines:531

• The answer NA means that the paper does not include experiments.532

• The experimental setting should be presented in the core of the paper to a level of detail533

that is necessary to appreciate the results and make sense of them.534

• The full details can be provided either with the code, in appendix, or as supplemental535

material.536

7. Experiment statistical significance537

Question: Does the paper report error bars suitably and correctly defined or other appropriate538

information about the statistical significance of the experiments?539

Answer: [No]540

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: Although we did not report error bars, confidence intervals, or statistical541

significance tests, we conduct experiments on Cifar-10 across different number of tokens542

to validate our hypothesis. Further we conduct experiments across dataset and model to543

validate the our token shrinkage will impair creativity of generative model.544

Guidelines:545

• The answer NA means that the paper does not include experiments.546

• The authors should answer "Yes" if the results are accompanied by error bars, confi-547

dence intervals, or statistical significance tests, at least for the experiments that support548

the main claims of the paper.549

• The factors of variability that the error bars are capturing should be clearly stated (for550

example, train/test split, initialization, random drawing of some parameter, or overall551

run with given experimental conditions).552

• The method for calculating the error bars should be explained (closed form formula,553

call to a library function, bootstrap, etc.)554

• The assumptions made should be given (e.g., Normally distributed errors).555

• It should be clear whether the error bar is the standard deviation or the standard error556

of the mean.557

• It is OK to report 1-sigma error bars, but one should state it. The authors should558

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis559

of Normality of errors is not verified.560

• For asymmetric distributions, the authors should be careful not to show in tables or561

figures symmetric error bars that would yield results that are out of range (e.g. negative562

error rates).563

• If error bars are reported in tables or plots, The authors should explain in the text how564

they were calculated and reference the corresponding figures or tables in the text.565

8. Experiments compute resources566

Question: For each experiment, does the paper provide sufficient information on the com-567

puter resources (type of compute workers, memory, time of execution) needed to reproduce568

the experiments?569

Answer: [Yes]570

Justification: We point the most resource-intensive part of our experiments lies in generative571

modeling. All experiments for ImageNet-100 were conducted on A100 GPU (40GB), with572

tokenizer training taking approximately 1.5–3 days and VAR/MaskGIT training requiring573

3–6 days.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,577

or cloud provider, including relevant memory and storage.578

• The paper should provide the amount of compute required for each of the individual579

experimental runs as well as estimate the total compute.580

• The paper should disclose whether the full research project required more compute581

than the experiments reported in the paper (e.g., preliminary or failed experiments that582

didn’t make it into the paper).583

9. Code of ethics584

Question: Does the research conducted in the paper conform, in every respect, with the585

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?586

Answer: [Yes]587

Justification: We confirm that the research presented in this paper fully complies with the588

NeurIPS Code of Ethics in all respects. We also affirm that anonymity has been properly589

preserved.590

Guidelines:591

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.592
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• If the authors answer No, they should explain the special circumstances that require a593

deviation from the Code of Ethics.594

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-595

eration due to laws or regulations in their jurisdiction).596

10. Broader impacts597

Question: Does the paper discuss both potential positive societal impacts and negative598

societal impacts of the work performed?599

Answer: [Yes]600

Justification: By identifying fundamental limitations such as token representation shrinkage,601

our study provides new insights that can guide future improvements in model design, training602

strategies, and evaluation methods. Ultimately, enhancing the creativity of generative models603

will broaden their applicability across domains such as art, design, healthcare, and scientific604

discovery.605

Guidelines:606

• The answer NA means that there is no societal impact of the work performed.607

• If the authors answer NA or No, they should explain why their work has no societal608

impact or why the paper does not address societal impact.609

• Examples of negative societal impacts include potential malicious or unintended uses610

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations611

(e.g., deployment of technologies that could make decisions that unfairly impact specific612

groups), privacy considerations, and security considerations.613

• The conference expects that many papers will be foundational research and not tied614

to particular applications, let alone deployments. However, if there is a direct path to615

any negative applications, the authors should point it out. For example, it is legitimate616

to point out that an improvement in the quality of generative models could be used to617

generate deepfakes for disinformation. On the other hand, it is not needed to point out618

that a generic algorithm for optimizing neural networks could enable people to train619

models that generate Deepfakes faster.620

• The authors should consider possible harms that could arise when the technology is621

being used as intended and functioning correctly, harms that could arise when the622

technology is being used as intended but gives incorrect results, and harms following623

from (intentional or unintentional) misuse of the technology.624

• If there are negative societal impacts, the authors could also discuss possible mitigation625

strategies (e.g., gated release of models, providing defenses in addition to attacks,626

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from627

feedback over time, improving the efficiency and accessibility of ML).628

11. Safeguards629

Question: Does the paper describe safeguards that have been put in place for responsible630

release of data or models that have a high risk for misuse (e.g., pretrained language models,631

image generators, or scraped datasets)?632

Answer: [NA]633

Justification: Our paper does not release any new models or datasets and only uses publicly634

available resources such as ImageNet, CIFAR-10, ODIR, as well as the MaskGIT and VAR635

models. These assets are well-established in the research community and are not known to636

pose a high risk of misuse. Therefore, no additional safeguards are necessary.637

Guidelines:638

• The answer NA means that the paper poses no such risks.639

• Released models that have a high risk for misuse or dual-use should be released with640

necessary safeguards to allow for controlled use of the model, for example by requiring641

that users adhere to usage guidelines or restrictions to access the model or implementing642

safety filters.643

• Datasets that have been scraped from the Internet could pose safety risks. The authors644

should describe how they avoided releasing unsafe images.645
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• We recognize that providing effective safeguards is challenging, and many papers do646

not require this, but we encourage authors to take this into account and make a best647

faith effort.648

12. Licenses for existing assets649

Question: Are the creators or original owners of assets (e.g., code, data, models), used in650

the paper, properly credited and are the license and terms of use explicitly mentioned and651

properly respected?652

Answer: [Yes]653

Justification: We used publicly available datasets including ImageNet, CIFAR-10, and654

ODIR, as well as the MaskGIT and VAR model, all of which are properly licensed and655

cited. For ImageNet and CIFAR-10, we adhere to their original licenses and usage terms656

as specified by their maintainers. The ODIR dataset is obtained from Kaggle and used in657

accordance with its published license and terms of service. The VAR and MaskGIT models658

are used as released by the authors, and we cite the original paper in our submission. We do659

not modify any of these assets and ensure compliance with their respective licenses.660

Guidelines:661

• The answer NA means that the paper does not use existing assets.662

• The authors should cite the original paper that produced the code package or dataset.663

• The authors should state which version of the asset is used and, if possible, include a664

URL.665

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.666

• For scraped data from a particular source (e.g., website), the copyright and terms of667

service of that source should be provided.668

• If assets are released, the license, copyright information, and terms of use in the669

package should be provided. For popular datasets, paperswithcode.com/datasets670

has curated licenses for some datasets. Their licensing guide can help determine the671

license of a dataset.672

• For existing datasets that are re-packaged, both the original license and the license of673

the derived asset (if it has changed) should be provided.674

• If this information is not available online, the authors are encouraged to reach out to675

the asset’s creators.676

13. New assets677

Question: Are new assets introduced in the paper well documented and is the documentation678

provided alongside the assets?679

Answer: [Yes]680

Justification: We include our code in the supplementary materials for reproducibility and681

will release the complete project code publicly upon publication.682

Guidelines:683

• The answer NA means that the paper does not release new assets.684

• Researchers should communicate the details of the dataset/code/model as part of their685

submissions via structured templates. This includes details about training, license,686

limitations, etc.687

• The paper should discuss whether and how consent was obtained from people whose688

asset is used.689

• At submission time, remember to anonymize your assets (if applicable). You can either690

create an anonymized URL or include an anonymized zip file.691

14. Crowdsourcing and research with human subjects692

Question: For crowdsourcing experiments and research with human subjects, does the paper693

include the full text of instructions given to participants and screenshots, if applicable, as694

well as details about compensation (if any)?695

Answer: [NA]696

Justification: The paper does not involve crowdsourcing nor research with human subjects.697
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Guidelines:698

• The answer NA means that the paper does not involve crowdsourcing nor research with699

human subjects.700

• Including this information in the supplemental material is fine, but if the main contribu-701

tion of the paper involves human subjects, then as much detail as possible should be702

included in the main paper.703

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,704

or other labor should be paid at least the minimum wage in the country of the data705

collector.706

15. Institutional review board (IRB) approvals or equivalent for research with human707

subjects708

Question: Does the paper describe potential risks incurred by study participants, whether709

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)710

approvals (or an equivalent approval/review based on the requirements of your country or711

institution) were obtained?712

Answer: [NA]713

Justification: The paper does not involve crowdsourcing nor research with human subjects.714

Guidelines:715

• The answer NA means that the paper does not involve crowdsourcing nor research with716

human subjects.717

• Depending on the country in which research is conducted, IRB approval (or equivalent)718

may be required for any human subjects research. If you obtained IRB approval, you719

should clearly state this in the paper.720

• We recognize that the procedures for this may vary significantly between institutions721

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the722

guidelines for their institution.723

• For initial submissions, do not include any information that would break anonymity (if724

applicable), such as the institution conducting the review.725

16. Declaration of LLM usage726

Question: Does the paper describe the usage of LLMs if it is an important, original, or727

non-standard component of the core methods in this research? Note that if the LLM is used728

only for writing, editing, or formatting purposes and does not impact the core methodology,729

scientific rigorousness, or originality of the research, declaration is not required.730

Answer: [NA]731

Justification: LLM is used only for writing, editing, or formatting purposes and does not732

impact the core methodology, scientific rigorousness, or originality of the research733

Guidelines:734

• The answer NA means that the core method development in this research does not735

involve LLMs as any important, original, or non-standard components.736

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)737

for what should or should not be described.738

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Preliminary
	Definition of Creativity for Generative Model
	Preliminary of Vector Quatization

	Token Representation Shrinkage Problems
	Shrinkage Phenomena and Sythentic Experiments Results
	Formal Definition of Token Representation Shrinkage

	Experiments Design and Results
	Experiment Setup
	CIFAR-10 Results
	ImageNet-100 Results
	Real-world Medical Data Results

	Conclusion

