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ABSTRACT

Decision support systems often rely on solving complex optimization problems
that may require to estimate uncertain parameters beforehand. Recent studies have
shown how using traditionally trained estimators for this task can lead to subop-
timal solutions. Using the actual decision cost as a loss function (called Decision
Focused Learning) can address this issue, but with a severe loss of scalability at
training time. To address this issue, we propose an acceleration method based on
replacing costly loss function evaluations with an efficient surrogate. Unlike pre-
viously defined surrogates, our approach relies on unbiased estimators – reducing
the risk of spurious local optima – and can provide information on its local confi-
dence – allowing one to switch to a fallback method when needed. Furthermore,
the surrogate is designed for a black-box setting, which enables compensating for
simplifications in the optimization model and accounting for recourse actions dur-
ing cost computation. In our results, the method reduces costly inner solver calls,
with a solution quality comparable to other state-of-the-art techniques.

1 INTRODUCTION

Many real-world decision support systems, in domains such as logistics or production planning, rely
on the solution of constrained optimization problems; frequently, these problems feature parameters
that are estimated based on contextual information via Machine Learning (ML) predictors, an ap-
proach sometimes referred to as Prediction Focused Learning (PFL). In past years it has been shown
how this common practice can lead to poor decision quality, due to a misalignment between the
training objective (usually likelihood maximization) and the actual decision cost. Such an observa-
tion has lead to Decision Focused Learning (DFL) (Amos & Kolter, 2017; Elmachtoub & Grigas,
2022), which attempts to correct for this issue by training predictors for minimal decision regret.

While remarkable progress in the field has been made (Mandi et al., 2024), we argue that three issues
still prevent DFL methods from finding widespread practical application. First, their training scal-
ability is often severely limited, since the problems encountered in decision support are frequently
difficult (NP-hard or worse) and most DFL approaches require frequent solver calls and cost evalua-
tions. Second, many DFL methods make somewhat restrictive assumptions on the decision problem
(e.g. linear cost function, no parameters in the constraints); theoretical analysis and recent experi-
ments (Hu et al., 2022; Elmachtoub et al., 2023) also show that, when the parameter expectations
can be accurately estimated, such assumptions erode most of the advantage over PFL. Third, sev-
eral DFL methods require explicit knowledge of the problem structure or the solver state, which in
a practical setting would require costly refactoring of the existing tools, or even a radical change
of the solution technology. Solving these issues would allow one to use DFL for improving the
effectiveness and robustness of any real-world decision support tool, while maintaining scalability.

In this work, we aim at making a significant step toward addressing these limitations, by relying
on a well-crafted, efficient, surrogate to replace most solver calls at training time. We design our
surrogate to be an (asymptotically) unbiased estimator of the regret function, and employ stochastic
smoothing and importance sampling to address the 0-gradient problem often occurring in DFL set-
tings. We also include uncertainty quantification by relying on probabilistic models that provide a
confidence level, so as to determine when the surrogate should be used or updated and hence balance
model exploration and surrogate exploitation at training time. Furthermore, our surrogate is suitable

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for a black-box setting, where no restrictive assumption is made on how the regret computation is
performed and access to the solver state is not needed.

Only a few of the existing DFL methods can be applied to achieve similar goals. A representative
set of these is used as a baseline in our empirical evaluation, where we compare DFL and PFL on
extended versions of standard benchmarks in the current literature. Specifically, our setups allows
for scaling the problem complexity, so as to assess how the evaluated approaches behave on prob-
lems of different size (in terms of number of variables or parameters). In our results, our surrogate
significantly reduces both the training runtime and the number of solver calls and cost evaluations.
We also show that this acceleration, unlike previous attempts in the literature, does not adversely
affect the decision quality, which remains comparable to other state-of-the-art techniques.

2 RELATED WORK

In the context of DFL problems where parameters are predicted by a machine learning model, initial
works focused on implicit differentiation of the KKT conditions for optimality. In particular, Amos
& Kolter (2017) handled convex quadratic programming, while Agrawal et al. (2019) extended it
to conic programs. However, these initial methods were unsuitable for combinatorial problems,
characterized by piecewise constant loss functions and uninformative gradients. Subsequent stud-
ies such as Wilder et al. (2019); Mandi & Guns (2020) addressed MILP problems, by proposing
to smooth the loss function through a regularization term (respectively L2 and log-barrier) com-
puted over the decision variables. Other approaches introduced surrogate losses to overcome the
zero-gradient problem. Elmachtoub & Grigas (2022) formalized the SPO+ loss as a regret upper
bound, Mulamba et al. (2020) proposed the noise-contrastive estimation, Mandi et al. (2022) turned
the problem into learning to rank on a pool of solutions. Many of these works also adopted a LP
relaxation to speed up the training, which can however adversely affect the final solution quality, and
it requires formulating the decision problem as a MILP. A surrogate loss, based on directional gradi-
ents, is also proposed in Huang & Gupta (2024) and proved to provide unbiased gradient estimates,
which allows it to outperform earlier approaches for strongly misspecified ML models. Unlike our
approach, however, this method is restricted to problems with linear cost functions and is actually
more computationally expensive at training time, due to the use of a zeroth-order gradient approx-
imation. Finally, the approaches mentioned so far, with the exception of the KKT-based solutions,
do not allow for predicted parameters appearing in the problem constraints. Attempts to cover the
latter case include Paulus et al. (2021); Hu et al. (2023b;c;a), which require access to the problem
formulation and either dedicated solvers or access to the solver internal state.

Only a few DFL approaches target the setting considered in this paper, where no assumption is
made on the problem structure and training time scalability is emphasized; this is typically done by
replacing the decision cost loss with fast-to-evaluate, differentiable, and learnable surrogates. The
first studies in this class include Chung et al. (2022); Lawless & Zhou (2022), which used simple
loss approximations with poor results. Recent advances are represented by the convex learnable
surrogates proposed by Shah et al. (2022; 2024), and LANCER (Zharmagambetov et al., 2023),
which employs a trainable neural network surrogate, fine-tuned at training time similarly to actor-
critic approaches in reinforcement learning. These methods are closest to the one we propose, and
differ mainly for their use of biased estimators and the lack of local confidence estimation.

DFL problems can also be formulated by treating the decision problem similarly to a reinforcement
learning environment, as suggested by Silvestri et al. (2022). A notable example is the Score Func-
tion Gradient Estimation (SFGE) method by Silvestri et al. (2023), inspired by Donti et al. (2017);
Pogančić et al. (2019); Berthet et al. (2020); Mohamed et al. (2020) and Niepert et al. (2021), which
combines stochastic smoothing and policy gradient methods. While we rely on Gaussian processes
like Char et al. (2019), we use separate models and exploit contextual information via sample shar-
ing, which simplifies the learning process and avoids length-scale and kernel issues.

3 PROBLEM FORMULATION

We consider a generalization of a DFL setting, where the parameters y of an optimization problem
(e.g. demands) are not known at decision time, but can be estimated based on contextual information
x (e.g. hour of the day). Formally, let X and Y be random variables with support Dx and Dy ,
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representing respectively the contextual information and the uncertain parameters, and correlated
according to their joint distribution P (X,Y ). At decision-making time, the problem parameters are
estimated via a predictive model hθ : Dx → Dy , with parameter vector θ. Based on the estimator
output ŷ, we compute a decision vector z∗ by solving a constrained optimization problem:

z∗(ŷ) = argmin
z
{f(ŷ, z) | z ∈ C(ŷ)} (1)

where f : Dy ×Dz → R is the problem cost function and C : Dy → 2Dz is a constraint function
that denotes the feasible space. We treat z∗ as a function, assuming that a tie-breaking rule is used
when multiple optimal solutions exist. Once the decisions are executed, their quality is determined
by means of a second “true” cost function g : Dy × Dz → R. Specifically, g(y, z) represents the
cost incurred by the solution z, under a realization y sampled from P (Y | x).
The use of a distinct function g for decision quality evaluation distinguishes our setup from those
typically used in DFL, and enables compensating for misspecified decision problem models – as op-
posed to misspecified predictors as in Huang & Gupta (2024). These can stem from treating uncer-
tain parameters (e.g. travel times or demands) as deterministic, from disregarded minor constraints,
or from approximated non-linearities – all common techniques to ensure scalability in real-world ap-
plications. This choice also allows us to deal with estimated parameters in the problem constraints
in eq. (1), assuming that infeasible solutions can be repaired at an additional cost.

We wish to train the predictive model for minimal decision regret:

argmin
θ

Ex,y∼P (X,Y ) [r(y, ŷ)] (2)

where ŷ = hθ(x) and r(y, ŷ) = g(y, z∗(ŷ)) − g(y, z∗(y)). In practice, the expectation is approxi-
mated by an average over a training sample {xi, yi}mi=1, thus leading to:

argmin
θ

1

m

m∑
i=1

r(yi, ŷi) (3)

where ŷi = hθ(xi). Solving eq. (3) via first-order methods, as typically done with neural networks
predictors, requires computing the gradient of the regret function, which is given by:

∂

∂θ
r(yi, ŷi) =

∂g

∂z∗
∂z∗

∂ŷi

∂ŷi
∂θ

(4)

When the optimization problem is linear or combinatorial, or when the g function is piecewise-
constant, the gradient might be undefined or null on a large part of the predicted parameter space.
Furthermore, evaluating the regret function requires computing z∗ and g once per example and per
training epoch, which can be prohibitively expensive, when the optimization problem is NP-hard, or
the true cost function is based on optimization or simulation.

4 METHODOLOGY

We now introduce our method, whose main goal is accelerating the training problem of eq. (3). Sim-
ilarly to Shah et al. (2022; 2024), we reduce the runtime by replacing, for every training example, the
computationally heavy loss function r(yi, ŷ) with a faster, trainable, surrogate loss r̃i(ŷ). Formally,
for a given realization yi, associated to the i-th training example, the surrogate model is a function
r̃i : Dy → R mapping a prediction vector ŷ into a corresponding loss value.

We identify three desirable properties for such a function. First, the surrogate should be differen-
tiable and have informative gradients everywhere, to support gradient-descent optimization. Second,
r̃i should be capable of providing unbiased gradient estimation to ensure that, if enough calibration
data is available, the local optima of the regret loss are preserved. The surrogate losses from Chung
et al. (2022); Lawless & Zhou (2022); Shah et al. (2022; 2024) do not satisfy this criterion, running
the risk of getting trapped in spurious local minima. Third, r̃i should provide confidence information
for online refinement; namely, one should be able to determine when the surrogate is reliable, and
when instead a fallback method based on direct evaluation of z∗ and g should be employed.

We propose using Gaussian Processes (GP) with Radial Basis Function (RBF) kernels as the sur-
rogate model, since they satisfy almost all the desired properties. In particular, GPs with RBFs are
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fully differentiable and support efficient evaluation. Moreover, GPs are (asymptotically) unbiased
estimators: given enough samples, they can approximate any function with arbitrarily high preci-
sion – though they are biased towards zero-centered predictions with scarce data. Finally, GPs have
a distributional output and naturally provide confidence information.

Stochastic smoothing The only property that GPs lack is tied to their nature as unbiased estima-
tors. On the one hand, their are capable of accurately approximating the regret function; on the other,
they risk inheriting some of its undesirable traits, such as 0 (or near-0) gradients on large swathes
of the input space. One possible solution to this issue is to apply stochastic smoothing to the loss
function – somewhat similarly to Silvestri et al. (2023). Specifically, our surrogate approximates a
smoothed version of ri, here called r̄i, referred to as r̄i : Dy → R and defined as:

r̄i(ŷ) = Eŷ′∼N (ŷ,σ) [ri(ŷ
′)] (5)

The original loss value is replaced with its expectation under random, Normally distributed, per-
turbations of its input. The standard deviation σ is a controllable parameter in the method and
represents the degree of smoothing. Small values of σ result in a more accurate regret approxima-
tion – at the cost of possibly weaker gradients – while higher σ values can provide more informative
gradients – but may result in altered local optima. The effect of smoothing is depicted in fig. 1.

In principle, r̄i can be computed via a simple Monte Carlo approach. In practice, this is highly
inefficient, because many samples would be needed for each input ŷ, and evaluating ri(ŷ

′) for each
sample requires computing both z∗ and g. We overcome this limitation by relying on importance
sampling to perform multiple computations of r̄i(ŷ) based on the same set of observations. Formally,
let {ŷ′k}nk=1 be a set of predictions for which the value of ri(ŷ′k) is known. We assume each of
them has been sampled according to a distinct process, and refer to {qk}nk=1 as the corresponding
probabilities. These samples can be associated to an aggregated probability density function q,
defined as a kernel density estimator, and used to define the importance weight function w(ŷ, ŷ′):

q(ŷ) =
1

n

n∑
k=1

qk(ŷ) w(ŷ, ŷ′) =
ϕ(ŷ′; ŷ, σ)

q(ŷ′)
(6)

where ϕ(·; ŷ, σ) is the density for a Normal distribution centered on ŷ and having standard deviation
σ. Then we have:

r̄i(ŷ) ≈
n∑

k=1

w(ŷ, ŷ′k)∑n
h=1 w(ŷ, ŷ

′
h)

ri(ŷ
′
k) (7)

In practice, whenever a new prediction ŷ′k is evaluated during the training process, we store both its
regret value and the probability according to which it was sampled; then we estimate the smoothed
regret associated to the same predictions via eq. (7); finally, we use the smoothed values as targets
when training our GPs. This approach allows to increase the sampling efficiency and decrease
the variance associated to the computation of r̄i; at the same time it adds the flexibility to control
the smoothing level by manipulating the sampling distributions. It is worth noting that, when a
limited number of sampling points is available, the natural smoothing from the GPs combines with
stochastic smoothing, leading to very regular landscapes for the surrogate loss. In fig. 1 we show
an example of stochastic smoothing via importance sampling computed on a set of one-dimensional
points sampled from Normal distributions.

Sample sharing Using a distinct surrogate for each training example permits unbiased regret es-
timation, at the same time limiting the number of input dimensions for the GPs. However, this also
prevents information sharing among surrogates. With the aim to further reduce the number of ri
function evaluations, we devised an optional technique to enable sample sharing between different
surrogates, if the corresponding regret landscapes are similar. Specifically, at the beginning of the
training process, we perform Latin Hypercube Sampling (LHS) to collect a number points {ŷk}mk=1
in the prediction space Dy . We then associate each training example with a vector v containing the
regret value computed for each such collected point, i.e. vi = {ri(ŷk)}mk=1. It can be seen that two
samples i and j are associated to the same regret landscape iff:

lim
m→∞

∥vi − vj∥2 = 0 (8)

i.e., if the Euclidean distance between the corresponding vectors converges to 0, as the number of
sampled points grows. Accordingly, we measure the similarity between the regret landscapes for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of stochastic smoothing with varying σ: larger values cause smoother functions
with respect to the original regret loss. Smoothed functions are computed using importance sampling
over a set of points sampled from Normal distributions.

two samples i and j in terms of such distance. It is worth noting that measuring distances on the
contextual information space alone, as done by Shah et al. (2024), introduces a bias in the surrogates,
since in a stochastic setting the same x input might be associated with different realizations and
consequently with different loss landscapes.

We use the discussed similarity score to determine how relevant the data from one sample is for
another sample. This is achieved by operating on the covariance matrix of each GP, by downscaling
the kernel outputs. Specifically, let ŷ′i and ŷ′′j be two predictions collected respectively for the
training examples i and j; then we have:

Knew(ŷ
′
i, ŷ

′′
i ) =

Kold(ŷ
′
i, ŷ

′′
j )

1 + eα∥vi − vj∥2
(9)

where α is a learnable scale factor and the kernel value is unaltered if i = j, since the corresponding
distance is 0. The collection phase required for this sample sharing process is also useful to initialize
the set of GPs, and to perform standardization of the regret values that are used for their training.

Algorithm We now dive into the concrete implementation of the main training procedure (see
algorithm 1), starting from the outer training loop to solve eq. (3), and then moving to the inner
training to optimize the GP surrogates.

Our surrogate loss should be combined with a fallback method, ideally one suitable for a general
setting where no restrictive assumption on the regret function is made. One such example is the
Score Function Gradient Estimation (SFGE) approach by Silvestri et al. (2023). Using this method
has two additional benefits. First, SFGE also relies on stochastic smoothing, so that the set of
predictions used for training the GPs can be naturally populated, their distribution of origin is known
when computing q(ŷ), and the loss is semantically consistent between the surrogate and the fallback
method. Second, the compound smoothing achieved by our GPs when few samples have been
collected tends to compensate for the high variance and slow convergence of SFGE. That said, it
should be possible to use our surrogate loss with a different fallback method, such as those from Hu
et al. (2023a); Elmachtoub & Grigas (2022) or Huang & Gupta (2024).

The first step in algorithm 1 is a pretraining stage where we initialize the GPs and we collect pairs
(ŷ, ri(ŷ)) via LHS. We scale the number of points to be sampled logarithmically with respect to the
dimensionality of Dy . We use these points to compute statistics to normalize the input ŷ (as GPs
expect 0-mean input values) and to standardize the output ri(ŷ). Then, for each training example,
we employ the associated GP to compute a predicted mean and standard deviation. If the latter is
below a threshold β (i.e., the GP is confident with respect to β), we take the mean as a surrogate loss
and differentiate through the GP; otherwise, we call the SFGE procedure and we add the generated
sample (and its generating distribution) to the corresponding GP. We aggregate loss terms for each
training instance into a single loss, mixing values from the surrogates and the fallback method,
before gradient computation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training loop – gradient computation
gp← initializeGPs(y)
for epoch in EPOCHS do
loss← 0
i← 0
while i < m do
ŷi ← hθ(xi)
r̄i, σi ← gpi(ŷi)
if σi < β then

loss← loss+ r̄i
else
qi ← N (ŷi, σ)
ŷi ∼ qi
gpi.add(ŷi, ri(ŷi), qi)
loss← loss+ SFGE(ŷi, ri(ŷi), qi)

i← i+ 1
gradient← loss.backward()

We trigger surrogate training when at least t new sample-target pairs are available. New data points
are then shared between similar GPs, if such option is enabled, according to a maximum tolerable
Euclidean distance dmax. We replace the ri(ŷ) targets with the smoothed ones r̄i(ŷ), using eq. (7)
on the collected samples and distributions. We also apply data preprocessing by normalizing the
inputs and standardizing the outputs, on the basis of the statistical information extracted in the
pretraining phase. We train GPs by maximum likelihood estimation, with a classical RBF kernel
and a length-scale prior li ∼ LogNormal(log(dim(Y ))/2, 1). We add this last regularization term,
following Hvarfner et al. (2024), to improve scalability in higher dimensions. Finally, the RBF
kernels are warm-started in all subsequent trainings, so as to speed up their training. The code for
our method is publicly available at currently-in-the-supplemental-material.

5 EXPERIMENTS

We now discuss the experimental analysis conducted to assess the robustness, reliability, accuracy,
and especially scalability of our method. We designed experiments to answer four main research
questions. Q1. How does our surrogate loss perform in terms of decision quality compared to the
relevant baselines? Q2. How many calls to the black-box solver does it require? Q3. How much
runtime does it take to converge compared to the other methods? Q4. Can it be scaled to high
dimensions?

Benchmarks We consider three problem classes, many of which include recourse actions to repair
violated constraints, thus leading to misspecified, realistic, decision problems.

Knapsack (KP). We generate 1-0 KP datasets following the procedure proposed by Elmachtoub &
Grigas (2022) to model a stochastic mapping between input features x and ground-truth targets y,
with a polynomial degree deg = 5, number of input features dim(X) = 5, a noise half-width
ϵ̄ = 0.5, and a Poisson distribution to correlate x and y . In our experiments we build datasets on
a target space of dim(Y ) = 50 items. We make use of three different setups, respectively injecting
uncertainty (i.e., stochastic correlation) into weights, values and capacity. We also adopt the recourse
action system by Silvestri et al. (2023), with a fixed penalty p = 10.

Weighted Set Multi-Cover (WSMC). We create WSMC datasets with dim(X) = 5 input features,
dim(Y ) = 10 items and s = 50 sets, following the guidelines by Grossman & Wool (1997) to
generate realistic availability matrices and the same stochastic correlation as in Elmachtoub & Grigas
(2022). We use the recourse action adopted by Silvestri et al. (2023), with a fixed penalty p = 10.

Toy. We define a synthetic toy dataset. In this setting the input features are deterministically mapped
to a target space, using a weight matrix W ∈ Rdim(Y )×dim(X) ∼ U(0, 1), such that y = Wx.
The underlining optimization problem is a trivial map where z∗(ŷ) = ŷ, while the cost is given by
a pseudoconvex piecewise step function with minimum in y: g(y, z∗(ŷ)) = s⌊∥y−ŷ∥2/l⌋, where s

6
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controls the step heights and l determines the distance between steps. We set s = 5 and l = 1 in our
experiments. This new benchmark provides a controlled way to investigate convergence properties,
as the entire loss landscape is known. Additionally, it allows for changing the dimensionality of Y ,
while keeping a negligible cost for computing z∗, so to stress DFL techniques on larger scales.

Baselines Our baselines include a predictive model trained for maximum likelihood, referred to as
Prediction Focused Learning (PFL), plus state-of-the-art DFL methods that apply to black-box set-
tings. In particular, we include in our comparison the SFGE method by Silvestri et al. (2023), which
also serves as fallback for our approach, allowing us to directly assess the impact of the surrogate-
based acceleration. For this method, we use a trainable parameter for σ, with starting value 0.1,
and we warm start the predictor via PFL training. We then consider EGL, LODL, and LANCER,
respectively from Shah et al. (2024), Shah et al. (2022) and Zharmagambetov et al. (2023), as rep-
resentative of other state-of-the-art black-box surrogate-based approaches. We employ the same set
of hyperparameters proposed by the authors, implementing all the four convex surrogates (MSE,
Directed-MSE, Quadratic, Directed-Quadratic) and fixing the number of samples to 250 for LODL
and to 32 or 42 for EGL, to put it on par with our model in terms of calls, for a fair regret compari-
son. We adopt the same surrogate model architecture proposed in Zharmagambetov et al. (2023) for
LANCER, with two hidden layers of 200 units and tanh activation functions; we set t = 10 for the
dual training. As a representative of a state-of-the-art DFL method requiring restrictive assumptions,
we include SPO+ by Elmachtoub & Grigas (2022), where applicable.

Figure 2: Regret and solver calls across the benchmarks: points represent the average regret (on a
logarithmic scale) and average solver calls per instance for all the baselines. Lines represent standard
deviations for each method. Only the best (lowest regret) models are reported for LODL and EGL.

Results In this section we report results on a set of experiments designed to answer the discussed
research questions. For each setting we generate 5 datasets, each one containing 1000 instances,
differently split into train (80%), validation (10%) and test sets (10%). All the models are trained
with the Adam algorithm by Kingma (2014) and a learning rate lr = 10−3, using an early stop-
ping criterion on regrets computed on the validation set, to avoid overfitting. We enable stochastic
smoothing, differentiation, and pretraining for our method, here named GP-Surrogate. By default,
we keep sample sharing off, as it is best suited to improve speed on very time-consuming problems,
at the cost of solution quality (see table 3 for more details). We set β = 1.0 as a tradeoff between
speed and precision in learning, as shown in appendix C, and t = 40. All the experiments were run
on an Apple M3 Pro CPU with 12 cores and 18GB of RAM.
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Table 1: Runtime and average regret for GP-Surrogate and SFGE on WSMC-10 with 250, 500, 750
and 1000 sets. Time limit is 900s.

Method WSMC-10-250 WSMC-10-500 WSMC-10-750 WSMC-10-1000

Runtime GP-Surrogate 289.24± 6.54 459.70± 15.73 638.50± 14.70 818.44± 17.74
SFGE 900.0∗ ± 0.0 900.0∗ ± 0.0 900.0∗ ± 0.0 900.0∗ ± 0.0

Regret GP-Surrogate 1.55± 0.57 1.51± 0.50 1.48± 0.54 1.51± 0.59
SFGE 1.83± 0.86 2.44± 1.05 2.82± 1.20 3.54± 1.25

Q1. We compare the regret for each approach on the KP with 50 items (KP-50) and uncertainty
in weights, values and capacity, and on the the WSMC with 10 items and 50 sets (WSMC-10-50).
Results, summarized in fig. 2 and presented in extended form in appendix A, indicate that using
our surrogate on top of SFGE leads to solutions of similar quality (or even better) in all but one
benchmark, and with less variability. GP-Surrogate provides better regret and stability than the best
approaches in the LODL and EGL class. We also found the performance of LODL and EGL to
be inconsistent w.r.t. the employed convex surrogate, as highlighted in appendix A. Overall, our
method seems to provide a better alternative for accelerating training than these approaches, at least
in terms of regret, most likely thanks to its lack of a structural estimation bias, and to the ability to
switch to the fallback method in case of low confidence. The surrogate model used by LANCER
seems often unable to reasonably approximate the real loss landscape, causing inconsistent training
results and high regrets (even more than PFL), despite a significant reduction in terms of solver
calls. The SPO method, when applicable, significantly outperforms all the others, which suggests
that traditional DFL approaches should still be preferred to black-box ones when permitted by their
assumptions.

Q2. We adopt the same datasets as in Q1 to analyze the computational cost of all approaches.
Results are again depicted in fig. 2. In appendix B we report the number of solver calls (per training
sample), and the total runtime for each method. The former metric should be considered more
important, as for any sufficiently difficult problem the decision time will be the dominant factor.
GP-Surrogate reduces the number of calls by almost an order of magnitude compared to its fallback
method, greatly increasing viability in a practical setting. We align the number of EGL samples to
the solver calls from our method and observe EGL performing significantly worse in terms of regret.
The LODL approaches, in their reference configuration, perform more solver calls for even worse
regret in all but one benchmark. The same considerations apply for the runtime.

Q3. We evaluate scalability for complex problems with time-consuming solver calls, by building
versions of the WSMC-10 datasets with an increasing number of item sets. For this experiment we
set a time limit of 900s per training attempt, to simulate real-world scenarios with limited computa-
tional resources. We compare GP-Surrogate with SFGE and report the results in table 1. As it can
be seen, GP-Surrogate consistently achieves training convergence. SFGE fails to do so even in the
simplest cases, which causes the approach to have worse regret than GP-Surrogate in this case.

Q4. We evaluate scalability for high-dimensional predictions (as opposed to larger-size problems
like in Q3), by increasing the number of decision variables in the Toy benchmark. We report results
in table 2. SFGE gets stuck into local optima, likely because of the nature of this synthetic problem,
which requires strong variations of σ across the training steps. Conversely, GP-Surrogate is still
able to effectively minimize the loss function. This behavior shows that our surrogates can enable
convergence to high-quality solutions, even in high-dimensional spaces. We conjecture this is partly
due to the fact that, since the realization y is always used when training the GPs, they can naturally
identify the presence of a local minimum for ri at that location; this property is shared with the
surrogates from Shah et al. (2022), but with all the discussed benefits of our solution.

Overall, the experiments indicate that our approach can outperform its fallback method in terms
of solver calls and total runtime, thus making it scalable to complex problems, while keeping a
comparable and sometimes better decision quality. The degree of acceleration is similar to the
LODL, EGL, and LANCER models, but with improved consistency, reliability, and solution quality.
Finally, the method scales much better then SFGE on high-dimensional parameter spaces, thanks to
the combination of stochastic and GP smoothing.
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Table 2: Average regret for GP-Surrogate and SFGE on the Toy dataset with 64, 128, 256 and 512
dimensions.

Method Toy-64 Toy-128 Toy-256 Toy-512

Regret GP-Surrogate 5.61± 2.97 4.18± 0.96 1.29± 0.46 0.29± 0.23
SFGE 39.78± 3.06 58.61± 1.02 113.28± 3.41 271.82± 9.49

Table 3: Average regret and average calls per instance for GP-Surrogate with different components
on KP-50 with uncertain weights, values and capacity and WSMC-10 with 50 sets.

Method KP-50 weights KP-50 values KP-50 capacity WSMC-10-50

R
eg

re
t

FULL MODEL 1.14± 0.11 106.38± 10.19 3.52± 0.33 1.39± 0.23
SMOOTHING OFF 1.40± 0.11 149.67± 16.68 3.64± 0.52 1.42± 0.19
PRETRAIN OFF 1.15± 0.08 57.83± 2.61 5.04± 0.33 0.67± 0.10
SAMPLE SHARING OFF 1.04± 0.05 75.07± 5.20 3.45± 0.31 1.18± 0.09
DIFFERENTIATION OFF 1.63± 0.21 156.56± 25.23 3.61± 0.57 1.58± 0.71

Sl
v.

ca
lls

FULL MODEL 39.84± 2.51 35.41± 0.48 6.93± 0.14 28.31± 1.10
SMOOTHING OFF 41.58± 0.74 36.44± 0.35 6.97± 0.12 29.20± 0.59
PRETRAIN OFF 121.71± 3.71 88.34± 2.55 48.91± 0.60 72.65± 9.41
SAMPLE SHARING OFF 41.33± 1.22 42.32± 0.09 30.04± 0.05 31.06± 0.35
DIFFERENTIATION OFF 42.40± 4.69 36.28± 0.48 6.95± 0.15 28.95± 1.03

Ablation studies To prove the effectiveness of all the major components of our method, we also
conducted an ablation study by separately disabling stochastic smoothing, pretraining, sample shar-
ing and GP differentiation. Results, reported in table 3, reveal that in all the settings removing
differentiation or smoothing causes higher average regrets and solver calls, highlighting their rele-
vance. Results with no sample sharing are the same of fig. 2; we note that sharing points between
GP models affects negatively the average regrets, but reduces the average calls. In most cases, this
extra source of acceleration is not enough to justify the lower decision quality, but it can be ex-
tremely valuable in some cases, as observed in the KP-50 capacity benchmark where the number of
solver call is almost two orders of magnitude lower than SFGE. For what concerns pretraining, the
number of solver calls grows sensibly when it is turned off, proving its fundamental role for learning
confident surrogates in early stages. However, relying more on the fallback method does not imply
a downgrade in terms of regrets; in fact, in two settings out of four, we see a strong improvement
when the surrogate usage is more moderate.

6 CONCLUSIONS

We present an approach to improve the applicability of DFL methods, targeting scenarios where
solution and cost computation are time-consuming and where access to the problem structure and
solver state is impossible or inconvenient. In this setting, the existing DFL approaches are too slow
to converge, they may not be applicable, or they accelerate the training process at the cost of a worse
decision quality. We employ a GP-based surrogate loss function, trained online in alternation with
a fallback method, to exploit the surrogate speed without loosing the ability to adapt to the regret
function landscape. We solve the 0-gradient issue relying on stochastic smoothing via importance
sampling – which also motivates our choice of SFGE for the fallback method. Our experimental
evaluation reveals that our surrogate matches or outperforms SFGE, while reducing the number of
solver calls by up to two orders of magnitude, depending on the problem and the model configura-
tion. Our method improves over related approaches in terms of sample efficiency, solution quality,
or both. Finally, we show that the approach can be scaled to higher dimensions. Some potential di-
rections of improvement remain unexplored. A point of particular interest is the possibility to adjust
the smoothing factor, or the points where smoothed regret is computed, at training time – without
the need to collect additional samples. Moreover, by adapting acquisition functions from classical
Bayesian optimization, it might be possible to remove the need for a fallback method. Finally, sim-
ilar to the LODL, EGL, and LANCER approaches, our learned surrogates could be exported for the
construction of new training sets or generally for approximating regret evaluation.
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REPRODUCIBILITY CHECKLIST

Based on the AAAI format:

• Includes a conceptual outline and/or pseudocode description of AI methods introduced: yes
• Clearly delineates statements that are opinions, hypothesis, and speculation from objective

facts and results: yes
• Provides well-marked pedagogical references for less-familiar readers to gain background

necessary to replicate the paper: yes
• A motivation is given for why the experiments are conducted on the selected datasets: yes
• All datasets drawn from the existing literature (potentially including authors’ own previ-

ously published work) are publicly available: yes
• This paper states the number and range of values tried per (hyper-) parameter during devel-

opment of the paper, along with the criterion used for selecting the final parameter setting:
partial

• Any code required for pre-processing data is included in the appendix: yes
• All source code required for conducting and analyzing the experiments is included in a

code appendix: yes
• All source code required for conducting and analyzing the experiments will be made pub-

licly available upon publication of the paper with a license that allows free usage for re-
search purposes: yes

• All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from: partial

• If an algorithm depends on randomness, then the method used for setting seeds is described
in a way sufficient to allow replication of results: yes

• This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks: partial

• This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics: yes

• This paper states the number of algorithm runs used to compute each reported result: yes
• Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,

average; median) to include measures of variation, confidence, or other distributional in-
formation: yes

• The significance of any improvement or decrease in performance is judged using appropri-
ate statistical tests (e.g., Wilcoxon signed-rank): no

• This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments: yes
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Guns, and Michele Lombardi. Score function gradient estimation to widen the applicability of
decision-focused learning. arXiv preprint arXiv:2307.05213, 2023.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 1658–1665, 2019.

Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina, and Yuan-
dong Tian. Landscape surrogate: Learning decision losses for mathematical optimization under
partial information. Advances in Neural Information Processing Systems, 36:27332–27350, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXTENDED RESULTS

We report in table 4 complete results relative to the average regret score for all the models, including
all the LODL and EGL variations.

Table 4: Average regret for all the models on KP-50 with uncertain weights, values and capacity and
WSMC-10 with 50 sets.

Method KP-50 weights KP-50 values KP-50 capacity WSMC-10-50

PFL 1.78± 0.12 128.55± 8.99 7.77± 0.50 3.06± 0.89
GP-Surrogate 1.04± 0.05 75.07± 5.20 3.45± 0.31 1.18± 0.09
SFGE 1.40± 0.29 35.40± 9.77 4.30± 0.67 1.05± 0.32
LANCER 4.85± 2.53 545.14± 233.63 7.20± 0.89 3.87± 1.78
LODL-MSE 1.76± 0.12 127.78± 9.36 7.80± 8.24 3.04± 0.88
LODL-QUADRATIC 2.63± 0.34 813.19± 108.98 9.34± 0.35 5.18± 1.14
LODL-DIRECTED-MSE 5.85± 0.41 315.08± 55.10 17.37± 3.97 0.75± 0.04
LODL-DIRECTED-QUADRATIC 2.06± 0.21 190.34± 5.84 14.96± 0.41 2.92± 0.89
EGL-MSE 1.78± 0.09 125.48± 6.69 6.41± 1.02 2.25± 0.32
EGL-QUADRATIC 1.34± 0.13 247.49± 95.72 6.28± 0.33 2.43± 0.93
EGL-DIRECTED-MSE 1.75± 0.12 129.74± 3.76 6.13± 0.37 2.32± 1.42
EGL-DIRECTED-QUADRATIC 1.97± 0.06 275.98± 70.70 3.61± 0.35 1.36± 0.20
SPO − 13.78± 2.82 − −

B SOLVER CALLS AND RUNTIME COMPARISON

In table 5 we show the average solver calls per instance and the runtime for each baseline model.

Table 5: Average calls per instance and runtime for all the models on KP-50 with uncertain weights,
values and capacity and WSMC-10 with 50 sets.

Method KP-50 weights KP-50 values KP-50 capacity WSMC-10-50

Sl
v.

ca
lls

GP-Surrogate 41.33± 1.22 42.32± 0.09 30.04± 0.05 31.06± 0.35
SFGE 304.40± 53.80 257.20± 34.97 142.60± 58.95 358.60± 63.62
LANCER 42.8± 3.96 43.2± 3.86 30.60± 17.24 33.0± 22.35
LODL (ALL) 250.0± 0.0 250.0± 0.0 250.0± 0.0 250.0± 0.0
EGL (ALL) 42.0± 0.0 42.0± 0.0 32.0± 0.0 32.0± 0.0
SPO − 85.0± 6.09 − −

R
un

tim
e

GP-Surrogate 199.40± 6.77 136.01± 10.02 274.52± 66.50 228.73± 20.59
SFGE 717.28± 127.26 774.16± 173.62 396.93± 160.09 1849.74± 344.25
LANCER 207.31± 32.24 221.07± 20.81 304.38± 136.95 348.68± 241.32
LODL (BEST) 365.26± 37.76 474.75± 35.01 623.06± 65.38 1034.88± 46.12
EGL (BEST) 63.01± 4.99 72.31± 7.40 82.27± 3.89 118.99± 2.16
SPO − 180.51± 30.30 − −

C SENSITIVITY ANALYSIS

In table 6 we analyze how β influences results. As expected, higher values lead to an increase in
the surrogate loss exploitation. However, we observe a counter-intuitive behavior in average regrets,
which improve even if less confident estimations take the place of real regrets. We believe these
results my be determined by spurious local optima introduced by the GP loss approximation.
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Table 6: Average regret and average calls per instance for GP-Surrogate with different β values on
KP-50 with uncertain weights, values and capacity and WSMC-10 with 50 sets.

Method KP-50 weights KP-50 values KP-50 capacity WSMC-10-50

R
eg

re
t

β = 0.01 1.07± 0.14 314.02± 263.90 3.76± 0.63 5.69± 2.17
β = 0.05 1.03± 0.16 474.31± 136.58 3.63± 0.32 4.05± 1.86
β = 0.1 1.01± 0.15 176.30± 37.33 3.61± 0.33 3.87± 1.17
β = 0.5 1.06± 0.12 74.85± 4.82 3.57± 0.35 1.77± 0.43
β = 1.0 1.04± 0.05 75.07± 5.20 3.45± 0.31 1.18± 0.09

Sl
v.

ca
lls

β = 0.01 279.16± 12.40 148.95± 41.43 81.67± 21.51 53.65± 7.54
β = 0.05 156.53± 23.56 57.25± 3.63 56.84± 2.95 71.68± 43.56
β = 0.1 116.74± 13.90 55.52± 2.34 41.35± 0.84 47.09± 2.71
β = 0.5 57.75± 2.55 40.29± 0.30 36.52± 0.13 39.73± 1.74
β = 1.0 41.33± 1.22 42.32± 0.09 30.04± 0.05 31.06± 0.35
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