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Abstract

Despite the promising capabilities of diffusion models in speech enhancement,
their application in Acoustic Echo Cancellation (AEC) has been limited. In this
paper, we introduce Fewer Step Diffusion, a framework specifically designed for
AEC, which addresses computational efficiency concerns, making it particularly
suitable for deployment on edge devices. Unlike traditional approaches, FSD uses
a novel score model, which substantially boosts processing efficiency. Addition-
ally, we present a unique noise generation technique that leverages far-end signals,
utilizing both far-end and near-end signals to enhance the accuracy of the score
model. We evaluate our proposed method using the ICASSP2023 Microsoft Deep
Echo Cancellation Challenge dataset, where FSD demonstrates superior perfor-
mance compared to several end-to-end methods and other diffusion-based echo
cancellation techniques.

1 Introduction

The importance of acoustic echo cancellation (AEC) in achieving high-quality speech during voice
communication has led to the development of various methods, including adaptive filtering tech-
niques such as Least Mean Squares (LMS) (1) and Recursive Least Squares (RLS) (2), and deep
neural network (DNN) based approaches like the Deep Complex Convolution Recurrent Network
(DC-CRN) (3). The main challenges in AEC are artifacts, target speech distortion, and echo leakage,
especially during double-talk scenarios. To address these issues, researchers have explored solutions
such as alignment modules (4), novel architectures (5; 6), and modified loss functions (7).

Among the recent advancements, diffusion-based generative models have shown promising results
in tasks like noise suppression. These models generate data by reversing a gradual noise process
and consist of two main phases: the forward diffusion process and the reverse generative process.
For example, Lu et al. (8) proposed an approach that integrates the characteristics of noisy speech
into both diffusion and reverse phases, resulting in a more refined enhancement. Similarly, Joan
Serrà et al. (9) introduced a multi-resolution conditioning network employing score-based diffusion,
which generates clean speech by progressively reducing noise in a series of steps. Lemercier et al.
(10) applied a stochastic regeneration strategy, using estimates from a predictive model as guides for
further diffusion, thereby refining the enhancement process.
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Figure 1: FSD pipeline. The predictive filter first generates an estimate ŝ(n) from the microphone
signal h(n). The diffusion-based generation module Gφ then adds Gaussian noise, guided by the far-
end signal x(n), and solves the reverse diffusion stochastic differential equation (SDE). The resulting
estimated near-end speech s̃(n) is used in the score function for the next frame.

While there have been notable advances in speech enhancement, the use of diffusion models specif-
ically for echo cancellation remains underexplored. The primary challenge is the computational
intensity associated with traditional diffusion models, which poses difficulties for real-time deploy-
ment. In this paper, we propose a novel model, FSD (Fewer Step Diffusion), which utilizes a
diffusion-based framework tailored for AEC. FSD is designed to overcome the computational bar-
riers by executing the diffusion process with fewer steps, running the score model only once per
frame and using prior states to reduce processing time significantly. Furthermore, FSD incorporates
a novel noise generation technique that utilizes both far-end and near-end signals to enhance accu-
racy, leading to improved echo cancellation performance. Our experiments demonstrate that FSD
achieves superior results on the ICASSP2023 Microsoft Deep Echo Cancellation Challenge dataset
compared to existing end-to-end and diffusion-based methods.

2 Proposed Method

2.1 Problem Formulation

In a typical AEC system, the microphone signal is denoted as h(n). This signal comprises two
components: the near-end speech s(n) and the acoustic echo z(n). Mathematically, this relationship
is expressed as:

h(n) = s(n)+ z(n), (1)

where n is the time sample index. The acoustic echo z(n) can be understood as a time-delayed
version of the far-end reference signal x(n). This signal has traversed the echo path and might have
undergone nonlinear distortions due to the loudspeakers. The primary objective of the AEC system
is to separate the near-end speech s(n) from the microphone signal h(n).

2.2 Forward Process and Inference through Reverse Sampling

The perturbation kernel plays a crucial role in the diffusion process by introducing Gaussian noise
into the data, which helps regularize the model, preventing overfitting and ensuring robust perfor-
mance. The forward process is defined by the Itô Stochastic Differential Equation (SDE), describing
how the data evolves over time with added noise. The score matching objective is essential for train-
ing the score model. It ensures that the model’s predictions match the true data gradients, improving
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the accuracy of the denoised outputs. By minimizing the score matching loss, we train the score
model to accurately capture the underlying data distribution.

The stochastic forward process utilized in score-based diffusion models is defined by the Itô Stochas-
tic Differential Equation (SDE) (11):

ds(n)t = f(s(n)t , t)dt +g(t)dw (2)

where w denotes a standard-dimensional Brownian motion, making dw a zero-mean Gaussian ran-
dom variable with variance proportional to dt, pertinent for each Time-Frequency (T-F) bin. The
functions f and g represent the drift and diffusion coefficients, respectively. The state of the process
at discrete index n and continuous time t, where t ∈ [0,T ], is given by s(n)t , and for clean speech,
the initial condition is s(n)0 = s(n).

In the reverse process of the score-based diffusion model, the score model is substituted into the
reverse SDE as a plug-in reverse SDE (12):

ds(n)t = [−f(s(n)t, t)+g(t)2∇s(n)t log pt(s(n)t)]dt +g(t)dw, (3)

where dw is a d-dimensional Brownian motion for the time flowing in reverse, and ∇s(n)t log pt(s(n)t)
is the score function. This equation is classified under the Ornstein-Uhlenbeck SDEs (13).

During inference, Eq. (3) is evaluated using the predictor-corrector approach informed by the score-
matching network described in (11). The initial state of the process is drawn from the distribution:

s(n)τ ∼ N C(s(n)τ;h(n),x(n),σ2(τ)I), (4)

which represents a near-end signal h(n) and far-end signal x(n), with Gaussian noise of variance

σ2(τ) added.

2.3 Fewer Step Score Model with Far-End Guided Noise

Since the speech enhancement task, including AEC, can be considered a conditional generation
task, the conditioning is integrated into the diffusion process. The forward process yields a complex
Gaussian distribution for the process state s(n)t , known as the perturbation kernel (14):

NC(s(n)t ;µ(s(n)0,h(n), t),σ(t)2I), (5)

where the mean is µ and the variance is σ(t)2. During inference, one attempts to solve the reverse
SDE in Eq. (3). For the Gaussian form of the perturbation kernel p0,t(s(n)t |s(n)0,h(n),x(n)) for
the AEC task, and the regularity conditions exhibited by the mean and variance, a score matching
objective is used to train the score model sφ . This score model, adapted from the StoRM architecture
(10), is a neural network designed to estimate the gradient of the data distribution.

2.4 Fewer Step Diffusion (FSD) Model

To address the computational challenges of deploying full diffusion-based models in real-time, we
propose the FSD (Fewer Step Diffusion) model, which significantly reduces the number of dif-
fusion steps required for echo cancellation. The FSD model is designed to execute the score cal-
culation only once per frame, leveraging the enhanced signal from the previous frame to reduce
computational overhead. This approach balances the trade-off between accuracy and processing
time, making it suitable for deployment on edge devices.

The score function of the perturbation kernel is:

J (DSM)(φ) = E[|ŝφ (s(n),h(n),s(n−1))+
z

σ(n)
|22], (6)
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where J (DSM) is related to the enhanced signal from the previous frame rather than the time index
t. This simplification reduces computational demands for each frame by optimizing over time with
fewer score calculations.

2.5 Loss Function

For training, we define the loss L as a combination of score matching and a supervised regular-
ization term — e.g., mean square error — matching the output of the initial predictor to the target
speech:

L (StoRM)(θ ,φ) = L (DSM)(θ)+αL (Sup)(φ)

= E

[

∣

∣

∣

∣

sφ (ŝ(n),h(n),s(n−1))+
z

σ(n)

∣

∣

∣

∣

2

2

]

+αE

[

|s(n)−Dθ (h(n))|
2
2

]

,

(7)

where α is a balancing term empirically set to 1.

3 Experimentation Results

3.1 Data Selection and Training

For model training, we utilize a combination of synthetic data from the AEC-challenge (15) and
our privately enhanced dataset. We ensure gender balance among speakers on both the far-end and
near-end sides, resulting in 720 original conversations, each lasting 10 seconds.

The training configuration for the model involves using the Adam optimizer with an initial learning
rate of 10−4. The model is trained for 160 epochs with an effective batch size of 32, distributed
across multiple GPUs using the distributed data-parallel approach in PyTorch Lightning. During
training, an exponential moving average of the model weights is tracked with a decay rate of 0.999,
which is used for sampling. The training steps include sampling a random time t, sampling clean
and noisy speech pairs from the dataset, adding noise to the clean speech according to the forward
diffusion process, and computing the loss as an L2 loss between the model output and the score of the
perturbation kernel. Hyperparameter choices for the diffusion process include σmin = 0.05, σmax =
0.5, and γ = 1.5, selected based on empirical hyperparameter optimization. For the spectrogram
transformation, α = 0.5 and β = 0.15 were chosen. Hyperparameter tuning was conducted through
grid search, adjusting the number of reverse steps N and the step size parameter r for the annealed
Langevin corrector to balance performance and computational efficiency.

3.2 Ablation Study

Table 1 presents the performance of various acoustic echo cancellation (AEC) models based on
different sampling methods and the presence of reverse diffusion. The models are evaluated on
metrics such as ERLE of FEST, PESQ of NEST, and PESQ of DT.

Initially, we observe the performance of the CRN model (3) without any sampling or reverse diffu-
sion. Specifically, the larger model with higher latency shows superior performance in both ERLE of
FEST and PESQ of NEST, indicating that increasing the model size can enhance AEC performance,
given similar architectural characteristics. The diffusion-based models (IDs 3 and 4) introduce re-
verse diffusion with distinct sampling methods — Random Sampling and Far-End Guided Sampling,
respectively. These models exhibit a high latency of 325.00 ms but surpass the CRN models in all
performance metrics due to the added diffusion steps.

Our proposed FSD (Fewer Step Diffusion) model combines a modified reverse approach, termed
“Fast Reversion,” with sampling techniques. The FSD model achieves a latency of 9.14 ms, which
is well within the real-time processing requirement (typically 10 ms). This low latency is achieved
by running the score model only once per frame, significantly reducing the computational load com-
pared to traditional diffusion-based methods, thereby avoiding perceptible delays and maintaining
the quality and naturalness of the conversation. Performance-wise, the FSD model with Far-End
Guided Sampling marginally outperforms its Random Sampling counterpart, particularly in ERLE
of FEST and PESQ of DT.
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Model CRN CRN Diffusion-Based Models

Sampling No No Random / Far-End Guided Random / Far-End Guided
Reversion Diffusion No No Yes Fewer Step Score

Parameters (M) 3.6 7.8 6.9 6.9
Latency (ms) 4.04 8.93 325.00 9.14

ERLE of FEST (dB) 67.67 82.45 92.51 / 92.83 85.80 / 89.75
PESQ of NEST 4.41 4.50 4.87 / 4.91 4.79 / 4.85

PESQ of DT 2.34 2.60 3.30 / 3.32 3.05 / 3.24

Table 1: Performance comparison over candidate models. We measure PESQ for both DT and
NEST scenarios and ERLE for the FEST scenario in the augmented evaluation dataset. Slight im-
provements or declines in the results for different sampling methods are noted in the diffusion-based
models.

Model FEST DT DT other

RLS 2.64 2.47 3.78

ByteAudio 4.709 4.770 4.312

FSD 4.830 4.820 4.470

Table 2: AECMOS comparison on ICASSP 2023 AEC Challenge blind test.

To summarize, using the diffusion-based model, the DT PESQ improved by 27.7%, rising from 2.6
to 3.32. When implementing the FSD model, the DT PESQ slightly decreased to 3.08, representing
a 7.2% reduction. However, a significant advantage of the FSD model is its reduced latency, which
is only 2.8% of the diffusion-based model’s latency (9.14 ms vs. 325 ms).

3.3 Comparison with State-of-the-Art Methods

We use AECMOS, a non-intrusive model-based metric from the AEC challenge, to compare our
proposed method against established baselines such as Recursive Least Squares (RLS) (2), ByteAu-
dio (16), and diffusion-based models. ByteAudio employs a Two-step Band-split Neural Network
(TBNN) methodology for full-band acoustic echo cancellation, achieving the highest performance
in the AEC 2023 challenges, second only to the host.

The results show that our proposed models outperform RLS in both single talk and double talk sce-
narios. As shown in Table 2, the diffusion-based model slightly outperforms ByteAudio across all
three scenarios. All four methods demonstrate notable performance on the AEC task, but the FSD
model balances acceptable performance with low latency, reducing computational load while poten-
tially missing some nuances. These results underscore the importance of selecting the appropriate
AEC method for specific tasks and scenarios and highlight the progress and potential of contempo-
rary AEC technologies.

4 Conclusion

We proposed fewer step diffusion, a novel score-based diffusion model specifically designed for
AEC. This research demonstrates that diffusion-based stochastic regeneration models can signifi-
cantly enhance AEC performance. To address the computational cost challenges associated with
traditional diffusion models, particularly for edge devices, FSD improves processing efficiency and
reduces latency by running the score model only fewer times per frame. Additionally, the FSD
model uses noise generation guided by far-end signals, incorporating both far-end and near-end sig-
nals to enhance the precision of the score model. This unique application of diffusion models offers
a powerful and efficient approach to echo cancellation.

In future work, we will focus on deploying the FSD model in real-time applications, which involves
potential challenges such as ensuring adequate computational resources, managing scalability for
multiple streams, and exploring the integration of our methods with other advanced audio processing
techniques, such as noise suppression and dereverberation.
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