
Published as a conference paper at ICLR 2024

TOWARD OPTIMAL POLICY POPULATION GROWTH IN
TWO-PLAYER ZERO-SUM GAMES

Stephen McAleer*1, JB Lanier2, Kevin A. Wang2, Pierre Baldi2, Tuomas Sandholm1 and Roy Fox2

1Department of Computer Science, Carnegie Mellon University
2Department of Computer Science, University of California, Irvine

*Corresponding author: smcaleer@cs.cmu.edu

ABSTRACT

In competitive two-agent environments, deep reinforcement learning (RL) methods
like Policy Space Response Oracles (PSRO) often increase exploitability between
iterations, which is problematic when training in large games. To address this issue,
we introduce anytime double oracle (ADO), an algorithm that ensures exploitability
does not increase between iterations, and its approximate extensive-form version,
anytime PSRO (APSRO). ADO converges to a Nash equilibrium while iteratively
reducing exploitability. However, convergence in these algorithms may require
adding all of a game’s deterministic policies. To improve this, we propose Self-Play
PSRO (SP-PSRO), which incorporates an approximately optimal stochastic policy
into the population in each iteration. APSRO and SP-PSRO demonstrate lower
exploitability and near-monotonic exploitability reduction in games like Leduc
poker and Liar’s Dice. Empirically, SP-PSRO often converges much faster than
APSRO and PSRO, requiring only a few iterations in many games.

1 INTRODUCTION

In competitive two-agent environments, also known as zero-sum games, deep reinforcement learn-
ing (RL) methods based on the double oracle (DO) algorithm (McMahan et al., 2003), such as Policy
Space Response Oracles (PSRO) (Lanctot et al., 2017), are some of the most promising methods for
finding approximate Nash equilibria in large games. One reason is that such methods are simple to
use with existing RL methods and naturally provide a measure of approximate exploitability. The
exploitability of a policy is defined as the performance against a worst-case opponent, and it is optimal
at zero when the policy is a Nash equilibrium. A second reason is that these methods effectively
prune the game tree by only considering mixtures over policies that are already trained to be effective
best responses. Finally, they can be used in games with large or continuous action spaces because
they do not require full game-tree traversals. Methods based on PSRO such as AlphaStar (Vinyals
et al., 2019) and Pipeline PSRO (McAleer et al., 2020) have achieved state-of-the-art performance on
Starcraft and Barrage Stratego, respectively.

PSRO-based methods iteratively add RL best-response policies to a population. The best response for
each player trains against a restricted distribution over the opponent’s existing population of policies.
To find this restricted distribution, a Nash equilibrium (a pair of mutually best-responding policies) is
computed in a restricted single-step game where each action corresponds to choosing a policy from
the population. As PSRO iterations progress, an optimal distribution over these population policies
will approximate a Nash equilibrium in the full game.

In practice, however, PSRO is terminated early in large games. This can be a problem because the
PSRO restricted distribution over the population policies is not guaranteed to decrease in exploitability
every iteration. As a result, if PSRO is terminated early, the final restricted distribution could
potentially be arbitrarily more exploitable than the initial one.

In this paper, we first propose a new double oracle variant, anytime double oracle (ADO) that, in each
iteration, finds the least-exploitable restricted distribution over the population policies of each player.
This algorithm is called anytime, in the sense that it can be stopped in any iteration and return a

1



Published as a conference paper at ICLR 2024

solution that is not worse than the previous iteration. We then present an approximate extensive-form
RL version called anytime PSRO (APSRO).

Anytime double oracle (ADO) can be viewed as a modification of the range of skill (ROS) algo-
rithm (Zinkevich et al., 2007) that finds a restricted Nash equilibrium over two restricted games, one
per player. Each player’s restricted game is defined such that their strategies are restricted to be within
their population, but the opponent is unrestricted. For each player, ADO adds to the opponent’s
population a best response to the player’s NE restricted distribution. ADO is guaranteed not to
increase exploitability from one iteration to the next, while also being guaranteed to converge to a
Nash equilibrium in a number of iterations at most equal to the number of pure strategies in the game.

Anytime policy-space response oracles (APSRO) updates the restricted distribution using a no-regret
algorithm trained against a single approximate best response from the opponent. This opponent
approximate best response is itself being continually trained via reinforcement learning against the
restricted distribution. We find empirically that APSRO tends not to increase exploitability as much
as PSRO and can greatly outperform PSRO in some domains.

However, because common implementations of PSRO add pure-strategy (i.e. deterministic) best
responses in each iteration, PSRO may still need to add many policies to the population before they
can support a Nash equilibrium. In fact, in certain games, all pure strategies will be added before
finding a Nash equilibrium. This is because many games require mixing over a large number of pure
strategies to arrive at a Nash equilibrium. Furthermore, before termination, the restricted distribution
over population policies can be arbitrarily exploitable, even if it decreases monotonically until then.

In addition to introducing APSRO, we also build on APSRO by adding to the population in each
iteration a stochastic policy that is trained via an off-policy procedure. A key insight is that mixed
strategies (i.e. stochastic policies) can lower the exploitability of a population more than pure
strategies. To see this, note that a Nash equilibrium strategy is an optimal strategy to add because the
least-exploitable distribution over the resulting population will also be a Nash equilibrium strategy. If
all Nash equilibria are mixed, as is often the case, then no pure strategy can be added to the population
that reduces exploitability as much as the mixed strategy Nash equilibrium.

Although finding the optimal strategy to add is as hard as solving the original game, we find that
adding a rough approximation to the optimal strategy can offer striking empirical benefits in quickly
reducing the exploitability of the restricted distribution. We present Self-Play PSRO (SP-PSRO),
which, similarly to APSRO, learns a restricted distribution over the population via no regret against
the opponent’s best response. Additionally, SP-PSRO trains off-policy a new strategy against the
opponent’s best response. At the end of each iteration, SP-PSRO adds two strategies to the population:
(1) the time-average of this new strategy and (2) the best response to the opponent’s restricted
distribution. Section 5 clarifies this algorithm using formal notation. In large games like dark chess
and Starcraft, where PSRO may never converge, the early performance holds paramount importance.
Our approach with SP-PSRO is tailored to this reality, ensuring robust performance from the outset.
Recognizing that the completion of the full training procedure in such extensive games is a rare
occurrence, the anytime property of our proposed method takes on a critical role, delivering viable
strategies at any stage of the iterative process.

By training the new strategy off-policy, SP-PSRO requires the same amount of experience in each
iteration as APSRO and PSRO. Experiments on normal-form games and extensive-form games
such as Liar’s Dice, Battleship, and Leduc Poker suggest that SP-PSRO can learn policies that are
dramatically less exploitable than APSRO and PSRO. Our empirical results demonstrate SP-PSRO’s
superior performance in reducing exploitability before convergence across various games, a testament
to its practical effectiveness. While APSRO serves as a foundational concept in our research, the leap
to SP-PSRO marks a significant advancement, particularly in terms of reducing exploitability before
PSRO has neared convergence.

To summarize, our contributions are as follows:

• We introduce a version of double oracle that does not increase in exploitability, called any-
time double oracle (ADO) and its extensive-form approximation, anytime PSRO (APSRO).

• We present an enhancement to APSRO, termed Self-Play PSRO (SP-PSRO). In each iteration,
without requiring extra environment steps, it incorporates an additional mixed strategy aimed
at reducing our population’s exploitability.

2



Published as a conference paper at ICLR 2024

2 BACKGROUND

We consider extensive-form games with perfect recall (Hansen et al., 2004). An extensive-form game
progresses through a sequence of player actions and has a world state w ∈ W at each step. In an
N -player game,A = A1×· · ·×AN is the space of joint actions for the players. Ai(w) ⊆ Ai denotes
the set of legal actions for player i ∈ N = {1, . . . , N} at world state w and a = (a1, . . . , aN ) ∈ A
denotes a joint action. At each world state, after the players choose a joint action, a transition function
T (w, a) ∈ ∆W determines the probability distribution of the next world state w′. Upon transition
from world state w to w′ via joint action a, player i makes an observation oi = Oi(w, a,w

′). In each
world state w, player i receives a rewardRi(w). The game ends when the players reach a terminal
world state. In this paper, we consider games that are guaranteed to end in a finite number of actions.

A history is a sequence of actions and world states, denoted h = (w0, a0, w1, a1, . . . , wt), where
w0 is the known initial world state of the game. Ri(h) and Ai(h) are, respectively, the reward
and set of legal actions for player i in the last world state of a history h. An information set for
player i, denoted by si, is a sequence of that player’s observations and actions up until that time
si(h) = (a0i , o

1
i , a

1
i , . . . , o

t
i). Define the set of all information sets for player i to be Ii. The set of

histories that correspond to an information set si is denoted H(si) = {h : si(h) = si}, and it is
assumed that they all share the same set of legal actions Ai(si(h)) = Ai(h).

A player’s strategy πi is a function mapping from an information set to a probability distribution over
actions. A strategy profile π is a tuple (π1, . . . , πN ). All players other than i are denoted −i, and
their strategies are jointly denoted π−i. A strategy for a history h is denoted πi(h) = πi(si(h)) and
π(h) is the corresponding strategy profile. When a strategy πi is learned through RL, we refer to the
learned strategy as a policy.

The expected value (EV) vπi (h) for player i is the expected sum of future rewards for player i in
history h, when all players play strategy profile π. The EV for an information set si is denoted vπi (si)
and the EV for the entire game is denoted vi(π). A two-player zero-sum game has v1(π)+v2(π) = 0
for all strategy profiles π. The EV for an action in an information set is denoted vπi (si, ai). A Nash
equilibrium (NE) is a strategy profile such that, if all players played their NE strategy, no player could
achieve higher EV by deviating from it. Formally, π∗ is a NE if vi(π∗) = maxπi

vi(πi, π
∗
−i) for each

player i.

The exploitability e(π) of a strategy profile π is defined as e(π) =
∑

i∈N maxπ′
i
vi(π

′
i, π−i). A

best response (BR) strategy BRi(π−i) for player i to a strategy π−i is a strategy that maximally
exploits π−i: BRi(π−i) = argmaxπi

vi(πi, π−i). An ϵ-best response (ϵ-BR) strategy BRϵ
i(π−i) for

player i to a strategy π−i is a strategy that is at most ϵ worse for player i than the best response:
vi(BRϵ

i(π−i), π−i) ≥ vi(BRi(π−i), π−i)− ϵ. An ϵ-Nash equilibrium (ϵ-NE) is a strategy profile π
in which, for each player i, πi is an ϵ-BR to π−i.

A normal-form game is a simultaneous-move single-step extensive-form game. An extensive-form
game induces a normal-form game in which the legal actions for player i are its deterministic
strategies "si∈Ii

Ai(si). These deterministic strategies are called pure strategies of the normal-form
game. A mixed strategy is a distribution over a player’s pure strategies.

3 ANYTIME DOUBLE ORACLE ALGORITHM (ADO)

Double oracle (DO) (described in B.1) is guaranteed to converge because in the worst case, it will
expand all pure strategies, at which point it terminates at a Nash equilibrium (NE). Unfortunately,
before convergence, there is no guarantee on the exploitability of the restricted-game NE. In fact, DO
can increase exploitability arbitrarily from one iteration to the next.

To see this, consider the game in Figure 1. If both players start with a population consisting only
of the first strategy (top row and left column), then the best response for each player is the second
strategy, giving that player value 1, for a total exploitability of 2. In the next iteration (Figure 1), when
both the first and second strategies are in the population for both players, the restricted-game NE of
DO will give probability 1 to the second strategy for each player. This restricted NE has exploitability
of 4. In Appendix D, we show empirically that DO does indeed increase exploitability arbitrarily
before terminating in this class of games. PSRO inherits this property.

3



Published as a conference paper at ICLR 2024

Figure 1: Top: In DO, a single restricted game is created and solved in gray. Since this restricted game
does not consider strategies outside of the population, it can lead to exploitable restricted distributions.
In this example, the DO restricted distribution π places all mass on the second strategy, resulting in
total exploitability of 4. Bottom: Conversely, ADO creates two restricted games where the opponent
is unrestricted, player 1’s restricted game is shown in green and player 2’s restricted game is shown
in red. Solving these modified restricted games results in the least-exploitable restricted distributions.
In this example, the restricted distribution π for ADO puts 2

3 mass on the first strategy and 1
3 mass on

the second strategy, resulting in the optimal exploitability for this restricted game of 4
3 .

Algorithm 1 Anytime Double Oracle (ADO)

Result: Nash Equilibrium
Input: Initial population Π0

repeat {for t = 0, 1, . . .}
for i ∈ {1, 2} do
πr
i ← NE in restricted game Gi (eq. (1))

for i ∈ {1, 2} do
Find a novel best response βi ← BRi(π

r
−i)

Πt+1
i = Πt

i ∪ {βi}
until No novel best response exists for either player
Return: πr

In this paper, we introduce anytime double oracle (ADO) (Algorithm 1), which is guaranteed not to
increase exploitability from one iteration to the next. ADO primarily serves as a foundational element
for the development of our subsequent algorithm, APSRO. This foundational role is crucial as it lays
the groundwork for APSRO’s convergence guarantees. Like DO, ADO maintains a population Πt

i for
player i in iteration t, and in each iteration computes a Nash equilibrium on a restricted game and
adds to each population a best response to the restricted NE. However, unlike DO, ADO creates a
different restricted game for each player. The restricted game Gi for player i is created by restricting
that player to only play strategies included in their population Πi, while the opponent can play any
strategy in the full game. The game value of Gi for player i is

max
πi∈Πi

min
π−i

vi(πi, π−i). (1)

The restricted game Gi for player i is then solved for both players to get a NE for each restricted
game. We refer to player i’s NE strategy in their restricted game as their restricted NE πr

i . The
restricted NE for player i is the least exploitable mixed strategy supported by player i’s population.
Note that in large games this restricted game will be prohibitively large to solve and will require
approximation with APSRO, introduced later in this paper.

4



Published as a conference paper at ICLR 2024

Next, a best response βi = BR(πr
−i) is computed for each player i against the restricted-NE mixed

strategy of the restricted opponent, and is added to the player’s population. If there are multiple best
responses, a novel best response βi ̸∈ Πi is chosen that is not currently in that player’s population.

ADO is guaranteed to terminate because there are finitely many pure strategies in the original game.
When ADO terminates, the restricted NE is a NE in the original game (Proposition 2). Unlike DO,
the exploitability of the restricted NE does not increase from iteration to iteration (Proposition 1).

Proposition 1. The exploitability of ADO is monotonically non-increasing.

Proof. All proofs are contained in Appendix H.

To illustrate this property of ADO, consider the algorithm dynamics on the DO bad case given
in Figure 1. Similar to DO, ADO adds the second strategy to the population in the first iteration.
Now, however, instead of taking the second strategy with probability 1 as DO does, ADO solves the
restricted game where one player is restricted to the first two strategies and the other is unrestricted
and can play any of the three strategies. The Nash equilibrium of this game for the restricted player is
to play the first strategy with probability 2

3 and the second strategy with probability 1
3 . This strategy

results in a total exploitability of 4
3 , compared with the DO exploitability of 4 and the initial ADO

exploitability of 2. In addition to this property of never-increasing exploitability, ADO is guaranteed
to converge to a Nash equilibrium, as shown below.

Proposition 2. When ADO terminates, the restricted NE of both players is a Nash equilibrium in the
full game.

4 ANYTIME PSRO ALGORITHM (APSRO)

In this section we introduce a scalable extensive-form version of ADO, which we coin anytime PSRO
(APSRO) (Algorithm 2). Rather than computing the exact NE for each player’s ADO restricted
game Gi, APSRO approximates this solution by simultaneously optimizing each player’s restricted
distribution πr

i via a regret minimization algorithm against a continuously trained RL best response
β−i. In this work, we update πr

i via the exponential-weight algorithm (Exp3) (Auer et al., 2002)
or the Multiplicative Weights Update (MWU) algorithm (Cesa-Bianchi & Lugosi, 2006; Freund &
Schapire, 1999).

Algorithm 2 Anytime PSRO

Result: ϵ-Nash Equilibrium
Input: Initial population Π0

while Not Terminated {t = 0, 1, . . .} do
Initialize πr

i to uniform over Πt
i for i ∈ {1, 2}

Initialize policies βi for i ∈ {1, 2}
for i ∈ {1, 2} do

for n inner iterations do
for m iterations do

Update policy β−i toward BR−i(π
r
i ) (e.g. via Q-learning)

Update πr
i via regret minimization vs. β−i (e.g. via Exp3 or MWU)

Πt+1
i = Πt

i ∪ {βi} for i ∈ {1, 2}
Return: πr

Instead of recomputing an exact best response between regret minimization updates, APSRO main-
tains an approximate best response RL policy β−i for each player and updates it for a small number
m of steps in each inner-loop iteration. We allow β−i to be an approximate best response, and we
set the hyperparameter m to a smaller value than may be necessary to fully converge to BR−i(π

r
i ).

In practice, this trades off the theoretical guarantees of exact best responses with a considerable
computational speedup. We include details about the no-regret procedure in Appendix C. The updates
to the best response can be made through a variety of algorithms. In this paper we show experiments
with updates via tabular Q-learning as well as experiments via the deep reinforcement learning
algorithm DDQN (Van Hasselt et al., 2016). Importantly, compared to PSRO, APSRO uses the same

5



Published as a conference paper at ICLR 2024

amount of episodes and environment interactions. The only difference is that APSRO changes the
restricted distribution dynamically during training via a no-regret procedure.

4.1 APSRO THEORY

In this section we present theory for APSRO where we assume the best response is exact in every
inner iteration. We show that under this assumption APSRO converges to an approximate Nash
equilibrium and never increases exploitability by much. The following proposition shows that APSRO
with exact best responses approximately finds the least-exploitable restricted distribution.

Proposition 3. Assume β−i = BR−i(π
r
i ) in every inner iteration of APSRO. Then APSRO with a

regret minimizing algorithm that has regret Rj at inner iteration j will output a policy πn such that
e(πn) ≤ Rn

n .

Figure 2: Big RPS
Game. Any algorithm
that only adds pure best
responses, such as com-
mon implementations of
PSRO or APSRO, will
expand all pure strate-
gies before converging.

By this proposition we know that APSRO with exact best responses will ap-
proximately find the least-exploitable restricted distribution for each player
in each outer iteration. Since the population grows in every iteration, the
least-exploitable distribution of a later iteration is never more exploitable
than the least-exploitable distribution of an earlier iteration, simply because
exploitability is later minimized over a superset of population mixtures.
The following proposition formalizes this intuition.

Proposition 4. Assume APSRO with exact inner-loop best responses runs
sufficiently many inner-loop updates in each iteration such that the ex-
ploitability in each restricted game is at most ϵ. Then the exploitability of
APSRO will never increase by more than 2ϵ from one iteration to the next.

5 SELF-PLAY PSRO

Although ADO and APSRO mitigate increases in exploitability from one
iteration to the next by adding to each player’s population the pure-strategy
best response βi to the opponent’s restricted distribution πr

−i, they are not
guaranteed to decrease exploitability. βi may not be the myopically op-
timal pure strategy whose addition to Πi decreases exploitability the most.
Moreover, adding mixed strategies can generally reduce exploitability
faster than adding pure strategies.

For example, consider the generalized Rock–Paper–Scissors game shown
in Figure 2. In this game, the NE mixes equally over all pure strategies. As
a result, any DO method that only adds pure strategies, such as common implementations of PSRO,
will have to enumerate all pure strategies in the game before supporting the NE.

Ideally, we would like to add a mixed strategy that decreases exploitability the most. A single-iteration
objective would then be able to find the strategy such that after it is added to the population and the
least-exploitable distribution is computed over this new population, the exploitability of the resulting
distribution is the lowest. In this example game, a mixed strategy that mixes over the pure strategies
equally is optimal and will lower exploitability more than any pure strategy.

In general, the Nash equilibrium of the original game would be the optimal mixed strategy to add to
the population, however finding a Nash equilibrium of the original game is very expensive and is our
main goal in the first place.

By trying to add a rough approximation of a Nash equilibrium of the original game to our population,
we can still expect to improve our population exploitability a great deal. The closer this new mixed
strategy is to being a Nash equilibrium of the original game, the more we would expect it to lower the
resulting exploitability of the population.

Motivated by this, we propose Self-Play PSRO, a PSRO method that learns and adds to the population
an additional new mixed strategy each iteration. This new strategy is learned by best-responding to
the opponent best response via off-policy reinforcement learning in a self play fashion and calculating
a mixed-strategy time-average of it. While this self play process won’t necessarily produce a Nash

6



Published as a conference paper at ICLR 2024

Figure 3: SP-PSRO. In this diagram we show how SP-PSRO works within an iteration from the
perspective of the column player. The fixed population is shown in blue and the new strategy is
shown in green. Every inner iteration, three things happen. (1) The opponent best response updates
toward a best response to the current distribution over both the fixed population and the new strategy.
(2) The new strategy updates toward a best response against the opponent best response. (3) The
restricted distribution updates via no regret against the opponent best response. In the final iteration,
the time-average of the new strategy and the player’s best response to the opponent’s restricted
distribution (which is trained in a symmetric manner) are added to the population, and the cycle starts
again.

equilibrium, this additional strategy can serve as an inexpensive heuristic approximation of one to
dramatically reduce our population’s exploitability, especially in earlier PSRO iterations.

Algorithm 3 Self-Play PSRO

Result: Approximate Nash Equilibrium
Input: Initial population Π0

while Not Terminated {t = 0, 1, . . .} do
for i ∈ {1, 2} do

Initialize new strategy νi arbitrarily
Initialize πr

i to uniform over Πt
i ∪ {νi}

for n iterations do
for m iterations do

Update policy β−i toward BR−i(π
r
i ) (e.g. via Q-Learning)

Update new strategy νi toward BRi(β−i) (e.g. via Q-Learning)
Update πr

i via regret minimization vs. β−i (e.g. via Exp3 or MWU)
Πt+1

i = Πt
i ∪ {βi, ν̄i} for i ∈ {1, 2}

Return: πr

SP-PSRO works by maintaining a restricted distribution πr
i over a population. Unlike PSRO, where

πr
i is the NE of the restricted game, SP-PSRO trains πr

i in the same way as in APSRO, via regret
minimization. In addition, at the beginning of each iteration, a new strategy νi is initialized and added
to the population.

During an iteration, three training processes unfold concurrently. First, as in APSRO, the opponent’s
best response βi takes multiple update steps toward a best response to the current restricted distribution
BR−i(π

r
i ). Second, the new strategy νi is updated toward a best response to the opponent best

response BRi(β−i). Third, the restricted distribution πr
i is trained via regret minimization; this

includes updating the probability of the new population strategy νi, even as νi is also trained. This
procedure can be thought of a form of self-play, in which the new strategy is updating against
the opponent best response, while the opponent best response is updating against the restricted
distribution, which also contains the new strategy. When the iteration is finished, the time-average ν̄i
of νi is added to the population. We include further details on SP-PSRO in Appendix L.3.

7



Published as a conference paper at ICLR 2024

(a) Big RPS with 50 Actions (b) Hex-3 Restricted Game (c) AlphaStar Restricted Game

Figure 4: Normal-form games

Averaging over the updates of νi can be accomplished by checkpointing the policy over time and
uniformly sampling checkpoints, or by training a neural network to distill a buffer of experience
generated by νi as it trains. Since the new strategy is trained via off-policy reinforcement learning, SP-
PSRO uses the same amount of environment experience as APSRO, but does require more compute
to train the new network. Additionally, since it still adds best responses β, similar to APSRO and
PSRO, it will also converge to an optimal population that supports a NE.

6 EXPERIMENTS

6.1 NORMAL FORM EXPERIMENTS

In this section we describe experiments on normal form games. To emulate the process of a strategy
π learning a best response to another policy π′, in every inner loop iteration t we update π by the
following learning rule: πt+1 = (1− λ)πt + λ× BRi(π

′). We show three normal form games. The
first, described in Figure 4a, is a large generalized Rock–Paper–Scissors game. The second is a a
Hex restricted game (Perez-Nieves et al., 2021). The third game is the final restricted game of the
AlphaStar population (Vinyals et al., 2019). More normal form games are included in Appendix E.
As shown in Figure 4, SP-PSRO vastly outperforms both PSRO and APSRO. Note that APSRO and
SP-PSRO only reach an ϵ-NE because they use a finite number of regret minimization updates to
determine the restricted distribution, while PSRO is able to exactly compute a NE. We have included
further details in the Appendix.

6.2 TABULAR EXPERIMENTS

We evaluated SP-PSRO with tabular methods in a variety of games. We applied tabular SP-PSRO to
the domains of Leduc Poker (9,457 states), a tiny version of Battleship (1,573 states), and 4x-Repeated
Rock Paper Scissors (9,841 states). The experiments used game implementations and tools from the
OpenSpiel library (Lanctot et al., 2019).

In extensive form tabular experiments, the new population strategy νi and the best response β−i are
represented by tabular Q-learning agents. When training the Q-learning agent for β−i, experience
from the same episodes is also used to train the agent for νi in an off-policy manner. The tabular
Q-learning agents are ϵ-greedy, and we use a constant value of ϵ for both agents. Because experience
for β−i and νi is shared from the same episodes, experience is collected against ϵ-greedy versions of
some opponent policies. Compared to collecting separate episodes for each player, we found that
using the same episodes to train policies for both players despite small amounts of action exploration
reduces the required sample complexity by two without affecting performance very much. In these 3
games, we collect the same amount of experience per iteration for PSRO, APSRO, and SP-PSRO.

Similar to our normal form results, we find that APSRO does not increase exploitability by much
from one iteration to the next and SP-PSRO drastically reduces exploitability compared to baselines.
Interestingly, in tiny battleship, the exploitability of APSRO had higher variance compared to that
of PSRO. We hypothesize that this is due to the APSRO iterations not being long enough for the
no-regret process to converge. We have included further details in the Appendix.

8



Published as a conference paper at ICLR 2024

(a) Leduc Poker (b) Battleship (c) Repeated RPS

Figure 5: Extensive-form games with tabular Q-learning best responses

(a) DRL Liars Dice (b) DRL Battleship (c) DRL Repeated RPS (d) Repeated RPS πr
0

Figure 6: Extensive-form games with DDQN best responses

SP-PSRO outperforms APSRO and PSRO in each of the three games: Leduc Poker (Figure 5a), the
small Battleship game (Figure 5b), and 4-repeated Rock Paper Scissors (Figure 5c). In each game,
we see a drastic improvement in performance starting in the first iteration.

6.3 DEEP REINFORCEMENT LEARNING EXPERIMENTS

When using deep reinforcement learning best-response operators with DDQN (Van Hasselt et al.,
2016), SP-PSRO outperforms APSRO and PSRO in terms of sample efficiency (Figure 6). Tested
on Liar’s Dice, a small version of Battleship, and 4x-Repeated RPS, SP-PSRO sees a significant im-
provement against other baselines in early-iteration exploitability. This early exploitability advantage
seen by SP-PSRO is especially present in repeated RPS (Figure 6c), where the relative performance
seen with deep RL methods roughly matches that of tabular methods. Examining a player’s final
restricted distribution after 5 iterations of SP-PSRO in repeated RPS (Figure 6d), we also see that
the time-averaged new strategies have significantly more support than the standard best-responses,
demonstrating their contribution towards exploitability improvements.

7 FUTURE WORK

SP-PSRO opens up exciting connections to the literature regarding learning approximate Nash
equilibria in large games. In particular, although we introduce an unprincipled self play method for
approximating a Nash equilibrium, future work can find better ways of creating a new strategy that
will better approximate a Nash equilibrium and therefore result in lower exploitability every iteration.
For example, the data collected via the the opponent best response training against the restricted
distribution can be used in a Monte-Carlo CFR-type algorithm to minimize regret on information
sets visited during training. These directions also open up the possibility of deriving the first regret
bounds for double oracle algorithms that do not rely on the size of the effective pure strategy set
(Dinh et al., 2021). It also introduces the possibility of combining the deep reinforcement learning
from the best response with methods based on deep CFR. For example, perhaps the Q networks
learned from the best responses can be used to minimize regret for the new strategy. Finally, our
algorithm is a normal-form algorithm in that it mixes at the root of the game tree. McAleer et al.
(2021) showed that this can be exponentially bad in the worst case, and introduced tabular (XDO) and
deep (NXDO) algorithms to fix this problem. An interesting future direction is combining SP-PSRO
with XDO and NXDO.

9



Published as a conference paper at ICLR 2024

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

George W. Brown. Iterative solution of games by fictitious play. Activity analysis of production and
allocation, pp. 374–376, 1951.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In International Conference on Machine Learning, pp. 793–802, 2019.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020.

Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Mihailo R Jovanović. Independent policy
gradient for large-scale markov potential games: Sharper rates, function approximation, and
game-agnostic convergence. arXiv preprint arXiv:2202.04129, 2022.

Le Cong Dinh, Yaodong Yang, Zheng Tian, Nicolas Perez Nieves, Oliver Slumbers, David Henry
Mguni, Haitham Bou Ammar, and Jun Wang. Online double oracle. arXiv preprint
arXiv:2103.07780, 2021.

Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen, Jun Wang, and
Yaodong Yang. Neural auto-curricula in two-player zero-sum games. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Roy Fox, Stephen M Mcaleer, Will Overman, and Ioannis Panageas. Independent natural policy
gradient always converges in markov potential games. In International Conference on Artificial
Intelligence and Statistics, pp. 4414–4425. PMLR, 2022.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. Conference on Artificial Intelligence (AAAI), 2004.

Thomas Dueholm Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen. On range of skill.
Conference on Artificial Intelligence (AAAI), 2008.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Perolat, Marc Lanctot,
Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar Duéñez-Guzmán, et al. Neural
replicator dynamics: Multiagent learning via hedging policy gradients. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 492–501, 2020.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract strategies
in extensive form games. In Conference on Artificial Intelligence (AAAI), 2012.

Patrick R Jordan, L Julian Schvartzman, and Michael P Wellman. Strategy exploration in empirical
games. In 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Citeseer, 2010.

10



Published as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien
Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. Openspiel:
A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453, 2019.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence
of multi-agent policy gradient in markov potential games. arXiv preprint arXiv:2106.01969, 2021.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018a.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pp. 3053–3062, 2018b.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and
Yaodong Yang. Towards unifying behavioral and response diversity for open-ended learning in
zero-sum games. Advances in Neural Information Processing Systems, 34:941–952, 2021.

Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Graepel. Multi-agent training beyond
zero-sum with correlated equilibrium meta-solvers. In International Conference on Machine
Learning, pp. 7480–7491. PMLR, 2021.

Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi. Pipeline PSRO: A scalable approach for
finding approximate Nash equilibria in large games. In Advances in Neural Information Processing
Systems, 2020.

Stephen McAleer, John Banister Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. XDO: A double
oracle algorithm for extensive-form games. Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Stephen McAleer, Gabriele Farina, Marc Lanctot, and Tuomas Sandholm. Escher: Eschewing
importance sampling in games by computing a history value function to estimate regret. arXiv
preprint arXiv:2206.04122, 2022.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost functions
controlled by an adversary. Proceedings of the 20th International Conference on Machine Learning
(ICML), 2003.

David H Mguni, Yutong Wu, Yali Du, Yaodong Yang, Ziyi Wang, Minne Li, Ying Wen, Joel Jennings,
and Jun Wang. Learning in nonzero-sum stochastic games with potentials. In International
Conference on Machine Learning, pp. 7688–7699. PMLR, 2021.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, et al. A generalized training approach for
multiagent learning. International Conference on Learning Representations (ICLR), 2020.

Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun Wang.
Modelling behavioural diversity for learning in open-ended games. In International Conference on
Machine Learning, pp. 8514–8524. PMLR, 2021.

Julien Perolat, Bilal Piot, and Olivier Pietquin. Actor-critic fictitious play in simultaneous move
multistage games. In International Conference on Artificial Intelligence and Statistics, pp. 919–928.
PMLR, 2018.

11



Published as a conference paper at ICLR 2024

Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro
Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, et al. From Poincaré
recurrence to convergence in imperfect information games: Finding equilibrium via regularization.
In International Conference on Machine Learning, pp. 8525–8535. PMLR, 2021.

Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul
Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of stratego
with model-free multiagent reinforcement learning. arXiv e-prints, pp. arXiv–2206, 2022.

Oliver Slumbers, David Henry Mguni, Stephen McAleer, Jun Wang, and Yaodong Yang. Learning
risk-averse equilibria in multi-agent systems. arXiv preprint arXiv:2205.15434, 2022.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal response
equilibria, and two-player zero-sum games. arXiv preprint arXiv:2206.05825, 2022.

Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, and
Michael Bowling. Actor-critic policy optimization in partially observable multiagent environments.
Advances in neural information processing systems, 31, 2018.

Eric Steinberger, Adam Lerer, and Noam Brown. Dream: Deep regret minimization with advantage
baselines and model-free learning. arXiv preprint arXiv:2006.10410, 2020.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI conference on artificial intelligence, volume 30, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Yongzhao Wang, Qiurui Ma, and Michael P Wellman. Evaluating strategy exploration in empirical
game-theoretic analysis. International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2022.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic games.
Advances in Neural Information Processing Systems, 30, 2017.

Michael P Wellman. Methods for empirical game-theoretic analysis. AAAI conference on artificial
intelligence, 2006.

Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous-
move markov games using function approximation and correlated equilibrium. In Conference on
learning theory, pp. 3674–3682. PMLR, 2020.

Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in stochastic games: stationary points,
convergence, and sample complexity. arXiv preprint arXiv:2106.00198, 2021.

Martin Zinkevich, Michael Bowling, and Neil Burch. A new algorithm for generating equilibria in
massive zero-sum games. In Twenty-Second Conference on Artificial Intelligence (AAAI), 2007.

12



Published as a conference paper at ICLR 2024

A LIMITATIONS

One limitation of SP-PSRO is that if the new strategies happen to not be useful, including the new
strategy can hurt the performance of the restricted distribution. This is primarily because it is harder to
learn a no-regret distribution when one of the arms is changing, and secondly because including more
actions (strategies) makes it harder for the no-regret algorithm as well. A related limitation of SP-
PSRO is that because including the new strategy makes it harder to learn the restricted distribution, we
find that SP-PSRO tends to plateau higher than APSRO and can even slightly increase exploitability.
To mitigate this, one can switch over to APSRO after some iterations, but we have not introduced a
principled method of determining when is a good time to switch. A third limitation of our method
is that extra compute needs to be used to train the new strategy ν. Also, if the average strategy is
computed via supervised learning on a replay buffer of experience, this adds additional memory
requirements to the algorithm. Also, while ideas from this paper can potentially be applied to solution
concepts beyond Nash equilibrium, we did not explore those directions in this paper.

B RELATED WORK

Many recent works study the intersection of reinforcement learning and game theory. QPG (Srinivasan
et al., 2018) is an algorithm based on policy gradient that empirically converges to a NE when the
learning rate is annealed. NeuRD (Hennes et al., 2020), Magnetic Mirror Descent (Sokota et al.,
2022), and F-FoReL (Perolat et al., 2021) approximate replicator dynamics, mirror descent, and
follow the regularized leader, respectively, with policy gradients. DeepNash, which is based on
F-FoReL and NeuRD has achieved expert level performance at Stratego (Perolat et al., 2022). Markov
games generalize MDPs where players take simultaneous actions and observe the ground state of
the game. Recent literature has shown that reinforcement learning algorithms converge to Nash
equilibrium in two-player zero-sum Markov games (Brafman & Tennenholtz, 2002; Wei et al., 2017;
Perolat et al., 2018; Xie et al., 2020; Daskalakis et al., 2020; Jin et al., 2021) and in multi-player
general-sum Markov potential games (Leonardos et al., 2021; Mguni et al., 2021; Fox et al., 2022;
Zhang et al., 2021; Ding et al., 2022). Deep methods based on CFR (McAleer et al., 2022; Steinberger
et al., 2020; Brown et al., 2019) are another promising direction for scaling to large games. In this
work we focus on a different set of deep RL algorithms for games based on PSRO. Advances made to
PSRO can potentially be combined with the above methods via XDO (McAleer et al., 2021).

B.1 DOUBLE ORACLE (DO) AND POLICY SPACE RESPONSE ORACLES (PSRO)

Double oracle (McMahan et al., 2003) is an algorithm for finding a Nash equilibrium (NE) in
normal-form games. The algorithm works by keeping a population of strategies Πt at time t. In
each iteration, a NE π∗,t is computed for the game restricted to strategies in Πt. Then, a best
response to this restricted NE for each player BRi(π

∗,t
−i ) is computed and added to the population

Πt+1
i = Πt

i∪{BRi(π
∗,t
−i )} for i ∈ {1, 2}. Although in the worst case DO must add all pure strategies,

in many games DO empirically terminates early and outperforms alternative approaches.

Algorithm 4 Policy Space Response Oracle (PSRO) (Lanctot et al., 2017)

Result: Nash Equilibrium
Input: Initial population Π0

repeat {for t = 0, 1, . . .}
πr ← NE in game restricted to strategies in Πt

for i ∈ {1, 2} do
for m iterations do

Update policy β−i toward BR−i(π
r
i )

Πt+1
i ← Πt

i ∪ {βi} for i ∈ {1, 2}
until No novel best response exists for either player
Return: πr

Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017) scales DO to large games by using
reinforcement learning to approximate a best response. The restricted-game NE is computed on the
restricted game matrix UΠ, generated by having each policy in the population Π play each opponent

13



Published as a conference paper at ICLR 2024

policy and tracking average utility in a Π1 ×Π2 payoff matrix (Wellman, 2006). PSRO is described
in Algorithm 4.

Several methods related to PSRO have been published in recent years. AlphaStar (Vinyals et al., 2019)
trains a population of policies through a procedure that is somewhat similar to PSRO. AlphaStar also
uses some elements of self-play when constructing its population, and outputs a population-restricted
NE at test time. NXDO (McAleer et al., 2021) iteratively adds reinforcement learning policies to a
population but solves an extensive-form restricted game, which has been shown to be more efficient
than solving a matrix-form restricted game as in PSRO. P2SRO (McAleer et al., 2020) parallelizes
PSRO with convergence guarantees. Other work has looked at incorporating diversity (Liu et al.,
2021; Perez-Nieves et al., 2021) in the best response objective. However, since the best response
is still pure in most implementations, these methods suffer from the same problems of PSRO and
APSRO as previously described. Other methods generalize PSRO to more players (Muller et al.,
2020; Marris et al., 2021), and meta-learn the restricted-NE population distribution (Feng et al., 2021).
Slumbers et al. (2022) propose a PSRO-like approach for learning risk-averse equilibria.

B.2 MINIMUM-REGRET CONSTRAINED PROFILE

The concept of finding a low-exploitability distribution in a restricted game was also explored in
Jordan et al. (2010) and Wang et al. (2022), which define the minimum regret constrained profile
as the distribution over a restricted population that achieves the lowest exploitability. In this paper,
we use the term least-exploitable restricted distribution for the same concept because we believe it
better emphasizes the fact that this restricted distribution is the least-exploitable distribution over the
restricted population.

B.3 RANGE OF SKILL ALGORITHM (ROS)

This paper presents ADO, which can be viewed as a modification to the range of skill (ROS) algorithm
introduced by Zinkevich et al. (2007) and further explored in Hansen et al. (2008). ROS is a variant
of the DO algorithm that likewise produces a series of restricted games by iteratively adding new
strategies. As in ADO, ROS defines in each iteration two separate restricted games, in each of which
one player is restricted to play strategies in their population while the other player is unrestricted.
The similarity between ROS and ADO continues in computing a Nash equilibrium strategy profile
for each restricted game, such that the restricted player’s strategy is the least-exploitable restricted
distribution.

However, ADO and ROS differ in the strategy that they then add to the unrestricted player’s population.
ADO adds a best response to the restricted distribution, while ROS adds a strategy that is part of the
unrestricted player’s NE strategy in the restricted game.

This difference proves crucial when scaling up to large games. In large games, solving the restricted
game where one player is unrestricted is infeasible and as a result methods based on ROS cannot
scale to large games. Alternatively, since ADO only adds best responses, it naturally scales to large
games via APSRO where the best responses are learned through RL.

Additionally, while ROS, like ADO, decreases exploitability monotonically and performs well in
practice, the only known convergence guarantees for ROS are asymptotic with a convergence rate
that is exponential in the size of the game (Hansen et al., 2008). In contrast, ADO is guaranteed to
converge in a number of iterations at most the number of pure strategies in a game.

14



Published as a conference paper at ICLR 2024

C APSRO AND SP-PSRO NO-REGRET ALGORITHMS

In the inner loops of APSRO and SP-PSRO, we update πr
i via regret minimization against β−i. To

do this, we use two different no-regret algorithms, the exponential-weight algorithm (Exp3) (Auer
et al., 2002) for tabular extensive-form experiments and the Multiplicative Weights Update (MWU)
algorithm (Cesa-Bianchi & Lugosi, 2006; Freund & Schapire, 1999) for deep RL extensive-form
experiments.

C.1 EXP3

Exp3, shown in Algorithm 5 is an adversarial bandit method that has sublinear regret. We use Exp3
as our no-regret restricted game solver in tabular APSRO and SP-PSRO experiments. We perform
batches of multiple RL updates in alternation with batches of multiple Exp3 updates. Exploitability
is evaluated using the final Exp3 sampling distribution Pn for each APSRO/SP-PSRO iteration.

Algorithm 5 Exp3

Input: n iterations, k actions, parameter γ
Initialize cumulative rewards Ŝ0 = (0, 0, ...0)
for t = 1, ..., n do

Calculate the sampling distribution Pt,i: Pt,i = (1 − γ)
exp(γŜt−1,i/k)∑k

j=1 exp(γŜt−1,j/k)
+ γ

k for each

i ∈ [1..k]
Sample action At ∼ Pt and observe reward Xt

Calculate Ŝt,i: Ŝt,i = Ŝt−1,i +
Xt1{At=i}

Pt,i

C.2 MULTIPLICATIVE WEIGHTS UPDATE

The Multiplicative Weights Update (MWU) algorithm is an online learning method which converges
in time-average to Nash equilibrium (Cesa-Bianchi & Lugosi, 2006; Freund & Schapire, 1999). We
use MWU, shown in Algorithm 6 as our no-regret restricted game solver in deep RL APSRO and
SP-PSRO experiments. For all games, we perform a metasolver update once after multiple iterations
of our RL best response algorithm. When measuring exploitability, we evaluate the final output πr as
the time-average of the MWU sampling distribution Pt over a single APSRO/SP-PSRO iteration.

Algorithm 6 Multiplicative Weights Update

Input: n iterations, k actions, learning rate η

Initialize cumulative rewards Ŝ0 = (0, 0, ...0)
for t = 1, ..., n do

Calculate the sampling distribution Pt,i: Pt,i =
exp(ηŜt−1,i)∑k

j=1 exp(ηŜt−1,j)
for each i ∈ [1..k]

Observe reward Xt,i for each action i ∈ [1..k]
for i = 1, ...k do

Calculate Ŝt,i : Ŝt,i = Ŝt−1,i +Xt,i

15



Published as a conference paper at ICLR 2024

D DOUBLE ORACLE VS ANYTIME DOUBLE ORACLE

To demonstrate how DO can increase exploitability in every iteration except the last, consider a
generalization of the game presented in Figure 1 where all values are 0, except if the row index r is
one more than the column index c, in which case the value for the row player is

∑r
i=0 2

i + 2i, or if
the column index c is one more than the row index r, in which case the value for the row player is∑c

i=0−2i + 2i. We plot the performance of DO and ADO in this game with 10 actions in Figure
7a and show that DO increases exploitability in every iteration except the last, while ADO does not
increase exploitability.

Figure 7b also compares DO and ADO on random normal-form games with 500 actions. We see that
ADO greatly outperforms DO and tends not to increase exploitability. To create random normal-form
games, we sample payoff values from Uniform(0,1).

(a) (b)

Figure 7: (a) DO can arbitrarily increase exploitability before convergence, whereas ADO monotoni-
cally decreases exploitability and guarantees convergence to a Nash equilibrium. (b) Random Normal
Form Games with 500 Actions

16



Published as a conference paper at ICLR 2024

E ADDITIONAL NORMAL-FORM EXPERIMENTS

In this section we report additional normal form game experiments. All games in this section are
from Perez-Nieves et al. (2021). Note that the zeroth iteration is not included in the plots. Similar to
the main results in the paper we find that SP-PSRO achieves much lower exploitability than existing
PSRO based methods and does so much faster, across all games studied. We include an ablation,
labeled SP-PSRO Not Anytime, that is the same as SP-PSRO in that it trains a new strategy to be
a best response to the opponent best response, but unlike SP-PSRO does not update the restricted
distribution via no-regret as in anytime PSRO. As shown in the figures, anytime PSRO is a crucial
piece of SP-PSRO, and excluding this aspect results in much worse performance. We find that when
anytime PSRO is excluded, the opponent best response will be best responding to a static opponent,
and the best response to this best response will tend to be a pure strategy. As a result, we do not get to
explore the strategy space, and the average new strategy will simply be another pure strategy. In some
games we see that SP-PSRO Not Anytime and PSRO converge to lower exploitability than SP-PSRO
and anytime PSRO. This is because SP-PSRO Not Anytime and PSRO both use exact meta-solvers,
which return the exact Nash equilibrium upon convergence, while SP-PSRO and APSRO use an
approximate no-regret procedure to find the least-exploitable restricted distribution.

(a) Random Games with 30 Actions (b) Elo Game + Noise 0.1 (c) Elo Game + Noise 0.5

(d) Elo Game + Noise 1.0 (e) Kuhn Poker (f) Normal Bernoulli Game

(g) Go Board Size 3 (h) Random Game of Skill (i) Quoridor Board Size 4

(j) Hex Board Size 3 (k) Triangle Game Size 1000 (l) Triangle Game Size 120

Figure 8: Additional Normal-Form Game Experiments

17



Published as a conference paper at ICLR 2024

E.1 NORMAL-FORM ABLATIONS

In this section we run ablations with different levels of λ for updating the best response. As shown in
these experiments, the relative performance does not change much.

Figure 9: Changing the λ parameter does not change the results very much.

E.2 PSRO-RECTIFIED NASH

We additionally compare to PSRO-Rectified Nash as a baseline. Since we only focus on methods that
are guaranteed to converge to Nash equilibrium, and since PSRO Rectified Nash has been shown not
to converge to NE McAleer et al. (2020), we do not include this baseline in the main text. As shown
here, it is able to outperform DO while underperforming ADO in random games.

Figure 10: ADO outperforms PSRO-Rectified Nash on random normal form games.

F ADDITIONAL TABULAR EXPERIMENT ON GOOFSPIEL

We additionally compare SP-PSRO and APSRO against PSRO on Goofspiel with tabular Q-learning
best responses. As shown in figure 11, like in other games, SP-PSRO heavily outperforms APSRO
and PSRO in early-iteration exploitability. APSRO outperforms PSRO in early-iteration exploitability
but not by as much as SP-PSRO. The high iteration-over-iteration variance and final exploitability that
APSRO exhibits is likely due to APSRO’s approximate solution to its restricted game. The accuracy
of APSRO’s no-regret solution for πr is dependent on the number of inner-loop iterations and the
ratio of approximate best-response updates to no-regret updates. The optimal values for each game
may vary, and these hyperparameters were kept constant across all games on tabular experiments.

Figure 11: Extensive-form Goofspiel with tabular Q-learning best responses

18



Published as a conference paper at ICLR 2024

G ADDITIONAL DEEP RL EXPERIMENTS

G.1 LAST-ITERATE SP-PSRO

We compare an alternate last-iterate version of SP-PSRO against the default SP-PSRO method and
other baselines in Figure 12. In the SP-PSRO last-iterate variant, we add the pure-strategy weights of
νi in its final RL iteration to the population rather than calculating and adding the time average ν̄i.
Exploitability is also calculated using νi rather than ν̄i. SP-PSRO last-iterate improves upon APSRO
and PSRO due to the additional, potentially useful, population policy. However, νi is less able to
roughly approximate a NE because it represents a single pure-strategy approximate best-response to
β−i rather than a mixture of multiple approximate best-responses distributed across each time-slice
of an SP-PSRO iteration. Because of this, we still see an additional gain in exploitability versus
sample-efficiency when transitioning from SP-PSRO last-iterate to the default time-average version
of SP-PSRO.

(a) DRL Liars Dice (b) DRL Battleship (c) DRL Repeated RPS

Figure 12: SP-PSRO last-iterate on extensive-form games with DDQN best responses

G.2 SP-PSRO NOT ANYTIME

Similar to the additional normal-form experiment in Appendix E, we compare against a variant of
SP-PSRO denoted as SP-PSRO Not Anytime. In this variant, the Nash equilibrium for the restricted
game over Πt is used as πr, similar to PSRO. By ablating the no-regret restricted-game solver,
SP-PSRO Not Anytime has phases in which it dramatically increases in exploitability as iterations
progress in Small Battleship and 4-Repeated RPS. We note that because the training dynamics of
βi and νi are affected by the choice of πr, it is possible that SP-PSRO Not Anytime will learn less
effective population strategies. We find that SP-PSRO Not Anytime outperforms PSRO and APSRO
but underperforms SP-PSRO. This lends evidence to the hypothesis that the success of SP-PSRO is
due to both the new strategy and the anytime regret-minimization procedure working together.

Figure 13: Additional ablation demonstrating the exploitability of a Not Anytime variant of SP-PSRO
in deep RL experiments.

G.3 HEAD-TO-HEAD VS RANDOM PERFORMANCE

For each primary algorithm tested, we compare the performance of πr against an opponent that
selects actions randomly. In games where playing randomly isn’t an NE like Liar’s Dice and Small
Battleship, performance against a fixed random opponent is roughly anticorrelated with exploitability.
Each method performs equally against random in 4-Repeated RPS because playing randomly aligns
with the NE in this game, so a random opponent is not exploitable.

19



Published as a conference paper at ICLR 2024

Figure 14: Performance vs Random for each Deep RL method as a function of experience collected
on Liar’s Dice, Small Battleship, and 4-Repeated RPS.

G.4 PSRO KEEP BEST NE

As an additional baseline, we evaluate a variant of PSRO where one keeps the least-exploitable meta-
NE seen so far. By construction, this algorithm does not increase exploitability, but still performs
slightly worse than APSRO.

Figure 15: Exploitability of methods including a baseline where PSRO keeps the best meta-NE each
iteration.

20



Published as a conference paper at ICLR 2024

H PROOFS

H.1 PROOF OF PROPOSITION 1

Proof. Let πt be the restricted NE in ADO at iteration t. Then for player i, since Πt
i ⊆ Πt+1

i

vi(π
t
i ,BR−i(π

t
i)) = max

πi∈Πt
i

min
π−i

vi(πi, π−i)

≤ max
πi∈Πt+1

i

min
π−i

vi(πi, π−i)

= vi(π
t+1
i ,BR−i(π

t+1
i )).

(2)

Since each player’s value is monotonically non-decreasing, the value of the best response is non-
increasing, and the exploitability of πt is also non-increasing:

e(πt+1) := −
∑
i

vi(π
t+1
i ,BR−i(π

t+1
i ))

≤ −
∑
i

vi(π
t
i ,BR−i(π

t
i)) = e(πt).

(3)

H.2 PROOF OF PROPOSITION 2

Proof. Let (πr
1, π

′
2) and (π′

1, π
r
2) be the NE in the restricted games G1 and G2 for player 1 and

2, respectively, at termination. If π′
1 or π′

2 have support outside the population, ADO would not
terminate, because there would exist another novel best response. Hence, at termination, the support
of both π′

1 and π′
2 are inside the population and they are feasible for their respective player’s restricted

game. Then
v1(π

r
1, π

r
2) ≤ v1(π

′
1, π

r
2)

≤ v1(π
′
1, π

′
2)

≤ v1(π
r
1, π

′
2)

≤ v1(π
r
1, π

r
2).

(4)

The four inequalities follow, in order, because: (a) player 1 doesn’t want to deviate from π′
1 to πr

1 in
G2; (b) player 2 doesn’t want to deviate from πr

2 to π′
2 in G2; (c) player 1 doesn’t want to deviate

from πr
1 to π′

1 in G1; and (d) player 2 doesn’t want to deviate from π′
2 to πr

2 in G1.

Therefore, v1(πr
1, π

r
2) = v1(π

′
1, π

r
2) which implies that player 1 has no incentive to deviate from πr

1
to π′

1 or any other strategy against πr
2 . A symmetric argument holds for player 2, implying that πr is

a Nash equilibrium in the full game.

H.3 PROOF OF PROPOSITION 3

Proof. The proof follows the same argument as used in Theorem 3 of Johanson et al. (2012). By a
folk theorem of game theory, we know that if two algorithms with regret R0

j and R1
j play each other

in self play in a two-player zero-sum normal-form game, their average joint strategy at time n, πn,
will have exploitability less than or equal to R0

n+R1
n

n . So it remains to show that the best responder
has negative regret. To see this, note that changing the action at all time steps to be any one action for
the best responder would be no better than the actual action, which was the best response.

H.4 PROOF OF PROPOSITION 4

Proof. Let πt be the restricted NE of APSRO at iteration t. Then

vi(π
t
i ,BR−i(π

t
i)) ≤ max

πi∈Πt
i

min
π−i

vi(πi, π−i) (5)

≤ max
πi∈Πt+1

i

min
π−i

vi(πi, π−i) (6)

≤ vi(π
t+1
i ,BR−i(π

t+1
i )) + ϵ, (7)

21



Published as a conference paper at ICLR 2024

where (5) follows from πt
i being feasible for player i’s restricted game in iteration t, whose value is on

the right-hand side; (6) from population monotonicity Πt
i ⊆ Πt+1

i ; and (7) from the ϵ-exploitability
of πt+1

i in the restricted game in iteration t+ 1. The proposition now follows from

e(πt+1) := −
∑
i

vi(π
t+1
i ,BR−i(π

t+1
i )) (8)

≤ −
∑
i

(
vi(π

t
i ,BR−i(π

t
i))− ϵ

)
= e(πt) + 2ϵ.

22



Published as a conference paper at ICLR 2024

I ANALYSIS OF RESTRICTED GAME DISTRIBUTIONS

In this section, we qualitatively analyze the learned restricted game distributions πr over the pop-
ulations of PSRO, APSRO, and SP-PSRO. We examine checkpoints from a single seed of each of
our deep reinforcement learning experiments in section 6.3 on Liar’s Dice, Small Battleship, and
4-Repeated RPS. Given these checkpoints, we observe the first player’s learned restricted distribution
πr
0 for the first 7 iterations of each algorithm. For PSRO, πr is the NE to the restricted game, whereas

in APSRO and SP-PSRO, πr is an approximate no-regret solution for each player to the restricted
game with an unrestricted opponent. In each iteration, PSRO and APSRO add a single new best
response β−i for each player i to Π−i. In addition to β−i, SP-PSRO adds a time-average of the
new-strategy ν̄i to Πi in each iteration. These distributions πr

0 over the first player’s population are
shown for Liar’s Dice in figure 16, for Small Battleship in figure 17, and for 4-Repeated RPS in figure
18.

(a) PSRO (b) APSRO (c) SP-PSRO

Figure 16: PSRO, APSRO, and SP-PSRO mixed strategy solutions for Liar’s Dice in the first 7
iterations of each algorithm.

23



Published as a conference paper at ICLR 2024

(a) PSRO (b) APSRO (c) SP-PSRO

Figure 17: PSRO, APSRO, and SP-PSRO mixed strategy solutions for Small Battleship in the first 7
iterations of each algorithm.

The NE to the restricted games, provided by PSRO in figures 16a, 17a, and 18a strongly favor the
latest-added best responses in early iterations of the algorithm. While the latest best response is likely
to be a strong strategy in a restricted game, an NE to the restricted game in early iterations of PSRO
may not be the least exploitable mixed strategy against strategies outside of the population. APSRO,
shown in figures 16b, 17b, and 18b optimizes for a no-regret solution to each restricted game where
the opponent can use any strategy in the full game. By reducing exploitability against any possible
opponent strategy rather than just those in Π, APSRO learns a notably distinct mixed strategy πr

compared to PSRO that’s safer for early-stopping.

SP-PSRO, in figures 16c, 17c, and 18c, also optimizes for a no-regret restricted-game mixed strategy
against an unrestricted opponent. Like APSRO, SP-PSRO adds a best response βi for each player to
the population in each iteration. In each iteration, SP-PSRO also adds the time-averaged new strategy
ν̄i to the population. Unlike the best responses, ν̄i is included in the restricted distribution πr

i for the
same iteration that it is trained. ν̄i is intended to very roughly approximate the strategy which most

24



Published as a conference paper at ICLR 2024

reduces the exploitability of the population against an unrestricted opponent. In figures 16c, 17c, and
18c, we see that by their high weight in πr

0 that the ν̄0 we learn are indeed strong against unrestricted
opponents. In each iteration, the no-regret mixed strategy πr

0 puts the most weight on the ”Current
Iter New Strat” ν̄0 strategy that was trained in that iteration. The ”Population New Strat” strategies
ν̄0 are also assigned equal or higher weight in πr

0 than the ”Population Best Response” strategies
β0, showing that the time-averaged new strategies still serve as high-quality population strategies in
iterations after those in which they are trained.

(a) PSRO (b) APSRO (c) SP-PSRO

Figure 18: PSRO, APSRO, and SP-PSRO mixed strategy solutions for 4-Repeated RPS in the first 6
iterations of each algorithm.

25



Published as a conference paper at ICLR 2024

J EXTENSIVE-FORM GAME ENVIRONMENTS

All extensive-form games tested with are from the OpenSpiel framework (Lanctot et al., 2019), and
can be loaded using OpenSpiel with the following parameters:

Leduc Game Name: leduc_poker
Parameters: {"players": 2}

Goofspiel Game Name: goofspiel
Parameters: {"imp_info": True, "num_cards": 5,
"points_order":"descending",}

Tiny Battleship Game Name: battleship
Parameters: {"board_width": 2, "board_height": 2,
"ship_sizes": ’[1]’, "ship_values": ’[1]’,
"num_shots": 2, "allow_repeated_shots": False,}

Small Battleship Game Name: battleship
Parameters: {"board_width": 2, "board_height": 2,
"ship_sizes": "[1;2]", "ship_values": "[1;2]",
"num_shots": 4, "allow_repeated_shots": False}

4x Repeated RPS Game Name: repeated_game
Parameters: {"num_repetitions": 4, "enable_infostate": True,
"stage_game": "matrix_rps"}

Liar’s Dice Game Name: liars_dice
Parameters: None

Goofspiel and Repeated RPS are converted from simultaneous-move games into turn-based games
using OpenSpiel’s convert_to_turn_based() game transform. Repeated RPS is created from
the matrix_rps game using the create_repeated_game game transform.

K TABULAR TRAINING DETAILS

For PSRO, APSRO, and SP-PSRO experiments with tabular Q-learning BRs, we used OpenSpiel’s
Python implementation of a tabular epsilon-greedy Q-learner. For all games, Q-learning hyperpa-
rameters were OpenSpiel defaults and were constant between PSRO, APSRO, and SP-PSRO: step
size = 0.1 and epsilon = 0.2.

In all tabular experiments, when calculating the payoff for a strategy profile (vi(π)), the payoff is
calculated exactly using a full tree traversal.

K.1 PSRO

In each iteration of tabular PSRO experiments, we first compute the restricted game payoff matrix,
and we then use linear programming to find the NE of the restricted game. We train Q-learning agents
for each player against the other’s restricted game NE and add these to the population.

K.2 SP-PSRO AND APSRO

We performed a hyperparameter sweep to find the number of episodes per iteration and number of
Exp3 updates per iteration which minimize exploitability in Leduc poker after 35 iterations of SP-
PSRO (Table 1). We used these hyperparameters for SP-PSRO and APSRO for tabular experiments
in all games.

Each APSRO/SP-PSRO iteration, we set γ to min (1,
√
k log k

(e−1)g ) where g is an estimated upper bound
on the total cumulative regret upon completion of the algorithm. In each iteration, we split the Q-
learning training and Exp3 updates into 600 equally-sized batches each and alternate between a batch
of Exp3 updates and a batch of Q-learning episodes until the end of the iteration. We target a total of
800, 000 episodes and 20, 000 Exp3 updates per iteration, and we repeat the following 600 times: for
each player, perform ⌊800, 000/600⌋ = 1333 Q-learning episodes followed by ⌊20, 000/600⌋ = 33

26



Published as a conference paper at ICLR 2024

Exp3 updates. While we target 800, 000 episodes and 20, 000 Exp3 updates per iteration, due to
rounding, the actual amounts performed are smaller:

episodes per iteration 799,800
Exp3 updates per iteration 19,800
Q-learning learning rate 0.025
Q-learning exploration ϵ Constant, 0.2

Table 1: Tabular experiment details

For each Q-learning episode: we sample one policy πi for player i from the distribution πr
i and then

the sampled policy πi and the opponent Q-learning agent for β−i play an episode against each other.
If the sampled policy πi corresponds to the new strategy νi, it plays with ϵ-greedy exploration. The
opponent Q-learning agent always plays with ϵ-greedy exploration. The episode is used to update the
Q-learning agent for β−i. The episode is also used to update the Q-learning agent for νi, regardless
of whether or not the chosen πi is νi.

For tabular APSRO, we use the same code as for SP-PSRO, with the difference being that we do not
create a new policy νi.

L DEEP RL TRAINING DETAILS

For deep RL experiments, we use the same RL best response hyperparameters in PSRO, APSRO, and
SP-PSRO. When RL best responses are calculated, an independent best response learning process
is performed for each player. RL hyperparameters for each game were selected based on sample
efficiency and final performance against a fixed opponent.

Our deep RL code was built on top of the RLlib framework (Liang et al., 2018b), and any hyperpa-
rameters not specified are the version 1.0.1 defaults.

L.1 PSRO

The PSRO restricted payoff matrix is estimated using 3000 evaluation rollouts per policy matchup,
and the meta-game NE is calculated using 2000 iterations of Fictitious Play (Brown, 1951). APSRO
and SP-PSRO skip calculating the restricted payoff matrix. We do not count experience used to
generate payoff matrix utilities in comparisons with PSRO.

L.2 APSRO

In deep RL experiments, we use the Multiplicative Weights Update (MWU) algorithm Cesa-Bianchi
& Lugosi (2006); Freund & Schapire (1999) as our no-regret solver for APSRO with a learning rate
of 0.1, updating every 10th RL iteration. Action payoffs for MWU corresponding to expected utilities
for population policies in Πt

i against the current β−i are estimated by averaging the empirical payoffs
from the last 1000 rollouts in which each population policy was sampled. Exploitability is measured
against the time-average of the MWU mixed-strategy from each APSRO iteration.

L.3 SP-PSRO

For SP-PSRO, we use the same MWU no-regret solver and parameters as we do with APSRO, where
the actively-learning new strategy νi is included as an action for the no-regret solver. Because νi
would by default only collect experience when the no-regret solver samples it, we additionally provide
νi with off-policy experience from all other policies in the population Πt

i when they are sampled and
generate experience as well.

We train the time-average ν̄i of νi as a neural network, and to do so, we save all experience generated
by νi to a buffer using reservoir sampling (Vitter, 1985; Heinrich & Silver, 2016) with a maximum
capacity of 2e6 samples. After BR training is complete, we use supervised learning to train a softmax
policy on the reservoir buffer data with cross-entropy loss on actions given observations to distill the

27



Published as a conference paper at ICLR 2024

time-average of the new policy νi. To ensure that enough experience from νi is always generated
and added to the reservoir buffer, a small fixed portion p of all experience rollouts in the BR training
process is forced to be played as a matchup between νi and a non-exploring evaluation copy of β−i.

For Liars Dice, p = 0.05, and for Small Battleship and 4x Repeated RPS, p = 0.1. We train each ν̄i
on the reservoir buffer data with a learning rate of 0.1 for 10,000 SGD batches. We use an MLP with
three 128-unit layers and ReLu activations for ν̄i in all games.

Exploitability is measured against the time-average of the MWU mixed-strategy from each SP-PSRO
iteration where ν̄i is used to represent the new strategy.

When the new population strategy νi and the BR β−i collect experience against each other, unless
otherwise stated, they both use and play against exploring ϵ-greedy versions of each other.

L.4 BEST RESPONSES

Hyperparameters to train deep RL best responses for each game are provided below. We use DDQN
(Van Hasselt et al., 2016) to train RL best responses for all deep RL experiments. Any hyperparameters
not listed are default values in RLlib (Liang et al., 2018a) version 1.0.1.

algorithm DDQN
circular replay buffer size 50,000
prioritized experience replay No
total rollout experience gathered each iter 2048 steps
learning rate 0.0026
batch size 4096
optimizer Adam (Kingma & Ba, 2014)
TD-error loss type MSE
target network update frequency every iteration
MLP layer sizes [128, 128]
activation function ReLu
discount factor γ 1.0
best response RL process stopping condition 7.5e5 timesteps
exploration ϵ Linearly annealed from 0.06 to 0.001

over 2e5 timesteps

Table 2: Liar’s Dice Deep RL Best Response Hyperparameters

algorithm DDQN
circular replay buffer size 200,000
prioritized experience replay No
total rollout experience gathered each iter 1024 steps
learning rate 0.0019
batch size 2048
optimizer Adam (Kingma & Ba, 2014)
TD-error loss type MSE
target network update frequency every 1e5 timesteps
MLP layer sizes [128, 128, 128]
activation function ReLu
discount factor γ 1.0
best response RL process stopping condition 3e5 timesteps (Repeated RPS) &

7.5e5 timesteps (Battleship)
exploration ϵ Linearly annealed from 0.06 to 0.001

over 2e6 timesteps

Table 3: 4x Repeated RPS and Small Battleship Deep RL Best Response Hyperparameters

28



Published as a conference paper at ICLR 2024

M COMPUTATIONAL COSTS

Experiments were run on local machine with 128 logical CPU cores, 4 Nvidia RTX 3090 GPUs,
and 512GB of RAM. Each tabular experiment run used a single core, and each deep RL experiment
run used up to 5 CPU cores per player to train best responses and up to 4 CPU cores to evaluate
meta-game empirical payoffs, for a maximum total of 14 cores per deep RL experiment. All deep
RL experiments individually used less than 5GB of VRAM. Tabular and deep RL experiments had
durations between 1 and 7 days.

Concerning storage requirements, although PSRO-based methods need to store network weights for
generated population policies on disk, we found disk-space usage to be a non-issue as population
sizes were generally on the order of at most a hundred policies. Table 4, describes the final population
size and disk usage for each game tested in deep RL experiments. SP-PSRO generates twice as many
policies as PSRO and APSRO because SP-PSRO also saves and adds each iteration’s average new
strategy to the population.

Final Population Size Disk Usage Per Policy Total Disk Usage
PSRO 32, 26, 74 152KB, 152KB, 148KB 4.864MB, 3.952MB, 10.952MB

APSRO 32, 26, 74 152KB, 152KB, 148KB 4.864MB, 3.952MB, 10.952MB
SP-PSRO 64, 52, 148 152KB, 152KB, 148KB 9.728MB, 7.904MB, 21.904MB

Table 4: Population sizes and policy disk-space usage for Liar’s Dice, Small Battleship, and 4-
Repeated RPS

N CODE

Code for deep RL experiments is available at https://github.com/indylab/sp-psro
under the MIT license. Our code is built on top of the OpenSpiel (Lanctot et al., 2019) and RLlib
(Liang et al., 2018a) frameworks, both of which are open source and available under the Apache-2.0
license.

29

https://github.com/indylab/sp-psro

	Introduction
	Background
	Anytime Double Oracle Algorithm (ADO)
	Anytime PSRO Algorithm (APSRO)
	APSRO Theory

	Self-Play PSRO
	Experiments
	Normal Form Experiments
	Tabular Experiments
	Deep Reinforcement Learning Experiments

	Future Work
	Limitations
	Related Work
	Double Oracle (DO) and Policy Space Response Oracles (PSRO)
	Minimum-Regret Constrained Profile
	Range of Skill Algorithm (ROS)

	APSRO and SP-PSRO No-Regret Algorithms
	Exp3
	Multiplicative Weights Update

	Double Oracle vs Anytime Double Oracle
	Additional Normal-Form Experiments
	Normal-Form Ablations
	PSRO-Rectified Nash

	Additional Tabular Experiment on Goofspiel
	Additional Deep RL Experiments
	Last-Iterate SP-PSRO
	SP-PSRO Not Anytime
	Head-to-Head vs Random Performance
	PSRO Keep Best NE

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Analysis of Restricted Game Distributions
	Extensive-Form Game Environments
	Tabular Training Details
	PSRO
	SP-PSRO and APSRO

	Deep RL Training Details
	PSRO
	APSRO
	SP-PSRO
	Best Responses

	Computational Costs
	Code

