

000 001 002 003 004 005 LEARNABILITY AND PRIVACY VULNERABILITY ARE 006 ENTANGLED IN A FEW CRITICAL WEIGHTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Prior approaches for membership privacy preservation usually update or retrain
027 all weights in neural networks, which is costly and can lead to unnecessary utility
028 loss or even more serious misalignment in predictions between training data and
029 non-training data. In this work, we observed three insights: i) privacy vulnerability
030 exists in a very small fraction of weights; ii) however, most of those weights
031 also critically impact utility performance; iii) the importance of weights stems
032 from their locations rather than their values. According to these insights, to pre-
033 serve privacy, we score critical weights, and instead of discarding those neurons,
034 we rewind only the weights for fine-tuning. We show that, through extensive ex-
035 periments, this mechanism exhibits outperforming resilience [in most cases](#) against
036 Membership Inference Attacks while maintaining utility.
037

1 INTRODUCTION

038 Membership privacy risks of machine learning models arise from models' behavioral discrepancy
039 between training and non-training data points. Leveraging such a discrepancy, an attacker can dis-
040 criminate membership information whether a data point was used for training the victim model
041 Shokri et al. (2017). This attack model is called membership inference attacks (MIAs). Existing
042 studies Carlini et al. (2022b); Ye et al. (2024) pointed out that some data points are more privacy-
043 vulnerable than others. Li et al. (2024) suggested that better privacy-utility can be achieved by
044 focusing on these data points. However, privacy-preserving training on the model-end is still in a
045 black-box stage. On the other stream of work, early studies Frankle & Carbin (2019); Molchanov
046 et al. (2019); Lee et al. (2019) have shown that a subnetwork existing in a neural network can achieve
047 competitive performance, identifying that only a lesser fraction of weights contributes to the model's
048 utility. These prior studies collectively motivate us to raise a reflective question: *Do there exist only*
049 *some weights whose updates lead to privacy leakage of learning models?*

050 To locate them, we first propose a weight-level importance estimation based on Machine Unlearning
051 (MU) to measure fine-grained privacy vulnerability existing in neural networks. With our approach,
052 we find that weights that cause the model to be privacy-vulnerable are only present in a small fraction
053 of the weights. Moreover, we observe that a large portion of these weights overlaps with the
054 learnability-critical weights. It explains why Yuan & Zhang (2022) fails to mitigate privacy risks
055 using general pruning techniques.

056 One of our very important observations is that the importance of weights—in terms of accu-
057 racy—stems from their locations rather than their values. As long as the most critical weights (the
058 proportion can be even down to 0.1%) remain in the model—i.e., are not pruned or removed—and
059 rewind them in their initial values, the model can recover its accuracy even when these weights
060 are left unupdated after retraining or fine-tuning. Building on top of these insights, we design a
061 fine-tuning strategy that curates only privacy-vulnerable weights. To the best of our knowledge, our
062 approach is the first to perform membership-privacy-oriented fine-tuning at a weight-level granu-
063 larity. Through comprehensive experiments against modern membership inference attacks, LiRA
064 Carlini et al. (2022a) and RMIA Zarifzadeh et al. (2024), we demonstrate that, in terms of privacy-
065 utility tradeoffs, our strategy outperforms existing privacy-defending methods that train machine
066 learning models even from scratch.
067

068 We emphasize the following core insights that we identified through this paper:

054 • Privacy vulnerability exists in a **very small** fraction of weights.
 055 • However, most of those weights **also** critically impact utility performance.
 056 • The importance of weights stems from their **locations** rather than their values.
 057

059 **2 PRELIMINARIES AND RELATED WORK (MORE CONTINUED IN APPENDIX)**
 060

061 In this section, we introduce fundamental background knowledge regarding Membership Inference
 062 Attack, and prior studies regarding Importance estimation of components in neural networks. Due
 063 to page limitations, further related work concerning Membership privacy preservation methods and
 064 machine unlearning is presented in Appendix A.

065 **2.1 INTRODUCTION TO MEMBERSHIP INFERENCE ATTACKS**
 066

067 In our study, we focus on membership privacy on classification tasks. In Membership Inference
 068 Attacks (MIAs), the attacker’s goal is to determine whether a given sample was part of the training
 069 dataset of a target (or victim) model. Formally, consider a target model, $f(\cdot; \theta) : \mathbb{R}^{C_{in}} \rightarrow \mathbb{R}^{C_{out}}$,
 070 where C_{in} is the input dimensionality and C_{out} is the class count of the task. A membership infer-
 071 ence attack can be formulated as

$$\mathcal{A} : f(\mathbf{x}; \theta) \rightarrow \{0, 1\}, \quad (1)$$

072 where \mathcal{A} is a binary classifier that outputs 1 if the sample \mathbf{x} is inferred to be a member of the training
 073 set of $f(\cdot; \theta)$, and 0 otherwise. The design of the attack function \mathcal{A} depends heavily on the attack
 074 strategy. In neural network (NN)-based MIAs Shokri et al. (2017); Salem et al. (2019), \mathcal{A} itself is a
 075 machine learning model trained on the predictions of the target model. In contrast, in metric-based
 076 approaches (e.g., threshold-based MIAs) Song & Mittal (2021); Del Grosso et al. (2022); Carlini
 077 et al. (2022a); Leemann et al. (2023); Zarifzadeh et al. (2024), \mathcal{A} is defined by a manually specified
 078 function that computes certain statistics (such as confidence scores or loss values) and compares
 079 them against a threshold, typically chosen using auxiliary techniques such as shadow models Shokri
 080 et al. (2017); Carlini et al. (2022a).
 081

082 **2.2 IMPORTANCE ESTIMATION OF COMPONENTS IN NEURAL NETWORKS**
 083

084 The importance estimation of components in neural networks has mainly been studied in the context
 085 of model pruning. Frankle & Carbin (2019) observed that the potential of weights can be determined,
 086 in terms of generalizability, once the model is initialized. Lee et al. (2019); Molchanov et al. (2019)
 087 made use of weight gradients in searching for subnetworks with comparable generalizability to the
 088 original model. Liebenwein et al. (2021) explored possible loss beyond generalizability in pruning.
 089 Ye et al. (2019); Sehwag et al. (2020) explored how to prune neural networks in the adversarial envi-
 090 ronment. Tang et al. (2020) assessed the reliability importance of neurons by aligning spurious and
 091 clean samples through learnable masks. Frankle et al. (2020) observed that weight rewinding helps
 092 fine-tuning of extremely sparse models. Renda et al. (2020) found fine-tuning with rewound weights
 093 usually outperforms direct (*a.k.a.*, in-place) fine-tuning. Gadhikar & Burkholz (2024) analyzed the
 094 factors why learning rate rewinding, along with weight rewinding, recovers utility better. Tran et al.
 095 (2022) found that models suffer from fairness deterioration after pruning. Wang et al. (2023) com-
 096 puted connectivity importance via the influence on the spectrum of the neural tangent kernel (NTK)
 097 Jacot et al. (2018). Jia et al. (2023) found machine unlearning can benefit from magnitude pruning.
 098 Sun et al. (2024) applied activation into importance estimation based on the characteristics of large
 099 language model. Ye et al. (2025) proposed a training-free importance estimation and pruning on
 100 foundation models. Our work is distinct in that we identify privacy-vulnerability of weights.
 101

102 **3 MOTIVATION: REMOVING UNIMPORTANT WEIGHTS IS INEFFECTIVE FOR
 103 PRIVACY**

104 One of the fundamental weight/neuron importance estimation methods is Taylor First Order (TFO)
 105 Molchanov et al. (2019). The method estimates the global weight importance via magnitudes of
 106 gradients and weights, which is formulated as follows:

$$S = \{s_i\}_{i=1}^m = \left\{ \sum_{d \in D_{str}} |g_{i,d} w_{i,d}| \right\}_{i=1}^m \quad (2)$$

108 where S denotes the set of importance scores of weights in the evaluated model, s_i denotes the
 109 importance score of the weight, w_i , $w_{i,d}$ denotes the value of the i -th weight of the model before
 110 updating with the data point d , $g_{i,d}$ denotes the i -th weight's gradient computed under data point d ,
 111 D_{str} denotes the randomly selected subset of training data D_{tr} (i.e., $D_{str} \subseteq D_{tr}$), and m denotes the
 112 number of weights the model contains. In TFO, the approach usually accumulates the scores in tens
 113 of iterations along with the model update in each turn of filter removals of the model. Although the
 114 TFO groups weight scores into their belonging filters/neurons ultimately for filter/neuron pruning,
 115 we use the primitive weight scores for one-shot weight-level pruning.

116 In detail, to identify the most critical weights,
 117 according to the importance estimation method,
 118 we prune out the least important weights in one
 119 shot instead of iterative and gradual removal as
 120 in the original TFO. Figs. 1a and 1b exhibit
 121 that, even in the very high sparsities, accuracy is
 122 maintained, but privacy vulnerability does not
 123 improve. Also, at times, the model becomes
 124 even more vulnerable after pruning, evidenced
 125 by the increase of the testing loss of 90% spar-
 126 sity from 0% one (non-pruned) as shown in
 127 Fig. 1b, and also the observation by Yuan &
 128 Zhang (2022) that MIAs on some pruned mod-
 129 els become more successful. Overall, these ob-
 130 servations lead us to conjecture that,

131 *Conjecture: The performance impact and privacy vulnerability are entangled and
 132 exist in a very small number of weights.*

133 An intuitive way for verifying this conjecture is to show a correlation between privacy vulnerability
 134 and performance impact. For the goal, we distinguish the traditional estimation of how to maintain
 135 utility performance from the estimation of privacy vulnerability. We here refer to the importance
 136 estimation for utility performance (i.e., accuracy) in the common pruning techniques as *learnability*
 137 while we refer to how privacy-vulnerable a weight can become as *privacy vulnerability*. In the next
 138 section, we first propose our approach to estimate privacy vulnerability. Then, the entanglement
 139 issue of learnability and privacy vulnerability is empirically shown, and we discuss how to solve it.

4 PROBLEM SETUP AND METHODOLOGY

4.1 PRIVACY VULNERABILITY ESTIMATION

146 Membership privacy vulnerability is mainly due to the behav-
 147 ioral disparity between member and non-member data. Hence,
 148 the intuition of our approach is to determine critical weights of
 149 the model that exacerbate the discrepancy between the two pre-
 150 diction distributions to preserve privacy. To achieve this goal,
 151 we make use of the concept of machine unlearning Bourtoule
 152 et al. (2021) to design a mechanism to let the model **learn member data** while **unlearning non-member data**, respectively.

153 Our privacy vulnerability estimation approach (Fig. 2b) consists
 154 of a unprotected model, M_{up} ; a vanilla model, M_{vn} ; member
 155 set, D_{tr} ; and non-member set, D_{re} . The D_{tr} is the set on which
 156 the M_{up} is trained. The non-member set, D_{re} , is a held-out
 157 set of data points that the M_{up} has never seen during training,
 158 and it is also disjointed from the testing data in the evaluation
 159 phase. The two models, M_{up} and M_{vn} , are in the same structure,
 160 $f(\cdot; \theta)$, but with different parameters, θ_{up} and θ_{vn} , respec-
 161 tively. θ_{up} are pretrained on training data D_{tr} while θ_{vn} are the
 162 values at initialization before being trained on D_{tr} .

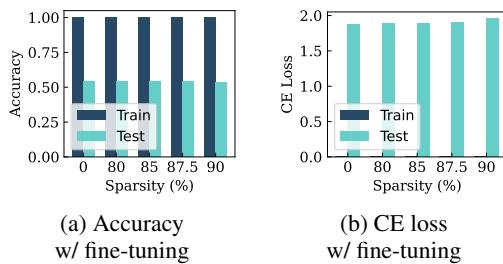


Figure 1: According to TFO, important weights are pruned over different sparsities. The results are shown on ResNet18 and CIFAR-100

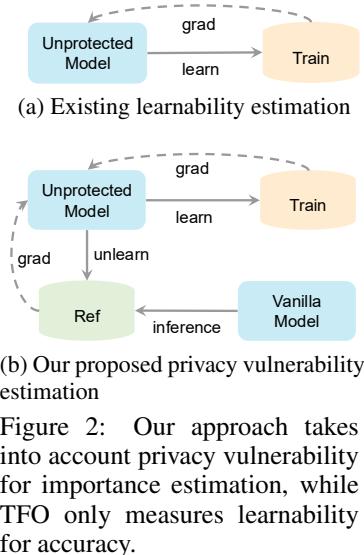


Figure 2: Our approach takes into account privacy vulnerability for importance estimation, while TFO only measures learnability for accuracy.

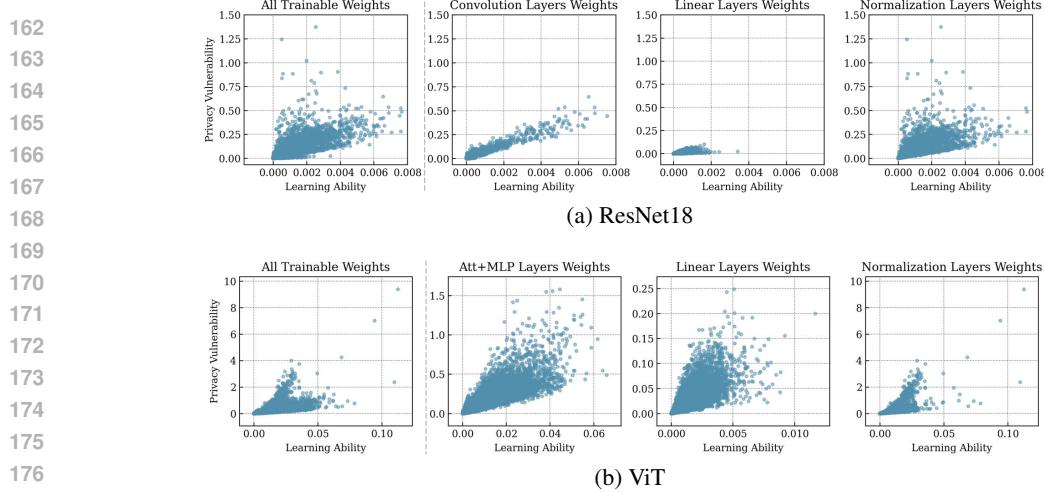


Figure 3: The visualization of weight-level learnability scores and privacy vulnerability scores. Privacy vulnerability and accuracy are significantly correlated and this correlation varies in different components. Due to the significant scale discrepancy, the ranges of axes of the four charts in ViT are not consistent. (The same data points as Tab.1)

For member data, D_{str} , we force the model to minimize the loss as much as possible. In contrast, for non-members, D_{sre} , we encourage the predictions close to the vanilla model, M_{vn} , rather than ground truths. This process can be formulated as follows:

$$\arg \min_{\theta_{up}} \{ \mathbb{E}_{(x,y) \sim D_{tr}} [\mathcal{L}_{ce}(x, y; M_{up})], \mathbb{E}_{(x,y) \sim D_{re}} [\mathcal{L}_{kl}(x; M_{up}, M_{vn})] \} \quad (3)$$

where \mathcal{L}_{ce} denotes the cross-entropy loss function, and \mathcal{L}_{kl} denotes Kullback-Leibler (KL) divergence Csiszár (1975); Hinton et al. (2015). Through this process (Eq. 3), the model tries to learn information that is only effective for recognizing member data points so that it can maintain low loss on the train set when unlearning the non-member set, which does not contribute to the privacy vulnerability of the model since the data points are all non-member. In details, we fine-tune the unprotected model, M_{up} , using the following objective function:

$$\mathcal{L}_{pve} = (1 - \lambda) \mathcal{L}_{ce}(f(x_{tr}; \theta_{up}), y_{tr}) + \lambda \mathcal{L}_{kl}(f(x_{re}; \theta_{up}), f(x_{re}; \theta_{up})) \quad (4)$$

where (x_{tr}, y_{tr}) and x_{re} are mini-batch samples randomly sampled from D_{tr} and D_{re} , respectively; λ is hyper-parameter to balance the learning and unlearning losses so that the fine-tuned model can maintain accuracy on D_{tr} while losing accuracy on D_{re} as much as possible. The final privacy vulnerability estimation function is the same as Eq. 2 but with these aforementioned processes and constraints. It accumulates the weight-level importance with respect to privacy vulnerability, via gradients and magnitudes at each step, along with the update of θ_{up} .

4.2 LEARNABILITY AND PRIVACY VULNERABILITY ARE ENTANGLED

To verify our conjecture in Sec. 3, we visualize the weight-level privacy vulnerability scores and learnability scores in Fig. 3 and quantify their correlations in Tab. 1 with two architectures: ResNet18 He et al. (2016) and ViT Dosovitskiy et al. (2021). Shown by the charts for all trainable weights (the leftmost column) in Fig. 3, most of the weights are neither privacy-vulnerable nor learnability-critical, which aligns with the experimental results in Fig. 1. It tells again that pruning learnability-noncritical (not critical for accuracy) weights does not remove the privacy risks (prediction discrepancy).

The other weights, much fewer than these non-critical weights, can be categorized into three types: privacy-vulnerable, learnability-critical, and both. Tab. 1 shows the Pearson correlation coefficient between privacy vulnerability and learning ability. We find that the results of the two architectures are consistent that the correlation in normalization layers (batch normalization Ioffe & Szegedy (2015) in ResNet18 and layer normalization Ba et al. (2016) in ViT) are the lowest while the correlation in main components of the models (convolution layers in ResNet18 and Attention & MLP

layers in ViT) are the highest. Weights belonging to normalization layers occupy only a tiny proportion of weights—less than 1%. However, some of them are the highly privacy-vulnerable weights of the models as shown in the charts of normalization layers weights (the 3rd column) in Fig. 3. Since these weights are also critical for learnability (many weights in normalization layers exhibit high learnability scores), pruning them by common pruning techniques will impair the performance.

Moreover, the majority of the weights belong to convolution/attention/MLP layers, and they show strong correlations—over 0.9 in Pearson correlation coefficient—between privacy-vulnerability and learnability (see Tab. 1). The correlations are significantly higher than normalization layers. This result indicates that many privacy-vulnerable weights are also crucial for learnability. In addition, compared to CNNs, transformers exhibit higher privacy vulnerability (see charts of convolution layers weights and Att+MLP layers weights (2nd column in Fig. 3)), which is also supported in part by the observation of Zhang et al. (2024) that attention layers lead to worse privacy risks.

Finally, the linear layers in Tab. 1 denote the last few linear layers. We find that most weights in them are not privacy-vulnerable, while some of them could be learnability-critical.

In summary, **most privacy-vulnerable weights impact learnability** (utility performance). This is the fundamental reason why the existing standard pruning techniques fail to effectively reduce privacy risks. To address this issue, we propose **Critical Weights Rewinding and Finetuning (CWRF)** in the next section to promote the model to achieve better privacy-accuracy trade-offs.

4.3 CRITICAL WEIGHTS REWINDING AND FINETUNING (CWRF)

Our approach (CWRF) consists of three steps: *(i)* estimating privacy vulnerability, *(ii)* rewinding & freezing privacy-vulnerable weights, and *(iii)* fine-tuning the other weights with privacy-preservation training approaches. Since privacy vulnerability estimation has been elaborated in Sec.4.1, we start our discussion from the second step.

Weights Rewinding. Weights rewinding Renda et al. (2020); Frankle et al. (2020) is a strategy that rolls back weights to earlier values in training. In our approach, the weights are rewound to the initial status, at which point the weights are privacy-safe because no data has been exposed to the model. Once calculating the privacy vulnerability estimation scores S_{pve} in the way described in Sec.4.1, two masks for weights rewinding and fine-tuning can be produced as follows:

$$\mathcal{B}_r = \{\mathbb{I}[s_i \geq Q(S_{pve}, r)]\}_{s_i \in S_{pve}}, \quad \mathcal{B}_f = 1 - \mathcal{B}_r \quad (5)$$

where \mathcal{B}_r denotes weight rewinding mask, \mathcal{B}_f denotes weight freezing mask, $\mathbb{I}(\cdot)$ denotes indicator function, $Q(\cdot, \cdot)$ denotes the combination of sort function in descending order and quantile function, and r denotes the predefined rewinding rate we opt to. After producing the masks, a portion of the weights of the trained model is rewound from θ_{up} to θ_{vn} (defined in Sec.4.1) as follows:

$$\theta_{rw} = \mathcal{B}_f \odot \theta_{up} + \mathcal{B}_r \odot \theta_{vn} \quad (6)$$

where \odot denotes Hadamard product and θ_{rw} is the updated weights with partially rewound weights after the two masks are overlaid. After rewinding, the most privacy-risky weights can return to being privacy-safe. However, due to entanglement between privacy-vulnerability and learnability, the rewinding also leads to the utility deterioration of the model. More precisely, it usually leads to random-guess-level utility. Hence, the model needs to be fine-tuned to recover its utility.

Weights Freezing & Privacy Fine-Tuning. The final step is fine-tuning the model to achieve better privacy-utility trade-offs. It consists of two parts: Weights freezing & privacy fine-tuning.

270

Algorithm 1: Pseudocode of CWRF

271 **Input:** Unprotected model M_{up} with parameters θ_{up} , vanilla model M_{vn} with parameters
 272 θ_{vn} , member (train) set D_{tr} , and non-member (reference) set D_{re} , batch size B ,
 273 privacy-preserving training approach \mathcal{P} , the number of iterations for score
 274 estimation T , the number of fine-tuning epoches E , the learning rate for estimation
 275 η_e , the learning rate for fine-tuning η_t .

276 **Result:** Privacy-fine-tuned M_{up} with parameters θ_{up}

277 1 Initialize $\{\phi_j = 0\}_{j=1}^N$ which are corresponded to weights of θ_{up}

278 2 Copy unprotected model, denoted as M'_{up} with parameters θ'_{up}

279 3 **for** $i = 1 \dots T$ **do**

280 4 Get sample batches $\{(x_i^{tr}, y_i^{tr})\}_{i=1}^B \subset D_{tr}$ and $\{(x_i^{re}, y_i^{re})\}_{i=1}^B \subset D_{re}$

281 5 Forward and compute loss $\mathcal{L}_{pve}(M'_{up}(x_i^{tr}), y_i^{tr}, M'_{up}(x_i^{re}), M_{vn}(x_i^{re}))$

282 6 (\mathcal{L}_{pve} refers to Eq. 4)

283 7 Approximate gradient $\mathcal{I} \leftarrow \nabla_{\theta'_{up}} \mathcal{L}_{pve}$

284 8 Compute scores $\phi \leftarrow \phi + |\mathcal{I}\theta'_{up}|$ (refer to Eq. 2)

285 9 Update unprotected model $\theta'_{up} \leftarrow \theta'_{up} - \eta_e \mathcal{I}$

286 10 **end**

287 11 Get the two masks $\mathcal{B}_r = \{\mathbb{I}[s_i \geq Q(S_{pve}, r)]\}_{s_i \in S_{pve}}$, $\mathcal{B}_f = 1 - \mathcal{B}_r$ (refer to Eq. 5)

288 12 Rewind the unprotected model $\theta_{up} \leftarrow \mathcal{B}_f \odot \theta_{up} + \mathcal{B}_r \odot \theta_{vn}$ (refer to Eq. 6)

289 13 **for** $epoch = 1 \dots E$ **do**

290 14 **for** $i = 1 \dots K$ **do**

291 15 (K denotes the number of mini-batches)

292 16 Get sample batches $\{d_i^{tr} = (x_i^{tr}, y_i^{tr})\}_{i=1}^B \subset D_{tr}$

293 17 (Some preserving approaches may additionally require reference data)

294 18 Train the unprotected model with privacy approach $\mathcal{P}(M_{up}, d_i^{tr})$

295 19 Approximate gradient $\mathcal{I} \leftarrow \nabla_{\theta_{up}} \mathcal{P}$

296 20 Update the model M_{up} with masks $\theta_{up} \leftarrow \theta_{up} - \eta_t \mathcal{I} \mathcal{B}_f$ (refer to Eq. 7)

297 21 **end**

298 22 **end**

300

301

302 For training θ_{rw} to preserve privacy, we can plug in any privacy-preserving approaches and train
 303 the model. Note that the approaches need to train the model from scratch, but by being plugged
 304 into our method, they only require partial weights to be rewound and frozen, and then the rest of
 305 the weights are fine-tuned. From the perspective of implementing weight freezing, masking the
 306 gradients is a sensible option to stop the update of the non-rewound weights. Given the gradients,
 307 \mathcal{G}_p , obtained by the privacy-preserving training approach with the rewound weights, θ_{rw} , at each
 308 fine-tuning iteration, we can filter out the gradients of the frozen weights so that only the rewound
 309 weights can be updated:

$$\mathcal{G}_p \leftarrow \mathcal{B}_f \odot \mathcal{G}_p \quad (7)$$

310

311 During the fine-tuning process, we do not train a model at a fixed learning rate because neither a
 312 too small or too large fixed learning rate is good at recovering the model from random guess status.
 313 Instead, the learning rate is also rewound to the earliest learning rate at which the model started.
 314 The way is similar to learning rate rewinding (LRR) Frankle et al. (2020); Gadhikar & Burkholz
 315 (2024), although we rewind the learning rate to the very initial one. The self-contained procedure
 316 of CWRF is described in Alg. 1. The CWRF contains three stages: (i) scoring privacy vulnerability,
 317 (ii) rewinding and freezing privacy-vulnerable weights according to scores, and (iii) fine-tuning the
 318 rest of the trainable weights with a privacy-preserving approach. CWRF can adapt arbitrary privacy
 319 training approaches by plugging them into the third stage of CWRF for privacy-post-training. We
 320 note that it might be somewhat counterintuitive to fine-tune the privacy-invulnerable weights rather
 321 than the privacy-vulnerable. There are two reasons why the model is fine-tuned that way: (i) the
 322 privacy risks of the privacy-vulnerable weights have been fully removed thanks to rewinding. Fine-
 323 tuning the rest of less- or in-vulnerable weights help the model with further mitigation of privacy
 324 risks. (ii) based on our hypothesis and empirical investigation elaborated and explained in Sec. 4.4,

324 fine-tuning privacy-invulnerable weights help the model recover its utility better than doing that on
 325 privacy-vulnerable weights. We explain this in detail in the next section.
 326

327 4.4 THE PRIVACY-VULNERABLE WEIGHTS ARE UNNECESSARY TO BE TRAINED 328

329 Finally, we explain why we fine-tune the privacy-invulnerable weights
 330 rather than the vulnerable. The lottery hypothesis Frankle & Carbin
 331 (2019) proposed and validated that the learnability of weights in a neu-
 332 ral network is determined at the initialization phase. Motivated by the
 333 insight, we propose and validate a hypothesis in this section:

334 Hypothesis: *The learnability of a weight in a neural
 335 network is determined by its position rather than its
 336 value (magnitude & sign.)*

337 This can be observed and understood through model pruning.
 338

339 For the verification, we devised three models:
 340

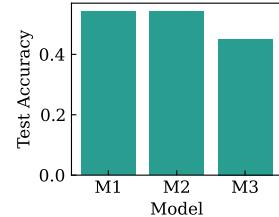
- 341 • M1: unpruned model trained from scratch.
- 342 • M2: 85% pruned model from M1 and then rewound to the initial values and retrained.
- 343 • M3: 85% pruned model from M1 with no fine-tuning/retraining

344 M2 and M3 are pruned with the same masks based on M1. Their
 345 comparisons are shown in Fig. 4. Let us focus on the learnability-
 346 unimportant weights that are present in M1 (which are pruned away
 347 in M2 and M3.) By looking at the almost same final accuracy of
 348 M1 and M2, we can infer that in M1 the learnability-unimportant
 349 weights shared knowledge and role with the learnability-important
 350 weights. This is also cross-checked by the accuracy drop of M3
 351 (from M1) where the learnability-unimportant are discarded. It
 352 hints at the potential of the pruned weights (which were regarded
 353 as not important for learnability, though) toward learnability to
 354 some extent. Overall, it is encouraged not to update learnability-
 355 important weights by the Hypothesis, but to finetune learnability-
 356 unimportant weights by Fig. 4. On top of that, by considering that
 357 privacy-vulnerable weights are entangled with learnability-critical
 358 weights, we only rewind the privacy-vulnerable weights so as not
 359 to hurt the accuracy, but fine-tune only privacy-invulnerable weights
 360 - not to expose the privacy-vulnerable weights to the data again to
 361 reduce privacy risk.

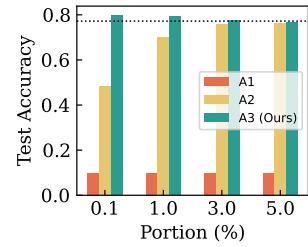
362 Based on the insights, to verify the hypothesis and validate our approach, CWRF, we compare the
 363 following three approaches:

- 364 • A1: Remove privacy-vulnerable weights & fine-tune privacy-invulnerable weights;
- 365 • A2: Rewind privacy-vulnerable weights & fine-tune privacy-vulnerable weights;
- 366 • A3 (CWRF): Rewind privacy-vulnerable weights & fine-tune privacy-invulnerable weights.

367 As for privacy-preserving training, here we apply RelaxLoss Chen et al.
 368 (2022) to fine-tune the three approaches. Shown in Fig. 5, it is very clear that
 369 discarding privacy-vulnerable weights (A1) leads to unrecoverable accuracy
 370 crash for the model, unlike the cases of A2 & A3. The performance dis-
 371 crepancy stems from “removing” (A1) vs. “rewinding” weights (A2 & A3). That is because removing alters the
 372 locations of the weights, but rewinding
 373



374 Figure 4: The performance
 375 of M1, M2, & M3 on
 376 ResNet18 & CIFAR-100.



377 Figure 5: The performance of
 378 A1, A2, & A3 along with re-
 379 moving/rewinding ratios. The
 380 dotted line represents a base-
 381 line performance of a model
 382 trained from scratch with the
 383 same privacy-preserving ap-
 384 proach

385 Table 2: The Cross-entropy loss after fine-tuning with a
 386 privacy-preserving approach, according to the portion of
 387 rewound weights.

Approach	0.1%	1.0%	3.0%	5.0%
A2 - train	1.2268	0.8570	0.4326	0.4619
A2 - test	1.3797	1.2728	0.9288	0.9610
A3 - train	0.1502	0.3376	0.4473	0.4815
A3 - test	0.7720	0.7433	0.8044	0.8330
From scratch - train			0.8087	
From scratch - test			1.5398	

378 does not. This comparison successfully validates our hypothesis that the locations of weights
 379 are of paramount importance for learnability. As long as the crucial locations in the model are
 380 retained, the model preserves the capability to recover its accuracy. Another point to pay attention
 381 to is the performance gap between A2 and A3. By retaining the locations of privacy-vulnerable
 382 weights (A3), the model can recover its accuracy when a very small portion of privacy-vulnerable
 383 weights are rewound, and it even outperforms the baseline model that is trained from scratch
 384 using RelaxLoss with the same training configurations except for epochs. As for privacy-related
 385 information, Tab. 2 displays the model’s prediction loss distributions on train and test set at various
 386 configurations. It exhibits that CWRF (A3) shows significantly better loss gap compared to A2
 387 and the model trained from scratch, especially at portions of 3.0% & 5.0% while they are at the
 388 same testing accuracy at these ratios. Overall, it tells us that fine-tuning on privacy-invulnerable
 389 weights (A3) has less negative impact on the testing distribution compared with A2 (fine-tuning on
 390 privacy-vulnerable weights.)

391 5 EMPIRICAL STUDY

392 5.1 EXPERIMENTAL SETUPS

393 **Datasets.** We evaluate defense approaches on three datasets: CIFAR-10 & -100 Krizhevsky et al.
 394 (2009) and CINIC-10 Darlow et al. (2018). CINIC-10 contains 270,000 images, evenly distributed
 395 into training, validation, and testing subsets. The size of the images in the CINIC-10 is resized to
 396 32×32 , which is the same as the CIFAR datasets. In all three datasets, we randomly sampled
 397 some data points from the training data, which are disjoined from the data points used for training
 398 the specific single model. More details regarding sampling are described in MIAs’ setting in
 399 Appendix B.

400 **Models.** To adequately evaluate our approach against compared approaches, two commonly used
 401 architectures, ResNet18 He et al. (2016) and Vision Transformer (ViT) Dosovitskiy et al. (2021),
 402 are used in the experiments. When evaluating with ResNet18, we adapt the model configurations
 403 designed for the CIFAR datasets in the original paper. As for ViT, the inputs of images are divided
 404 into patches of 4×4 , which is smaller than the ViT designed for the ImageNet dataset Deng et al.
 405 (2009) in the original paper.

406 **Attacks.** To show the superiority of our approach in boosting privacy-preserving methods against
 407 membership inference attacks, two recent MIAs techniques, Likelihood Ratio Attack (LiRA) Carlini
 408 et al. (2022a) and Robust Membership Inference Attack (RMIA) Zarifzadeh et al. (2024), are adopted
 409 in our defense evaluation. In addition, the strategy of adaptive attacks Song & Mittal (2021) is
 410 applied to all MIAs to rigorously evaluate the defense approaches. We evaluate the model’s reliance
 411 ability against attacks along two metrics: (i) *AUC* and (ii) *TPR at low FPR*. Specifically, the TPRs at
 412 10^{-3} and 10^{-5} FPRs are reported in our paper. More details of attacks are elaborated in Appendix B.

413 **Defenses.** To verify the universality of our approach, we provide extensive comparisons with four
 414 privacy-preserving training approaches: [Differentially private stochastic gradient descent](#) (DP-SGD)
 415 Abadi et al. (2016), [relaxed loss](#) (RelaxLoss) Chen et al. (2022), [High accuracy and membership](#)
 416 [privacy](#) (HAMP) Chen & Pattabiraman (2024), [convex-concave loss](#) (CCL) Liu et al. (2024), and
 417 [privacy-aware sparsity tuning](#) (PAST) Hu et al. (2024) are deployed to train the models against
 418 MIAs. We adopt the implementation of DP-SGD provided by the Opacus library Yousefpour et al.
 419 (2022) while we adopt the official implementation of other defense approaches. Due to compatibility
 420 issues between DP-SGD, Batch Normalization, and Dropout techniques, DP-SGD is only applied to
 421 ViT. In addition, since we compare the model’s internal privacy-defense ability, the training part of
 422 HAMP is deployed when we use it.

423 **General Configurations.** Adam optimizer Kingma & Ba (2015) is applied to train all models. We
 424 set the hyper-parameters $\beta_1 = 0.9$, $\beta_2 = 0.999$ and the weight decay to 5×10^{-4} . For the learning
 425 rate, we train the model by setting the initial learning rate to 1×10^{-3} and changing the learning rate
 426 along steps with the cosine annealing scheduler Loshchilov & Hutter (2017). The batch size and
 427 epochs of all tasks training from scratch are set to 256 and 100, respectively. As for defenses, we
 428 follow the original paper’s hyperparameter settings for each approach that we compare with. As for
 429 attacks, eight shadow models, including four ‘IN’ models and four ‘OUT’ models that are required

432 by LiRA and RMIA, are deployed for both attacks. We report all results in three independent runs.
 433 As for the experimental environment, some important information of the computation device is listed
 434 as follows:

CPU	GPU	RAM	OS	CUDA	Python	PyTorch
AMD Ryzen™ 7 7700X	NVIDIA GeForce RTX 5090	64 GB	Ubuntu 24.04 LTS	12.9	3.12.3	2.80

437 **Customized Configurations** In our approach, on the privacy vulnerability estimation stage, 30
 438 iterations and 256 mini-batch size are applied. The λ is set to 0.7 for CIFAR-10 and CINIC-10
 439 while it is 0.9 for CIFAR-100. As for fine-tuning epochs, we set it to 40 with the same initial
 440 learning rate using in training from scratch. The same learning rate scheduler is also applied. We
 441 perform grid search to select the rewinding rate $r \in [1\%, 10\%]$.
 442

443 5.2 CWRF (OURS) WITH VARIOUS PRIVACY-PRESERVING APPROACHES

444 In CIFAR-10, we report results with both ResNet18 and ViT in Tab. 3. In the evaluation of ResNet18,
 445 three approaches, RelaxLoss, HAMP and CCL are all effective in privacy-preservation. **The results**
 446 **exhibit that our approach successfully improves the models’ resilience against SOTA MIAs by plugging**
 447 **other privacy-training approaches.** Especially, approaches with CWRF all achieve significant
 448 mitigation of privacy risks under LiRA. However, under RMIA, the combo of RelaxLoss and CWRF
 449 suffers from some slight increase in privacy risks. This is to some extent due to the instability of
 450 solely deploying RelaxLoss—the significantly higher variance of test accuracy. With such instability,
 451 the shadow models of RMIA become harder to model the target model’s behavior. As for ViT,
 452 the performance of CWRF becomes even better: combining with all four approaches—DP-SGD,
 453 RelaxLoss, HAMP, and CCL, CWRF shows most effective improvements in reliance against the
 454 attacks while, in some instances, the testing accuracy becomes even better (DP-SGD + CWRF).
 455

456 CINIC-10 has more data points, thus showing more stable trends (see Fig. 6a). Considering the
 457 utility-privacy tradeoffs, the best combo is HAMP with CWRF: it shows not only a significant ad-
 458 vance in test accuracy—even substantially more than the undefended model—but also best privacy
 459 resilience against both attacks. However, the CCL is not fully effective under RMIA, the perfor-
 460 mance becomes worse in terms of AUC and TPR when FPR is fixed at 0.1%. After the addition
 461 of CWRF, it becomes further worse in RMIA, while the privacy risks are mitigated under LiRA. In
 462 RelaxLoss, training with CWRF helps the model stably improve its generalizability and privacy.
 463

464 Table 3: The performance of four privacy-preservation approaches with and without CWRF (Ours)
 465 on CIFAR-10. Higher is better in test accuracy (\uparrow) while lower is better in Privacy (\downarrow).

Model	Defense	LiRA (\downarrow)				RMIA(\downarrow)			
		Test Acc. (% \uparrow)	AUC (%)	TPR(%)@FPR		AUC(%)	TPR(%)@FPR		
				0.1%	0.1% \downarrow		0.1%	0.1% \downarrow	
ResNet18	No Defense	79.44 _(0.23)	85.00 _(2.20)	2.18 _(0.59)	1.78 _(0.34)	74.76 _(1.59)	5.88 _(0.70)	3.90 _(1.31)	
	RelaxLoss + CWRF (Ours)	77.10 _(1.21) 76.86 _(0.29)	70.51 _(2.72) 68.31 _(0.68)	1.38 _(0.42) 0.03 _(0.05)	0.52 _(0.21) 0.03 _(0.05)	66.60 _(1.67) 68.18 _(1.53)	0.52 _(0.34) 1.22 _(0.97)	0.12 _(0.16) 0.27 _(0.19)	
	HAMP + CWRF (Ours)	77.79 _(0.33) 81.43 _(0.15)	79.71 _(0.20) 77.96 _(0.13)	3.33 _(0.73) 0.53 _(0.58)	1.80 _(1.47) 0.07 _(0.06)	80.07 _(0.58) 80.26 _(0.41)	7.28 _(1.64) 4.30 _(1.33)	1.93 _(1.28) 1.66 _(0.65)	
	CCL + CWRF (Ours)	79.56 _(0.38) 77.77 _(0.56)	83.95 _(0.36) 64.82 _(0.32)	1.50 _(0.71) 0.22 _(0.06)	0.80 _(0.61) 0.10 _(0.04)	76.04 _(0.39) 74.25 _(0.36)	4.23 _(0.54) 2.80 _(0.43)	2.22 _(1.55) 0.93 _(0.33)	
	DP-SGD + CWRF (Ours)	56.45 _(0.46) 60.45 _(0.37)	82.88 _(0.68) 55.68 _(0.58)	1.60 _(1.14) 0.13 _(0.06)	1.92 _(0.41) 0.00 _(0.00)	84.44 _(0.27) 60.46 _(1.03)	1.52 _(0.81) 0.13 _(0.02)	0.45 _(0.32) 0.03 _(0.05)	
ViT	RelaxLoss + CWRF (Ours)	57.21 _(0.75) 56.82 _(0.15)	73.45 _(0.73) 55.88 _(0.54)	0.38 _(0.18) 0.12 _(0.10)	0.37 _(0.18) 0.03 _(0.05)	72.87 _(1.35) 63.30 _(0.77)	0.85 _(0.72) 0.38 _(0.31)	0.23 _(0.23) 0.10 _(0.11)	
	HAMP + CWRF (Ours)	51.62 _(0.72) 52.50 _(0.39)	50.53 _(0.41) 50.15 _(0.40)	0.07 _(0.09) 0.05 _(0.11)	0.00 _(0.00) 0.00 _(0.00)	54.42 _(0.55) 51.50 _(1.14)	0.27 _(0.12) 0.13 _(0.08)	0.05 _(0.04) 0.02 _(0.02)	
	CCL + CWRF (Ours)	54.25 _(0.71) 53.45 _(0.65)	52.18 _(0.53) 51.68 _(0.36)	0.02 _(0.02) 0.00 _(0.00)	0.00 _(0.00) 0.00 _(0.00)	56.33 _(0.83) 51.32 _(0.57)	0.12 _(0.08) 0.07 _(0.06)	0.00 _(0.00) 0.00 _(0.00)	
	PAST + CWRF (Ours)	54.84 _(0.56) 54.66 _(0.37)	54.30 _(0.79) 53.86 _(1.29)	0.17 _(0.10) 0.15 _(0.19)	0.08 _(0.08) 0.08 _(0.08)	62.99 _(1.42) 62.10 _(0.08)	0.97 _(0.25) 0.68 _(0.31)	0.25 _(0.25) 0.22 _(0.14)	

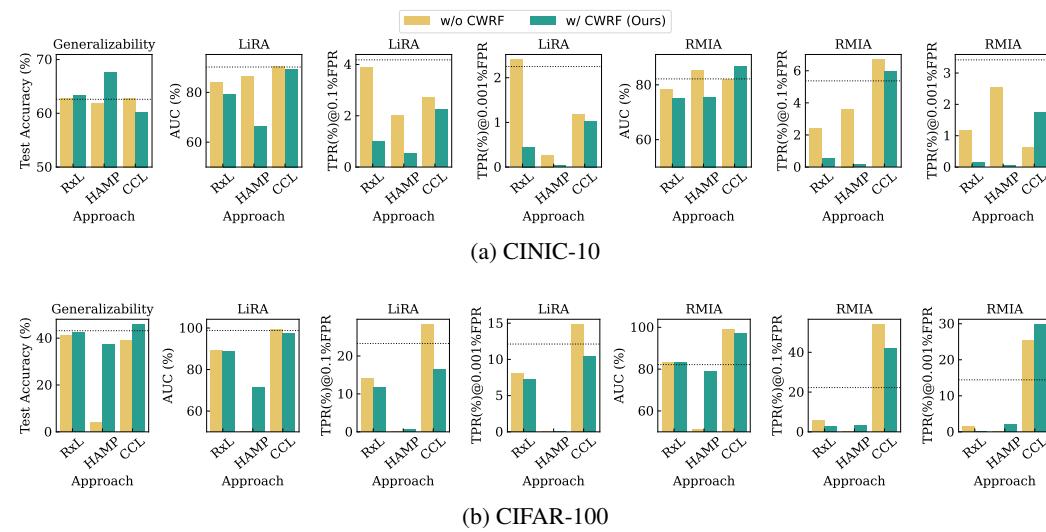


Figure 6: The performance of ResNet18 trained with three privacy-preservation approaches with and without CWRF (Ours). The dotted line represents a baseline performance of a model trained from scratch with regular training approach, Cross-Entropy.

In CIFAR-100, the results—see Fig. 6b—vary a lot due to the more difficult task, but limited training samples. We note that the model solely trained with HAMP fails to converge. In contrast, the model can achieve better utility when it is trained with both HAMP and CWRF. As for CCL, the trend is consistent with that in CINIC-10. These results hint to us that our approach can definitely boost the privacy-preserving approaches only when the approaches can be effective against MIAs. As for RelaxLoss with CWRF, it shows stable improvements in both generalizability and privacy. [In addition, in the evaluation of LiRA with 128 shadow models \(discussed in Sec. C.1 in the appendix\), CWRF shows the consistent advantages by combining each of the three approaches.](#)

In summary, when the applied privacy-preserving approach is effective in the specific situations, our approach, CWRF, can always boost it to achieve better privacy-utility tradeoffs. We also emphasize that our approach can assist the stability of privacy-preserving training by stabilizing testing accuracy variance through multiple independent runs and avoiding model collapse.

6 CONCLUSION

We design a method to estimate weight-level privacy vulnerability. By exploring the correlation between privacy vulnerability and learning ability, we explained and showed why neural network pruning is not effective in eliminating model privacy vulnerabilities in previous studies. Throughout this paper, we found that privacy vulnerability exists in a very small fraction of weights entangled with learnability. We also recognized the importance of weights stems from their locations rather than their values. Based on those insights, we propose a strategy to mitigate membership privacy risks of the model that rewinds partial privacy-vulnerable weights and freezes the others, and then does privacy-preserving fine-tuning. Through comprehensive experiments, we demonstrate that our strategy achieves a more effective balance between accuracy and privacy than directly applying existing privacy-preserving methods that train from scratch.

540 REFERENCES
541

542 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
543 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
544 *conference on computer and communications security*, pp. 308–318, 2016.

545 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
546 <https://arxiv.org/abs/1607.06450>.
547

548 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
549 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE*
550 *symposium on security and privacy (SP)*, pp. 141–159. IEEE, 2021.

551 Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015*
552 *IEEE symposium on security and privacy*, pp. 463–480. IEEE, 2015.
553

554 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
555 bership inference attacks from first principles. In *2022 IEEE Symposium on Security and Privacy*
556 (*SP*), pp. 1897–1914. IEEE, 2022a.

557 Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and
558 Florian Tramer. The privacy onion effect: Memorization is relative. In S. Koyejo,
559 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-*
560 *ral Information Processing Systems*, volume 35, pp. 13263–13276. Curran Associates, Inc.,
561 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/564b5f8289ba846ebc498417e834c253-Paper-Conference.pdf.
562

563 Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learn-
564 ing to unlearn: Instance-wise unlearning for pre-trained classifiers. In *Proceedings of the AAAI*
565 *conference on artificial intelligence*, volume 38, pp. 11186–11194, 2024.

566 Dingfan Chen, Ning Yu, and Mario Fritz. Relaxloss: Defending membership inference attacks
567 without losing utility. In *International Conference on Learning Representations*, 2022. URL
568 <https://openreview.net/forum?id=FEDfGWVZYIn>.
569

570 Zitao Chen and Karthik Patabiraman. Overconfidence is a dangerous thing: Mitigating member-
571 ship inference attacks by enforcing less confident prediction. In *Network and Distributed System*
572 *Security (NDSS) Symposium*, 2024.

573 Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The*
574 *annals of probability*, pp. 146–158, 1975.

575 Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. Cinic-10 is not imagenet
576 or cifar-10, 2018. URL <https://arxiv.org/abs/1810.03505>.
577

578 Ganesh Del Grosso, Hamid Jalalzai, Georg Pichler, Catuscia Palamidessi, and Pablo Piantanida.
579 Leveraging adversarial examples to quantify membership information leakage. In *Proceedings of*
580 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10399–10409, 2022.
581

582 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
583 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
584 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
585

586 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
587 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
588 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
589 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.
590

591 Xingli Fang and Jung-Eun Kim. Center-based relaxed learning against membership inference at-
592 tacks. In *The 40th Conference on Uncertainty in Artificial Intelligence*, 2024a. URL <https://openreview.net/forum?id=unlWrunFjg>.
593

594 Xingli Fang and Jung-Eun Kim. Representation magnitude has a liability to privacy vulnerability.
 595 In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, pp. 411–420,
 596 2024b.

597 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 598 networks. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.

600 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
 601nectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*, pp.
 602 3259–3269. PMLR, 2020.

604 Advait Harshal Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding.
 605 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=qODvxQ8TXW>.

607 Kristian Georgiev, Roy Rinberg, Sung Min Park, Shivam Garg, Andrew Ilyas, Aleksander Madry,
 608 and Seth Neel. Machine unlearning via simulated oracle matching. In *The Thirteenth Interna-
 609 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=3vXpZpOn29>.

612 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning, 2020. URL
 613 <https://arxiv.org/abs/2010.10981>.

614 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 615 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR)*, June 2016.

618 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
 619 URL <https://arxiv.org/abs/1503.02531>.

620 Qiang Hu, Hengxiang Zhang, and Hongxin Wei. Defending membership inference attacks via
 621 privacy-aware sparsity tuning, 2024. URL <https://arxiv.org/abs/2410.06814>.

623 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
 624 by reducing internal covariate shift. In Francis Bach and David Blei (eds.), *Proceedings of
 625 the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Ma-
 626 chine Learning Research*, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/ioffe15.html>.

628 Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gen-
 629 eralization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
 630 Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31.
 631 Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

633 Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
 634 and Sijia Liu. Model sparsity can simplify machine unlearning. In *Advances in Neural Infor-
 635 mation Processing Systems*, volume 36, pp. 51584–51605, 2023.

636 Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang Gong. Memguard:
 637 Defending against black-box membership inference attacks via adversarial examples. In *Proceed-
 638 ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security*, CCS
 639 ’19, pp. 259–274, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
 640 9781450367479. doi: 10.1145/3319535.3363201. URL <https://doi.org/10.1145/3319535.3363201>.

642 Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. On the effectiveness of regularization against
 643 membership inference attacks, 2020. URL <https://arxiv.org/abs/2006.05336>.

644 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 645 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 646 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

648 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
 649 2009.

650

651 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning based
 652 on connection sensitivity. In *International Conference on Learning Representations*, 2019. URL
 653 <https://openreview.net/forum?id=B1VZqjAcYX>.

654

655 Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Gaussian membership inference privacy.
 656 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=2NUFe4TZMS>.

657

658 Jiacheng Li, Ninghui Li, and Bruno Ribeiro. MIST: Defending against membership inference
 659 attacks through Membership-Invariant subspace training. In *33rd USENIX Security Symposium (USENIX Security 24)*, pp. 2387–2404, Philadelphia, PA, August 2024. USENIX As-
 660 sociation. ISBN 978-1-939133-44-1. URL <https://www.usenix.org/conference/usenixsecurity24/presentation/li-jiacheng>.

661

662

663 Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in
 664 pruning: The effects of pruning neural networks beyond test accuracy. In A. Smola, A. Di-
 665 makis, and I. Stoica (eds.), *Proceedings of Machine Learning and Systems*, volume 3, pp. 93–
 666 138, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/file/521437c574a2bb7fcc20b222700b4181-Paper.pdf.

667

668

669 Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, and Hongxin Wei. Mitigating privacy
 670 risk in membership inference by convex-concave loss. In Ruslan Salakhutdinov, Zico Kolter,
 671 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 672 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
 673 ceedings of Machine Learning Research*, pp. 30998–31014. PMLR, 21–27 Jul 2024. URL
 674 <https://proceedings.mlr.press/v235/liu24q.html>.

675

676 Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In *5th
 677 International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26,
 678 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=Skq89Scxx>.

679

680 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 681 for neural network pruning. In *Proceedings of the IEEE/CVF conference on computer vision and
 682 pattern recognition*, pp. 11264–11272, 2019.

683

684 Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with membership privacy using
 685 adversarial regularization. In *Proceedings of the 2018 ACM SIGSAC Conference on Computer and
 686 Communications Security*, CCS ’18, pp. 634–646, New York, NY, USA, 2018. Association for
 687 Computing Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243855. URL <https://doi.org/10.1145/3243734.3243855>.

688

689 Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
 690 network pruning. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=S1gSj0NKvB>.

691

692 Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
 693 MI-leaks: Model and data independent membership inference attacks and defenses on machine
 694 learning models. 01 2019. doi: 10.14722/ndss.2019.23119.

695

696 Sebastian Schelter. amnesia–towards machine learning models that can forget user data very fast.
 697 In *1st International Workshop on Applied AI for Database Systems and Applications (AIDB19)*,
 698 2019.

699

700 Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
 701 for low-latency machine unlearning. In *Proceedings of the 2021 International Conference on
 Management of Data*, pp. 1545–1557, 2021.

702 Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversari-
 703 ally robust neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 704 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 19655–
 705 19666, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/e3a72c791a69f87b05ea7742e04430ed-Paper.pdf.

706

707 Jing Shang, Jian Wang, Kailun Wang, Jiqiang Liu, Nan Jiang, Md Armanuzzaman, and Ziming
 708 Zhao. Defending against membership inference attacks on iteratively pruned deep neural
 709 networks. In *NDSS*, 2025.

710

711 Virat Shejwalkar and Amir Houmansadr. Membership privacy for machine learning models through
 712 knowledge transfer. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
 713 pp. 9549–9557, 2021.

714

715 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 716 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 717 pp. 3–18. IEEE, 2017.

718

719 Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
 In *30th USENIX security symposium (USENIX security 21)*, pp. 2615–2632, 2021.

720

721 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 722 for large language models. In *The Twelfth International Conference on Learning Representations*,
 723 2024. URL <https://openreview.net/forum?id=PxoFut3dWW>.

724

725 Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar, Milad Nasr, Amir Houmansadr, and
 726 Prateek Mittal. Mitigating membership inference attacks by {Self-Distillation} through a novel
 727 ensemble architecture. In *31st USENIX Security Symposium (USENIX Security 22)*, pp. 1433–
 728 1450, 2022.

729

730 Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing XU, Chao Xu, and Chang
 731 Xu. Scop: Scientific control for reliable neural network pruning. In H. Larochelle,
 732 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
 733 *formation Processing Systems*, volume 33, pp. 10936–10947. Curran Associates, Inc.,
 734 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/7bcd75ad237b8e02e301f4091fb6bc8-Paper.pdf.

735

736 Cuong Tran, Ferdinando Fioretto, Jung-Eun Kim, and Rakshit Naidu. Pruning has a disparate
 737 impact on model accuracy. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
 738 and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 17652–
 739 17664, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/7087c949df293f13c0052ac825936e6f-Paper-Conference.pdf.

740

741 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 742 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 743 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
 744 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 745 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

746

747 Yite Wang, Dawei Li, and Ruoyu Sun. NTK-SAP: Improving neural network pruning by aligning
 748 training dynamics. In *The Eleventh International Conference on Learning Representations*, 2023.
 URL https://openreview.net/forum?id=-5EWhW_4qWP.

749

750 Bo Yang, Hongwei Yang, Renhao Lu, Hui He, Weizhe Zhang, Haoyu He, and Rahul Yadav. Loss-
 751 control: Defending membership inference attacks by controlling the loss. In *ICASSP 2025-2025*
 752 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
 753 IEEE, 2025.

754

755 Jiayuan Ye, Anastasia Borovykh, Soufiane Hayou, and Reza Shokri. Leave-one-out distinguishabil-
 756 ity in machine learning. In *The Twelfth International Conference on Learning Representations*,
 757 2024. URL <https://openreview.net/forum?id=9RNFX0ah0K>.

756 Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou,
 757 Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs. model compression, or
 758 both? In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 759 October 2019.

760 Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. Fit and prune: Fast and training-free visual
 761 token pruning for multi-modal large language models. 39:22128–22136, Apr. 2025. doi: 10.
 762 1609/aaai.v39i21.34366. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34366>.

763

764 Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
 765 Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya
 766 Mironov. Opacus: User-friendly differential privacy library in pytorch, 2022. URL <https://arxiv.org/abs/2109.12298>.

767

768 Xiaoyong Yuan and Lan Zhang. Membership inference attacks and defenses in neural network
 769 pruning. In *31st USENIX Security Symposium (USENIX Security 22)*, pp. 4561–4578, 2022.

770

771 Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
 772 attacks. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=st7UJh5CTc>.

773

774 Guangsheng Zhang, Bo Liu, Huan Tian, Tianqing Zhu, Ming Ding, and Wanlei Zhou. How does
 775 a deep learning model architecture impact its privacy? a comprehensive study of privacy attacks
 776 on {CNNs} and transformers. In *33rd USENIX Security Symposium (USENIX Security 24)*, pp.
 777 6795–6812, 2024.

778

779 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 780 classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
 781 *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc.,
 782 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

783

784 Yunpeng Zhao and Jie Zhang. Does training with synthetic data truly protect privacy? In
 785 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=C8niXBHjfo>.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A FURTHER RELATED WORK
811812 A.1 MEMBERSHIP PRIVACY PRESERVATION METHODS
813

814 Prior membership privacy preservation research mainly focused on data-end and training components.
815 Abadi et al. (2016) attempted to prevent data points from being over-learned via gradient
816 clipping and noise confusion. Nasr et al. (2018) tried to align member and non-member predictions
817 via adversarial learning. Jia et al. (2019) attempted to mitigate privacy breaches by obfuscating pre-
818 diction probabilities. Kaya et al. (2020) found that the sense of privacy provided by the regularization
819 mechanisms is false. Chen et al. (2022) designed a prediction-distribution-aligning loss function via
820 reducing the generalization gap and increasing the variance of the training loss distribution. Fang &
821 Kim (2024a;b) attempted to mitigate privacy breach by explicitly facilitating representation align-
822 ment in latent space. Liu et al. (2024) achieved privacy preservation by embedding a concave term
823 into convex losses, which help the model predictions with high variance in training losses. Zhang
824 et al. (2024) determined that components such as attention modules lead ViTs’ privacy vulnerability
825 to be significant than CNNs. Carlini et al. (2022b) observed that simply removing the data identifi-
826 able by MIAs from the training dataset induces new privacy leakages in the model. Ye et al. (2024)
827 quantified sample-level privacy vulnerabilities via leave-one-out. Li et al. (2024) tried to separately
828 handle privacy-risky data points that are leaked from model. Yuan & Zhang (2022) observed that
829 common accuracy-oriented pruning & fine-tuning techniques cannot eliminate privacy risks in neu-
830 ral networks. Shang et al. (2025) identified privacy-risky samples to mitigate the privacy risks of
831 the model by rotating the phases of destroying memorization and relearning selective samples dur-
832 ing the accuracy-oriented iterative pruning. Shejwalkar & Houmansadr (2021); Tang et al. (2022);
833 Yang et al. (2025) facilitated the mitigation of privacy leakage during training by producing privacy-
834 friendly soft labels. Chen & Pattabiraman (2024) attempted to avoid overconfidence in both training
835 and inference stages. Zhao & Zhang (2025) claimed prior data synthesis approaches cannot prevent
836 privacy leakage. However, past studies did not identify where the privacy risks are inside neural
837 networks. In our paper, we locate and analyze weight-level privacy vulnerabilities.

838 A.2 MACHINE UNLEARNING
839

840 A general goal of machine unlearning (MU) is to get rid of the impacts of some data points. Current
841 MU approaches can be categorized into two types: (i) data reorganization and (ii) model manipula-
842 tion. The data reorganization approaches usually modify data or labels to achieve unlearning, such
843 as label obfuscation Graves et al. (2020), data pruning Bourtoule et al. (2021), or data replacement
844 Cao & Yang (2015). As for model manipulation, it mainly consists of two directions: updating the
845 model weights Schelter (2019); Cha et al. (2024); Georgiev et al. (2025), and replacing components
846 Schelter et al. (2021). In our paper, we mainly study the way of updating model weights to explore
847 the weight-level privacy vulnerability in neural networks.

848 B EXPERIMENTAL SETUPS
849

850 **Attacks.** To show the superiority of our approach in boost-
851 ing privacy-preserving methods against membership inference
852 attacks, two recent MIAs techniques, Likelihood Ratio Attack
853 (LiRA) Carlini et al. (2022a) and Robust Membership Inference
854 Attack (RMIA) Zarifzadeh et al. (2024), are adopted in our de-
855 fense evaluation. To simulate the scenario where the shadow
856 model technique Shokri et al. (2017); Carlini et al. (2022a) is
857 applied, only a small portion of the data is sampled as training
858 data and reference data for each model. In our study, we follow LiRA’s sampling strategy, while the
859 precise quantities are different. The specific quantities for each dataset are provided in Tab. 4. In
860 addition, the strategy of adaptive attacks Song & Mittal (2021) is applied to all MIAs to rigorously
861 evaluate the defense approaches. We evaluate the model’s reliance ability against attacks along two
862 metrics: (i) *AUC*: by integrating the ROC curve across all thresholds, the AUC reflects the degree
863 to which the attacker can distinguish the membership of the data points for the target model that is
864 attacked by attacker; (ii) *TPR at low FPR*: we also use true-positive rate (TPR) at low false-positive
865 rates (FPR) as a metric to show the model’s privacy vulnerability since Carlini et al. (2022a) state
866 that neither attack accuracy nor AUC scores adequately reflect an attack’s ability to confidently

867 Table 4: The number of data
868 points sampled from the entire
869 non-testing set.

Dataset	Training	Reference
CIFAR-10	18,000	2,000
CIFAR-100	18,000	4,000
CINIC-10	25,000	5,000

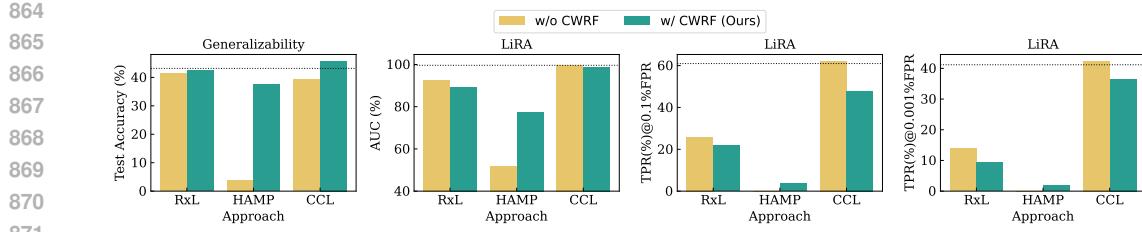


Figure 7: The performance against LiRA when 128 shadow models (64 ‘IN’ and 64 ‘OUT’ models) are deployed for ResNet18 trained with three privacy-preservation approaches (RelaxLoss, HAMP, and CCL) with and without CWRF (Ours) in CIFAR-100. The dotted line represents a baseline performance of a model trained from scratch with regular training approach, Cross-Entropy.

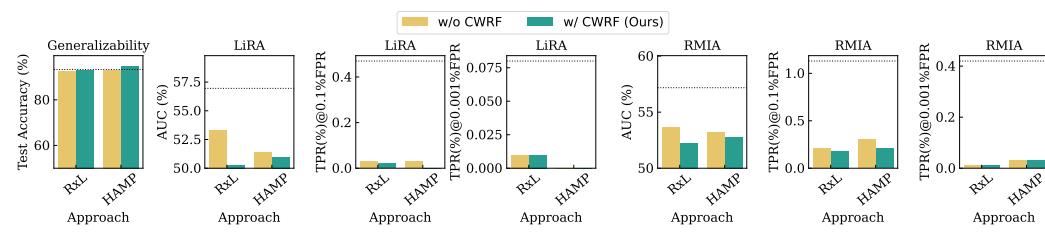


Figure 8: The performance of transformer trained with three privacy-preservation approaches with and without CWRF (Ours) in DBpedia-14. The dotted line represents a baseline performance of a model trained from scratch with regular training approach, Cross-Entropy.

determine membership while TPR at low FPR identifies it better. A perfect defense mechanism corresponds to $AUC = 0.5$ in the first metric while $TPR = 0$ in the second metric. Specifically, the TPRs at 10^{-3} and 10^{-5} FPRs are reported in our paper.

C FURTHER EXPERIMENTAL RESULTS AND DISCUSSION

C.1 MORE SHADOW MODELS

To reinforce the empirical evidence of our experiments, we further explore how our approach and others perform when evaluate ResNet18 under LiRA with more shadow models in the CIFAR-100 classification task. As shown in Fig. 7, when 128 shadow models, stronger attacks, are deployed, all approaches show more significant privacy flaws, compared with Fig. 6b. Among these approaches, RelaxLoss and CCL show better resisting ability while the utility performance is even slightly better when they are plugged into CWRF, our approach. As for the HAMP, the trends remain the same as Fig. 6b. Through the results, regardless of the number of shadow models, our approach shows consistent advantages when combining with other privacy-training approaches.

C.2 EVALUATION ON NLP DOMAIN DATASET

To reinforce the empirical evidence of our experiments, we further explore our approach for an NLP dataset — DBpedia-14 Zhang et al. (2015). The DBpedia-14 is an NLP classification dataset that contains 560,000 training samples and 70,000 testing samples for fourteen classes from DBpedia. As shown in Fig. 8, we evaluate the approaches with transformer Vaswani et al. (2017). At a similar utility level, combining with CWRF shows improvement in privacy.

C.3 PRIVACY-UTILITY CURVE

To reinforce the empirical evidence of our experiments, we further explore how our approach and others perform with privacy-utility trade-offs via ResNet18 trained with the CIFAR-100 classification task. As shown in Fig. 9, we show the privacy-utility curve, including the configuration points

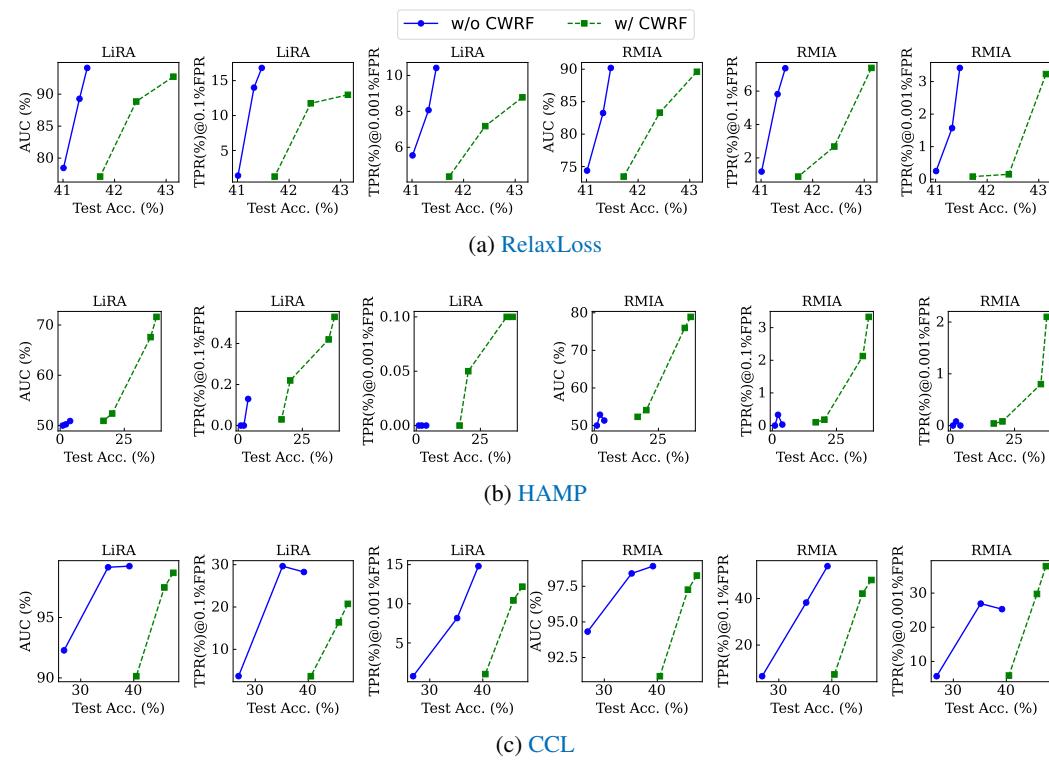


Figure 9: Privacy-utility curve of ResNet18 in CIFAR-100. The bottom right corner (low MIAs yet high test accuracy) is the best performance in terms of privacy-utility.

in Fig. 6b. Compared with the case with each of the three approaches solely, plugging CWRF shows consistent advantages by combining a privacy-training approach.