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ABSTRACT

Prior approaches for membership privacy preservation usually update or retrain
all weights in neural networks, which is costly and can lead to unnecessary utility
loss or even more serious misalignment in predictions between training data and
non-training data. In this work, we observed three insights: i) privacy vulnerabil-
ity exists in a very small fraction of weights; ii) however, most of those weights
also critically impact utility performance; iii) the importance of weights stems
from their locations rather than their values. According to these insights, to pre-
serve privacy, we score critical weights, and instead of discarding those neurons,
we rewind only the weights for fine-tuning. We show that, through extensive ex-
periments, this mechanism exhibits outperforming resilience in most cases against
Membership Inference Attacks while maintaining utility.

1 INTRODUCTION

Membership privacy risks of machine learning models arise from models’ behavioral discrepancy
between training and non-training data points. Leveraging such a discrepancy, an attacker can dis-
criminate membership information whether a data point was used for training the victim model
Shokri et al.[(2017). This attack model is called membership inference attacks (MIAs). Existing
studies Carlini et al.| (2022b); |Ye et al.| (2024) pointed out that some data points are more privacy-
vulnerable than others. [Li et al| (2024) suggested that better privacy-utility can be achieved by
focusing on these data points. However, privacy-preserving training on the model-end is still in a
black-box stage. On the other stream of work, early studies [Frankle & Carbin| (2019); Molchanov
et al.|(2019);Lee et al.|(2019) have shown that a subnetwork existing in a neural network can achieve
competitive performance, identifying that only a lesser fraction of weights contributes to the model’s
utility. These prior studies collectively motivate us to raise a reflective question: Do there exist only
some weights whose updates lead to privacy leakage of learning models?

To locate them, we first propose a weight-level importance estimation based on Machine Unlearning
(MU) to measure fine-grained privacy vulnerability existing in neural networks. With our approach,
we find that weights that cause the model to be privacy-vulnerable are only present in a small frac-
tion of the weights. Moreover, we observe that a large portion of these weights overlaps with the
learnability-critical weights. It explains why [Yuan & Zhang| (2022) fails to mitigate privacy risks
using general pruning techniques.

One of our very important observations is that the importance of weights—in terms of accu-
racy—stems from their locations rather than their values. As long as the most critical weights (the
proportion can be even down to 0.1%) remain in the model—i.e., are not pruned or removed—and
rewind them in their initial values, the model can recover its accuracy even when these weights
are left unupdated after retraining or fine-tuning. Building on top of these insights, we design a
fine-tuning strategy that curates only privacy-vulnerable weights. To the best of our knowledge, our
approach is the first to perform membership-privacy-oriented fine-tuning at a weight-level granu-
larity. Through comprehensive experiments against modern membership inference attacks, LiRA
Carlini et al.|(2022a)) and RMIA [Zarifzadeh et al.| (2024), we demonstrate that, in terms of privacy-
utility tradeoffs, our strategy outperforms existing privacy-defending methods that train machine
learning models even from scratch.

We emphasize the following core insights that we identified through this paper:
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* Privacy vulnerability exists in a very small fraction of weights.
* However, most of those weights also critically impact utility performance.
* The importance of weights stems from their locations rather than their values.

2 PRELIMINARIES AND RELATED WORK (MORE CONTINUED IN APPENDIX)

In this section, we introduce fundamental background knowledge regarding Membership Inference
Attack, and prior studies regarding Importance estimation of components in neural networks. Due
to page limitations, further related work concerning Membership privacy preservation methods and
machine unlearning is presented in Appendix [A]

2.1 INTRODUCTION TO MEMBERSHIP INFERENCE ATTACKS

In our study, we focus on membership privacy on classification tasks. In Membership Inference
Attacks (MIAs), the attacker’s goal is to determine whether a given sample was part of the training
dataset of a target (or victim) model. Formally, consider a target model, f(-;6) : RCn — RCout,
where C},, is the input dimensionality and C,,; is the class count of the task. A membership infer-
ence attack can be formulated as

A f(x;0) — {0,1}, (D
where A is a binary classifier that outputs 1 if the sample « is inferred to be a member of the training
set of f(+;0), and O otherwise. The design of the attack function .A depends heavily on the attack
strategy. In neural network (NN)-based MIAs [Shokri et al|(2017); [Salem et al.| (2019)), A itself is a
machine learning model trained on the predictions of the target model. In contrast, in metric-based
approaches (e.g., threshold-based MIAs) |Song & Mittal| (2021); IDel Grosso et al.| (2022); |Carlini
et al.| (2022a); [Leemann et al|(2023)); [Zarifzadeh et al.|(2024)), A is defined by a manually specified
function that computes certain statistics (such as confidence scores or loss values) and compares
them against a threshold, typically chosen using auxiliary techniques such as shadow models Shokri
et al.|(2017);|Carlini et al.| (2022a)).

2.2 IMPORTANCE ESTIMATION OF COMPONENTS IN NEURAL NETWORKS

The importance estimation of components in neural networks has mainly been studied in the context
of model pruning. Frankle & Carbin|(2019) observed that the potential of weights can be determined,
in terms of generalizability, once the model is initialized. [Lee et al.|(2019); Molchanov et al.|(2019)
made use of weight gradients in searching for subnetworks with comparable generalizability to the
original model. [Liebenwein et al.|(2021) explored possible loss beyond generalizability in pruning.
Ye et al.|(2019); Sehwag et al.| (2020) explored how to prune neural networks in the adversarial envi-
ronment. Tang et al.|(2020) assessed the reliability importance of neurons by aligning spurious and
clean samples through learnable masks. [Frankle et al.[(2020) observed that weight rewinding helps
fine-tuning of extremely sparse models. |Renda et al.|(2020) found fine-tuning with rewound weights
usually outperforms direct (a.k.a., in-place) fine-tuning. (Gadhikar & Burkholz| (2024)) analyzed the
factors why learning rate rewinding, along with weight rewinding, recovers utility better. Tran et al.
(2022) found that models suffer from fairness deterioration after pruning. \Wang et al.| (2023) com-
puted connectivity importance via the influence on the spectrum of the neural tangent kernel (NTK)
Jacot et al.|(2018)). Jia et al.|(2023) found machine unlearning can benefit from magnitude pruning.
Sun et al.| (2024) applied activation into importance estimation based on the characteristics of large
language model. |Ye et al.| (2025) proposed a training-free importance estimation and pruning on
foundation models. Our work is distinct in that we identify privacy-vulnerability of weights.

3 MOTIVATION: REMOVING UNIMPORTANT WEIGHTS IS INEFFECTIVE FOR
PRIVACY

One of the fundamental weight/neuron importance estimation methods is Taylor First Order (TFO)
Molchanov et al.| (2019). The method estimates the global weight importance via magnitudes of
gradients and weights, which is formulated as follows:

S={si}it; ={ Z |9s,awi,al }ity 2)
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where S denotes the set of importance scores of weights in the evaluated model, s; denotes the
importance score of the weight, w;, w; 4 denotes the value of the i-th weight of the model before

updating with the data point d, g; 4 denotes the i-th weight’s gradient computed under data point d,
Dy, denotes the randomly selected subset of training data D,,. (i.e., D, C Dy,.), and m denotes the
number of weights the model contains. In TFO, the approach usually accumulates the scores in tens
of iterations along with the model update in each turn of filter removals of the model. Although the
TFO groups weight scores into their belonging filters/neurons ultimately for filter/neuron pruning,
we use the primitive weight scores for one-shot weight-level pruning.

In detail, to identify the most critical weights,

according to the importance estimation method, 100y 2or

we prune out the least important weights in one g °7° I I I ) 157

shot instead of iterative and gradual removal as £ 0.50¢ Z10

in the original TFO. Figs. and exhibit < g,5| == Tain © 0.5 = Train
that, even in the very high sparsities, accuracy is = B

80 85 87.5 90
Sparsity (%)

(b) CE loss
w/ fine-tuning

0 80 85 87.5 90 0

maintained, but privacy vulnerability does not Sparsity (%)

improve. Also, at times, the model becomes
even more vulnerable after pruning, evidenced
by the increase of the testing loss of 90% spar-
sity from 0% one (non-pruned) as shown in
Fig. and also the observation by [Yuan &
Zhang| (2022) that MIAs on some pruned mod-
els become more successful. Overall, these ob-
servations lead us to conjecture that,

(a) Accuracy
w/ fine-tuning

Figure 1: According to TFO, important weights
are pruned over different sparsities. The results
are shown on ResNet18 and CIFAR-100

Conjecture: The performance impact and privacy vulnerability are entangled and
exist in a very small number of weights.

An intuitive way for verifying this conjecture is to show a correlation between privacy vulnerability
and performance impact. For the goal, we distinguish the traditional estimation of how to maintain
utility performance from the estimation of privacy vulnerability. We here refer to the importance
estimation for utility performance (i.e., accuracy) in the common pruning techniques as learnability
while we refer to how privacy-vulnerable a weight can become as privacy vulnerability. In the next
section, we first propose our approach to estimate privacy vulnerability. Then, the entanglement
issue of learnability and privacy vulnerability is empirically shown, and we discuss how to solve it.

4 PROBLEM SETUP AND METHODOLOGY

4.1 PRIVACY VULNERABILITY ESTIMATION

grad

Membership privacy vulnerability is mainly due to the behav-
ioral disparity between member and non-member data. Hence,
the intuition of our approach is to determine critical weights of
the model that exacerbate the discrepancy between the two pre-
diction distributions to preserve privacy. To achieve this goal,

Unprotected

Model Train

learn

(a) Existing learnability estimation

we make use of the concept of machine unlearning |[Bourtoule Unorotected grad
nprotecte

et al.|(2021) to design a mechanism to let the model learn mem- Model oo Train
ber data while unlearning non-member data, respectively.
. . . . . . grad unlearn
Our privacy vulnerability estimation approach (Fig. consists
of a unprotected model, M,,,; a vanilla model, M,,; member - \1\//?:::

set, Dy,; and non-member set, D,... The Dy, is the set on which inference

the M, is trained. The non-member set, D,., is a held-out
set of data points that the M, has never seen during training,
and it is also disjoined from the testing data in the evaluation
phase. The two models, M, and M, are in the same struc-
ture, f(-;6), but with different parameters, 6,,,, and 6,,,,, respec-
tively. 6,,,, are pretrained on training data D, while 6,,, are the
values at initialization before being trained on Dy,..

(b) Our proposed privacy vulnerability
estimation

Figure 2: Our approach takes
into account privacy vulnerability
for importance estimation, while
TFO only measures learnability
for accuracy.
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Figure 3: The visualization of weight-level learnability scores and privacy vulnerability scores.
Privacy vulnerability and accuracy are significantly correlated and this correlation varies in different
components. Due to the significant scale discrepancy, the ranges of axes of the four charts in ViT
are not consistent. (The same data points as TabE[)

For member data, D, we force the model to minimize the loss as much as possible. In contrast,
for non-members, D;,., we encourage the predictions close to the vanilla model, M,,,,, rather than
ground truths. This process can be formulated as follows:

arg rélin{E(Ly)NDw [Lce (I, Y; Mup)] ’ E(I,y)NDre [‘Ckl(z; Mupa Mvn)] } 3)

where L.. denotes the cross-entropy loss function, and L£;; denotes Kullback-Leibler (KL) diver-
gence [Csiszar] (1975); Hinton et al| (2015). Through this process (Eq. [3), the model tries to learn
information that is only effective for recognizing member data points so that it can maintain low
loss on the train set when unlearning the non-member set, which does not contribute to the privacy
vulnerability of the model since the data points are all non-member. In details, we fine-tune the
unprotected model, M,,,, using the following objective function:

»vae = (1 - )\)ﬁce(f(xth eup)a ytr) + Aﬁkl(f(xre; eup), f(xre; gup)) 4)

where (24, yt) and . are mini-batch samples randomly sampled from D, and D,.., respectively;
A is hyper-parameter to balance the learning and unlearning losses so that the fine-tuned model can
maintain accuracy on Dy, while losing accuracy on D,.. as much as possible. The final privacy
vulnerability estimation function is the same as Eq. [2] but with these aforementioned processes and
constraints. It accumulates the weight-level importance with respect to privacy vulnerability, via
gradients and magnitudes at each step, along with the update of 0,,,.

4.2 LEARNABILITY AND PRIVACY VULNERABILITY ARE ENTANGLED

To verify our conjecture in Sec. [3] we visualize the weight-level privacy vulnerability scores
and learnability scores in Fig. 3] and quantify their correlations in Tab. [T] with two architectures:
ResNet18 He et al.| (2016) and ViT |Dosovitskiy et al.|(2021). Shown by the charts for all train-
able weights (the leftmost column) in Fig. [3] most of the weights are neither privacy-vulnerable nor
learnability-critical, which aligns with the experimental results in Fig.[I] It tells again that pruning
learnability-noncritical (not critical for accuracy) weights does not remove the privacy risks (predic-
tion discrepancy).

The other weights, much fewer than these non-critical weights, can be categorized into three types:
privacy-vulnerable, learnability-critical, and both. Tab.[T]shows the Pearson correlation coefficient
between privacy vulnerability and learning ability. We find that the results of the two architectures
are consistent that the correlation in normalization layers (batch normalization [loffe & Szegedy
(2015) in ResNet18 and layer normalization [Ba et al.| (2016) in ViT) are the lowest while the cor-
relation in main components of the models (convolution layers in ResNet18 and Attention & MLP
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layers in ViT) are the highest. Weights belonging to normalization layers occupy only a tiny propor-
tion of weights—less than 1%. However, some of them are the highly privacy-vulnerable weights of
the models as shown in the charts of normalization layers weights (the 3rd column) in Fig.[3] Since
these weights are also critical for learnability (many weights in normalization layers exhibit high
learnability scores), pruning them by common pruning techniques will impair the performance.

Moreover, the majority of the weights be-
long to convolution/attention/MLP layers,
and they show strong correlations—over 0.9

Table 1: The correlation between privacy vulner-
ability and learnability in two architectures. PCC
. . . denotes Pearson Correlation Coefficient. At t +MLP
in Pearson correlation coefficient—between denotes the weights of the attention layers and MLP

privacy-vulnerability a}nd learna.blhity (see layers in transformer blocks. (The same data points
Tab. [I). The correlations are significantly as in Fi
higher than normalization layers. This re- &

sulF indicates that many prlvacy—vqll}erable Model Weight Type PCC  Proportion
weights are also crucial for learnability. In
e, All 0.8329 100.00%
addition, compared to CNNs, transform-
B . i1 Conv 0.9410 99.50%
ers exhibit higher privacy vulnerability (see ResNet18 . o
. . Linear 0.8096 0.45%
charts of convolution layers weights and Norm 0.6776 0.05%
Att+MLP layers weights (2nd column in Al 07667 100.00%
Fig. 3)), which is also supported in part by ViT At+MLP 0.9068 99.39%
the observation of Zhang et al.|(2024) that at- 1 Linear 0.8642 0.54%
tention layers lead to worse privacy risks. Norm 0.7336 0.07%

Finally, the linear layers in Tab. [T| denote the
last few linear layers. We find that most weights in them are not privacy-vulnerable, while some of
them could be learnability-critical.

In summary, most privacy-vulnerable weights impact learnability (utility performance). This is
the fundamental reason why the existing standard pruning techniques fail to effectively reduce pri-
vacy risks. To address this issue, we propose Critical Weights Rewinding and Finetuning (CWRF)
in the next section to promote the model to achieve better privacy-accuracy trade-offs.

4.3 CRITICAL WEIGHTS REWINDING AND FINETUNING (CWRF)

Our approach (CWRF) consists of three steps: (i) estimating privacy vulnerability, (if) rewinding &
freezing privacy-vulnerable weights, and (iii) fine-tuning the other weights with privacy-preservation
training approaches. Since privacy vulnerability estimation has been elaborated in Sec4.T] we start
our discussion from the second step.

Weights Rewinding. Weights rewinding [Renda et al.| (2020); |[Frankle et al.| (2020) is a strategy
that rolls back weights to earlier values in training. In our approach, the weights are rewound to the
initial status, at which point the weights are privacy-safe because no data has been exposed to the
model. Once calculating the privacy vulnerability estimation scores Sy, in the way described in
Sec[.T] two masks for weights rewinding and fine-tuning can be produced as follows:

Br = {]I[Sl Z Q(Spve»r)]}siesm,ea Bf =1- B'f‘ (5)

where B, denotes weight rewinding mask, B; denotes weight freezing mask, I(-) denotes indicator
function, Q(+, -) denotes the combination of sort function in descending order and quantile function,
and r denotes the predefined rewinding rate we opt to. After producing the masks, a portion of the
weights of the trained model is rewound from 6, to 0, (defined in Sec as follows:

67”&) :Bf @9up+8r®evn (6)

where ® denotes Hadamard product and 6,.,, is the updated weights with partially rewound weights
after the two masks are overlaid. After rewinding, the most privacy-risky weights can return to
being privacy-safe. However, due to entanglement between privacy-vulnerability and learnability,
the rewinding also leads to the utility deterioration of the model. More precisely, it usually leads to
random-guess-level utility. Hence, the model needs to be fine-tuned to recover its utility.

Weights Freezing & Privacy Fine-Tuning. The final step is fine-tuning the model to achieve
better privacy-utility trade-offs. It consists of two parts: Weights freezing & privacy fine-tuning.
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Algorithm 1: Pseudocode of CWRF

Input: Unprotected model M, with parameters 6,,,,, vanilla model M,,,, with parameters
0., member (train) set D;,., and non-member (reference) set D,.., batch size B,
privacy-preserving training approach P, the number of iterations for score
estimation 7', the number of fine-tuning epoches F, the learning rate for estimation
7, the learning rate for fine-tuning 7.

Result: Privacy-fine-tuned M, with parameters 6,,,

Initialize {¢; = 0}?7:1 which are corresponded to weights of ,,,

[

Copy unprotected model, denoted as M;p with parameters 9;17
sfori=1...Tdo

4 | Getsample batches {(z!",y!")}2.| C Dy, and {(2°,y/°)}2, C D,
s | Forward and compute loss £,,¢ (M;p(x?), yir, M;p (x€), Myn (279))
6 (Lpye refers to Eq.

7 Approximate gradient Z +— V%pﬁpve

’

8 Compute scores ¢ < ¢ + |20, (refer to Eq.

9 Update unprotected model G;Lp — G;Lp —nZ

10 end

u Get the two masks B, = {I[s; > Q(Spve,7)]}sie8,0. Bf =1 — By (refer to Eq.
12 Rewind the unprotected model 0,,;, <= By © 8y, + B, © 0y, (refer to Eq.

13 for epoch =1... FE do

14 fort=1...K do

15 (K denotes the number of mini-batches)

16 Get sample batches {d!" = (21", y!")}B. | C Dy,

17 (Some preserving approaches may additionally require reference data)

18 Train the unprotected model with privacy approach P (M, di")

19 Approximate gradient Z <— VP

20 Update the model M, with masks 0, <— 0., — 0. ZBy (refer to Eq.
21 end

2 end

For training 6,.,, to preserve privacy, we can plug in any privacy-preserving approaches and train
the model. Note that the approaches need to train the model from scratch, but by being plugged
into our method, they only require partial weights to be rewound and frozen, and then the rest of
the weights are fine-tuned. From the perspective of implementing weight freezing, masking the
gradients is a sensible option to stop the update of the non-rewound weights. Given the gradients,
Gp, obtained by the privacy-preserving training approach with the rewound weights, 6,.,,, at each
fine-tuning iteration, we can filter out the gradients of the frozen weights so that only the rewound
weights can be updated:

Gp < By © G, (7

During the fine-tuning process, we do not train a model at a fixed learning rate because neither a
too small or too large fixed learning rate is good at recovering the model from random guess status.
Instead, the learning rate is also rewound to the earliest learning rate at which the model started.
The way is similar to learning rate rewinding (LRR) [Frankle et al.| (2020); |Gadhikar & Burkholz
(2024), although we rewind the learning rate to the very initial one. The self-contained procedure
of CWREF is described in Alg.[T} The CWRF contains three stages: (i) scoring privacy vulnerability,
(if) rewinding and freezing privacy-vulnerable weights according to scores, and (iii) fine-tuning the
rest of the trainable weights with a privacy-preserving approach. CWRF can adapt arbitrary privacy
training approaches by plugging them into the third stage of CWRF for privacy-post-training. We
note that it might be somewhat counterintuitive to fine-tune the privacy-invulnerable weights rather
than the privacy-vulnerable. There are two reasons why the model is fine-tuned that way: (i) the
privacy risks of the privacy-vulnerable weights have been fully removed thanks to rewinding. Fine-
tuning the rest of less- or in-vulnerable weights help the model with further mitigation of privacy
risks. (if) based on our hypothesis and empirical investigation elaborated and explained in Sec. 4.4}
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fine-tuning privacy-invulnerable weights help the model recover its utility better than doing that on
privacy-vulnerable weights. We explain this in detail in the next section.

4.4 THE PRIVACY-VULNERABLE WEIGHTS ARE UNNECESSARY TO BE TRAINED

Finally, we explain why we fine-tune the privacy-invulnerable weights

rather than the vulnerable. The lottery hypothesis |[Frankle & Carbin|

(2019) proposed and validated that the learnability of weights in a neu-
ral network is determined at the initialization phase. Motivated by the

insight, we propose and validate a hypothesis in this section:

Hypothesis: The learnability of a weight in a neural
network is determined by its position rather than its
value (magnitude & sign.)

This can be observed and understood through model pruning.
For the verification, we devised three models:

e M1: unpruned model trained from scratch.

N
IS

Test Accuracy
o
N

0.0 M1 M2

Model

M3

Figure 4: The performance
of M1, M2, & M3 on
ResNet18 & CIFAR-100.

* M2: 85% pruned model from M1 and then rewound to the initial values and retrained.
* M3: 85% pruned model from M1 with no fine-tuning/retraining

M2 and M3 are pruned with the same masks based on M1. Their
comparisons are shown in Fig.[d} Let us focus on the learnability-
unimportant weights that are present in M1 (which are pruned away
in M2 and M3.) By looking at the almost same final accuracy of
M1 and M2, we can infer that in M1 the learnability-unimportant
weights shared knowledge and role with the learnability-important
weights. This is also cross-checked by the accuracy drop of M3
(from M1) where the learnability-unimportant are discarded. It
hints at the potential of the pruned weights (which were regarded
as not important for learnability, though) toward learnability to
some extent. Overall, it is encouraged not to update learnability-
important weights by the Hypothesis, but to finetune learnability-
unimportant weights by Fig. ] On top of that, by considering that
privacy-vulnerable weights are entangled with learnability-critical
weights, we only rewind the privacy-vulnerable weights so as not
to hurt the accuracy, but fine-tune only privacy-invulnerable weights
- not to expose the privacy-vulnerable weights to the data again to
reduce privacy risk.

Test Accuracy
e 2o
> o

<
N

1.0
Portion (%)

3.0

Figure 5: The performance of
Al, A2, & A3 along with re-
moving/rewinding ratios. The
dotted line represents a base-
line performance of a model
trained from scratch with the
same privacy-preserving ap-
proach

Based on the insights, to verify the hypothesis and validate our approach, CWRF, we compare the

following three approaches:

* Al: Remove privacy-vulnerable weights & fine-tune privacy-invulnerable weights;
¢ A2: Rewind privacy-vulnerable weights & fine-tune privacy-vulnerable weights;
* A3 (CWRF): Rewind privacy-vulnerable weights & fine-tune privacy-invulnerable weights.

As for privacy-preserving training,
here we apply RelaxLoss
(2022) to fine-tune the three approaches.

Shown in Fig. 3} it is very clear that rewound weights.

Table 2: The Cross-entropy loss after fine-tuning with a
privacy-preserving approach, according to the portion of

discarding privacy-vulnerable weights Approach 01%  1.0%  3.0%  5.0%
(A1) leads to unrecoverable accuracy 7 —tran 17768 08570 04336 04619
crash for the model, unlike the cases 5 (.o 13797 12728 09288 0.9610
of A2 & A3. The performance dis- A3 _rain 0.1502 03376 0.4473 0.4815
crepancy stems from “removing” (Al) A3 - test 0.7720 0.7433 0.8044 0.8330
vs. “rewinding” weights (A2 & A3).  From scratch - train 0.8087

That is because removing alters the  From scratch - test 1.5398

locations of the weights, but rewinding
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does not. This comparison successfully validates our hypothesis that the locations of weights
are of paramount importance for learnability. As long as the crucial locations in the model are
retained, the model preserves the capability to recover its accuracy. Another point to pay attention
to is the performance gap between A2 and A3. By retaining the locations of privacy-vulnerable
weights (A3), the model can recover its accuracy when a very small portion of privacy-vulnerable
weights are rewound, and it even outperforms the baseline model that is trained from scratch
using RelaxLoss with the same training configurations except for epochs. As for privacy-related
information, Tab. 2| displays the model’s prediction loss distributions on train and test set at various
configurations. It exhibits that CWRF (A3) shows significantly better loss gap compared to A2
and the model trained from scratch, especially at portions of 3.0% & 5.0% while they are at the
same testing accuracy at these ratios. Overall, it tells us that fine-tuning on privacy-invulnerable
weights (A3) has less negative impact on the testing distribution compared with A2 (fine-tuning on
privacy-vulnerable weights.)

5 EMPIRICAL STUDY

5.1 EXPERIMENTAL SETUPS

Datasets. We evaluate defense approaches on three datasets: CIFAR-10 & -100 Krizhevsky et al.
(2009) and CINIC-10 Darlow et al.|(2018). CINIC-10 contains 270, 000 images, evenly distributed
into training, validation, and testing subsets. The size of the images in the CINIC-10 is resized to
32 x 32, which is the same as the CIFAR datasets. In all three datasets, we randomly sampled
some data points from the training data, which are disjoined from the data points used for train-
ing the specific single model. More details regarding sampling are described in MIAs’ setting in

Appendix [B]

Models. To adequately evaluate our approach against compared approaches, two commonly used
architectures, ResNet18 [He et al.| (2016) and Vision Transformer (ViT) |[Dosovitskiy et al.| (2021)),
are used in the experiments. When evaluating with ResNet18, we adapt the model configurations
designed for the CIFAR datasets in the original paper. As for ViT, the inputs of images are divided
into patches of 4 x 4, which is smaller than the ViT designed for the ImageNet dataset Deng et al.
(2009) in the original paper.

Attacks. To show the superiority of our approach in boosting privacy-preserving methods against
membership inference attacks, two recent MIAs techniques, Likelihood Ratio Attack (LiRA)|Carlini
et al.|(2022a) and Robust Membership Inference Attack (RMIA)[Zarifzadeh et al.|(2024)), are adopted
in our defense evaluation. In addition, the strategy of adaptive attacks Song & Mittal| (2021) is
applied to all MIAs to rigorously evaluate the defense approaches. We evaluate the model’s reliance
ability against attacks along two metrics: (i) AUC and (ii) TPR at low FPR. Specificly, the TPRs at
103 and 10~° FPRs are reported in our paper. More details of attacks are elaborated in Appendix

Defenses. To verify the universality of our approach, we provide extensive comparisons with four
privacy-preserving training approaches: Differentially private stochastic gradient descent (DP—SGD)
Abadi et al.|(2016), relaxed loss (RelaxLoss)|Chen et al.|(2022), High accuracy and membership
privacy (HAMP) (Chen & Pattabiraman| (2024), convex-concave loss (CCL) [Liu et al.| (2024)), and
privacy-aware sparsity tuning (PAST) [Hu et al.| (2024) are deployed to train the models against
MIAs. We adopt the implementation of DP-SGD provided by the Opacus library |Yousefpour et al.
(2022) while we adopt the official implementation of other defense approaches. Due to compatibility
issues between DP-SGD, Batch Normalization, and Dropout techniques, DP-SGD is only applied to
ViT. In addition, since we compare the model’s internal privacy-defense ability, the training part of
HAMP is deployed when we use it.

General Configurations. Adam optimizer Kingma & Ba|(2015)) is applied to train all models. We
set the hyper-parameters 3; = 0.9, B2 = 0.999 and the weight decay to 5 x 10~*. For the learning
rate, we train the model by setting the initial learning rate to 1 x 10~2 and changing the learning rate
along steps with the cosine annealing scheduler |Loshchilov & Hutter| (2017). The batch size and
epochs of all tasks training from scratch are set to 256 and 100, respectively. As for defenses, we
follow the original paper’s hyperparameter settings for each approach that we compare with. As for
attacks, eight shadow models, including four ‘IN’ models and four ‘OUT’ models that are required
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by LiRA and RMIA, are deployed for both attacks. We report all results in three independent runs.
As for the experimental environment, some important information of the computation device is listed
as follows:

CPU GPU RAM ‘ oS CUDA  Python  PyTorch
AMD Ryzen™ 7 7700X  NVIDIA GeForce RTX 5090 64 GB ‘ Ubuntu 24.04 LTS 12.9 3.123 2.80

Customized Configurations In our approach, on the privacy vulnerability estimation stage, 30
iterations and 256 mini-batch size are applied. The A is set to 0.7 for CIFAR-10 and CINIC-10
while it is 0.9 for CIFAR-100. As for fine-tuning epochs, we set it to 40 with the same initial
learning rate using in training from scratch. The same learning rate scheduler is also applied. We
perform grid search to select the rewinding rate 7 € [1%, 10%).

5.2 CWRF (OURS) WITH VARIOUS PRIVACY-PRESERVING APPROACHES

In CIFAR-10, we report results with both ResNet18 and ViT in Tab. E} In the evaluation of ResNet18,
three approaches, RelaxLoss, HAMP and CCL are all effective in privacy-preservation. The results
exhibit that our approach successfully improves the models’ resilience against SOTA MIAs by plug-
ging other privacy-training approaches. Especially, approaches with CWRF all achieve significant
mitigation of privacy risks under LiRA. However, under RMIA, the combo of RelaxLoss and CWRF
suffers from some slight increase in privacy risks. This is to some extent due to the instability of
solely deploying RelaxLoss—the significantly higher variance of test accuracy. With such instabil-
ity, the shadow models of RMIA become harder to model the target model’s behavior. As for ViT,
the performance of CWRF becomes even better: combining with all four approaches—DP-SGD,
RelaxLoss, HAMP, and CCL, CWRF shows most effective improvements in reliance against the
attacks while, in some instances, the testing accuracy becomes even better (DP-SGD + CWREF).

CINIC-10 has more data points, thus showing more stable trends (see Fig. [6a). Considering the
utility-privacy tradeoffs, the best combo is HAMP with CWREF: it shows not only a significant ad-
vance in test accuracy—even substantially more than the undefended model—but also best privacy
resilience against both attacks. However, the CCL is not fully effective under RMIA, the perfor-
mance becomes worse in terms of AUC and TPR when FPR is fixed at 0.1%. After the addition
of CWRE, it becomes further worse in RMIA, while the privacy risks are mitigated under LiRA. In
RelaxLoss, training with CWRF helps the model stably improve its generalizability and privacy.

Table 3: The performance of four privacy-preservation approaches with and without CWRF (Ours)
on CIFAR-10. Higher is better in test accuracy (1) while lower is better in Privacy ({).

\ \ \ LiRA (]) \ RMIA(])
Model | Defense \ T:’(S;“?c)c‘ \ AUC (%) TPR(%)@FPR \ AUC(%) TPR(%)@FPR
0., 0 0
| | | 0.1% 0.1%00 | 0.1% 0.1%o00
‘ No Defense ‘ 79.44(0_23)‘ 85.00(2_20) 2.18(0_59) 1.78(0_34) ‘ 74.76(1_59) 5.88(0_70) 3.90(1_31)
RelaxLoss 77.10(1_21) 70.51(2_72) 1.38(0_42) 0.52(0_21) 66.60(1_67) 0.52(0_34) 0-12(0.16)
+CWRF (Ours) | 76.86(0.29) | 6831(0.6s) 0.03(0.05) 0.03(0.05) | 68.18(1.53) 12200.97) 027(0.19)
ResNetl8 | pgamPp 77.790.33) | 7971(0.20) 3-33(0.73) 1.80(1.47) | 80.07(0.58) 728164y 1.93(1.28)
+CWRF (Ours) | 81.43(0.15) | 77.96(0.13) 0.53(0.58) 0.07(0.06) | 80.26(0.41) 4.30(1.33) 1.66(0.65)
CCL 79.56(0.38) | 8395(0.36) 1.50(0.71) 0.80(0.61) | 76.040.30) 423(0.54) 222(1.55)
+CWRF (Ours) | 77.77¢0.56) | 64.82(0.32) 0.22(0.06) 0.10(0.04) | 74.25(0.36) 2.80(0.43) 0.93(0.33)
| No Defense | 5645(0.46) | 82.88(0.68) 1.60(1.14) 1.92¢0.41) | 84440027y 1.52(0.81) 045(0.32)
DP-SGD 57.63(0.29) | 54.97(0.41) 04500.11) 0.17(0.06) | 60.86(0.18) 0.23(0.16) 0.18(0.06)
+CWRF (Ours) | 60.45(0.37) | 55.68(0.55) 0.13(0.06) 0.00(0.00) | 6046(1.03) 0.13(0.02) 0.03(0.05)
RelaxLoss 5721¢0.75) | 73450.73) 0380.18) 037(0.18) | 72.87(1.35) 0.85(0.72) 0.23(0.23)
+CWRF (Ours) | 56.82(0.15) | 55.88(0.54) 0.12¢0.10) 0.03(0.05) | 63.30(0.77) 0.38(0.31) 0.10(0.11)
ViT
! HAMP 51.62(0.72) | 50.53(0.41) 0.07(0.09) 0.00(0.00) | 5442(0.55) 027(0.12) 0.05(0.04)
+CWRF (Ours) | 5250(0.39) | 50.15(0.40) 0.05(0.11) 0.00(0.00) | 51.50(1.14) 0.13(0.08) 0.02(0.02)
CCL 54.25(0.71) | 52.18(0.53) 0.02(0.02) 0.00(0.00) | 56:33(0.83) 0.12(0.0s)  0.00(0.00)
+CWRF (Ours) | 5345(0.65) | 51.68(0.36) 0.00(0.00) 0.00(0.00) | 51.32(0.57) 0.07(0.06) 0.00(0.00)
‘ PAST ‘ 54.84((,_56)‘ 54.30(0.79)  0.17(0.10)  0.08(0.0s) ‘ 62.99(1.42) 0.97(0.25y 0.25(0.25)

)
+CWRF (Ours) | 54.66(0.37) | 53.86(1.209) 0.15(0.10) 0.08(0.08) | 62.10(0.08) 0.68(0.31) 0.22(0.14)
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Figure 6: The performance of ResNetl8 trained with three privacy-preservation approaches with
and without CWRF (Ours). The dotted line represents a baseline performance of a model trained
from scratch with regular training approach, Cross-Entropy.

In CIFAR-100, the results—see Fig.[6b}—vary a lot due to the more difficult task, but limited training
samples. We note that the model solely trained with HAMP fails to converge. In contrast, the model
can achieve better utility when it is trained with both HAMP and CWREF. As for CCL, the trend is
consistent with that in CINIC-10. These results hint to us that our approach can definitely boost
the privacy-preserving approaches only when the approaches can be effective against MIAs. As
for RelaxLoss with CWREF, it shows stable improvements in both generalizability and privacy. In
addition, in the evaluation of LiRA with 128 shadow models (discussed in Sec.[C.I]in the appendix),
CWREF shows the consistent advantages by combining each of the three approaches.

In summary, when the applied privacy-preserving approach is effective in the specific situations, our
approach, CWREF, can always boost it to achieve better privacy-utility tradeoffs. We also empha-
size that our approach can assist the stability of privacy-preserving training by stabilizing testing
accuracy variance through multiple independent runs and avoiding model collapse.

6 CONCLUSION

We design a method to estimate weight-level privacy vulnerability. By exploring the correlation
between privacy vulnerability and learning ability, we explained and showed why neural network
pruning is not effective in eliminating model privacy vulnerabilities in previous studies. Throughout
this paper, we found that privacy vulnerability exists in a very small fraction of weights entangled
with learnability. We also recognized the importance of weights stems from their locations rather
than their values. Based on those insights, we propose a strategy to mitigate membership privacy
risks of the model that rewinds partial privacy-vulnerable weights and freezes the others, and then
does privacy-preserving fine-tuning. Through comprehensive experiments, we demonstrate that our
strategy achieves a more effective balance between accuracy and privacy than directly applying
existing privacy-preserving methods that train from scratch.
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A FURTHER RELATED WORK

A.1 MEMBERSHIP PRIVACY PRESERVATION METHODS

Prior membership privacy preservation research mainly focused on data-end and training compo-
nents. |Abadi et al| (2016) attempted to prevent data points from being over-learned via gradient
clipping and noise confusion. [Nasr et al.|(2018)) tried to align member and non-member predictions
via adversarial learning. Jia et al.|(2019)) attempted to mitigate privacy breaches by obfuscating pre-
diction probabilities. [Kaya et al.|(2020) found that the sense of privacy provided by the regularization
mechanisms is false. |(Chen et al.|(2022) designed a prediction-distribution-aligning loss function via
reducing the generalization gap and increasing the variance of the training loss distribution. |Fang &
Kim| (2024ajb) attempted to mitigate privacy breach by explicitly facilitating representation align-
ment in latent space. |Liu et al.|(2024) achieved privacy preservation by embedding a concave term
into convex losses, which help the model predictions with high variance in training losses. [Zhang
et al.|(2024) determined that components such as attention modules lead ViTs’ privacy vulnerability
to be significant than CNNs. |Carlini et al.| (2022b)) observed that simply removing the data identifi-
able by MIAs from the training dataset induces new privacy leakages in the model. |Ye et al.| (2024)
quantified sample-level privacy vulnerabilities via leave-one-out. |Li et al.|(2024) tried to separately
handle privacy-risky data points that are leaked from model. [Yuan & Zhang| (2022) observed that
common accuracy-oriented pruning & fine-tuning techniques cannot eliminate privacy risks in neu-
ral networks. [Shang et al.| (2025)) identified privacy-risky samples to mitigate the privacy risks of
the model by rotating the phases of destroying memorization and relearning selective samples dur-
ing the accuracy-oriented iterative pruning. [Shejwalkar & Houmansadr| (2021)); [Tang et al.[ (2022));
Yang et al.| (2025)) facilitated the mitigation of privacy leakage during training by producing privacy-
friendly soft labels. |(Chen & Pattabiraman|(2024) attempted to avoid overconfidence in both training
and inference stages. Zhao & Zhang| (2025)) claimed prior data synthesis approaches cannot prevent
privacy leakage. However, past studies did not identify where the privacy risks are inside neural
networks. In our paper, we locate and analyze weight-level privacy vulnerabilities.

A.2 MACHINE UNLEARNING

A general goal of machine unlearning (MU) is to get rid of the impacts of some data points. Current
MU approaches can be categorized into two types: (i) data reorganization and (i7) model manipula-
tion. The data reorganization approaches usually modify data or labels to achieve unlearning, such
as label obfuscation |Graves et al.| (2020), data pruning [Bourtoule et al.| (2021), or data replacement
Cao & Yang|(2015). As for model manipulation, it mainly consists of two directions: updating the
model weights|Schelter|(2019)); (Cha et al.| (2024)); (Georgiev et al.|(2025), and replacing components
Schelter et al.[(2021). In our paper, we mainly study the way of updating model weights to explore
the weight-level privacy vulnerability in neural networks.

B EXPERIMENTAL SETUPS

Attacks. To show the superiority of our approach in boost- Table 4: The number of data
ing privacy-preserving methods against membership inference points sampled from the entire
attacks, two recent MIAs techniques, Likelihood Ratio Attack pon-testing set.
(LiRA) Carlini et al.|(2022a) and Robust Membership Inference
Attack (RMIA) [Zarifzadeh et al|(2024), are adopted in our de- Dataset | Training Reference
fense evaluation. To simulate the scenario where the shadow CIFAR-I0 | 18,000 2,000
CIFAR-100 | 18,000 4,000
model technique [Shokri et al.| (2017); |Carlini et al. (2022a) is CINIC-10 | 25,000 5, 000
applied, only a small portion of the data is sampled as training
data and reference data for each model. In our study, we follow LiRA’s sampling strategy, while the
precise quantities are different. The specific quantities for each dataset are provided in Tab. d In
addition, the strategy of adaptive attacks|Song & Mittal| (2021) is applied to all MIAs to rigorously
evaluate the defense approaches. We evaluate the model’s reliance ability against attacks along two
metrics: (i) AUC: by integrating the ROC curve across all thresholds, the AUC reflects the degree
to which the attacker can distinguish the membership of the data points for the target model that is
attacked by attacker; (if) TPR at low FPR: we also use true-positive rate (TPR) at low false-positive
rates (FPR) as a metric to show the model’s privacy vulnerability since (Carlini et al.| (2022a) state
that neither attack accuracy nor AUC scores adequately reflect an attack’s ability to confidently
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Figure 7: The performance against LiRA when 128 shadow models (64 ‘IN’ and 64 ‘OUT’ models)
are deployed for ResNet18 trained with three privacy-preservation approaches (RelaxLoss, HAMP,
and CCL) with and without CWRF (Ours) in CIAFR-100. The dotted line represents a baseline
performance of a model trained from scratch with regular training approach, Cross-Entropy.
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Figure 8: The performance of transformer trained with three privacy-preservation approaches with
and without CWRF (Ours) in DBpedia-14. The dotted line represents a baseline performance of a
model trained from scratch with regular training approach, Cross-Entropy.

determine membership while TPR at low FPR identifies it better. A perfect defense mechanism
corresponds to AUC = 0.5 in the first metric while TPR = 0 in the second metric. Specifically, the
TPRs at 10~ and 1075 FPRs are reported in our paper.

C FURTHER EXPERIMENTAL RESULTS AND DISCUSSION

C.1 MORE SHADOW MODELS

To reinforce the empirical evidence of our experiments, we further explore how our approach and
others perform when evaluate ResNet18 under LiRA with more shadow models in the CIFAR-100
classification task. As shown in Fig.[7] when 128 shadow models, stronger attacks, are deployed, all
approaches show more significant privacy flaws, compared with Fig.[6b] Among these approaches,
RelaxLoss and CCL show better resisting ability while the utility performance is even slightly better
when they are plugged into CWREF, our approach. As for the HAMP, the trends remain the same
as Fig.[6b] Through the results, regardless of the number of shadow models, our approach shows
consistent advantages when combining with other privacy-training approaches.

C.2 EVALUATION ON NLP DOMAIN DATASET

To reinforce the empirical evidence of our experiments, we further explore our approach for an NLP
dataset — DBpedia-14 [Zhang et al] (2015)). The DBpedia-14 is an NLP classification dataset that
contains 560, 000 training samples and 70, 000 testing samples for fourteen classes from DBpedia.
As shown in Fig.[8] we evaluate the approaches with transformer [Vaswani et al] (2017). At a similar
utility level, combining with CWRF shows improvement in privacy.

C.3  PRIVACY-UTILITY CURVE
To reinforce the empirical evidence of our experiments, we further explore how our approach and

others perform with privacy-utility trade-offs via ResNet18 trained with the CIFAR-100 classifica-
tion task. As shown in Fig.[9] we show the privacy-utility curve, including the configuration points
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Figure 9: Privacy-utility curve of ResNet18 in CIFAR-100. The bottom right corner (low MIAs yet
high test accuracy) is the best performance in terms of privacy-utility.

in Fig.[6b] Compared with the case with each of the three approaches solely, plugging CWRF shows

consistent advantages by combining a privacy-training approach.
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