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ABSTRACT

We investigate the mechanisms that arise when transformers are trained to solve
arithmetic on sequences where tokens are variables whose meaning is determined
only through their interactions. While previous work has found that transform-
ers develop geometric embeddings that mirror algebraic structure, those previous
findings emerge from settings where arithmetic-valued tokens have fixed mean-
ings. We devise a new task in which the assignment of symbols to specific alge-
braic group elements varies from one sequence to another. Despite this challeng-
ing setup, transformers achieve near-perfect accuracy on the task and even gener-
alize to unseen algebraic groups. We develop targeted data distributions to create
causal tests of a set of hypothesized mechanisms, and we isolate three mecha-
nisms the models learn: commutative copying where a dedicated head copies an-
swers, identity element recognition that distinguishes identity-containing facts,
and closure-based cancellation that tracks group membership to constrain valid
answers. Complementary to the geometric representations found in fixed-symbol
settings, our findings show that models develop symbolic reasoning mechanisms
when trained to reason in-context with variables whose meanings are not fixed.

1 INTRODUCTION

Much of the performance of language models (LMs) can be attributed to the power of the token
embedding, for example pre-encoding the attribute female in the embedding for “Queen,” (Mikolov
et al.,[2013)) or pre-encoding divisible-by-two within the embedding of the token “108” (Zhou et al.,
2024; Hu et al., [2025; [Kantamneni & Tegmarkl, 2025} Nikankin et al., 2025)). Yet the hallmark of
abstract reasoning is the ability to work with words and symbols whose meaning is unknown ahead
of time. What mechanisms can a transformer language model employ if it is unable to pre-encode
solutions in the embeddings of the words?

In this work, we devise a simple in-context learning setting where tokens serve as pure variables,
acquiring meaning only through their interactions within each sequence. That will allow us to ask:
What computational strategies do transformers develop when deprived of meaningful embeddings?

We adopt a familiar arithmetic problem setting, training small transformers to predict answers to
arithmetic problems sampled from finite algebraic groups. What makes our setting unique is that
each token is a variable that can represent any algebraic element: the meaning of each token is
only fixed within a single sequence. Unlike previous studies of the emergence of arithmetic reason-
ing (Power et al.} 2022;|Zhang et al., 2022;|Nanda et al., 2023} Zhong et al.,|2023), solving problems
in our setting will force models to infer structure solely from observations of contextual relationships
rather than relying on pre-encoded solution information within each token.

Surprisingly, we find that models trained on this task develop fundamentally different reasoning
strategies than those that have been previously observed when LMs solve arithmetic. Rather than
learning geometric representations of a Fourier basis, we find that models acquire symbolic reason-
ing mechanisms based on sparse relational patterns. We identify three primary algorithmic strategies
the model employs beyond verbatim copying: commutative copying, identity element recognition,
and closure-based cancellation. These findings suggest that the kind of reasoning strategies learned
by transformers are dependent on the task structure, with symbolic rather than geometric reasoning
strategies emerging when tokens carry no consistent meaning across contexts.
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Figure 1: An overview of the data generation process. (a) Variable Assignment: We sample a set
of algebraic groups and assign the elements of each group a non-overlapping set of vocabulary sym-
bols. (b) Sequence Generation: Sampled facts are converted into variable statements via the latent
mapping ¢, and concatenated together to form a sequence. (c) Sample Diversity: Every sequence
is constructed by sampling a new set of groups, defining a new latent mapping, and sampling a new
string of facts. The vocabulary symbols are assigned specific meanings within individual sequences,
but can take on very different meaning across sequences.

2 TASK DESCRIPTION

In this section, we describe our in-context learning task. At a high level, our task involves simulating
a mixture of finite algebraic groupsﬂ Each task sequence presents several examples of products
between elements in a group and the model is trained on the ordinary next-token language modeling
objective, with the goal that it will learn to predict the outcome of unseen group products (Figure/[T).

More formally, we have a set of m algebraic groups G = {G1,Ga,...,G,} that the model is
trained to simulate. Recall that for any finite group G, the product of two elements z,y € G is
written as z = = -y € G. We call each such product “z - y = 2” a fact. Training data consists
of sequences of k facts written using a vocabulary of variable tokens v; € V' whose meaning may
vary between sequences. In practice, the vocabulary is small, with N = [V'| < >, |G;|. A typical
sequence s takes the form shown in Equation[T] where individual facts consist of four tokens.

§ = “Vp1Uy1 = Uz1, UgaUy2 = V22, *** , UgkUyk = VUzk’ (D

We describe the positions of a fact with the following terminology: The first element v,;, occupies
the “left-slot”; vy; is the “right-slot”; = is the “predictive token”; and v; is in the “answer-slot”.

To generate a training sequence s, we first sample a set of groups G, from G whose total number of
elements is less than or equal to the number of variable tokens NV E| We define the set of all sampled
group elements to be H; = | J G5, where |Hg| < N. We then construct a one-to-one latent mapping
ps :+ Hy — V that randomly assigns all elements of H to distinct tokens in V. We ensure that
each group in G is assigned a non-overlapping set of variables so that the meaning of each variable
within a given sequence is determined by the underlying group structure (Figure Th).

Given this latent mapping, we then assemble s by sampling facts from the groups in G5, converting
them to variable statements via ¢, and concatenating them together (Figure [Ip). The statement
“ps(x)ps(y) = @s(z)” only appears in s when there is a corresponding valid fact “z -y = 2"
among the sampled groups in G,. Importantly, while the mapping ¢, is fixed within a sequence,
it varies between sequences, ensuring that vocabulary tokens v; € V act as variables without fixed
global meaning (Figure[Tk).

"While not imperative for understanding our task setup, we provide a brief review of relevant topics from
group theory in Appendix El
?For more details about how we sample groups to construct G, see Appendix
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Figure 2: In-context algebra performance.

3 CAN TRANSFORMERS LEARN IN-CONTEXT ALGEBRA?

We train transformer models on the in-context algebra task (§2) and evaluate both their in-
distribution performance and their ability to generalize across contexts. We report results for one
representative model throughout, but observe qualitatively similar patterns across multiple training
runs (see Figure [7]in Appendix [B). Our main model is a 4-layer autoregressive transformer with 8
attention heads per layer and hidden size 1024, trained with next-token prediction on sequences of
k=200 algebraic facts (~ 1000 tokens). The training distribution G = {Cs, ..., C19, D3, D4, D5}
includes cyclic (C;) and dihedral groups (D;) of up to order 10, with sequences written using N=16
variable tokens plus the special tokens ‘=" and °, ’. Because group-to-variable assignments are ran-
domized per sequence, tokens act as placeholders whose meaning must be inferred from context.

Performance increases with context length. Accuracy increases monotonically with the number of
in-context facts k, but the rate of improvement depends on the group order (Fig.[2). Smaller groups
(e.g., C4, Cg) reach high accuracy with only a few facts, whereas larger groups (e.g., Cs, C1g)
require substantially more context to achieve similar performance (see Fig.[I0]in Appendix [B.3).

Phase transition on non-copyable queries. At large k, many queries are trivially solvable by copy-
ing a previously seen fact (about 90% of queries are copyable at k=200 versus 45% at k=50). To
address this, we evaluate the model with held-out data where the final fact “xy=" and its commu-
tative pair “yx=" never appear elsewhere in the sequence. In this setting, the model still achieves
near perfect accuracy, and we observe an abrupt improvement during training (a phase transition) on
non-copyable queries (Fig. 2b), suggesting the emergence of strategies beyond verbatim retrieval.

Generalization across algebraic structure. The model also transfers to unseen groups: on the com-
plete set of order-8 groups (for groups excluded from training), the model also achieves near-perfect
performance (Fig. [2c). Interestingly, hold-out performance is good for non-group structures such as
semigroups, but is worse for quasigroups and collapses on magmas (Fig. in Appendix[B.3). The
model still achieves non-trivial accuracy for quasigroups, particularly on cancellation data (Fig. [I2]
in Appendix [B.3)), though generalization remains consistently stronger for groups than non-groups.

4 HYPOTHESIZING MODEL MECHANISMS

When analyzing a random in-context algebra sequence, it is possible that multiple algorithms could
theoretically produce correct predictions. That can make it challenging to identify which mecha-
nisms the model actually implements. Consider the sequences shown in Equation [2]and Equation 3|
that differ only by which fact is bolded. The model could correctly predict “dp=p” by either copying
the answer from the duplicate fact appearing earlier (i.e., dp=p) or by recognizing d is an identity
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Figure 3: Algorithmic coverage: (a) the percentage of training data that can be solved by each
mechanism: copying (green), commutative copying (purple), identity recognition (yellow), closure-
based elimination (red), associativity (blue), compared to the empirical model performance (black).
The gray shaded region represents unexplained performance. (b) Coverage of sequences where
neither form of copying is possible. Identity recognition solves 28.7% of the problems (yellow),
closure-based cancellation can solve an additional 39.1% (red) and associativity solves 16.9% (blue).
Model performance on hold-out sequences is shown in black. (¢) The model achieves high accuracy
on almost all algorithmic distributions (97-100%), except for associative composition (60%).

element (i.e., dc=c) and applying the identity rule.
“kb=1t,dc=c,cl=p,jp=1,dp=p,en=ebb=mn,pj=1l,dp=" 2)
“kb=i,dc=c¢,cl=p,jp=1,dp=p,en=e,bb=n,pj =1l,dp=" 3)

To disambiguate between potential mechanisms, we design five targeted data distributions to test
specific algorithms that can solve algebra sequences when a corresponding set of facts is present in
the context. We describe each data distribution and the hypothesized algorithm it tests below:

1. Verbatim Copying (Dcopy)- This data tests whether the model copies exact facts from the con-
text. We construct sequences s € Deopy to contain at least one duplicate of the final fact.

2. Commutative Copying (Dcommute)- In many groups, knowing that ab=c often implies that ba=c.
This data tests whether the model copies these commutative facts from the context. We construct
S € Deommute to contain at least one instance of the commutative fact (e.g., yr=z for final fact
xy=), and no duplicate facts.

3. Identity Element Recognition (Digentity). This data tests whether the model can recognize and
apply the identity rule. We construct s € Djgeniry such that the final fact contains an identity
element (e.g., xy=x) and that at least one prior fact in the context reveals the identity element
(e.g., zy=z). We remove any duplicate or commutative facts.

4. Associative Composition (D gsociate)- This data tests whether the model can chain fact results to-
gether to answer a new fact via associativity. Given a final fact xy = z, we construct s € Dygsociate
so that it contains a minimum set of facts that would enable a solution via association. For exam-
ple, the three facts zg=f, gd=y, fd=z can be composed (i.e., (zg)d=fd = z(gd)=z = xy=2)
to compute ry=z. We make sure to only use triples without duplicate or commutative facts.

5. Closure-Based Cancellation (Dcancer). This data tests whether the model can track group mem-
bership and appropriately apply the cancellation law to eliminate invalid answers (e.g., zb=g
eliminates g as an answer to “xy="). Given a final fact zy=z, we construct s € Dcypcel by in-
cluding all the facts that share z in the left-slot (e.g., xb=g) or y in the right-slot (e.g., cy=e),
and removing duplicate and commutative facts.

4.1 MEASURING COVERAGE AND PERFORMANCE ON TARGETED DISTRIBUTIONS

We seek to answer two questions: (1) What fraction of in-context algebra sequences can theoretically
be solved by these hypothesized algorithms? and (2) Does the model successfully solve sequences
that algorithmic strategies can solve when presented with the appropriate facts in-context?

Algorithmic Coverage. To understand the breadth of data that our hypothesized mechanisms might
explain, we implement Python equivalents of all five algorithms (Appendix [E) and measure their
coverage, i.e., the percentage of sequences they can theoretically solve. We apply the algorithms
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sequentially in the following order: verbatim copying, commutative copying, identity recognition,
closure-based cancellation, and associative composition, where each algorithm is only applied to
sequences unsolved by previous mechanisms. We compute algorithmic coverage over both random
training sequences (Figure [3h) and random hold-out sequences where neither form of copying is
possible (Figure [3p), using 2000 sequences for each evaluation.

We find that verbatim copying can solve a large percentage of the training data, with its area under
the curve (AUC) being 67.9% (Figure 3h, green). Commutative copying accounts for an additional
12.1% of cases (purple), with the identity solving 4.2% (yellow), closure-based cancellation solving
2.7% (red), and associativity solving 3.6% (blue) for total coverage AUC of 90.4%. In contrast, the
model accuracy (black) achieves an AUC of 92.4%. While the hypothesized algorithms can explain
most of the model’s empirical training performance, they do not explain everything the model has
learned (~2.0% AUC, gray); there may be other interesting mechanisms this analysis misses.

When a sequence cannot be solved via copying or commutative copying, we see a very different
trend (Figure 3b). In this more challenging setting, the model achieves a slightly lower AUC of
87.3% (black). Identity recognition is able to solve 28.7% of hold-out cases (yellow), closure-based
cancellation can solve another 39.1% (red), and associativity solves 16.9% (blue) bringing the total
hold-out coverage AUC to 84.7%. Here, the AUC gap between the model’s empirical performance
and our algorithmic coverage is 2.6% (gray), and is primarily for algebra sequences with fewer facts.

Model Performance on Subdistributions. We evaluate the model on 400 sequences sampled from
each distribution D;, and report results at k = 50 and k£ = 100 facts (Figure[3c), with more results in
Appendix [B| We find the model gets near perfect performance on four of the five data distributions
that we test: verbatim copying (100.0%), commutative copying (99.0%), identity element recogni-
tion (100.0%), and closure-based cancellation (97%). However, model performance on sequences
that test associative composition is worse (60.2%), suggesting only partial learning of this property.

5 CAUSAL VERIFICATION OF LEARNED MECHANISMS

Based on the results in Section we perform causal interventions to understand how the model
mechanistically implements the algorithms with stronger empirical evidence: (1) verbatim copying,
(2) commutative copying, (3) identity element recognition, and (4) closure-based cancellation.

5.1 CAUSAL INTERVENTIONS

In order to understand the internal computations underlying the model’s capabilities, we use causal
interventions (Vig et al.l [2020; Meng et al., 2022} |Geiger et al. 2025) to verify how the model
implements the targeted behavior. This is typically done by implicating model components such as
attention heads or directions in a model’s activation space (Wang et al.| |2023}; |Geiger et al., [2024;
Mueller et al. 2025)). Similar to prior work, we quantify the importance of a component via its
indirect effect (IE; [Pearl, 2001). We compute IE as the change in probability of the target variable
token Vireer Under some intervention across a pair of algebra sequences that differ in a meaningful
way (Scleans Scorrupt)- Equation E] shows an example of computing IE for an attention head abh) at
layer I, head h, by patching its activations from Scjean INt0 Scorrupt:

IE(l> h) = P('Utaxget a(l’h) — Scorrupt) - P(Utargel|scorrupl) 4)

Sclean

(L)

1,k .o . . .
where agc{e:“) — Scormupt indicates activations a are being patched (or replaced) from Scjean into the

same location in Scorupt. The average indirect effect (AIE) can be computed over a dataset D as:

AIE(D. 1) = 7 3 (IE(A) )

5.2 COPYING AND COMMUTATIVE COPYING

In this subsection, we investigate how the model implements verbatim and commutative copying.
As shown in Section a large percentage of our training data (~80%) can either be solved by
verbatim copying or commutative copying (Figure [3p), and the model achieves high performance
(97-100%) when either form of copying is possible (see Figure ).
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Figure 4: An analysis of copying (§ . Attention patterns (a-d) and direct logit contributions (e-h)
of the copying head (layer 3, head 6) across variations of the same algebra sequence. (a) When
verbatim copying is possible, the head attends to the answer-slot of the previous fact “kc = f” and
(e) directly promotes that token’s logit (green). (b) When the exact fact is absent, the head’s attention
shifts to the answer-slot and predictive token of the commutative fact “ck = f” and (f) promotes
that token (purple). Note this fact was also in (a) but not attended to, indicating exact facts take
precedence over commutative ones. (¢) When both exact and commutative facts are absent, the head
often self-attends and (g) no longer strongly promotes one token. (d) When injecting a matching
“corrupted” fact with an incorrect answer (“kc = 37, red), the head attends to each answer-slot and
(h) promotes both variables (green, red).

Verbatim Copying. We search for attention heads responsible for copying the correct answer from
the context by computing the average indirect effect (AIE) of each attention head a(“") (layer [, head
h). We patch the activations of each head a(""") from the final predictive token in Sciean, taken from
Deopy» into the same token position in Scorupt, @ randomly sampled sequence where copying is not
possible, and measure its IE. We compute AIE(Dcopy, I, 1) over 200 samples from Deopy .

We find a single attention head (layer 3, head 6) with high AIE (0.91) that is primarily responsible
for copying, with no other head having an AIE higher than 0.08 (Figure [[3h). We visualize the
attention patterns of this copying head in Figure [dh, and find that it attends to the answer-slot of
duplicated facts (shown in green), much like the n-gram heads observed in |Akyiirek et al.| (2024).
On Deqpy, head 3.6 strongly promotes the logit of the attended-to token (Figure 4g) which can be seen
by applying the model’s unembedding matrix to the attention head output U (a™“")). This allows us
to understand its output contribution in terms of vocabulary tokens (Nostalgebraist, 2020; |Elhage
et al.| 20215 Dar et al.,[2023). The top logit consistently matches the attended-to token (Figure @])

Commutative Copying. In many groups, knowing that ab = c¢ will also imply that ba = ¢. To
investigate how the model implements such commutative copying, we compute the indirect effects
of patching attention head activations from sequences in Sciean € Deommute, t0 NON-COpying sequences
Scorrupt» Where neither verbatim nor commutative copying are possible. We find the same pattern:
head 3.6 is again the only head with strong AIE (0.48) for commutative copying (Figure [I3p).
In the absence of duplicate facts, head 3.6 attends to the predictive token and answer-slot of the
commutative fact (Figure @) and similarly promotes the attended-to token (Figure ).

Non-Copying Sequences. When neither copy-inducing fact is present in the context, head 3.6 often
self-attends (Figures k), not strongly promoting any token (Figure djg). However, when the query
contains an identity fact, we find head 3.6 has an interesting identity demotion behavior (§ [5.3).

Corrupt Copying. While copying the answer-slot of a commutative fact can solve facts for abelian
groups, this doesn’t work for non-commutative facts. When analyzing the copying behavior of head
3.6 on cyclic and dihedral groups separately, we find that more than 97% of the time it promotes
the token it attends to, even if that token is the wrong answer (see Figure [[4p). We illustrate this
behavior in Figure d, where we inject a duplicate fact with an incorrect answer and show that head
3.6 attends to both duplicates (red, green) and promotes both of their logits (Figure fh).
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Figure 5: Identity Recognition. (a) PCA decomposition of fact hidden states at the final attention
layer reveals a clear separation of identity facts (blue) and non-identity facts (red). (b) Head 3.1
promotes the logits of both variables in the query (a and e), while head 3.6 demotes the logit of the
identity variable, e. (c) PCA steering on its own can induce identity behavior, but it promotes both
variables in the query to have near-equal logits. Inserting a false identity fact for either query variable
triggers identity demotion, which, along with PCA steering, achieves cleaner identity control.

5.3 IDENTITY RECOGNITION

Our coverage analysis has revealed that when verbatim and commutative copying are no longer
allowed, the identity algorithm can solve close to 30% of all hold-out problems. In this section, we
use data from Digendiy to study how the model solves sequences where the query is an identity fact.
Recall that an identity element e € G satisfies e - ¢ = x - e = x for all elements z € G, so that if
one variable in the question is known to be the identity, the answer is equal to the other variable.

Our experiments suggest that identity recognition emerges from the interaction of two complemen-
tary mechanisms: query promotion, that elevates both variables in the question as potential answers,
and identity demotion that suppresses the known identity element. When both mechanisms activate
simultaneously, the non-identity token is correctly selected.

Structure from PCA. First, we note that our transformer’s representations reveal a strong signal
correlated with the presence of an identity element in the question. To analyze this, we use PCA
to plot final-layer attention outputs at the predictive token position (the “="" symbol) just before the
model predicts an answer. There is a clear separation between facts containing identity elements
(blue) and non-identity facts (red) along the first PCA dimension (Figure E}a). This separation is
invariant to the specific variables in the fact or the underlying group. This suggests the model has
learned to recognize and solve identity facts differently from those without an identity element.

Query Promotion and Identity Demeotion. To analyze the role of the final layer attention at pre-
dicting identity facts in Figure [5b we use the logit lens (Nostalgebraist, 2020) and find two heads
whose logits correlate strongly with identity variables. Head 3.1 promotes both variables in a given
fact, serving as a “query promotion” mechanism. This strategy of predicting that the answer is equal
to the question is appropriate for problems in which one of the factors is the identity, although on its
own it would have the undesirable effect of promoting the identity element itself as the answer.

On identity fact sequences, head 3.6 acts as an “identity demotion” mechanism, attending to previous
identity facts in the context and suppressing the identity token’s logit (Figure [5p, pink). Combined
with the previous strategy, this serves to leave only the non-identity factor as the promoted answer.

Causal Verification. Our experiments suggest that the dominant PCA direction in representation
space controls the query promotion submechanism. To understand the causal effects, we perform
representation steering experiments along this learned direction. When we intervene on the layer
3 attention output of a non-identity fact and steer it toward the identity cluster, the model begins
producing equal logits for both query tokens (Figure [Sk: i vs. ii).

In addition to query promotion, we can also manipulate the model’s identity recognition by introduc-
ing false identity facts to influence the identity demotion signal. When we inject a fact incorrectly
suggesting one of the query tokens is an identity element, the identity demotion head (3.6) responds
by suppressing that token and causes a cleaner identity prediction (Figure [, iii, iv).

On the other hand, when the model is presented with a false identity fact in-context while the query
is a non-identity fact, it typically confuses the prediction. However, if we steer in the negative PCA
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direction (away from the identity cluster), the model recovers and correctly predicts the non-identity
answer. These steering experiments demonstrate that the learned PCA direction has causal influence
over the model’s identity reasoning, enabling us to both enhance and suppress identity predictions.

5.4 CLOSURE-BASED CANCELLATION

The closure-based cancellation algorithm is a combination of two key submechanisms: (i) tracking
which variables belong to the same algebraic group (i.e., the closure), and (ii) systematically elim-
inating invalid answers using the cancellation law, which implies that for elements z,y, z € G, if
y # z then zy # xz and yx # zx (see Appendix [A).

We hypothesize the algorithm can be understood at a high level as computing the difference of two
sets: Sclosure = Scancel- Consider the sequence sampled from Deyeel shown in Equation @ For the
final query pe =, the closure contains all elements that have previously appeared in facts involving
pore,ie., Seosure = {D, €, f,a,n}. The cancellation law then eliminates candidates from facts that
share a variable in the left- or right-slot: p (from pf = p), n (from ee = n), f (from ae = f), and e
(from pp = e), leaving a as the only valid answer (i.e., Scancet = {D, 1, f, €}).

“pf =p.ee=n,pf =p,pf =p,ae= fpp=epf=ppn=fpp=epe=" (6
We use causal interventions to determine how the model implements these two submechanisms.

Our analysis reveals evidence of both a closure subspace, that promotes the logits of variables in the
same group, and an elimination subspace that demotes answers based on facts present in the context.

Closure Submechanism. The closure submechanism emerges naturally from autoregressive train-
ing: when predicting the right-slot of a fact like zy =, the model must identify which variables could
plausibly follow x. These are precisely the elements that belong to the same group (i.e., the closure).
In fact, when we analyze the model’s predictions at left-slot positions, we find nearly uniform logits
across all elements previously associated with that variable, confirming the model has learned how
to compute group closure (Figure [T5]in Appendix D).

Inspired by previous work showing subspaces can encode high-level causal variables (Geiger et al.}
2024; Prakash et al.| 2025])), we aim to identify a subspace W that captures the model’s representation
of the closure set, S¢josure- We construct counterfactual pairs (s, s') from Deaneer that have different
closure and elimination sets (.5;, S;) such that under intervention, the expected counterfactual answer
corresponds to a modified set difference: vcg = Sciosure — Séance], where the closure set comes from s
and the elimination set comes from s’. We perform subspace-level patching from s into s’ and train
W to maximize the likelihood of producing the expected counterfactual output vcr (Equation [7)).
If the intervention causes the model to predict vcg, we take this as evidence that the subspace W

correctly represents the hypothesized closure set.
P(vcp|(Wal + (I —W)al,) — dl,) ©)

We can measure its accuracy on how often the model’s predicted answer under intervention matches
the expected counterfactual target. We train a 32-dimensional W on the model’s final layer attention
output a', and find that it can achieve good intervention accuracy (99.8%) after only ten epochs of
training on 1000 data pairs (Figure [I7). Details about how we construct W are in Appendix [D}

For the closure subspace, we train probes (Alain & Bengio, 2017) to understand what the subspace
has learned, and how it represents variables. We train each probe to detect the presence of a variable
within the subspace, when it is in the group closure or not. We find probes are able to identify when
a variable is in the closure subspace with high accuracy (97-99%), and that these variable-level
probes partially align with the model’s unembedding matrix (Figure [I8), furthering evidence that
the closure subspace promotes variables it has seen before in the context.

Cancellation Submechanism. To understand the cancellation submechanism, we train a subspace
using a similar construction to the above, but vary the patching setup. If this new subspace W' cap-
tures the elimination set, then it should generate the counterfactual answer arising from the opposite
set difference, where the closure comes from the corrupt sequence s, and the elimination set comes
from the clean sequence s, giving: (S e — Scancel) = VG-

We similarly train this subspace and find it also achieves high intervention accuracy, indicating it
successfully represents the elimination set. Intervening in this subspace, we can eliminate arbitrary
variables, so that they do not become answers from the model.
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Figure 6: Dissecting Phase Transitions. (top) Average training loss of transformer models broken
into 5 stages of learning. (bottom) We track 7 metrics corresponding to different skills the model
acquires throughout training. (a) The first sharp drop in loss corresponds to learning to predict struc-
tural tokens: ‘="and ‘, (®, gray). (b) Next, the model begins to learn how to predict group closure
(@, orange), and also learns the identity’s query promotion submechanism (®, yellow, § 5.3). (c)
This sharp drop in loss corresponds to the model learning how to copy answers verbatim from the
context (@, green), along with commutative copying (®, purple). (d) After learning to copy, the
model quickly improves on cancellation (®, red) and identity sequences (@, yellow) in parallel. We
hypothesize this joint improvement corresponds to the fact that both tasks share a similar “demo-
tion” submechanism — identity demotion and cancellation. These complement the closure and query
promotion submechanisms learned previously. (e) Accuracy on associative sequences increases last
(®, blue), after all other verified mechanisms have been learned.

6 PHASE TRANSITIONS CORRESPOND TO LEARNING OF DISCRETE SKILLS

We find that models undergo distinct phase transitions during training (Figure [6} see also Ap-
pendix[B). Across seeds and configurations, the same sequence of stages marked by drops or plateaus
in loss recurs (Figure [7). We study the training loss by computing several metrics at each model
checkpoint. For each hypothesized mechanism (§4) we evaluate the model using 128 randomly
sampled data points from the corresponding datasets described in Section[d] For structural tokens,
we compute the model’s accuracy of predicting ‘=" and *,” tokens across a batch of 128 prompts. For
computing group closure, we measure the top-K matching accuracy at the left-slot position (more
details are provided in Appendix D).

The earliest ability to emerge is prediction of structural tokens: ‘=" and ‘,’ (Figure[6h, gray). This
is followed closely by group closure (§ : the model learns that combining two elements always
yields another valid group element (Figure [6b, orange). This ability appears in left-slot predictions
of facts, where the model distributes probability nearly uniformly across all valid candidates (Ap-
pendix D). At the same time, the model learns the query promotion submechanism (Figure [6p, yel-
low), achieving around 50% on identity sequences (. The next sharp drop in loss corresponds
to the model learning contextual copying (§[5.2)), first reproducing facts verbatim (Figure[6f, green)
and then extending to commutative copying (Figure 6k, purple).

Later mechanisms emerge more gradually. The model develops identity recognition, steadily im-
proving on identity-related facts and acquires elimination reasoning in parallel, applying cancel-
lation laws and closure constraints to rule out inconsistent candidates. Unlike closure and copying,
these abilities do not show sharp transitions but appear jointly, suggesting they build on copying:
once the model can retrieve and recombine facts, it can also infer identities and apply elimination
strategies. We hypothesize these are learned jointly because the identity demotion mechanism (§5.3)
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and the elimination subspace (§5.4) perform similar functions, and their “promotion” submechanism
counterparts were learned at similar times earlier in training. Finally, models begins to solve some
associative sequences, after all other verified mechanisms have been learned.

7 RELATED WORK

Arithmetic as a testbed for interpretability. Arithmetic tasks have long served as controlled set-
tings for studying and interpreting transformers (Liu et al.l |2023). Small transformers trained on
modular arithmetic exhibit “grokking” where they first memorize training data before converging
to interpretable, generalizing solutions with periodic embeddings (Power et al.| 2022} [Liu et al.,
2022; Nanda et al., [2023} |Zhong et al., 2023 Stander et al.| [2024}; [Morwani et al.,|2024). Pretrained
LLMs exhibit similar periodic structure in their number embeddings (Zhou et al., [2024; |Hu et al.,
2025} |[Kantamneni & Tegmark] 2025 [Nikankin et al.l 2025), enabling modular arithmetic without
explicit training. [Deng et al.| (2024) find that arithmetic-fine-tuned LMs rely on symbolic subgroup
patterns, instead of using partial products, but Bai et al.| (2025) show that implicit chain-of-thought
training does induce partial products and Fourier number representations. More closely related to
our setting, He et al.| (2024) show that transformers trained on permutations of one group develop hi-
erarchical “circle-of-circles” representations, and Zhong & Andreas|(2024) demonstrate that models
with trained embeddings, but otherwise frozen random weights can still implement familiar geomet-
ric solutions. While these works study arithmetic settings where tokens have some fixed structure,
our work examines a complementary setting where we remove fixed meanings of tokens altogether,
requiring models to solve problems where token referents vary arbitrarily between sequences.

Mechanisms of in-context learning. The ability of transformers to learn from demonstrations has
been attributed to several mechanisms. Early work identifies induction heads that underlie copying
(Elhage et al.,[2021}; |Olsson et al., 2022} [Feucht et al.,|2025), while theory frames ICL as Bayesian
inference (Xie et al., [2022; Akyiirek et al., 2023; [Wurgaft et al.| |2025) or gradient-descent-like
adaptation (von Oswald et al., 2023). More recent studies show LM representations capture task-
level structure (Todd et al.l 2024} [Hendel et al. 2023} |Yin & Steinhardt, |2025; Minegishi et al.,
2025)), and token representations flexibly adapt to context (Park et al., 2025a; Marjieh et al., 2025).

Symbolic reasoning and causal interpretability. Neural systems have long been studied as poten-
tial mechanisms for symbol manipulation, from tensor product (Smolensky, |1990) and holographic
reduced representations (Platel [1995) to recent cognitive-science studies of emergent symbolic rea-
soning in modern networks (Swaminathan et al., 2023} [Yang et al.| 2025). More recently, mecha-
nistic interpretability has started mapping internal symbolic reasoning circuits in transformers (Li
et al., 2023; |[Brinkmann et al.l 2024} [Prakash et al., 2024; [Saparov et al.| [2025; |Wu et al.| 2025; |L1
et al.| 2025)), using causal intervention techniques (Mueller et al.| [2025; |Geiger et al., [2024; 2025).

Variables versus value processing in LMs. A few works have tried to disentangle the ability of
LMs to solve math abstractly from their ability to perform arithmetic computation. [Cheng et al.
(2025) find that LMs are better at abstract variable-based formulation of solutions compared to
numeric computation of the same word problems, but |Calais et al.| (2025) find that LMs exhibit
the opposite tendency in other problem settings. Mirzadeh et al.| (2025) similarly find a lack of
robustness in LM performance to changes in numeric values of simple math problems.

8 CONCLUSION

We have studied LMs trained on a focused algebra task designed to isolate abstract in-context rea-
soning behavior in the absence of fixed-meaning symbols. Our findings suggest that the kinds of
reasoning strategies learned by transformers are dependent on the task structure. In our in-context
algebra setting, where tokens carry no fixed meaning, we have analyzed the mechanisms learned by
transformer LMs in detail and found that models develop symbolic mechanisms instead of the famil-
iar geometric strategies found in settings where tokens do have fixed meanings. We have seen that
transformers can learn to manipulate symbols in-context without needing to refer to their underlying
meaning, similar to the way that high-school algebra students learn to solve math problems by ma-
nipulating letter variables without constantly thinking about the values they might contain (Usiskin,
1988). Understanding when and why models choose different computational strategies remains an
important open question for future interpretability work.

10
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ETHICS STATEMENT

This paper aims to advance the foundational understanding of in-context learning and transformers.
While such research may influence future model development and deployment, we cannot meaning-
fully anticipate these downstream impacts within the scope of this work.
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A GROUP THEORY

In this section, we review relevant terms from group theory that are used in our analysis.

A group (G, -) is a non-empty set G equipped with a binary operation - : G x G — G that satisfies
the following properties:

* Associativity. For all elements z,y,z € G: (z-y) -z =2 - (y - 2)
* Identity. There exists an identity element e € G suchthate-g=g¢g-e=gforallg € G
« Invertibility. For each element g € G, there exists an inverse element g—! € G such that
-1 —1
g . g = g . g = e

The order of a group is the number of elements contained in the set G, and we denote it as |G|. For
notational convenience, we refer to a group (G, -) simply as G.

A group G is called abelian (or commutative) if for all =,y € G, the following holds: z-y =y - x.
Our training data consists of two main families of groups: cyclic groups and dihedral groups (§ 2).

A cyclic group of order n, denoted C),, consists of all powers of a single generator element: C,, =
{e,9,9%,...,9" 1} where g" = e is the identity. Every cyclic group C,, has the same structure as
(i.e., is isomorphic to) doing arithmetic modulo n. For example, in C5, multiplying group elements
(e.g., Equation [8) works exactly like adding numbers mod 5 (e.g., Equation[9):

9 gt =g (8)
=3+4=2 (mod5) 9)

A dihedral group D,, is the group of symmetries of a regular n-gon (square, hexagon, etc.), with
order | D,,| = 2n. Its elements consist of n rotations and n reflections. We note that while all cyclic
groups are abelian, dihedral groups are non-abelian for n > 3.

An important consequence of group structure is the cancellation law, which states that we can
“cancel” common terms in equations. Specifically, for any group G with elements x, y, z:

o Left cancellation: If vy = zz,theny = 2
* Right cancellation: If yxr = zx, theny = z
Equivalently (by contrapositive): if y # z, then xy # xz and yx # zz. This rule guarantees

that distinct group elements produce distinct products which helps ground our understanding of the
closure-based cancellation mechanism described in Section [3.4]

For completeness, we briefly describe other algebraic structures we test on that lack some subset of
group properties:

* A semigroup is a set with an associative binary operation, but does not require an identity
element or inverses.

* A quasigroup is a set where equations ax = b and ya = b always have unique solutions
for any a, b, but the operation need not be associative. Finite quasigroups are equivalent to
Latin squares (Jacobson & Matthews| |1996).

* A magma is simply a set equipped with a binary operation, with no other required structural
properties.

B MODEL ARCHITECTURE AND TRAINING

In this section, we provide more details about our training setup.

Model Training Details. We train autoregressive transformer models (Vaswani et al.l 2017), on
in-context algebra sequence data sampled as described in Section [2] with a batch size of 128, and
sequences with 200 facts. Our vocabulary consists of 16 single-token variables, a predictive token,
and a separator token (meaning N = 18 in total), and each fact is made up of 5 tokens. Our
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Figure 7: Consistency across runs. We observe qualitatively similar patterns across multiple train-
ing runs, both in terms of (a) phase transitions in the loss curves and (b) corresponding “grokking”
increases in hold-out evaluation performance.

transformer implementation is based on code adapted from nanoGPT (Karpathyl 2022); we use
Rotary Positional Embeddings (RoPE) (Su et al.| |2024) instead of learned positional embeddings.
We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 10~°, and 1000
warmup steps. The primary model we study in the main paper has 4 layers, with 8 attention heads
per layer, and a hidden state dimension of 1024. We usually see convergence (eval accuracy > 99%)
between 30, 000 and 75, 000 steps. As shown in Figure[7, we observe qualitatively similar patterns
across multiple training runs with different seeds, both in terms of phase transitions in the loss and
in hold-out evaluation accuracy.

Tooling and Compute. We train our models with either NVIDIA A100 80GB GPUs or NVIDIA
A6000 48GB GPUs. Training statistics are logged using Weights and Biases (Biewald, [2020). Ex-
periments are implemented using NNsight (Fiotto-Kaufman et al.,2025)) and PyTorch (Paszke et al.|
2019), and run on workstations with NVIDIA A6000 48GB GPUs. We use SymPy (Meurer et al.,
2017) for simulating various group structures for our in-context algebra setting and use a custom
implementation for magmas, semigroups, and quasigroups, with quasigroup generation based on
Jacobson & Matthews| (1996))’s method for latin squares.

B.1 ABLATION STUDY OF MODEL ARCHITECTURE HYPERPARAMETERS

In this subsection, we study the effect of three different hyperparameters that govern model capacity:
(1) the number of layers, (2) the number of attention heads per layer, and (3) the model’s hidden
state dimension. The training loss and evaluation accuracy of each hyperparameter sweep is shown
in Figure [§] The corresponding break down of model performance by metric and hyperparameter
configuration is contained in Table[I]

B.2 GROUP SAMPLING PROBABILITY AND TASK DIVERSITY

To generate an in-context algebra sequence, we first sample a set of groups from the training distri-
bution G (see Section[2). In this subsection, we provide more details about our sampling procedure,
and investigate the effect of the group sampling probability pnix as a training hyperparameter.

When sampling a mixture of groups G, for a sequence s, the first group is sampled uniformly from
G. After an initial group is chosen, additional groups are iteratively sampled with replacement with
probability pnix, continuing while the total order is less than or equal to the number of variables
|[V| = N or a random draw from the interval [0, 1] exceeds pmix. A new group is added to G, only
if the total order of G5 would remain less than or equal to /N. Thus, choosing pyix = 0 results in
sequences containing exactly one group, while ppix = 1 maximizes the number of groups mixed
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Figure 8: (top) Training loss over training steps for various architecture hyperparameter ablations:
number of layers, model hidden dimension, and number of attention heads per layer. (bottom)
Evaluation accuracy for each hyperparameter sweep. With more model capacity (more layers, larger
hidden size, or more heads), models achieve better performance and converge more quickly. There
are some cases for model dimension where the model only partially converges (or does not converge
at all), suggesting the model needs sufficient capacity to solve this task.

Table 1: Ablation study over model architecture hyperparameters: layers, heads, and hidden size.
For each configuration, we report metrics at the training step with maximum evaluation accuracy
(up to 60,000 steps). Scores under 90% are highlighted in red, indicating poor performance. Results
show that models require sufficient hidden size (dimension > 512) to learn the task effectively. In
general, more capacity yields better evaluation performance. Associativity scores show high vari-
ance (and consistently lower scores) across all configurations despite consistent evaluation accuracy.
Corresponding training curves are shown in Figure @

Configuration Evaluation Metrics

#Layers #Heads Dim. | Eval. Acc. Copy Commute Identity Associativity —Closure

Sweep 1: Number of Layers

2 8 1024 93.5% 100.0% 98.4% 100.0% 78.1% 100.0%
4 8 1024 99.4% 100.0% 100.0% 100.0% 85.9% 100.0%
6 8 1024 98.6% 100.0% 100.0% 96.9% 59.4% 100.0%
8 8 1024 99.4% 100.0% 100.0% 100.0% 51.6% 100.0%
10 8 1024 98.8% 100.0% 100.0% 100.0% 75.0% 100.0%
Sweep 2: Number of Attention Heads
4 2 1024 99.2% 100.0% 100.0% 100.0% 59.4% 100.0%
4 4 1024 95.9% 100.0% 100.0% 98.4% 64.1% 100.0%
4 8 1024 99.4% 100.0% 100.0% 100.0% 85.9% 100.0%
Sweep 3: Hidden State Dimension
4 8 128 13.3% 9.4% 17.2% 62.5% 17.2% 51.6%
4 8 256 61.3% 100.0% 87.5% 85.9% 56.2% 97.7%
4 8 512 96.9% 100.0% 95.3% 100.0% 82.8% 100.0%
4 8 1024 99.4% 100.0% 100.0% 100.0% 85.9% 100.0%
4 8 2048 98.6% 100.0% 100.0% 100.0% 87.5% 100.0%
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Figure 9: Effect of group sampling probability pnix. We train five models with the same seed (42)
and architecture (4 layers, 8 heads, 1024 hidden size), but vary the group sampling probability
Pmix € {0.0,0.3,0.5,0.7,1.0}. (a) The training loss curves for different values of ppyx follow a
consistent pattern: lower values of pnix have steeper early drops, but longer plateaus that follow.
Higher values of py,ix have shorter loss plateaus. (b) Evaluation accuracy for different values of ppix.
Training runs with higher values of pp;x tend to achieve better held-out evaluation performance.

within each sequence, up to total order IN. Thus, pnix can be thought of as a measure of in-context
task diversity. The algebra model we study in the main paper uses ppyix = 0.7.

In Figure Oh, we show loss curves and evaluation accuracy for transformer models trained with
the same seed but different values of pyix € {0.0,0.3,0.5,0.7,1.0}. Training loss curves follow a
consistent pattern: models trained with lower values of pnix have steeper early drops, but longer loss
plateaus. Higher values of py,x correspond to shorter loss plateaus, though they sometimes achieve
a higher overall training loss. However, lower train loss does not necessarily correspond to higher
evaluation accuracy (Figure[Op).

Recall that our evaluation data excludes copying and commutative copying sequences (Section [3).
We find that models trained with higher values of pnix tend to achieve better held-out evaluation
accuracy, even though they have higher training loss (Figure [Op). One reason for this might be that
sequences generated using higher values of pyix have more groups per sequence, and thus more
in-context task diversity. This aligns with findings from previous work showing that higher task
diversity leads to more robust generalization (Raventos et al., [2023; Kirsch et al., [2024; |Park et al.
2025b; [Wurgaft et al., |2025). Similarly, since repetition is more likely to happen in sequences with
fewer groups (i.e., lower values of pyix), models trained with lower sampling probabilities have
lower task diversity (e.g., copying is much more common as a possible solution).

An additional benefit of training with higher mixing probabilities (more groups per sequence) is that
models tend to achieve high evaluation accuracy (generalize) faster than lower mixing probabilities.
This was initially surprising and counterintuitive to us, but is consistent with |Kim et al.[(2025) who
show that increased task diversity actually shortens loss plateaus. While having more groups in a
sequence is a more difficult problem and seems like it would take longer to learn, Figure [Op shows
the opposite trend: using a mixing probability of pnix = 0.0, where only a single group is sampled
per sequence, has the slowest time to held-out generalization, while higher values of ppix begin to
generalize sooner.

B.3 PERFORMANCE ON GROUPS AND NON-GROUP ALGEBRAIC STRUCTURES

In this section, we compare the model’s performance in-distribution to the model’s performance
on groups not seen during training, as well as non-group structures. Figure [I0] shows the model’s
performance on in-distribution cyclic and dihedral groups. Performance typically increases with
the number of facts in the sequence, and groups with more elements take longer to achieve perfect
accuracy. For ('3, the performance actually begins to decreases after 25 facts.
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Figure 10: Heldout performance on in-distribution groups. (a) Model accuracy on cyclic groups
generally increases with context length, except for very small groups which tend to degrade in
performance with longer contexts. The model needs more facts to achieve the same performance
with larger groups. (b) Dihedral groups follow a similar trend. Larger groups get better with more
facts. Ds, which has 10 elements, reaches near-perfect accuracy around 200 facts, while smaller
dihedral groups converge earlier (around 75-100 facts).
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Figure 11: (a) Performance on algebraic structures unseen during training (where copying is pos-
sible). This includes the three unseen groups of order 8: Cy x Cs, Qg, and Cy x Cy x Cs (also
called Z3), and 3 non-group structures: semigroup, quasigroup, and magma. The model achieves
comparable performance on the unseen groups as it does to the in-distribution order 8 groups, while
quasigroups and magmas have worse accuracy. (b) Model performance on held-out sequences for
unseen algebraic structures. The hold-out performance of the model is surprisingly good for all
groups, as well as the semigroup. However, holdout performance on the quasigroup is poor, only
achieving a max of 50% at 200 facts and the model performs even worse on the magma (near zero).

For unseen group structures of order 8, the model still performs very well (Figure [TT). The holdout
accuracy is similar to that of in-distribution groups. The model is also able to solve the semigroup
with near-perfect accuracy with enough facts in the sequence, while hold-out performance (where
copying is not possible) on quasigroups and magmas is significantly worse.

Quasigroups are naturally solvable via the cancellation law, thus we evaluate on a subset of quasi-
group sequences where cancellation can solve the problem. We find that on this subset, the model
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Figure 12: Model performance on a cancellation-based subset of quasigroup sequences. Although
the overall hold-out performance of the model on quasigroups is poor (< 50%) (see Fig. ), we
find that performance is much better on quasigroup sequences where cancellation gives a unique
answer, getting up to 100% around 50 shots, and doing cancellation just as well as in-distribution
groups. This suggests the closure-based cancellation mechanism learned by the model is a general-
izable symbolic mechanism that does not depend on the specific algebraic structure of the data.

does much better than the overall hold-out accuracy previously reported, providing evidence that
some mechanisms (i.e. closure-based cancellation) learned by the model are generalizable symbolic
mechanisms that do not depend on the specific algebraic structure the data is sampled from, as long
as the data possesses that property.

B.4 ADDITIONAL PERFORMANCE ON DATA SUBSETS

We extend Figure 3¢ to show performance on data subsets for varying number of facts (Table2).

Table 2: Model performance on different data subsets from § 4l The model gets near-perfect ac-
curacy (97 — 100%) on almost all sequences, except for those solved via associativity, on which it
maxes out at 65% for 5-fact sequences.

Number of Facts

Key | 5 10 25 50 75 100 150 200

Deopy 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Deommuee | 92.0%  89.0%  95.0%  98.0%  98.0%  99.0% 100.0%  99.0%
Didenity | 94.0%  97.0%  99.0%  99.0% 100.0% 100.0% 100.0%  98.0%
Dassociate | 65.0%  62.0%  66.0% 602%  62.0% 56.5%  50.0%  40.0%
Deancel 57.0%  750%  94.0% 97.0% 94.0% 92.0% 81.0%  76.0%

C ADDITIONAL RESULTS ON COPYING

In this section, we provide additional experimental details and results related to the copying and
commutative copying mechanisms. Figure [[3p shows a heatmap of the average causal effect of
patching from verbatim copying sequences into no-copy sequences for each attention head in the
model, computed as AIE(Dcqpy, [, k) for an attention head at layer ! and head index h. Figure
shows a similar heatmap of average causal effects for each attention head when patching from com-
mutative copying sequences into no-copy sequences, similarly computed as AIE(Dcommute, [, i) for
each layer [ and head index h. In each case, we identify a single attention head (layer 3, head index
6), which has a much higher AIE than other heads and is primarily responsible for copying behavior.
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Figure 13: (a) Average causal indirect effect (Equation [5)) for each attention head when patching
from copying sequences into non-copying sequences, where darker green indicates a stronger change
in probability. A single head (layer 3, head 6) is strongly implicated in verbatim copying behavior
(AIE=0.91). (b) The same head is implicated when performing patching from commutative copying
sequences into non-copying sequences, though the causal effect is slightly weaker (AIE=0.479).
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Figure 14: Decoding the output of each attention head at the final layer via the model’s unembedding
matrix reveals how often an attention head’s highest logit matches the correct answer on copying
sequences. (a) For cyclic groups, we see one head stand out: head 3.6’s highest decoded logit
matches the correct answer more than 99.5% of the time on sequences where verbatim copying is
possible (green), and 97% of the time for commutative copying sequences (purple), while almost
never promoting the correct answer on non-copying sequences (black). (b) For dihedral groups,
where not all facts are commutative, we see a similar same trend for exact copying sequences (green,
Deopy), While for commutative copying head 3.6 only matches the correct answer 32.5% of the time
(purple, Deommute)- However, if we instead measure whether the highest decoded logit matches the
most attended-to token, this happens 97% of the time (shown in red).

To understand the behavior of these heads under various data settings, we characterize each head’s
output using direct logit attribution (Nostalgebraist, 2020; Elhage et al.,2021)). We apply the unem-
bedding matrix to each attention head output (i.e., U(a'"")) and compute how often the token with
the highest decoded logit matches the target token.

Figure[T4h shows how often each attention head promotes the correct answer token when using only
cyclic groups to generate copying sequences. This is computed using 200 prompts for each of 3
prompt distributions: sequences where verbatim copying is possible (s € Dcopy), sequences where
commutative copying is possible (s € Deommute), and sequences where neither form of copying is
possible. The highest logit promoted by the copying head (layer 3, head 6) almost always matches
the target answer for both verbatim (green) and commutative copying sequences (purple), but almost
never on non-copying sequences (black).

However, performing this same analysis on sequences sampled using only dihedral groups yields a
slightly different result (Figure [T4p). When verbatim copying is possible, we still see head 3.6’s top
logit matches the correct answer token more than 99% of the time (green), as expected. However,
on sequences sampled from Deommute, this value drops to 32.5% (purple). If we instead measure
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whether the highest decoded logit matches the most attended-to token, this happens 97% of the
time for head 3.6 (shown in red). This is curious because for these sequences, head 3.6 seems to
be “blindly” copying the symbol it attends to even though it is not the correct answer. While this
strategy would solve any commutative pair of facts, it cannot solve non-commutative facts found in
dihedral groups. In Figure[dd, we show a related behavior where head 3.6 will attend to and promote
the answers of injected, incorrect facts in addition to correct ones.

D CLOSURE AND ELIMINATION SUBSPACES

In this section, we provide additional details about results related to closure and elimination sub-
spaces described in Section[5.4]

Sequence:’ hp=e, il1=i,1i=i,nc=c,bi=1, ne=e, fe=h,pp=£f,ba=i, pc=h, eh=n, la=a,
pp=f, pf=n, fe=h, fh=c, i1l=i, ef=h, hh=f, cp=h, pc=h, hh=f, cn=c, bi=1, (he=/bi=)"’

10+ 10
an on
Q Q
- —
abcdefghijklmnonp abcdefghijkimnoop

Figure 15: Closure submechanism (. When predicting the right-slot of a fact, the model pro-
duces nearly uniform logits over all variables previously associated with the left-slot in the context.
Here, we show the logits at the left-slot for the same sequence that differs only in the final query fact
(he =, vs. bi =). For different left-slot variables (h vs. b), the model produces higher logits over
either (a) the six elements connected to h: {c, e, f, h,n,p} (shown in red), or (b) the four variables
associated with b: {a, b, 4,1} (shown in blue).

At the left-slot of a given fact (e.g., hc =), the “goal” of the model is to predict any variable that could
be associated with the left-slot variable (e.g. h). This requires identifying all variables previously
connected to h in the context. This set of variables is precisely what we call the “closure” of the
group. We find the model is very good at this task, producing near-uniform logits over all previously
seen elements of the group as shown in Figure [I5]

We quantify the model’s ability to compute the closure by measuring the top- K’ matching accuracy at
the left-slot position. We identify the K variables with the highest predicted logits. Top- K matching
accuracy is then computed as the proportion of these top- K predictions that correspond to variables
from the corresponding group G that have appeared in the context so far. Perfect performance means
the model assigns the K highest logits exactly to the K group members seen in context, regardless
of their relative ordering. We also report top-1 accuracy, which is whether the highest logit is one
of the variables in G. Over a batch of 2000 randomly sampled algebra sequences, we find that our
model gets 100.0% top-1 accuracy, and 100.0% top- K matching accuracy, indicating it has correctly
learned how to compute within-group closure.

D.1 How ARE CLOSURE AND CANCELLATION SETS COMPUTED?

In this section, we investigate how the set difference operation introduced in Section [5.4] is imple-
mented by the transformer model.

For a given query xy=, recall that the closure set S¢josure cOntains all elements that have previously
appeared in the context associated with = or y, and the cancellation set Scynce is the set of answers
from previously seen facts that share either z in its left-slot or y in its right-slot. Upon examining
attention patterns and attention head output trajectories (Nostalgebraist, 2020), we find evidence
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Figure 16: Cancellation Set Construction. Several attention heads in the model work together to
build the cancellation set and govern the cancellation subspace. (a) Typical attention pattern of Head
3.2, which primarily attends to the answer-slot of facts that share the same symbol as the query’s
left-slot. (b) The attended-to tokens (e.g., {a, h, %, e,n}) have their logits demoted from head 3.2’s
output contribution (red). (c) Typical attention pattern of Head 3.4, which primarily attends to the
answer-slot of facts that share the same symbol as the query’s right-slot and (d) similarly demotes
the attended-to token’s (e.g. {e, h, n, k, a}) logits (red).

that these two sets are built up from contributions across several attention heads. We describe a few
heads implicated in constructing the cancellation set in more detail below.

D.1.1 CANCELLATION SET CONSTRUCTION

A few attention heads at the final predictive token exhibit attention patterns that are suggestive of
partial cancellation law behavior. For example, Head 3.2 primarily attends to answer-slots of facts
that share the same symbol in its left-slot as the query (i.e., facts of the form ? = 2, where ? can be
any variable token, see Figure[16h). We find that head 3.2 places an average of 74.4% of its attention
probability mass on answer-slots of facts that share the same left-slot symbol as the query (averaged
over 200 prompts). After attending to these tokens, head 3.2’s attention contribution subsequently
demotes the logits of each answer token (Figure [T6b). We also find another attention head (layer
3, head index 4) primarily attends to answer-slots of facts that share the same symbol in its right-
slot as the query (i.e., facts of the form ?y = ?, see Figure ), and does so 57.1% of the time.
Similarly, head 3.4 demotes the logits of the answer-slot tokens it attends to (Figure [T6{d). These
examples show how multiple attention heads help build up a set of tokens that should be eliminated
as answers, and we find that learning a low-dimensional subspace over the attention layer can cleanly
capture the corresponding cancellation subspace.

D.2 SUBSPACE PATCHING

In this subsection, we describe how we construct a learnable subspace that can characterize multi-
dimensional high-level variables such as the closure and cancellation sets described in Section [5.4]

We learn a set of Householder unit-vectors {v; € R?, [|v;||=1} (where d is the model’s hidden
dimension), to construct a series of Householder matrices, H; = I — QviviT, that are composed to
form an orthogonal matrix Q = HyHy_1--- H1 € R4*4_ (Householder}|1958). The first k& columns
of @, denoted Q) € R%*k form an orthonormal basis for our intervention subspace. We construct
our subspace projection as W = Q. Q7 and perform interventions by mixing information between
activations of the model on sequences s and s’ as shown in Equation

Whs+ (I —W)hg — hg (10)

where hg represents an activation taken from the model under sequence s, hy represents an activa-
tion taken from the same location under sequence s’, and — means the activation h is replaced
with the intervened representation Whg + (I — W)hs . While we use hy to denote “activation”
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Figure 17: (a) Training loss and (b) intervention accuracy when training a 32 dimensional closure
subspace. The subspace quickly achieves 100% intervention accuracy on both the training data and
validation set. We find the learned closure subspace is able to promote the variables of any group.
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Figure 18: We train probes on the closure subspace that test for the presence of each variable. We
find that (a) probes are able to accurately predict when a variable will be in the closure, and (b) the
probe directions weakly align with the model’s unembedding direction for their respective token.

here, it could be a representation from any location in the model. In Section [5.4] the subspaces are
learned on attention layer outputs (denoted a’ for layer /), and encompass all attention head outputs
of a layer.

E DATA COVERAGE PSEUDOCODE

In this section, we provide some pseudo-code examples showing how we check the coverage of each
algorithm hypothesized in Section 4]

def check_copyable (sequence) :

1

2 """ sequence (str): A sequence of consecutive algebra facts.

3 ex: ",fk=i, kn=g, cd=d, kh=c, in=c, nf=h, cg=g, if=n,gf=c, id=h, cg=g, df=g"
4 wnn

5 facts = sequence.split(’,’)

6 query = facts[-1]

7 return any ([fact.split (’=")[0] == query.split(’=") [0]

8 for fact in facts[:-1]1])

Code Block 1: Verbatim Copying. A python implementation to check if verbatim copying could
solve the given algebra sequence.

| def check_reverse_copyable (sequence) :
2 """ sequence (str): A sequence of consecutive algebra facts.
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NN

ex: ",fk=i, kn=g, cd=d, kh=c, in=c, nf=h, cg=g, if=n,gf=c, id=h, cg=g,df=g"
wun
facts = sequence.split(’,’)
query = facts[-1]
return any ([fact.split ('=")[0] == query.split(’=")[0][::-1]
for fact in facts[:-1]11])

Code Block 2: Commutative Copying. Python implementation to check if commutative copying
could solve the given algebra sequence.

1

2
3
4

11

def check_identity_solvable (sequence) :

""" sequence (str): A sequence of consecutive algebra facts.

ex: ",fk=i,kn=g,cd=d, kh=c,in=c,nf=h, cg=g, if=n,gf=c, id=h, cg=g, df=g"
nnn

facts = sequence.split(’,”)

query = facts[-1]

left_identity = [fact[0] == fact[-1] and fact[l] in query.split(’=’)[0] for fact in
facts[1l:-1]

right_identity = [fact[l] == fact[-1] and fact[0] in query.split(’=")[0] for fact in
facts[1l:-1]

return any(left_identity or right_identity)

Code Block 3: Identity Recognition. Python implementation to check if identity recognition could
solve the given algebra sequence.

1
2
3
4
5

def check_closure_elimination_solvable (sequence) :

""" sequence (str): A sequence of consecutive algebra facts.

ex: ",fk=i, kn=g, cd=d, kh=c, in=c, nf=h, cg=g, if=n,gf=c, id=h, cg=g, df=g"
wun

facts = sequence.split(’,’)

query = facts[-1]

share_symbol = [fact for fact in facts[1l:-1] if query[0] in fact or query[l] in fact]
share_a_on_left = [fact for fact in facts[l:-1] if fact[0] == queryl[0]
share_b_on_right = [fact for fact in facts[1l:-1] if fact[l] == query[1l]]

share_symbol_slots = share_a_on_left + share_b_on_right

def get_closure_set (facts) :
return set ('’ .Jjoin([x for x in facts]) .replace('=", '’))

set_closure = get_closure_set (share_symbol) # includes answers
answer_closure = get_closure_set ([x[-1]] for x in share_symbol_slots]

return len(set_closure - answer_closure) == 1 and (set_closure - answer_closure) ==
sequence [-1]

Code Block 4: Closure-based Cancellation. Python implementation to check if a closure-based
elimination rule could solve the given algebra sequence.

B W =

12
13
14
15
16
17
18
19
20

22

def check_associative (sequence) :

wun
sequence (str): A sequence of consecutive algebra facts.

ex: ", fk=i, kn=g,cd=d, kh=c, in=c,nf=h, cg=g, if=n,gf=c, id=h, cg=g, df=g"
nnn

facts = sequence.split(’,”)

query = facts[-1]

triplets = determine_associative_pairs (query)

is_associative=False
for triplet in triplets:
all_facts_exist = True
for fact in triplet:
if fact not in facts: # Need each fact of an associative triplet
all_facts_exist=False
break
if all_facts_exist: # If there’s a triplet of facts that compose to solve the query
is_associative=True
break

return is_associative

Code Block 5: Associativity. Python implementation to check if composition of facts via
associativity could solve the given algebra sequence.
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F USE OF LARGE LANGUAGE MODELS

As per the ICLR 2026 author guidelines, we provide details about our use of large language models
(LLMs) in the preparation of this manuscript.

LLMs were primarily used as a general-purpose tool to aid and polish writing, both at the sentence
level (e.g., grammar or re-wording sentences), and at the paragraph level (e.g., re-organizing sen-
tences in a paragraph). When considering LLM suggestions, the resulting text went through many
subsequent editing rounds. We also used LLMs to answer code-related questions for plotting data
used in figures. LLM use did not contribute in any way that we would consider equal to the level of
a contributor.
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