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ABSTRACT

We investigate the mechanisms that arise when transformers are trained to solve
arithmetic on sequences where tokens are variables whose meaning is determined
only through their interactions. While previous work has found that transform-
ers develop geometric embeddings that mirror algebraic structure, those previous
findings emerge from settings where arithmetic value tokens have fixed meanings.
We devise a new task in which the assignment of symbols to specific algebraic
group elements varies from one sequence to another. Despite this challenging
setup, transformers achieve near-perfect accuracy on the task and even general-
ize to unseen algebraic groups. We develop targeted data distributions to create
causal tests of a set of hypothesized mechanisms, and we isolate three mecha-
nisms the models learn: commutative copying where a dedicated head copies an-
swers, identity element recognition that distinguishes identity-containing facts,
and closure-based cancellation that tracks group membership to constrain valid
answers. Unlike the geometric representations found in fixed-symbol settings, our
findings show that models develop symbolic reasoning mechanisms when trained
to reason in-context with variables whose meanings are not fixed.

1 INTRODUCTION

Much of the performance of language models (LMs) can be attributed to the power of the token
embedding, for example pre-encoding the attribute female in the embedding for “Queen,” (Mikolov
et al.,[2013)) or pre-encoding divisible-by-two within the embedding of the token “108” (Zhou et al.,
2024; Hu et al., [2025; [Kantamneni & Tegmarkl, 2025} Nikankin et al., 2025)). Yet the hallmark of
abstract reasoning is the ability to work with words and symbols whose meaning is unknown ahead
of time. What mechanisms can a transformer language model employ if it is unable to pre-encode
solutions in the embeddings of the words?

In this work, we devise a simple in-context learning setting where tokens serve as pure variables,
acquiring meaning only through their interactions within each sequence. That will allow us to ask:
What computational strategies do transformers develop when deprived of meaningful embeddings?

We adopt a familiar arithmetic problem setting, training small transformers to predict answers to
arithmetic problems sampled from finite algebraic groups. What makes our setting special is that
each token is a variable that can represent any algebraic element: the meaning of each token is
only fixed within a single sequence. Unlike previous studies of the emergence of arithmetic reason-
ing (Power et al.} 2022;|Zhang et al., 2022;|Nanda et al., 2023} Zhong et al.,|2023), solving problems
in our setting will force models to infer structure solely from observations of contextual relationships
rather than relying on pre-encoded solution information within each token.

Surprisingly, we find that models trained on this task develop fundamentally different reasoning
strategies than those that have been previously observed when LMs solve arithmetic. Rather than
learning geometric representations of a Fourier basis, we find that the model acquires symbolic
reasoning mechanisms based on sparse relational patterns. We identify three primary algorithmic
strategies the model employs beyond verbatim copying: commutative copying, identity element
recognition, and closure-based cancellation. These findings suggest that the kind of reasoning strate-
gies learned by transformers are highly dependent on the task structure, with symbolic rather than
geometric reasoning strategies emerging when tokens carry no consistent meaning across contexts.
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Figure 1: An overview of the data generation process. (a) Variable Assignment: We sample a set
of algebraic groups and assign the elements of each group a non-overlapping set of vocabulary sym-
bols. (b) Sequence Generation: Sampled facts are converted into variable statements via the latent
mapping ¢, and concatenated together to form a sequence. (c) Sample Diversity: Every sequence
is constructed by sampling a new set of groups, defining a new latent mapping, and sampling a new
string of facts. The vocabulary symbols are assigned specific meanings within individual sequences,
but can take on very different meaning across sequences.

2 TASK DESCRIPTION

In this section, we describe our in-context learning task. At a high level, our task involves simulating
a mixture of finite algebraic groupsﬂ Each task sequence presents several examples of products
between elements in a group and the model is trained on the ordinary next-token language modeling
objective, with the goal that it will learn to predict the outcome of unseen group products (Figure ).

More formally, we have a set of m algebraic groups G = {G1,Gs,...,G,,} that the model is
trained to simulate. Recall that for any finite group G, the product of two elements z,y € G is
written as z = x - y € G. We call each such product “x - y = 2” a fact. Training data consists
of sequences of k facts written using a vocabulary of variable tokens v; € V' whose meaning may
vary between sequences. In practice, the vocabulary is small, with N = |V| < 3. |G;|. A typical
sequence s takes the form shown in Equation|[I] where individual facts consist of four tokens.

5 = “Vg1Uyl = Vo1, Ug2Uy2 = V22, *** , UgkUyk = Uzk (D

We describe the positions of a fact with the following terminology: The first element v,;, occupies
the “left-slot”; vy; is the “right-slot”; = is the “predictive token”; and v, is in the “answer-slot”.

To generate a training sequence s, we first sample a mixture of groups G, from G with total order less
than or equal to the number of variable tokens /N. We then construct a latent mapping s : Hy =V
that randomly assigns all elements of H; to tokens in V, where H, = | Gj is the set of all group
elements that can appear in s. We ensure that each group in G is assigned a non-overlapping set
of variables so that the meaning of each variable within a given sequence is determined by the
underlying group structure (Figure[Th).

Given this latent mapping, we then assemble s by sampling facts from G, converting them to vari-
able statements via ¢, and concatenating them together (Figure ). The statement “p;(2)ps(y) =
s(2)” only appears in s when there is a corresponding valid fact “z - y = 2” among the sam-
pled groups Gs. Importantly, while the mapping ¢, is fixed within a sequence, it varies between
sequences, ensuring that vocabulary tokens v; € V' act as variables without fixed global meaning.

"While not imperative for understanding our task setup, we provide a brief review of relevant topics from
group theory in Appendix El
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Figure 2: In-context algebra performance.

3 CAN TRANSFORMERS LEARN IN-CONTEXT ALGEBRA?

We train transformer models on the in-context algebra task (§2) and evaluate both their in-
distribution performance and their ability to generalize across contexts. We report results for one
representative model throughout, but observe qualitatively similar patterns across multiple training
runs (see Figure[7]in Appendix [B). Our main model is a 4-layer transformer with 8 attention heads
per layer and hidden size 1024, trained with next-token prediction on sequences of k=200 algebraic
facts (~ 1000 tokens). The training distribution G = {Cs, ..., C1g, D3, D4, D5} includes cyclic
and dihedral groups of up to order 10, with sequences written using N =16 variable tokens plus the
special tokens ‘=" and ‘,’. Because group-to-variable assignments are randomized per sequence,
tokens act as placeholders whose meaning must be inferred from context.

Performance increases with context length. Accuracy increases monotonically with the number
of in-context facts %, but the rate of improvement depends on the group order (Fig. 2a). Smaller
groups (e.g., C4, Cg) reach high accuracy with only a few shots, whereas larger groups (e.g., Cs,
(o) require substantially more context to achieve similar performance.

Phase transition on non-copyable queries. At large k, many queries are trivially solvable by copy-
ing a previously seen fact (about 90% of queries are copyable at k=200 versus 45% at k=50). To
address this, we evaluate the model with held-out data where the final fact “xy =" and its commu-
tative pair “yx =" never appear elsewhere in the sequence. In this setting, the model still achieves
near perfect accuracy, and we observe an abrupt improvement during training (a phase transition) on
non-copyable queries (Fig. [2b), suggesting the emergence of strategies beyond verbatim retrieval.

Generalization across algebraic structure. The model also transfers to unseen groups: on the
complete set of order-8 groups (including groups excluded from training), the model also achieves
near-perfect performance. Interestingly, performance does not collapse on non-group structures
such as semigroups or magmas (Fig. [2c). The model still achieves non-trivial accuracy, though
generalization remains consistently stronger for true groups.

4 HYPOTHESIZING MODEL MECHANISMS

When analyzing a random in-context algebra sequence, it is possible that multiple algorithms could
theoretically produce correct predictions. That can make it challenging to identify which mecha-
nisms the model actually implements. Consider the sequences shown in Equation [2]and Equation 3|
that differ only by which fact is bolded. The model could correctly predict “dp = p” by either
copying the answer from the duplicate fact appearing earlier (i.e., dp = p) or by recognizing d is an
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Figure 3: Algorithmic coverage: (a) the percentage of training data that can be solved by each
mechanism: copying (green), commutative copying (purple), identity recognition (yellow), and
closure-based elimination (red) and compare it to the empirical model performance (black). The
gray shaded region represents unexplained performance. (b) Coverage of sequences where nei-
ther form of copying is possible. Identity recognition solves 28.7% of the problems (yellow), and
closure-based cancellation can solve an additional 40% (red). (¢) The model achieves high accuracy
on almost all algorithmic distributions (97-100%), except for associative composition (60%).

identity element (i.e., dc = c) and applying the identity rule.

“kb=i,dc=c,cl =p,jp=1dp=p,en =e,bb=n,pj=1.dp=" )
“kb=i,de=c,cl =p,jp=1,dp=pen=ebb=mnpj=1dp=" 3)

To disambiguate between potential mechanisms, we design five targeted data distributions to test
specific algorithms that can solve algebra sequences when a corresponding set of facts is present in
the context. We describe each data distribution and the hypothesized algorithm it tests below:

1. Verbatim Copying (Dcopy)- This data tests whether the model copies exact facts from the con-
text. We construct sequences s € Deopy to contain at least one duplicate of the final fact.

2. Commutative Copying (D¢ommute). In many groups, knowing that ab = c¢ often implies that
ba = c. This data tests whether the model copies these commutative facts from the context. We
construct s € Deommute tO contain at least one instance of the commutative fact (e.g., yr = z for
final fact xy =), and no duplicate facts.

3. Identity Element Recognition (Digentity). This data tests whether the model can recognize and
apply the identity rule. We construct s € Dijgensity such that the final fact contains the identity
element (e.g., xy = x) and that at least one prior fact in the context reveals the identity element
(e.g., zy = z). We remove any duplicate or commutative facts.

4. Associative Composition (Dygseciate). This data tests whether the model can chain fact results
together to answer a new fact via associativity. Given a final fact zy = 2, we construct s €
Dassociate SO that it contains a minimum set of facts that would enable a solution via association.
For example, the three facts xg = f, gd = y, fd = z can be composed (i.e., (xg)d = fd =
z(gd) = z = xy = 2) to compute xy = z. We make sure to only use triples that do not include
duplicate or commutative facts.

5. Closure-Based Cancellation (Dcancer). This data tests whether the model can track group mem-
bership and appropriately apply the cancellation law to eliminate invalid answers (e.g., b = g
eliminates g as an answer to “zy ="). Given a final fact xy = z, we construct s € Deypcel bY
including all the facts that share x in the left-slot (e.g., xb = g) or y in the right-slot (e.g., cy = e),
and removing duplicate and commutative facts.

4.1 MEASURING COVERAGE AND PERFORMANCE ON TARGETED DISTRIBUTIONS

We seek to answer two questions: (1) What fraction of algebra sequences can theoretically be solved
by these hypothesized algorithms? and (2) Does the model successfully solve sequences that algo-
rithmic strategies can solve when presented with the appropriate facts in-context?

Algorithmic Coverage. To understand the breadth of data that our hypothesized mechanisms might
explain, we implement Python equivalents of all five algorithms (Appendix [E) and measure their
coverage, i.e., the percentage of sequences they can theoretically solve. We apply the algorithms
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sequentially in the following order: verbatim copying, commutative copying, identity recognition,
associative composition, and closure-based cancellation, where each algorithm is only applied to
sequences unsolved by previous mechanisms. We compute algorithmic coverage over both random
training sequences (Figure [3p) and held-out sequences where neither form of copying is possible
(Figure[3p), using 2000 sequences for each case.

We find that verbatim copying can solve a large percentage of the training data, with its area under
the curve (AUC) being 67.9% (Figure [3h, green). Commutative copying accounts for an addi-
tional 12.1% of cases (purple), with the identity solving 4.2% (yellow) and closure-based cancella-
tion solving 2.7% (red) for total coverage AUC of 86.9%. In contrast, the model accuracy (black)
achieves an AUC of 92.4%, indicating that while our hypothesized algorithms might explain much
of the model’s empirical training performance, they cannot explain everything the model has learned.

When a sequence cannot be solved via copying or commutative copying, we see a very different
trend (Figure 3p). In this more challenging setting, the model achieves a slightly lower AUC of
87.3% (black). Identity recognition is able to solve 28.7% of hold-out cases (yellow), and closure-
based cancellation can solve an additional 39.1% (red), bringing the total hold-out coverage AUC to
67.8%. Here, the gap between the model’s empirical performance and our algorithmic coverage is
larger, particularly for algebra sequences with fewer facts.

Model Performance on Subdistributions. We evaluate the model on sequences sampled from each
distribution D;, and report results at £ = 50 and k& = 100 facts (Figure ). We find the model gets
near perfect performance on the four of the five data distributions that we test: verbatim copying
(100.0%), commutative copying (99.0%), identity element recognition (100.0%), and closure-based
cancellation (97%). However, the model does not get as good of performance on sequences that test
for associative composition (60.2%).

5 CAUSAL VERIFICATION OF LEARNED MECHANISMS

Based on the results in Section .1 we perform causal interventions to understand how the model
mechanistically implements the following proposed algorithms: (1) verbatim copying, (2) commu-
tative copying, (3) identity element recognition, and (4) closure-based cancellation.

5.1 CAUSAL INTERVENTIONS

In order to understand the internal computations underlying the model’s capabilities, we use causal
interventions (Vig et al.l [2020; Meng et al., [2022; |Geiger et al. 2025) to verify how the model
implements the targeted behavior. This is typically done by implicating model components such as
attention heads or directions in its activation space (Wang et al., 2023} |Geiger et al., 2024; Mueller
et al.l 2024). Similar to prior work, we quantify the importance of a component via its indirect
effect (IE; |Pearl, [2001). We compute IE as the change in probability of the target variable token
Varger Under some intervention across a pair of algebra sequences that differ in a meaningful way
(Sclean> Scorrupt)- Equation E shows how to compute IE for an attention head abh) at layer [, head h,
where activations are patched from s¢jean iNtO Scorrypt:

IE(l, h) - P(Utarget|agiﬁr‘) — Scorrupt) - P(vtargel|scorrupl) (4)
where aglc;:fn) — Scomupt indicates activations ah) are being patched from Sciean INtO Scorrupe. The
average indirect effect (AIE) can be computed over a dataset D as:

AIE(D, 1, h) = % > (IE(1, b)) (5)
D

5.2 COPYING AND COMMUTATIVE COPYING

In this subsection, we investigate how the model implements verbatim and commutative copying.
As shown in Section [4.1] a large percentage of our training data (~ 80%) can either be solved by
verbatim copying or commutative copying, and the model achieves high performance (97-100%)
when either form of copying is possible (see Figure [3f).
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Figure 4: An analysis of copying (§ . Attention patterns (a-d) and direct logit contributions (e-h)
of the copying head (layer 3, head 6) across variations of the same algebra sequence. (a) When
verbatim copying is possible, the head attends to the answer-slot of the previous fact “kc = f”
and (e) directly promotes that token’s logit (green). (b) When the exact fact is absent, the head’s
attention shifts to the answer-slot and predictive token of the commutative fact “ck = f and (f)
promotes that token (purple). Note this fact was also in (a) but not attended to, indicating exact facts
take precedence over commutative ones. (c) When both exact and commutative facts are absent, the
head self-attends and (g) no longer strongly promotes one token. (d) When injecting a matching
“corrupted” fact with an incorrect answer (“kc = 37, red), the head attends to each answer-slot and
(h) promotes both variables (green, red).

Verbatim Copying. We search for attention heads responsible for copying the correct answer from
the context by computing the average indirect effect (AIE) of each attention head a(“") (layer [, head
h). We patch the activations of each head a(-) from the final predictive token in scjeqn into the same
token position in Scorupt, @ randomly sampled sequence where copying is not possible, and measure
its IE. We compute AIE(Dqpy, [, k) over 200 samples from Deqpy .

We find a single attention head (layer 3, head 6) with high AIE (0.91) that is primarily responsible
for copying, with no other head having an IE higher than 0.08 (Figure[8h). We visualize the attention
patterns of this copying head in Figure A, and find that it attends to the answer-slot of duplicated
facts (shown in green), much like the n-gram heads observed in |Akyiirek et al.| (2024). On Dcypy,
head 3.6 strongly promotes the logit of the attended-to token (Figure k) which can be seen by
applying the model’s unembedding matrix to the attention head output U (a(*:")). This allows us to
understand its output contribution in terms of vocabulary tokens (Nostalgebraist,|2020; |[Elhage et al.}
2021; Dar et al.,[2023). The top logit consistently matches the attended-to token (Figure [9).

Commutative Copying. In many groups, knowing that ab = ¢ will also imply that ba = ¢. To in-
vestigate how the model implements such commutative copying, we compute the indirect effects of
patching attention head activations from sequences in Sciean € Deommutes t0 NON-cOpying sequences
Scorrupt» Where neither verbatim nor commutative copying are possible. We find the same pattern:
head 3.6 is again the only head with strong IE (0.48) for commutative copying (Figure 8b). In the
absence of duplicate facts, head 3.6 attends to the predictive token and answer-slot of the commuta-
tive fact (Figure ip) and similarly promotes the attended-to variable token (Figure [f).

Non-Copying Sequences. When neither copy-inducing fact is present in the context, head 3.6 often
self-attends (Figures k), not strongly promoting any token (Figure djg). However, when the query
contains an identity fact, we find head 3.6 has an interesting identity demotion behavior (§ [5.3).

Corrupt Copying. While copying the answer-slot of a commutative fact can solve facts for abelian
groups, this doesn’t work for non-commutative facts. When analyzing the copying behavior of this
head on cyclic and dihedral groups separately, we find that more than 97% of the time it promotes
the token it attends to, even if that token is the wrong answer (see Figure Op). We illustrate this
behavior in Figure d, where we inject a duplicate fact with an incorrect answer and show that head
3.6 attends to both duplicates (red, green) and promotes both of their logits (Figure h).
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Figure 5: Identity Recognition. (a) PCA decomposition of fact embeddings at the final attention
layer reveals a clear separation of identity facts (blue) and non-identity facts (red). (b) Head 3.1
promotes the logits of both variables in the query (a and e), while head 3.6 demotes the logit of the
identity variable, e. (c) PCA steering on its own can induce identity behavior, but it promotes both
variables in the query to have near equal logits. Inserting a false identity fact for either query variable
triggers identity demotion, which along with PCA steering achieves cleaner identity behavior.

5.3 IDENTITY RECOGNITION

Our coverage has analysis revealed that when verbatim and commutative copying are no longer
allowed, the identity algorithm can solve close to 30% of all hold-out problems. In this section, we
use data from Digendiy to study how the model solves sequences where the query is an identity fact.
Recall that an identity element e satisfies e - © = x - e = z for all elements = € G, so that if one
variable in the question is known to be the identity, the answer is equal to the other variable.

Our experiments suggest that identity recognition emerges from the interaction of two complemen-
tary mechanisms: query promotion, that elevates both variables in the question as potential answers,
and identity demotion that suppresses the known identity element. When both mechanisms activate
simultaneously, the non-identity token is correctly selected.

Structure from PCA. First, we note that transformer representation reveals a strong signal corre-
lated with the presence of an identity element in the question. To analyze this, we plot attention
layer outputs at the predictive token position (the “=" symbol) just before the model predicts an
answer. Using PCA on the layer 3 attention outputs (Figure [Sh), shows a clear separation between
facts containing identity elements (blue) and non-identity facts (red). This separation is invariant to
the specific variables in the fact or the underlying group. This suggests the model has learned to

recognize and solve identity facts differently from facts that do not contain an identity element.

Query Promotion and Identity Demotion. To analyze the role of the layer 3 attention at predicting
identity facts in Figure Bp we use the logit lens (Nostalgebraist, [2020) and find two heads whose
logits correlate strongly with identity variables. Head 3.1 promotes both variables in a given fact,
serving as a “query promotion” mechanism. This strategy of predicting that the answer is equal to
the question is appropriate for problems in which one of the factors is the identity, although on its
own it would have the undesirable effect of promoting the identity element itself as the answer.

Head 3.6 acts as an “identity demotion” mechanism, attending to previous identity facts in the con-
text and suppressing the identity token’s logit. Combined with the previous strategy, this serves to
leave only the non-identity factor as the promoted answer.

Causal Verification. We further have evidence that the dominant PCA direction in representation
space causally controls identity recognition. To understand the causal effects, we perform represen-
tation steering experiments along this learned direction. When we intervene on the layer 3 attention
output of a non-identity fact and steer it toward the identity cluster, the model begins producing
equal logits for both query tokens (Figure[Sk: i vs. ii).

In addition to query promotion, we can also manipulate the model’s identity recognition by introduc-
ing false identity facts to influence the identity demotion signal. When we inject a fact incorrectly
suggesting one of the query tokens is the identity element, the identity demotion head (3.6) responds
by suppressing that token and causes a strong identity prediction (Figure 3k, iii, iv).

On the other hand, when the model is presented with false identity context while the query is a non-
identity fact, it typically confuses the prediction. However, if we steer in the negative PCA direction
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(away from the identity cluster), the model recovers and correctly predicts the non-identity answer.
These steering experiments demonstrate that the learned PCA direction has causal control over the
model’s identity reasoning, enabling us to both enhance and suppress identity recognition.

5.4 CLOSURE-BASED CANCELLATION

The closure-based cancellation algorithm is a combination of two key submechanisms: (i) tracking
which variables belong to the same algebraic group (i.e. the closure), and (ii) systematically elim-
inating invalid answers using the cancellation law, which implies that for elements x,y, z € G, if
y # z then xy # zz and yx # zx.

We hypothesize the algorithm can be understood at a high-level as computing the difference of two
sets: Sclosure - Scancel- Consider the sequence s sampled from Deypee) sShown in Equation@ For the
final query pe =, the closure contains all elements that have appeared in facts involving p or e,
i.e., Scosue = {p, €, f,a,n}. The cancellation law then eliminates candidates: p (from pf = p),
n (from ee = n), f (from ae = f), and e (from pp = e), leaving a as the only valid answer (i.e,
Scancel = {pa n, .fa 6})

“pf =p,ee=n,pf =p,pf =p,ae= fipp=e,pf =p,pn= f,pp=e,pe =" (6)

We use causal interventions to determine how the model implements these two submechanisms. Our
analysis reveals evidence of both a closure subspace, used to promote the logits of variables in the
same group, and an elimination subspace that demotes answers based on facts present in the context.

Closure Submechanism. Because we trained our model autoregressively at all sequence positions,
the closure submechanism emerges naturally: when predicting the right-slot of a fact like ab =, the
model must identify which variables could plausibly follow a. These are precisely the elements that
belong to the same group (i.e. the closure). In fact, when we analyze the model’s predictions at
left-slot positions, we find nearly uniform logits across all elements previously associated with that
variable, confirming the model has learned how to compute group closure (Figure [I0).

To investigate this mechanism causally, we sample counterfactual pairs (s, s’) from Deypeer that have
different closure and elimination sets (S;, S;). The pairs are constructed so that when intervening
between sequences, a counterfactual answer will arise from applying the set difference operation
(Selosure — Slancet) = vcr. Inspired by previous work (Geiger et al., [2024; |Prakash et al., 2025)
showing subspaces can encoding high-level causal variables, we train a subspace W to capture the
model’s representation of this closure set. To do this, we perform subspace-level patching from
Sclean INLO Scorrupt (s"), and train W to maximize the likelihood of producing the expected output vcg
that would arise if the subspace represented the model’s closure set (Equation [7), based on our set
difference model.

P(’UCF‘(Waélean + (I - W)a'éorrupt) - Cliorrupt) (7

We can measure its accuracy on how often the model’s predicted answer under intervention matches
the expected counterfactual target. We train a 32-dimensional W on the model’s layer 3 attention
output a', and find that it can achieve good intervention accuracy (99.8%) after only ten epochs of
1000 data pairs (Figure[TT). Details about how we construct W are in Appendix [D}

For the closure subspace, we train probes (Alain & Bengio, |2017) to understand what the subspace
has learned, and how it represents variables. We train a probe to detect the presence of a variable
within the subspace, when it is in the group closure or not. We find probes are able to identify with
high accuracy when a variable is in the closure subspace (97-99%), and that these variable-level
probes partially align with the model’s unembedding matrix (Figure [12), furthering evidence that
the closure subspace promotes variables it has seen before in the context.

Cancellation Submechanism. To understand the cancellation submechanism, we train a subspace
using a similar construction to the above, but vary the patching setup. If this new subspace W' cap-
tures the elimination set, then it should generate the counterfactual answer arising from the opposite
set difference, where the closure comes from the corrupt sequence s’, and the elimination set comes
from the clean sequence s: (S!) e — Scancel) = Ugp-

We similarly train this subspace and find it also achieves high intervention accuracy, indicating it
successfully represents the elimination set. Intervening in this subspace, we can eliminate arbitrary
variables, so that they do not become answers from the model.
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6 PHASE TRANSITIONS IN THE ACQUISITION OF ALGEBRAIC REASONING

We find that the model undergoes distinct phase transitions (Appendix: Fig.[6). Across seeds and
configurations (2-6 layers, 4-16 heads), the same sequence of stages recurs, each marked by a sharp
drop in loss. The earliest ability to emerge is group closure: the model learns that combining
two elements always yields another valid group element. This appears in left-slot predictions of
equations like ab=c, where the model distributes probability nearly uniformly across all valid can-
didates. This is followed by contextual copying, first reproducing facts verbatim and then extending
to commutativity-aware copying (ba after ab in abelian groups).

Later stages emerge more gradually. The model develops identity recognition, steadily improving
on identity-related facts and forming distinct representation clusters for identity elements. In paral-
lel, it acquires elimination reasoning, applying cancellation laws and closure constraints to rule out
inconsistent candidates (e.g., in “axz =7, excluding elements already paired with a). Unlike closure
and copying, these abilities do not show sharp transitions but appear jointly, suggesting they build
on copying: once the model can retrieve and recombine facts, it can also infer identities and apply
elimination strategies.

7 RELATED WORK

Arithmetic as a testbed for interpretability. Arithmetic tasks have long served as controlled set-
tings for mechanistic interpretability. In the grokking setup, small transformers trained on modular
arithmetic first memorize training data before converging to interpretable, generalizing solutions
with periodic embeddings (Power et al., 2022; Nanda et al., 2023} Zhong et al.,|2023}; |Stander et al.}
2024). Pretrained LLMs exhibit similar periodic structure in their number embeddings (Zhou et al.,
2024; Hu et al.| 2025 | Kantamneni & Tegmark| 2025} Nikankin et al.,[2025)), enabling modular arith-
metic without explicit training. However, these works assume fixed symbol meanings. More closely
related to our setting, He et al.| (2024) show that transformers trained on multiple permutations of
a single group develop hierarchical “circle-of-circles” embeddings, while [Zhong & Andreas|(2024)
demonstrate that models with trained embeddings, but otherwise random weights can still imple-
ment algorithmic solutions. We extend this line by removing fixed meanings altogether, requiring
models to solve problems where token referents vary arbitrarily between sequences.

Mechanisms of in-context learning. The ability of transformers to learn from demonstrations
has been attributed to several mechanisms. Early work identified induction heads that implement
copying via prefix matching (Elhage et al., 2021} Olsson et al., |2022), while theory has framed
ICL as Bayesian inference (Xie et al.,|2022)) or gradient-descent-like adaptation (von Oswald et al.,
2023)). More recent studies found function vectors that capture task-level structure (Todd et al.,[2024;
Hendel et al., [2023)), and showed that token representations can flexibly adapt to context (Park et al.,
2025; |Gopalani et al.| [2024; |Wurgaft et al.| [2025; |Minegishi et al., 2025).

Symbolic reasoning and causal interpretability. Neural systems have long been studied as poten-
tial mechanisms for symbol manipulation, from Tensor Product Representations (Smolensky, |1990)
and Holographic Reduced Representations (Plate}[1995) to recent cognitive-science studies of emer-
gent symbolic reasoning in modern networks (Yang et all [2025; [Swaminathan et al., [2023). More
recently, mechanistic interpretability also started mapping internal reasoning circuits in transform-
ers (L1 et al.l |2023; |Brinkmann et al.| 2024; |Prakash et al., 2024; [Saparov et al., |2025; Wu et al.,
2025)), often using causal interventions (Mueller et al.l 2024 |Geiger et al.| 2024} 2025)).

8 CONCLUSION

Our findings challenge the hypothesis that geometric embeddings are the primary mechanism by
which transformers solve algebraic problems. In our setting, when tokens carry no fixed meaning,
we have analyzed the mechanisms learned by transfornmer LMs in detail and found that the models
abandon geometric strategies entirely and develop symbolic mechanisms instead. Our observations
suggests that the geometric representations observed in previous arithmetic studies may be artifacts
of fixed symbol meanings rather than universal computational principles. Understanding when and
why models choose different computational strategies remains an important open question for future
interpretability work.
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ETHICS STATEMENT

This paper aims to advance the foundational understanding of in-context learning and transformers.
While such research may influence future model development and deployment, we cannot meaning-
fully anticipate these downstream impacts within the scope of this work.
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A GROUP THEORY

In this section, we review relevant terms from group theory that are used in our analysis.

A group (G, -) is a non-empty set G equipped with a binary operation - : G x G — G that satisfies
the following properties:

* Associativity. For all elements z,y,z € G: (z-y) -z =2 - (y - 2)

¢ Identity. There exists an identity element e € G suchthate-g=g¢g-e=gforallg € G

« Invertibility. For each element g € G, there exists an inverse element g—! € G such that
g9 =g"g=e¢

For notational convenience, we refer to a group (G, -) simply as G.

A group G is called abelian (or commutative) if for all z, y € G, the following holds: -y =y - x.

Our training data consists of two main families of groups: cyclic groups and dihedral groups.

A cyclic group of order n, denoted C,,, consists of all powers of a single generator element: C,, =
{e,9,9% ...,9" 1} where g" = e is the identity. Every cyclic group C,, has the same structure
as doing arithmetic modulo n. For example, in C5, multiplying group elements (e.g., Equation
works exactly like adding numbers mod 5 (e.g., Equation [9):

9 -9'=9 ®)
=3+4=2 (mod5) ©)

A dihedral group D,, is the group of symmetries of a regular n-gon (square, hexagon, etc.), with
order | D,,| = 2n. Its elements consist of n rotations and n reflections. We note that all cyclic groups
are abelian, and dihedral groups are non-abelian for n > 3.

An important consequence of group structure is the cancellation law, which states that we can
“cancel” common terms in equations. Specifically, for any group G with elements a, b, c:

e Left cancellation: If ab = ac, then b = ¢

* Right cancellation: If ba = ca, then b = ¢

Equivalently (by contrapositive): if y # z, then xy # xz and yx # zz. This rule guarantees
that distinct group elements produce distinct products which helps ground our understanding of the
closure-based cancellation mechanism described in Section [5.41

For completeness, we briefly describe other algebraic structures we test on that lack some subset of
group properties:

* A semigroup is a set with an associative binary operation, but does not require an identity
element or inverses.

* A quasigroup is a set where equations ax = b and ya = b always have unique solutions
for any a, b, but the operation need not be associative. Latin squares are examples of finite
quasigroups.

* A magma is simply a set equipped with a binary operation, with no other required structural
properties.
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B TRAINING DETAILS
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Figure 6: Phase transitions during training. Loss over training steps on a log-scale shows three
drops that align with discrete behavioral changes.
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Figure 7: Consistency across runs. We observe qualitatively similar patterns across multiple train-
ing runs, both in terms of phase transitions and the order in which different capabilities are acquired.

C ADDITIONAL RESULTS ON COPYING

In this section, we provide additional results related to the copying and commutative copying mech-
anisms. Figure [8p shows heatmap of the causal effect of patching from verbatim copying sequences
for each attention head in the model. Figure [8p shows a similar heatmap of causal effects for each
attention head when patching from commutative copying sequences into no-copy sequences.

Figure [9] shows how often each attention head promotes the correct answer token for copying se-
quences, when applying the unembedding matrix to its output (i.e., U (a(l 7)) (Nostalgebraist, 2020}
Elhage et al.,[2021). We find that the highest logit promoted by head 3.6 almost always matches the
target answer for both verbatim and commutative copying sequences.
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Figure 8: (a) Average causal indirect effect (Equation for each attention head when patching from
copying sequences into non-copying sequences, where darker green indicates a stronger change in
probability. A single head (layer 3, head 6) is strongly implicated in verbatim copying behavior
(AIE=0.91). (b) The same head is implicated when performing patching from commutative copying
sequences into non-copying sequences, though the causal effect is slightly weaker (AIE=0.479).
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Figure 9: Decoding the output of each attention head at the final layer via the model’s unembedding
matrix reveals how often an attention head’s highest logit matches the correct correct answer on
copying sequences. (a) For cyclic groups, we see one head stand out: head 3.6 matches the correct
answer more than 99.5% of the time for verbatim copying sequences (green), and 97% of the time
for commutative copying sequences (purple), while almost never promoting the correct answer on
non-copying sequences (black). (b) For dihedral groups, where not all facts are commutative, we see
a similar same trend for exact copying sequences (green), while for commutative copying the head
only matches the correct answer 32.5% of the time (purple). However, if we measure whether the
highest decoded logit matches the most attended-to token, this happens 97% of the time (red). This
suggests head 3.6 is blindly copying whatever it attends to even if that variable is not the correct
answer. While this strategy would work for any commutative pair of facts, it cannot solve non-
commutative pairs found in dihedral groups.

D CLOSURE AND ELIMINATION SUBSPACES

D.1 SUBSPACE PATCHING

In this subsection, we describe our how we construct the subspaces we train to characterize the
closure and elimination mechanism. We use using a set of learned Householder unit-vectors v; €
R?, to construct an orthogonal matrix Q = H,Hy_; --- H; € R**? from a series of Householder
matrices, H; = I — 2v;v., (Householder, |1958). The first k& columns of ), denoted Qj, € R¥**,
represent the directions of our intervention subspace. We construct our subspace projection as W =
Q. Q{ and perform interventions by mixing information from Aciean int0 Acorrupt a1 W hetean + (I —
W)hcorrupt - hcorrupt-
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Figure 10: Closure submechanism (. When predicting the right-slot of a fact, the model pro-
duces nearly uniform logits over all variables previously associated with the left-slot in the context.
Given the same sequence, but with different left-slot variables (h vs. b), the model produces logits
over (a) the six elements connected to h: {c, e, f, h,n,p}, or (b) the four variables associated with

b: {a,b,i,1}.
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Figure 11: (a) Training loss and (b) intervention accuracy when training a 32 dimensional closure
subspace. The subspace quickly achieves 100% intervention accuracy on both the train data and a
validation set. We find the learned closure subspace is able to promote the variables of any group.

E CoOMPUTING DATA COVERAGE

In this section, we provide code implementing how we check for coverage of each algorithm tested
in Section 4]

def check_copyable (sequence) :
""" sequence (str): A sequence of consecutive algebra facts.

1

3 ex: ",fk=i,kn=g,cd=d, kh=c, in=c,nf=h, cg=g, if=n,gf=c, id=h, cg=g, df=g"
4 wnw

5 facts = sequence.split(’,’)

6 query = facts[-1]

7 return any ([fact.split (’=")[0] == query.split(’=")[0]

8 for fact in facts[:-111])

Code Block 1: Python implementation to check if verbatim copying could solve the given algebra
sequence.

def check_reverse_copyable (sequence) :
""" sequence (str): A sequence of consecutive algebra facts.

1

2

3 ex: ", fk=1i,kn=g,cd=d, kh=c, in=c,nf=h, cg=g,if=n,gf=c,id=h, cg=g,df=g"
4 mnm

5 facts = sequence.split(’,”)

6 query = facts[-1]

7 return any ([fact.split(’=’)[0] == query.split(’=’")[0][::-1]

8 for fact in facts[:-1]1])

Code Block 2: Python implementation to check if commutative copying could solve the given
algebra sequence.
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Figure 12: We train probes on the closure subspace that test for the presence of each variable. We

find that (a) probes are able to accurately predict when a variable will be in the closure, and (b) the
probe directions weakly align with the model’s unembedding direction for their respective token.

def check_identity_solvable (sequence) :

1

2 """ sequence (str): A sequence of consecutive algebra facts.

3 ex: ", fk=i, kn=g,cd=d, kh=c, in=c, nf=h, cg=g, if=n, gf=c, id=h, cg=g,df=g"

4 wnm

5 facts = sequence.split(’,’)

6 query = facts[-1]

8 left_identity = [fact[0] == fact[-1] and fact[l] in query.split(’=")[0] for fact in
facts[1l:-1]]

9 right_identity = [fact[l] == fact[-1] and fact[0] in query.split(’=")[0] for fact in

facts[1l:-1]
11 return any (left_identity or right_identity)

Code Block 3: Python implementation to check if identity recognition could solve the given algebra
sequence.

| def check_closure_elimination_solvable (sequence) :

2 """ sequence (str): A sequence of consecutive algebra facts.

3 ex: ", fk=i, kn=g,cd=d, kh=c, in=c,nf=h, cg=g, if=n, gf=c, id=h, cg=g,df=g"
4

nnn

5 facts = sequence.split(’,’)

6 query = facts[-1]

8 share_symbol = [fact for fact in facts[-1:1] if query[0] in fact or query[l] in fact]
10 share_a_on_left = [fact for fact in facts if fact[0] == a]

11 share_b_on_right = [fact for fact in facts if fact[l] == Db]

3 share_symbol_slots = share_a_on_left + share_b_on_right

15 def get_closure_set (facts) :

16 return set (’’.Jjoin([x for x in facts]) .replace('=", '’))

18 set_closure = get_closure_set (share_symbol) # includes answers

19 answer_closure = get_closure_set ([x[-1]] for x in share_symbol_slots]

21 return len(set_closure - answer_closure) == 1 and (set_closure - answer_closure) ==

sequence[-1]

Code Block 4: Python implementation to check if a closure-based elimination rule could solve the
given algebra sequence.
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F USE OF LARGE LANGUAGE MODELS

As per the ICLR 2026 author guidelines, we provide details about our use of large language models
(LLMs) in the preparation of this manuscript.

LLMs were primarily used as a general-purpose tool to aid and polish writing, both at the sentence
level (e.g., grammar or re-wording sentences), and at the paragraph level (e.g., re-organizing sen-
tences in a paragraph). When considering LLM suggestions, the resulting text went through many
subsequent editing rounds. We also used LLMs to answer code-related questions for plotting data
used in figures. LLM use did not contribute in any way that we would consider equal to the level of
a contributor.
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