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ABSTRACT

Detecting Out-of-Distribution (OOD) inputs is crucial for improving the reliabil-
ity of deep neural networks in the real-world deployment. In this paper, inspired
by the inherent distribution shift between ID and OOD data, we propose a novel
method that leverages optimal transport to measure the distribution discrepancy
between test inputs and ID prototypes. The resulting transport costs are used to
quantify the individual contribution of each test input to the overall discrepancy,
serving as a desirable measure for OOD detection. To address the issue that solely
relying on the transport costs to ID prototypes is inadequate for identifying OOD
inputs closer to ID data, we generate virtual outliers to approximate the OOD re-
gion via linear extrapolation. By combining the transport costs to ID prototypes
with the costs to virtual outliers, the detection of OOD data near ID data is em-
phasized, thereby enhancing the distinction between ID and OOD inputs. Experi-
ments demonstrate the superiority of our method over state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) deployed in real-world scenarios often encounter out-of-distribution
(OOD) inputs, such as inputs not belonging to one of the DNN’s known classes. Ideally, reliable
DNNs should be aware of what they do not know. However, they typically make overconfident
predictions on OOD data (Nalisnick et al., 2018). This notorious behavior undermines the cred-
ibility of DNNs and could pose risks to involved users, particularly in safety-critical applications
like autonomous driving (Filos et al., 2020) and biometric authentication (Wang & Deng, 2021).
This gives rise to the importance of OOD detection, which identifies whether an input is OOD and
enables conservative rejection or transferring decision-making to humans for better handling.

The representations of ID data within the same class tend to be gathered together after the training
process, as shown in Figure 1(a). In contrast, the representations of OOD data are relatively far away
from ID data, as they are not involved in the training process. In other words, the distributions of ID
and OOD representations in the latent space exhibit a distinct separation. Therefore, we can expect
that the distribution discrepancy between the representations of test inputs (i.e., a mixture of ID and
OOD data) and pure ID data is primarily caused by the presence of OOD data. Such a distribution
discrepancy motivates us to differentiate OOD data from test inputs by quantifying the individual
contribution of each test input to the overall distribution discrepancy.

In this way, a critical question arises: how to measure the distribution discrepancy between test
inputs and ID data, while quantifying the contribution of each test input? To this end, we utilize
optimal transport (OT), a principled approach with rich geometric awareness for measuring the dis-
crepancy between distributions. Concretely, OT aims to minimize the total transport cost between
two distributions to measure the distribution discrepancy based on a predefined cost function (typ-
ically the geometric distance between samples). The smaller the total cost is, the closer the two
distributions are. Since the total cost comprises the sum of transport costs between sample pairs, OT
facilitates a fine-grained assessment of individual sample contributions to the overall discrepancy,
making it particularly well-suited for OOD detection. Furthermore, the transport cost captures the
geometric differences between ID and OOD representations in the latent space, providing a geomet-
rically meaningful interpretation.

Based on the above intuition, in this paper, we propose a novel OOD detection method called POT
that utilizes the Prototype-based Optimal Transport. Concretely, we first construct ID prototypes
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Figure 1: Illustration of our method for OOD detection. In (a), the representation distribution of OOD inputs
is distinctly separated from ID inputs, visualized via t-SNE. The model is ResNet18 (He et al., 2016). The
ID/OOD data is CIFAR-10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011). (b) shows a slice of the trans-
port cost matrix, which is derived from the optimal transport between test inputs and ID prototypes (depicted
as triangles). The row sum of a test input (labelled from A to L) represents the transport cost from it to all ID
prototypes. Darker colors indicate higher transport costs. It is evident that the ID inputs (depicted as orange
circles) generally incur lower transport costs compared to the OOD inputs (depicted as blue circles).

with the class-wise average of training sample representations to represent the distribution of ID
data. We then apply OT between the representations of test inputs and the ID prototypes, obtaining
a transport cost matrix where each entry indicates the transport cost between the corresponding
pair of test input and prototype. As illustrated in Figure 1 (b), the total transport cost, calculated by
summing all matrix entries, reflects the overall distribution discrepancy. The transport cost from each
test sample to all ID prototypes (i.e., the row sum), serves as a measure of individual contribution
to the overall discrepancy, indicating the likelihood of being OOD. However, the task of OOD
detection remains inadequately addressed due to the presence of OOD data with smaller distribution
shifts. These OOD data lie closer to ID data in the latent space, rendering the transport costs to
ID prototypes insufficient for detecting them. To tackle this issue, we propose generating virtual
outliers to approximate the OOD region, particularly the areas near ID prototypes, using linear
extrapolation between ID prototypes and the average representation of test inputs. By integrating
the transport costs from test inputs to ID prototypes with the cost to virtual outliers, the detection of
OOD samples with smaller distribution shifts could be emphasized, thereby enhancing the overall
distinction between ID and OOD data.

Our key contributions are as follows: (1) We present a novel perspective for OOD detection by mea-
suring distribution discrepancy and propose an effective detection method using prototype-based
optimal transport. (2) Extensive experiments on various benchmark datasets demonstrate that our
proposed method achieves state-of-the-art (SOTA) performance, outperforming 21 previous OOD
detection methods. Moreover, in the scenarios where training data is unavailable, our method con-
sistently beats the robust competitors by a margin of 22.5% in FPR95 on the CIFAR-100 benchmark.

2 RELATED WORK

2.1 OOD DETECTION

OOD detection has attracted growing research attention in recent years. Existing approaches can
generally be categorized into two major lines:

(1) One line of work utilizes the outputs from pretrained models to design scoring functions for
differentiating OOD samples. These post-hoc methods can be further divided into three subcate-
gories. 1) The confidence-based methods (Hendrycks & Gimpel, 2017; Sun et al., 2021; Song et al.,
2022; Hendrycks et al., 2022; Wang et al., 2022b; Liu et al., 2023) adjusts model outputs to ob-
tain the desired confidence, including maximum softmax probability (Hendrycks & Gimpel, 2017),
energy (Liu et al., 2020), and generalized entropy (Liu et al., 2023). 2) The density-based meth-
ods (Hendrycks et al., 2022; Sun & Li, 2022; Zhang et al., 2023c; Liu et al., 2024) identifies certain
properties or patterns of ID data, such as neuron coverage (Liu et al., 2024), by learning the corre-
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sponding density functions, and the OOD samples that deviate from these properties or patterns tend
to reside in low-density regions. 3) The distance-based methods (Lee et al., 2018; Ren et al., 2021;
Sehwag et al., 2021; Sun et al., 2022) adopts distance metrics, e.g., Mahalanobis distance, between
test input and ID samples or centroids differentiate OOD samples, under the assumption that OOD
data lie relatively far away from ID data. Different from these works, we introduce a novel per-
spective for OOD detection on measuring distribution discrepancy. The most closely related work
is dual divergence estimation (DDE) (Garg et al., 2023), which estimates the dual KL-Divergence
between the test samples and ID samples. However, while DDE estimates divergence in a dual space
optimized by DNNs and relies heavily on the quality of transformed sample representations, POT
enables direct measurement of distribution discrepancy in the latent space.

(2) Another line of work focuses on altering models with training-time regularization to amplify the
differences between OOD and ID samples (Hendrycks et al., 2019a; Chen et al., 2021; Ming et al.,
2022; Zhang et al., 2023a; Wang et al., 2023; Lu et al., 2023). For example, by incorporating a
suitable loss, models are encouraged to produce predictions with uniform distributions (Hendrycks
et al., 2019a) or higher energy (Liu et al., 2020) for outlier data. Building on this, some approaches
investigate refining or synthesizing outliers to improve the performance of models. For instance,
Ming et al. (2022) utilizes a posterior sampling-based technique to select the most informative OOD
samples from the large outlier set, while Wang et al. (2023) implicitly expands the auxiliary out-
liers by perturbing model parameters. However, the computational overhead of retraining can be
prohibitive, especially when the parameter scale is large. Additionally, modifying models may also
have side effects of degrading model performance on the original task. In contrast, this paper focus
on post-hoc methods, which are easy to implement and generally applicable across different models.
Such properties are highly practical for adopting OOD detection methods in real-world applications.

2.2 OPTIMAL TRANSPORT

As a mathematical tool for comparing distributions, optimal transport (OT) has been successfully
employed in diverse machine learning tasks, including domain adaptation (Courty et al., 2016; Tur-
risi et al., 2022), generative adversarial training (Arjovsky et al., 2017), object detection (Ge et al.,
2021), and partial-label learning (Wang et al., 2022a). The most related one to our work is (Lu et al.,
2023), which also applies OT for the OOD detection problem. By assuming both an unlabeled and a
labeled training set, Lu et al. (2023) uses OT to guide the clustering of samples for label assignment
to the unlabeled samples, thereby augmenting the training data and facilitating the model retraining
for OOD detection. In contrast, our work operates in a post-hoc manner without the requirement of
extra training data or model retraining.

3 THE PROPOSED METHOD

3.1 PROBLEM SETTING

In the context of supervised multi-class classification, we denote the data space as X and the corre-
sponding label space as Y = {1, 2, · · · , C}. The training dataset with in-distribution (ID) samples
Dtr = {(xi, yi)}ni=1 is sampled from the joint distribution PXY . The marginal distribution on X
is denoted as P in

X . The model trained on training data typically consists of a feature encoder g :
X → Rd, mapping the input x ∈ X to a d-dimensional representation, and a linear classifica-
tion layer f : Rd → RC , producing a logit vector containing classification confidence for each
class. Given the test inputs Dte = {xj}mj=1, the goal of OOD detection is to identify whether xj is
out-of-distribution w.r.t P in

X .

3.2 PROTOTYPE-BASED OPTIMAL TRANSPORT FOR OOD DETECTION

Constructing Class Prototypes. The key idea of our method is to use OT to measure the distribution
discrepancy between test inputs and ID data while quantifying the individual contribution of each
test input. A straightforward approach involves applying OT between test inputs and the training
data. However, the standard OT is essentially a linear programming problem, suffering from cubic
time complexity and incurring prohibitive computational cost when adopted to large-scale training
sets (Peyré et al., 2019). An alternative is to sample a smaller subset of the training set for efficiency,
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but this can result in missing classes, leading to mismatches in ID inputs. Such mismatches can
exaggerate the contribution of ID inputs to the distribution discrepancy, thus incorrectly identifying
them as OOD. To overcome this, we propose to characterize each class with a prototype and align
test inputs to these prototypes. Specifically, given the training dataset Dtr = {(xi, yi)}ni=1, we
construct each class prototype as the average representation for that class extracted from the feature
encoder g:

ηc =
1

Nc

∑n

i=1
g(xi)1{yi = c}, (1)

where Nc is the number of samples in class c. The utilization of prototypes offers two key benefits:
it reduces computational overhead by reducing the data scale and ensures all classes are represented,
mitigating the risk of mismatches caused by missing classes.

OOD Detection Using Prototype-based Optimal Transport. By formalizing an optimal transport
problem between the representations of test inputs {zj = g(xj)}mj=1 and ID prototypes {ηi}Ci=1,
we search for the minimal transport cost that represents the distribution discrepancy, while subject
to the mass conservation constraint:

min
γ∈Π(µ,ν)

⟨E,γ⟩F = min
γ∈Π(µ,ν)

∑C

i=1

∑m

j=1
Eijγij

s.t. Π(µ,ν) = {γ ∈ RC×m
+ |γ1m = µ,γT1C = ν},

(2)

where ⟨·, ·⟩F stands for the Frobenius dot-product. µ and ν are the probability simplexes of ID
prototypes and test samples:

µ =
∑C

i=1
piδηi

and ν =
∑m

j=1
qjδzj

, (3)

where pi =
Ni∑n
i=1 Ni

, qj = 1
m , and δηi

is the Dirac at position ηi. γ is a transport plan, essentially
a joint probability matrix, with an entry γij describing the amount of probability mass transported
from prototype ηi to test input zj . All feasible transport plans constitute the transportation polytope
Π(µ,ν) (Cuturi, 2013). E is the ground cost matrix, where the entry Eij denotes the point-to-point
moving cost between ηi and zj , which is defined with the Euclidean distance as Eij = ||ηi − zj ||2.

To efficiently resolve Equation 2, we introduce the entropic regularization term H(γ) and express
the optimization problem as:

min
γ∈Π(µ,ν)

⟨E,γ⟩F − λH(γ), (4)

where λ > 0 and H(γ) =
∑

i,j γij(log γij − 1) (Peyré et al., 2019). In this way, the optimal
transport plan γ can be written as:

γ = Diag(a)KDiag(b), where K = exp(−E/λ). (5)

Here, a ∈ RC and b ∈ Rm are known as scaling variables. This formulation can be solved much
faster using the Sinkhorn-Knopp algorithm (Cuturi, 2013):

a← µ⊘ (Kb), b← ν ⊘ (K⊤a), (6)

where ⊘ denotes element-wise division. Detailed derivations are provided in Appendix A. With the
λ-strong convexity (Peyré et al., 2019), the entropic regularized OT could be solved in quadratic
time complexity O(nm), where n and m denote the number of data points in the two distribu-
tions, respectively. Since the ID distribution is represented with a fixed number of prototypes, the
prototype-based OT has linear time complexity O(Cm).

To evaluate whether an input sample xj ∈ Dte is OOD or not, we derive the cost of moving it to all
ID prototypes Tj by decomposing the total transport cost:

⟨E,γ⟩F =
∑m

j=1

∑C

i=1
Eijγij :=

∑m

j=1
Tj . (7)

As the total transport cost serves as a measure of distributional discrepancy between ID and test
data, a higher transport cost T for a test sample indicates a greater deviation from the ID data,
suggesting that the sample is more likely to be OOD data. We emphasize that, while the solution of
OT is the transport plan γ, which is often the focus in many applications (Caron et al., 2020; Wang
et al., 2022a), our concentration lies on the transport costs between sample pairs. Specifically, this is
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Prototypes

𝑴𝒊𝒏 𝑴𝒐𝒖𝒕𝑴Input Average Virtual
Outliers

Figure 2: Illustration of virtual outlier generation. The average representation of test inputs M lies between
the average of ID inputs Min and average of OOD inputs Mout. We generate virtual outliers to approximate
the OOD region using linear extrapolation between M and ID prototypes.

the product of the transport plan and the ground cost, which serves as a desirable and interpretable
measure for OOD detection.

Data Augmentation via Linear Extrapolation. As described above, the transport cost can serve
as a measure for OOD detection. However, relying solely on the cost to ID prototypes is insufficient
for discerning OOD data with smaller distribution shifts from ID data. This is because such OOD
data are located closer to ID data in the latent space and tend to incur lower transport costs to the
ID prototypes. Meanwhile, the mass conservation constraint inherent in OT may exacerbate this
issue by enforcing transportation between OOD data and prototypes when ID inputs are sparse. To
address this issue, we propose to generate virtual outliers to approximate the OOD region using
representation linear representation extrapolation. By integrating the transport costs from test inputs
to both virtual outliers and ID prototypes, we introduce a contrastive transport cost, which enhances
the detection performance, particularly for the OOD inputs with smaller distribution shifts.

Given two representations zi and zj , the linear representation extrapolation is defined as:
z∗ = zi + ω(zj − zi), s.t. ω > 1 ∨ ω < 0. (8)

Instead of generating outliers aimlessly by enumerating available sample pairs, we construct virtual
outliers P∗ by combining the prototypes P and the average representation of test inputsM:

P∗ = {η∗
i = ηi + ω(M− ηi) + ηi ∈ P}, (9)

where ω > 1 ensures that the generated points P∗ lies beyondM. The underlying intuition is that
M can be expressed as a linear interpolation of the average representations of test ID samplesMin
and test OOD samplesMout:

M :=
Nin

N
Min +

N −Nin

N
Mout, (10)

where Nin and Nout denote the number of test ID samples and total test samples, respectively. As il-
lustrated in Figure 2, the pointM resides between ID and OOD data, guiding the direction for outlier
generation in response to distribution shifts. As parameter ω increases, the generated virtual outliers
progressively move away from the ID prototypes towards the OOD region in the latent space. By
choosing an appropriate parameter, we can control the location of generated virtual outliers to em-
phasise the detection of OOD inputs with smaller distributions shifts. In contrast to the method (Zhu
et al., 2023) that conducts informative extrapolation to synthesize numerous outliers during training
with assumed auxiliary outliers, the linear representation extrapolation is a lightweight operation
that does not require training or auxiliary outliers.

Likewise, after generating the virtual outliers P∗, we apply the entropic regularized OT between
P∗ and the test inputs to obtain the corresponding transport cost T ∗. By taking the difference
of transport costs from test inputs to the ID prototypes and to the virtual outliers, we derive the
contrastive transport cost T − T ∗ as the final OOD score. Given the opposite trends of T and T ∗

in indicating whether a sample is ID or OOD, a higher contrastive transport cost denotes a higher
likelihood of the test input being OOD.

4 EXPERIMENTS

In this section, we preform extensive experiments over OOD detection benchmarks. All the ex-
perimental setup adheres to the latest version of OpenOOD, an open repository for benchmarking
generalized OOD detection1 (Yang et al., 2022; Zhang et al., 2023b).

1https://github.com/Jingkang50/OpenOOD.
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4.1 COMMON SETUP

Datasets. We assess the performance of our proposed POT on the widely used CIFAR-100 bench-
mark and ImageNet-1k benchmark, which regard CIFAR-100 and ImageNet-1k as ID datasets, re-
spectively. For CIFAR-100, we use the standard split, with 50,000 training images and 10,000
test images. For ImageNet-1k, we utilize 50,000 images from the validation set as ID test set.
For each benchmark, OpenOOD splits OOD data to Far-OOD and Near-OOD based on their de-
grees of the semantic similarity with ID data. Specifically, the CIFAR-100 benchmark utilizes
four Far-OOD datasets: MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Textures (Cimpoi
et al., 2014), and Places365 (Zhou et al., 2018), along with two Near-OOD datasets: CIFAR-10
and Tiny Imagenet (Le & Yang, 2015). For the large-scale ImageNet-1k benchmark, it considers
iNaturalist (Horn et al., 2018), Textures (Cimpoi et al., 2014), and OpenImage-O (Wang
et al., 2022b) as Far-OOD datasets. In terms of Near-OOD datasets, SSB-hard (Vaze et al., 2022)
and NINCO (Bitterwolf et al., 2023) are included.

Models. For the CIFAR-100 benchmark, we utilize ResNet18 (He et al., 2016) as the model back-
bone, which is trained on the ID training samples for 100 epochs. We evaluate OOD detection
methods over three checkpoints. For the ImageNet-1k benchmark, we employ ResNet50 and ViT-
b16 (Dosovitskiy et al., 2021) models pretrained on ImageNet-1k and use the official checkpoints
from PyTorch. For more training details, please refer to OpenOOD.

Baselines. Since POT performs in a post-hoc manner, we primarily compare against 21 post-hoc
OOD detection methods, including OpenMax (Bendale & Boult, 2016), MSP (Hendrycks & Gimpel,
2017), ODIN (Liang et al., 2018), MDS (Lee et al., 2018), MDSEns (Lee et al., 2018), RMDS (Ren
et al., 2021), Gram (Sastry & Oore, 2020), EBO (Liu et al., 2020), GradNorm (Huang et al., 2021),
ReAct (Sun et al., 2021), MLS (Hendrycks et al., 2022), KLM (Hendrycks et al., 2022), VIM (Wang
et al., 2022b), KNN (Sun et al., 2022), DICE (Sun & Li, 2022), RankFeat (Song et al., 2022),
ASH (Djurisic et al., 2023), SHE (Zhang et al., 2023c), GEN (Liu et al., 2023), DDE (Garg et al.,
2023), NAC-UE (Liu et al., 2024). The results for DDE are reproduced using the official codebase
2 while the results for the remaining methods are sourced from the implementations in OpenOOD.

Hyperparameter tuning. In line with OpenOOD, we use ID and OOD validation sets for hyper-
parameter selection. Specifically, for the CIFAR-100 benchmark, 1,000 images are held out from
the ID test set as the ID validation set, and 1,000 images spanning 20 categories from Tiny Ima-
geNet (Le & Yang, 2015) are reserved as the OOD validation set. For the ImageNet-1k benchmark,
5,000 images from the ID test set and 1,763 images from OpenImage-O are held out for the ID and
OOD validation sets, respectively. Please note that all the validation samples are disjoint with the
test samples. The validation sets are used to tune hyperparameters, including the entropic regular-
ization coefficient λ and the linear extrapolation parameter ω for POT. Please refer to the Appendix
B for more details.

Evaluation metrics. We report the following widely adopted metrics: (1) area under the receiver
operating characteristic curve (AUROC); (2) false positive rate of OOD samples when the true pos-
itive rate of ID samples is equal to 95% (FPR95).

Implementation details. During the test phase, the test set comprises samples from both the ID
test set and OOD dataset. We consider the assumption of having access to the entire test set to be
overly restrictive. To this end, we relax the assumption by allowing test inputs arriving in batches,
where random batch division is applied to the test set. The default test batch size is set to 512 and
we also include ablation studies with varying batch sizes. For each test batch, we employ POT to
calculate transport cost scores for the samples. After aggregating the scores across all test samples,
we calculate the evaluation metrics for comparison.

4.2 EMPIRICAL RESULTS AND ANALYSIS

Main results. The results for Far-OOD and Near-OOD detection on the CIFAR-100 benchmark are
presented in Table 1 and Table 2, respectively. Our proposed POT consistently obtains either the best
or second-best results across all datasets and OOD detection metrics. Specifically, on the Far-OOD
track, POT achieves significant reductions in average FPR95, with decreases of 25.6% and 8.87%

2https://github.com/morganstanley/MSML/tree/main/papers/OOD Detection via Dual Divergence Estimation
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Table 1: Far-OOD detection performance on CIFAR-100 benchmark. ↑ denotes the higher value is better, while
↓ indicates lower values are better. We format first and second results.

Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OpenMax 53.97±4.71 75.89±1.40 52.81±1.89 82.05±1.55 56.16±1.86 80.46±0.10 54.99±1.42 79.22±0.41 54.48±0.63 79.40±0.41

MSP 57.24±4.67 76.08±1.86 58.43±2.61 78.68±0.95 61.79±1.31 77.32±0.71 56.64±0.87 79.22±0.29 58.52±1.12 77.83±0.45

ODIN 45.93±3.24 83.79±1.30 67.21±3.95 74.72±0.77 62.39±2.87 79.34±1.08 59.73±0.86 79.45±0.25 58.81±0.78 79.32±0.22

MDS 71.70±2.89 67.47±0.81 67.72±6.05 70.20±6.52 70.55±2.50 76.23±0.69 79.57±0.34 63.17±0.50 72.38±1.53 69.27±1.41

MDSEns 2.86±0.85 98.20±0.78 82.57±2.57 53.74±1.62 84.91±0.87 69.75±1.14 96.58±0.19 42.32±0.74 66.73±1.05 66.00±0.69

RMDS 51.99±6.34 79.78±2.50 51.10±3.62 85.09±1.09 54.06±1.02 83.61±0.52 53.58±0.33 83.39±0.47 52.68±0.65 82.97±0.42

Gram 53.35±7.51 80.78±4.14 20.40±1.69 95.47±0.58 89.84±2.87 70.61±1.44 95.03±0.63 46.09±1.28 64.66±2.30 73.24±1.05

EBO 52.62±3.83 79.18±1.36 53.19±3.25 82.28±1.78 62.38±2.08 78.35±0.84 57.70±0.87 79.50±0.23 56.47±1.41 79.83±0.62

GradNorm 86.96±1.45 65.35±1.12 69.38±8.40 77.23±4.88 92.37±0.58 64.58±0.13 85.41±0.39 69.66±0.17 83.53±2.01 69.20±1.08

ReAct 56.03±5.67 78.37±1.59 49.89±1.95 83.25±1.00 55.02±0.81 80.15±0.46 55.34±0.49 80.01±0.11 54.07±1.57 80.45±0.50

MLS 52.94±3.83 78.91±1.47 53.43±3.22 81.90±1.53 62.37±2.16 78.39±0.84 57.64±0.92 79.74±0.24 56.60±1.41 79.73±0.58

KLM 72.88±6.56 74.15±2.60 50.32±7.06 79.49±0.47 81.88±5.87 75.75±0.48 81.60±1.37 75.68±0.26 71.67±2.07 76.27±0.53

VIM 48.34±1.03 81.84±1.03 46.28±5.52 82.89±3.78 46.84±2.28 85.90±0.79 61.64±0.70 75.85±0.36 50.77±0.98 81.62±0.62

KNN 48.59±4.66 82.36±1.54 51.43±3.15 84.26±1.11 53.56±2.35 83.66±0.84 60.80±0.92 79.42±0.47 53.59±0.25 82.43±0.17

DICE 51.80±3.68 79.86±1.89 48.96±3.34 84.45±2.04 64.23±1.59 77.63±0.34 59.43±1.20 78.31±0.66 56.10±0.62 80.06±0.19

RankFeat 75.02±5.82 63.03±3.85 58.17±2.07 72.37±1.51 66.90±3.79 69.40±3.09 77.42±1.93 63.81±1.83 69.38±1.10 67.15±1.49

ASH 66.60±3.88 77.23±0.46 45.51±2.82 85.76±1.38 61.34±2.83 80.72±0.71 62.89±1.08 78.75±0.16 59.09±2.53 80.61±0.66

SHE 58.82±2.75 76.72±1.08 58.60±7.63 81.22±4.05 73.34±3.35 73.65±1.29 65.23±0.86 76.29±0.52 64.00±2.73 76.97±1.17

GEN 54.81±4.80 78.09±1.82 56.14±2.17 81.24±1.05 61.13±1.49 78.70±0.80 56.07±0.78 80.31±0.22 57.04±1.01 79.59±0.54

DDE 0.01±0.01 99.93±0.02 0.23±0.03 99.31±0.09 40.30±1.24 93.13±0.29 52.34±0.61 88.21±0.23 23.22±0.45 95.14±0.15

NAC-UE 21.44±5.22 93.24±1.33 24.23±3.88 92.43±1.03 40.19±1.97 89.34±0.56 73.93±1.52 72.92±0.78 39.95±1.36 86.98±0.26

POT 0.98±0.08 99.73±0.02 2.13±0.21 99.39±0.03 25.56±3.93 95.28±0.44 28.74±0.22 92.42±0.12 14.35±1.06 96.70±0.08

Table 2: Near-OOD detection performance on CIFAR-100 benchmark. ↑ denotes the higher value is better,
while ↓ indicates lower values are better.

Method CIFAR-10 Tiny ImageNet Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OpenMax 60.19±0.87 74.34±0.33 52.79±0.43 78.48±0.09 56.49±0.58 76.41±0.20

MSP 58.90±0.93 78.47±0.07 50.78±0.57 81.96±0.20 54.84±0.58 80.21±0.13

ODIN 60.61±0.52 78.18±0.14 55.28±0.45 81.53±0.10 57.95±0.45 79.86±0.11

MDS 88.01±0.51 55.89±0.22 78.68±1.48 61.83±0.19 83.35±0.76 58.86±0.09

MDSEns 95.94±0.15 43.85±0.31 95.76±0.13 49.14±0.22 95.85±0.05 46.49±0.25

RMDS 61.36±0.23 77.77±0.21 49.50±0.58 82.58±0.02 55.43±0.29 80.18±0.10

Gram 92.69±0.58 49.41±0.54 92.34±0.84 53.12±1.66 92.51±0.39 51.26±0.80

EBO 59.19±0.74 79.05±0.10 52.36±0.59 82.58±0.08 55.77±0.64 80.82±0.09

GradNorm 84.30±0.38 70.32±0.20 87.30±0.59 69.58±0.79 85.80±0.46 69.95±0.47

ReAct 61.29±0.43 78.65±0.05 51.64±0.41 82.72±0.08 56.47±0.42 80.69±0.06

MLS 59.10±0.63 79.21±0.10 52.19±0.42 82.74±0.08 55.64±0.52 80.97±0.09

KLM 84.77±2.99 73.92±0.23 71.59±0.79 79.16±0.30 78.18±1.30 76.54±0.24

VIM 70.63±0.44 72.21±0.42 54.54±0.31 77.87±0.13 62.59±0.26 75.04±0.14

KNN 72.82±0.50 77.01±0.26 49.63±0.61 83.31±0.16 61.22±0.15 80.16±0.15

DICE 60.98±1.10 78.04±0.32 55.36±0.59 80.50±0.25 58.17±0.50 79.27±0.22

RankFeat 82.78±1.56 58.04±2.36 78.37±1.09 65.63±0.24 80.57±1.11 61.84±1.29

ASH 68.06±0.41 76.47±0.30 63.47±1.10 79.79±0.24 65.77±0.49 78.13±0.17

SHE 60.47±0.58 78.13±0.02 58.42±0.76 79.52±0.33 59.45±0.34 78.83±0.17

GEN 58.65±0.92 79.40±0.06 49.82±0.29 83.15±0.15 54.23±0.54 81.27±0.10

DDE 62.35±2.12 81.32±0.28 61.20±2.11 80.34±0.95 61.78±2.11 80.83±0.60

NAC-UE 80.84±1.38 71.92±0.77 62.78±1.69 79.43±0.45 71.81±1.51 75.67±0.56

POT 41.63±2.28 87.51±0.44 46.94±0.43 85.50±0.04 44.28±1.26 86.51±0.20

compared to the previous leading baselines NAC-UE and DDE, respectively. While Near-OOD
samples are considered more intractable to detect due to their similarity in semantic and style with
ID samples, POT demonstrates an even greater performance advantage in detecting them, as shown
in Table 2. For instance, POT surpasses the next best method, GEN, by 9.96% in average FPR95
and 5.22% in average AUROC. The results of the large-scale ImageNet-1k benchmark are shown in
Table 3, where only the AUROC values are reported due to space limitation. As can be seen, POT
also consistently outperforms all baseline methods in terms of average performance across different
backbones and OOD datasets.
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Table 3: OOD detection performance (AUROC↑) on ImageNet-1k. See Table 7 and Table 8 for full results.

Backbone Datasets RMDS ReAct VIM KNN ASH SHE GEN DDE NAC-UE POT

ViT-b16

iNaturalist 96.09 86.09 95.71 91.45 50.47 93.56 93.53 97.10 93.69 99.38
Openimage-O 92.29 84.26 92.15 89.83 55.45 91.03 90.25 88.97 91.54 95.60
Textures 89.38 86.69 90.61 91.12 47.87 92.67 90.25 88.96 94.17 95.36
Average (Far-OOD) 92.59 85.68 92.82 90.80 51.26 92.42 91.34 91.68 93.13 96.78
SSB-hard 72.79 63.24 69.34 65.93 54.12 68.11 70.19 76.29 68.04 80.39
NINCO 87.28 75.45 84.63 82.22 53.07 84.16 82.47 81.32 82.45 87.51
Average (Near-OOD) 80.03 69.34 76.98 74.08 53.59 76.13 76.33 78.81 75.25 83.95

ResNet-50

iNaturalist 87.27 96.32 89.54 86.31 97.04 92.58 92.44 83.64 96.43 99.45
Openimage-O 85.73 91.88 90.40 86.78 93.31 86.70 89.35 71.38 91.61 93.45
Textures 86.07 92.80 97.96 97.06 96.91 93.63 87.63 86.84 97.77 95.58
Average (Far-OOD) 86.36 93.67 92.63 90.05 95.76 90.97 89.81 80.62 95.27 96.16
SSB-hard 71.47 73.09 65.10 61.78 73.11 71.83 72.11 56.52 68.21 83.37
NINCO 82.22 81.71 78.54 79.41 83.37 76.42 81.71 62.93 81.16 78.13
Average (Near-OOD) 76.84 77.40 71.82 70.59 78.24 74.12 76.91 59.73 74.68 80.75

Table 4: Results on the ImageNet-1k with different training methods. We employ the ResNet-50 as the back-
bone. ∆ represents the subtraction results between the default CE scheme and other training schemes.

Baseline ASH NAC-UE POT
Training FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CE - - 19.67 95.76 22.67 95.27 19.89 96.16

ConfBranch 51.17 83.97 78.77 72.64 32.21 93.63 20.34 95.90
∆ - - (+59.1) (-23.12) (+9.54) (-1.64) (+0.45) (-0.26)

RotPred 36.39 90.03 68.61 78.99 38.50 92.23 19.55 95.93
∆ - - (+48.94) (-16.77) (+15.83) (-3.04) (-0.34) (-0.23)

GODIN 51.03 85.50 57.06 88.07 29.44 93.99 22.74 95.25
∆ - - (+37.39) (-7.69) (+6.77) (-1.28) (+2.85) (-0.91)

Integration with training methods. In the other line of work for OOD detection, training methods
employ retraining strategies with training-time regularization to provide a modified model. A im-
portant property of post-hoc methods is that they are applicable to different model architectures and
training losses. To this end, we examine the performance of post-hoc methods when integrated with
established training methods. We evaluate on the Far-OOD track of the ImageNet-1k benchmark
using ResNet-50 as the backbone, comparing POT with ASH and NAC-UE, which have achieved
top results on this benchmark (see Table 3). Consistent with the experimental setup of NAC-UE, we
utilize three training schemes: ConfBranch (DeVries & Taylor, 2018), RotPred (Hendrycks et al.,
2019b), and GODIN (Hsu et al., 2020), with softmax cross-entropy (CE) loss as the default train-
ing scheme for comparison. We report the average results in Table 4, where Baseline refers to the
detection method employed in the original paper and ∆ denotes the subtraction results between the
default CE scheme and other training schemes. According to the results, POT has remarkable im-
provements on the baseline methods, while outperforming ASH and NAC-UE. Importantly, POT
maintains stable performance across three training schemes, whereas ASH and NAC-UE both ex-
hibit notable performance degradation compared to the default CE training scheme. Such results
demonstrates that POT is generic to be seamlessly integrated with different training methods.

What if training data is unavailable. Although existing post-hoc methods can be applied to pre-
trained models without cumbersome retraining, many require access to at least a portion of training
data (Liu et al., 2023). Considering some scenarios where training data is unavailable, such as
commercial data involving privacy, some approaches further explore OOD detection without the
requirement for training data such as ASH and GEN. To make POT applicable to such scenarios,
we draw inspiration from the work (Tanwisuth et al., 2021) and construct the class prototypes with
the neural network weights W ∈ Rd×C of the classification layer f . Each column of the weight
matrix W corresponds to a d-dimensional class prototype. The underlying idea is that the process
of learning class prototypes with learnable parameters in the latent space, is closely similar to the
training process of the linear classification layer. In other words, obtaining prototypes in this way
does not require any training data and additional parameters.
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Table 5: OOD detection performance (AUROC↑) of methods without the requirement for training data.

CIFAR-100 ImageNet-1k

Far-OOD Near-OOD Far-OOD Near-OODMethod
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 58.53 77.83 54.84 80.21 51.77 86.03 81.56 73.56
ODIN 58.81 79.32 57.95 79.86 86.04 76.08 90.76 64.45
EBO 56.47 79.83 55.77 80.82 85.34 78.99 93.09 62.60
GradNorm 83.53 69.20 85.80 69.95 92.60 41.75 94.68 39.45
ReAct 54.07 80.45 56.47 80.69 53.96 85.68 84.42 69.34
MLS 56.60 79.73 55.64 80.97 78.91 83.55 92.06 68.42
RankFeat 69.38 67.15 80.57 61.84 / / / /
ASH 59.09 80.61 65.77 78.13 96.69 51.26 95.07 53.60
GEN 57.04 79.59 54.23 81.27 32.16 91.34 70.66 76.33
POT 21.26 94.27 45.02 84.76 29.40 93.35 65.82 80.42

To verify the effectiveness of POT in such scenarios, we compare it to the baseline methods not
requiring access to the training dataset. We report the average AUROC for both Far-OOD and Near-
OOD datasets in Table 5. The results show that POT continues to outperform all competitors across
all metrics. Notably, compared to GEN, POT significantly reduces the average FPR95 by 35.78%
on the Far-OOD datasets and by 9.21% on the Near-OOD datasets of the CIFAR-100 benchmark.

(a) FPR95: 9.06
Transport cost score

(b) FPR95: 0.89
Contrastive transport cost score

(c) FPR95: 34.48
Transport cost score

(d) FPR95: 0.67
Contrastive transport cost score

Figure 3: Ablation study on the effect of virtual outliers. We contrast the distribution for the transport cost
score without virtual outliers (a & c) and the contrastive transport cost score with virtual outliers (b & d). The
used models are ResNet-18 for CIFAR-100 and ViT-b16 for ImageNet-1k, respectively. The introduction of
virtual outliers makes a more distinguishable score, leading to enhanced OOD detection performance.

4.3 ABLATION STUDY AND ANALYSIS.

Ablation on virtual outliers. In this ablation, we compare the OOD detection performance of POT
with and without virtual outliers, which are generated to approximate the OOD region using linear
representation extrapolation. Figure 3 displays the results, where we visualize the data distribu-
tion in the CIFAR-100 and ImageNet-1k benchmarks. Using the virtual outliers leads to clearer
separability between ID and OOD samples, whereas the transport cost score without virtual out-
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（a） （b） （c）
Test Batch Size Entropic Regularization Coefficient 𝜆 Linear Extrapolation Parameter

𝜔

Figure 4: Ablation across different parameters in POT including: (a) test batch size; (b) entropic regularization
coefficient λ of OT; (c) linear extrapolation parameter ω in generating virtual outlier.

liers exhibits larger overlap. The results show that the introduction of virtual outliers enhances the
distinguishability between ID and OOD, resulting in more effective OOD detection.

Parameter analysis. We ablate along individual parameters with ImageNet-1k as ID data in Fig-
ure 4, where the ViT-b16 is utilized as the backbone for analysis. In Figure 4 (a), we find that
increasing the test batch size is beneficial for OOD detection. Although POT faces a performance
degradation with the decrease of test batch size, its performance of lower batch sizes still hold su-
periority over the baseline methods. For instance, POT already achieves 93.18% average AUROC
with the test batch size of 32, which outperforms the competitive rival NAC-UE (see Table 1). In
Figure 4 (b), we can observe that as the regularization coefficient λ increases, AUROC undergoes an
ascending interval followed by a decrease interval, ultimately leading to convergence. In Figure 4
(c), we find that POT works better with a moderate ω. This is intuitive as a lower ω may lead the
generated virtual outliers close to ID samples, while a higher ω can generate virtual outliers far away
both ID and OOD samples, leading the transport costs to virtual outliers indistinguishable.

Table 6: OOD detection performance comparison from
penultimate and logits layer.

Logits Penultimate
Benchmarks OOD FPR95↓ AUROC↑ FPR95↓ AUROC↑

Far 18.86 95.58 14.35 96.70CIFAR-100 Near 45.68 85.38 44.28 86.51
Far 20.26 95.49 15.59 96.78ImageNet-1k Near 67.97 80.45 60.15 83.95

Penultimate layer vs. logit layer. In this
paper, we follow the convention in feature-
based methods by using the representa-
tions from the penultimate layer of neural
network, as it is believed to preserve more
information than the output from the top
layer, also referred to as logits. To investi-
gate the impact of layer selection, we pro-
vide evaluation on POT using representa-
tions from the penultimate layer or logits,
with the average results presented in Ta-
ble 6. From the results, using the repre-
sentations from the penultimate layer achieves better performance than using the logits.

5 CONCLUSION

In this paper, we tackle the problem of OOD detection from a new perspective of measuring distri-
bution discrepancy and quantifying the individual contribution of each test input. To this end, we
propose a novel method named POT, which utilizes the prototype-based OT to assess the discrep-
ancy between test inputs and ID prototypes and use the obtaining transport costs for OOD detection.
By generating virtual outliers to approximate the OOD region, we combine the transport costs to
ID prototypes with the costs to virtual outliers, resulting in a more effective contrastive transport
cost for identifying OOD inputs. Experimental results demonstrate that POT achieves better perfor-
mance than 21 current methods. Moreover, we show that POT is pluggable with existing training
methods for OOD detection and is applicable to the scenarios where the training data is unavailable,
highlighting its generic nature and high practicality.

Limitations. Beyond extrapolation, other data augmentation techniques, such as Mixup (Zhang
et al., 2018) and negative data augmentation (Sinha et al., 2021), are also employed in OOD detection
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methods (Zhang et al., 2023a; Yang et al., 2023). So how to generate outliers that best fits our
approach, along with the underlying theoretical analysis can be further explored. Additionally, given
the generic nature of our method, combining it with other OOD detection methods is one of the
potential directions for improvement.
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A DERIVATION OF SINKHORN-KNOPP ALGORITHM

Recall that the classical optimal transport (OT) problem, formulated as Equation 2, is a linear pro-
gramming problem that incurs cubic time complexity, which is prohibitive in many applications.
To this end, we investigate a smoothed version with an entropic regularization term, formulated as
Equation 4. As a λ-strongly convex function, it has a unique optimal solution. By introducing the
associated Larangian, we can transform the primal problem with constraints into an unconstrained
optimization problem, resulting in the following formulation:

L(γ,µ,ν) = ⟨E,γ⟩ − λH(γ)− u⊤(γ1C − µ)− v⊤(Q⊤1m − ν), (11)

where v and v are Lagrange multipliers. Taking partial derivation on transport plan γ yields,

∂L(γ,u,v)
γij

= Eij + λ log γij − ui − vj = 0

γij = e(ui−Eij+vj)/λ = aiKijbj

(12)

where ai = eui/λ, bj = evj/λ, and K = exp(−E/λ). Conveniently, the solution can be rewritten
in matrix form as γ = Diag(a)KDiag(b). In this way, solving the primal problem in Equation 4
equals to finding the scaling variables a and b, which must satisfy the following equations corre-
sponding to the mass conservation constraints inherent to Π(µ,ν):

Diag(a)KDiag(b)1m = Diag(a)(Kb) = µ

Diag(b)K⊤Diag(a)1C = Diag(b)(K⊤a) = ν
(13)

Known as a matrix scaling problem, the equation can be solved by modifying a and b iteratively:

a← µ⊘ (Kb), b← ν ⊘ (K⊤a), (14)

where ⊘ denotes element-wise division. The above iterative updates define the Sinkhorn-Knopp
algorithm.

B HYPERPARAMETERS

POT involves two hyperparameters, i.e., the entropic regularization coefficient λ and the linear ex-
trapolation parameter ω. To search for the optimal values, we leverage the ID and OOD validation
sets in all of our experiments. Specifically, we search λ in [1, 1.2, 1.5, 1.7, 2, 2.2, 2.5, 2.7,3], and ω
in [1.5, 2, 2.5, 3] across all architectures and benchmarks.

For clarify, we provide a detailed description of validation. The validation inputs consist a mixture
of samples from both ID and OOD validation sets. During validation, for each batch of validation
inputs, we apply POT to calculate the transport cost scores for the samples. Based on the scores
across all validation inputs, we calculate the evaluation metrics (e.g., AUROC or FPR95) to select
the optimal hyperparameters λ and ω that achieve the best performance for POT.

C FULL EXPERIMENTAL RESULTS ON IMAGENET
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Method Vit-b16 ResNet-50

iNaturalist OpenImage-O Textures Average iNaturalist OpenImage-O Textures Average

OpenMax 94.91 87.37 85.54 89.27 92.03 87.59 88.13 89.25
MSP 88.16 84.85 85.09 86.03 88.43 84.99 82.48 85.30
ODIN 79.53 71.46 77.24 76.08 91.13 88.27 89.01 89.47
MDS 96.00 92.35 89.39 92.58 63.67 68.74 89.72 74.04
MDSEns / / / / 61.95 61.14 80.02 67.71
RMDS 96.09 92.29 89.38 92.59 87.27 85.73 86.07 86.36
EBO 79.26 76.49 81.22 78.99 90.61 89.15 88.74 89.50
GradNorm 42.36 37.83 45.05 41.75 93.85 85.11 92.08 90.35
ReAct 86.09 84.26 86.69 85.68 96.32 91.88 92.80 93.67
MLS 85.25 81.61 83.79 83.55 91.15 89.26 88.42 89.61
KLM 89.54 86.96 86.51 87.67 90.77 87.35 84.69 87.60
VIM 95.71 92.15 90.61 92.82 89.54 90.40 97.96 92.63
KNN 91.45 89.83 91.12 90.80 86.31 86.78 97.06 90.05
DICE 82.55 82.33 82.26 82.38 92.50 88.46 92.07 91.01
RankFeat / / / / 40.10 50.94 70.96 54.00
ASH 50.47 55.45 47.87 51.26 97.04 93.31 96.91 95.76
SHE 93.56 91.03 92.67 92.42 92.58 86.70 93.63 90.97
GEN 93.53 90.25 90.25 91.34 92.44 89.35 87.63 89.81
DDE 97.10 88.97 88.96 91.68 83.64 71.38 86.84 80.62
NAC-UE 93.69 91.54 94.17 93.13 96.43 91.61 97.77 95.27
POT 99.38 95.60 95.36 96.78 99.45 93.45 95.58 96.16

Table 7: Far-OOD detection performance on ImageNet-1k benchmark. We report the AUROC↑ scores over
two backbones, i.e., ResNet-50 and Vit-b16).
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Method Vit-b16 ResNet-50

SSB-hard NINCO Average SSB-hard NINCO Average

OpenMax 68.81 78.68 73.74 71.30 78.12 74.71
MSP 69.03 78.09 73.56 72.16 79.98 76.07
ODIN 63.69 65.20 64.45 71.84 77.73 74.78
MDS 71.45 86.49 78.97 47.15 62.19 54.67
MDSEns / / / 44.89 55.64 50.27
RMDS 72.79 87.28 80.04 71.47 82.22 76.85
EBO 59.16 66.05 62.60 72.35 79.70 76.03
GradNorm 43.27 35.63 39.45 72.83 73.93 73.38
ReAct 63.24 75.45 69.34 73.09 81.71 77.40
MLS 64.45 72.39 68.42 72.75 80.41 76.58
KLM 68.11 80.64 74.37 71.19 81.87 76.53
VIM 69.34 84.63 76.99 65.10 78.54 71.82
KNN 65.93 82.22 74.07 61.78 79.41 70.60
DICE 60.01 71.91 65.96 70.84 75.98 73.41
RankFeat / / / 55.87 46.10 50.98
ASH 54.12 53.07 53.60 73.11 83.37 78.24
SHE 68.11 84.16 76.13 71.83 76.42 74.13
GEN 70.19 82.47 76.33 72.11 81.71 76.91
DDE 76.29 81.32 78.81 56.52 62.93 59.72
NAC 68.04 82.45 75.25 68.21 81.16 74.68
POT 80.39 87.51 83.95 83.37 78.13 80.75

Table 8: Near-OOD detection performance on ImageNet-1k benchmark. We report the AUROC↑ scores over
two backbones, i.e., ResNet-50 and Vit-b16.
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