

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 **PHOENIX: PHOTONIC DISTILLATION TRANSFERS** **ELECTRONIC KNOWLEDGE TO HYBRID OPTICAL NEU-** **RAL NETWORKS**

Anonymous authors

Paper under double-blind review

ABSTRACT

As artificial intelligence (AI) systems continue to scale in both complexity and dataset size, conventional electronic hardware faces significant challenges in meeting the demands of low-latency, high-throughput, and energy-efficient processing, particularly for industrial deployments. However, sustaining such scaling is increasingly constrained by the physical and energy limitations of electronic computing. Optical Neural Networks (ONNs), leveraging the superior physical properties of photons, offer inherent advantages such as ultra-fast processing speed, massive parallelism, and near-zero power consumption, which have already demonstrated potential on simple tasks in small datasets like MNIST classification. In this work, we presented the first optoelectrically fused neural network deployment framework (**PHOENIX**) for object detection tasks, demonstrating its performance in industrial-level large datasets (e.g., COCO) and benchmark models. Compared to state-of-the-art electronic models, our solution achieved approximately **85.0%** accuracy. The accuracy was further improved to **93.0%** through our novel knowledge distillation strategy. Furthermore, we achieved **72.6%** energy reduction and **11.3x** speed acceleration compared to equivalent edge GPUs by successfully transferring spatial attention knowledge from the electronic domain to the photonic domain, making it an ideal choice for real-time, energy-critical industrial applications. This technique not only bridges the performance gap but also offers an alternative physically interpretable platform for AI. Our universal framework paves the way for extending ONN deployment to a wider range of deep learning models and applications, whether based on CNN or Transformer architectures, providing a compelling choice for real-time, energy-critical scenarios such as autonomous driving, smart surveillance, and industrial automation. Source code is available at <https://github.com/Anon-BOTs/Distill-Hybrid-Optoelectronic>

1 INTRODUCTION

Over the past decade, Artificial Intelligence (AI) has penetrated diverse fields, with computer vision (CV) standing out as one of its most transformative applications, revolutionizing industries ranging from healthcare to the robotics field, e.g., autonomous driving. Deep learning technology with Convolution neural networks (CNNs) (LeCun et al., 1998) and transformer-based (Vaswani et al., 2017) architectures (Figure 1.(ii)), represent a significant successful application in image processing. However, these deep learning model advancements heavily rely on digital electronic chips, which demand substantial computational resources and energy consumptions (Strubell et al., 2020). As models grow in complexity, the von Neumann architecture and conventional silicon-based hardware face inherent bottlenecks in memory bandwidth and power efficiency, limiting their scalability for real-time edge-side deployment.

In recent years, optical neural networks (ONNs) have attracted significant research attention for inference tasks such as the object classification task (Meng et al., 2023; Gu et al., 2021; Lin et al., 2018) (Figure 1.(a.i)), which offer a compelling solution by harnessing the inherent advantages of photonics: ultra-low latency, high parallelism, and energy-efficient linear operations enabled by the physical properties of light (e.g., coherence, light speed, and transmission as computing). Recent advances in integrated photonic circuits and diffractive optical networks (Lin et al., 2018)

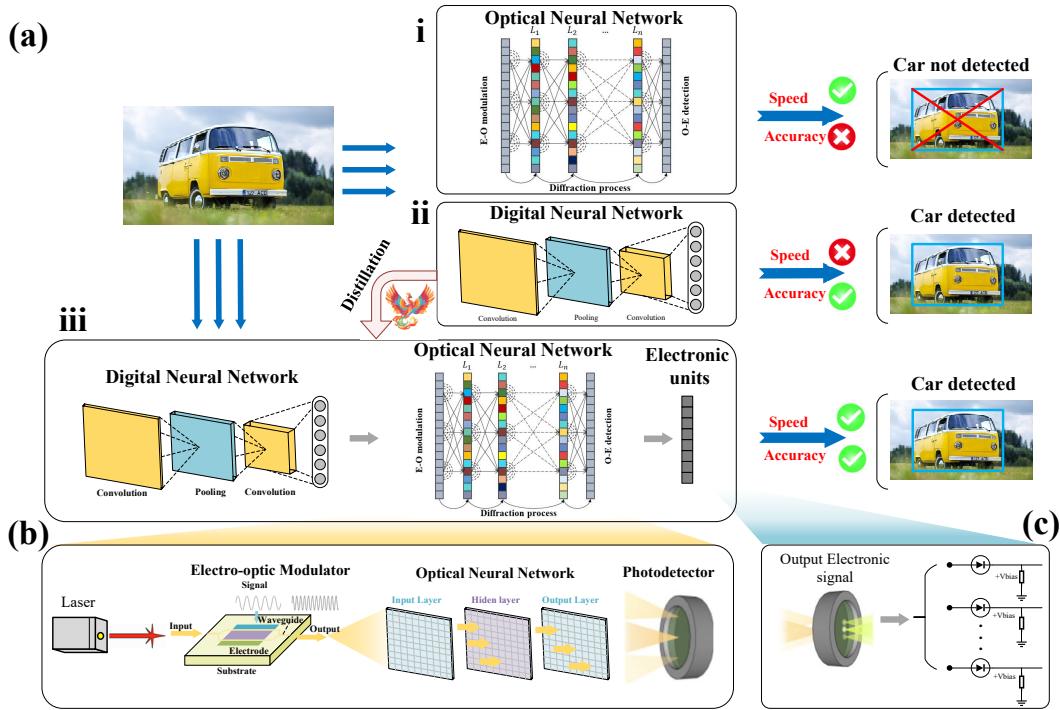


Figure 1: Integration of Optical Neural Networks into Computer Vision Tasks. (a) i) Optical neural network; ii) Digital neural network; iii) Distilled electronic-optical neural network. (b) Detailed components of the optical neural network pipeline. (c) Detailed components of the electronic sub-network.

have demonstrated ONNs' potential for matrix multiplication and inference tasks at speeds orders of magnitude faster than electronic counterparts (Clements et al., 2016; Feldmann et al., 2021). Nevertheless, despite their theoretical promise, prior works on ONNs have been largely confined to lower computer vision tasks, which focused on smaller datasets and simple classification tasks (e.g., MNIST (LeCun et al., 1998)) (Lin et al., 2018; Fu et al., 2023; Shen et al., 2017).

However, optical computing systems face several intrinsic challenges. First, analog signal processing introduces noise accumulation and lacks robust non-linear activations, limiting expressiveness. Second, training often relies on expensive full-wave optical simulations and gradient computations (Nikkhah et al., 2024a). Third, current models have poor generalizability, as training and deployment are typically tailored to specific hardware or datasets, with limited use in real-world CV tasks such as object detection (De Marinis et al., 2019). These issues underscore the need for more efficient training methods and co-designed optical-electronic solutions.

In this paper, we presented the **PHOENIX**: a hybrid optoelectronic neural network deployment framework. Inspired by distillation methods, this tool effectively transfers knowledge from well-trained electronic teacher networks (Figure 1.(a.ii)) to optical student architectures. By combining the ultra-low latency and energy efficiency of ONNs with the robust feature extraction capabilities of electronic CNNs, **PHOENIX** overcomes the inherent limitations of ONNs in learning nonlinear representation. Based on the **PHOENIX**, we successfully *applied ONNs to large-scale image object detection tasks for the first time* (Figure 1.(b)). Our approach not only bridges the gap between optical computing and practical CV applications but also establishes a framework for optimizing ONNs via distillation. The results underscore the potential of ONNs as a hardware-accelerated solution for next-generation AI, combining the speed of light with the rigor of machine learning.

The main contributions of our work are summarized as follows:

- **PHOENIX—The first deployment tool specifically tailored for the optoelectronic heterogeneous neural networks:** **PHOENIX** transferring knowledge from electronic "teacher" models to efficient ONN "student" architectures, enhancing robustness against optical noise and hardware variations, achieving **93%** accuracy compared to the Electronic model.

- 108 • **A pioneering instance of photonic deployment for an industrial-scale task:** We intro-
109 duced ONNs into industrial-scale object detection tasks (e.g., COCO) , advancing beyond
110 prior small-scale ONN applications (e.g., MNIST), marking a significant step toward practi-
111 cal ONN deployment.
- 112 • **A universal, energy-efficient, low-latency optoelectronic heterogeneous hardware de-
113 ployment architecture:** Our general framework is compatible with both CNN-based or
114 Transformer-based architectures. Employing a hardware-aware co-design approach, we
115 achieved significant improvements in latency and power consumption compared to electronic
116 counterparts. The latency ranges from 8 ms for CNN to 20.8 ns for ONN, resulting in a 50%
117 reduction in total inference time and an 86.5% energy reduction. This enables ultra-low-
118 power, high-speed operation for edge devices and promotes sustainable AI development.

121 2 RELATED WORK

123 2.1 OPTICAL NEURAL NETWORKS (ONNs)

125 Optical Neural Networks (ONNs) have emerged as promising alternatives to traditional electronic-
126 based deep learning architectures. Using optical phenomena for computation, ONNs naturally
127 leverage advantages such as ultralow latency, massive parallelism and lower energy consumption (Hua
128 et al., 2025; Wetzstein et al., 2020; Xu et al., 2024a) compared to their electronic counterparts. Current
129 ONN implementations are primarily divided into two categories: (i) Diffractive structures employ
130 sequential free-space diffraction and optical modulation through spatial light modulators (SLM)
131 with computational weights encoded in the phase profile. (ii) On-chip architectures utilize optical
132 components such as Mach-Zehnder interferometers (Shen et al., 2017), microring resonators or
133 phase-change materials (Wang et al., 2024; Wu et al., 2021) to enable compact optical information
134 processing. To date, ONNs have successfully demonstrated their potential in matrix multiplications,
135 convolution operations and solving simple integral equations (Nikkhah et al., 2024b; Xu et al.,
136 2021; Cordaro et al., 2023). However, the intrinsic lack of optical nonlinearities and limited tunable
137 parameters restricts ONNs to small-scale computations or low-level AI tasks such as vowel recognition
138 or MNIST classification (Shen et al., 2017; Lin et al., 2018). A number of recent works have shifted
139 attention toward optoelectronic hybrid systems, recognizing their promise in bridging optical and
140 electronic computing (Kissner et al., 2024; Shiflett et al., 2021; 2023). Optoelectronic hybrid
141 systems combine electronic flexibility with optical computing potential but face dual bottlenecks: (1)
142 Hardware requires additional components and incurs energy costs from optoelectronic conversions.
143 (2) Algorithmically, scalable training methods remain underdeveloped for matching electronic neural
144 network performance in complex tasks.

145 2.2 DEEP LEARNING FOR OBJECT DETECTION & KNOWLEDGE DISTILLATION FOR EFFICIENT 146 MODELS.

147 Object detection is a fundamental problem in computer vision and has witnessed significant ad-
148 vancements over the past decade, primarily driven by deep learning techniques. Early works of
149 object detection have evolved from two-stage CNN architectures like Faster R-CNN (Girshick, 2015)
150 to single-stage detectors such as YOLO (Redmon et al., 2016) and anchor-free approaches like
151 FCOS (Tian et al., 2019). Transformers further advanced the field, with Swin Transformer (Vaswani
152 et al., 2017) and DINO (Zhang et al., 2022) achieving state-of-the-art results. However, these models
153 rely on computationally expensive operations (e.g., attention mechanisms), making them impractical
154 for edge deployment. Knowledge distillation is a widely adopted model compression and optimization
155 technique introduced (Buciluă et al., 2006) and further popularized by (Hinton et al., 2015), later ex-
156 tended to object detection (Chen et al., 2017). It transfers knowledge from a larger "teacher" network
157 to a smaller "student" network, significantly reducing the computational cost while maintaining or
158 even enhancing accuracy. While most distillation approaches have traditionally focused on electronic
159 neural networks. The concept has rarely been explored in the context of ONNs (Xiang et al., 2022;
160 Wirth-Singh et al., 2024), all of this work focuses on simple tasks like image classification on a
161 small-scale dataset (e.g., MNIST, FashMNIST). This study pioneers challenging the complex image
object detection tasks on a large-scale dataset, which applies knowledge distillation into Optical
Neural Networks, demonstrating substantial benefits in performance and efficiency.

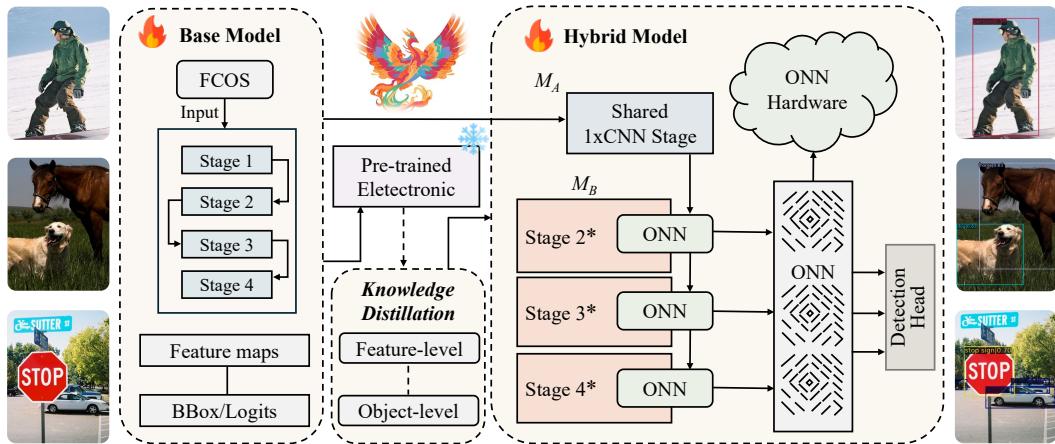


Figure 2: Overview of the proposed hybrid photoelectronic object detection framework, **PHOENIX**. The system is built upon a state-of-the-art baseline detector, where early-stage extracts low/mid-level features by the CNN-based or Transformer-based method. The key component of the knowledge distillation module transfers all-electronic ‘teacher’ backbone to the ONN ‘student’ stages, enhancing their functional capabilities. Finally, features output by the ONN-processed segment of the backbone are fed to a task-specific detection head for object classification and localization.

3 METHODOLOGY

In this section, we present our framework **PHOENIX**, the first **general knowledge distillation architecture** that integrates Optical Neural Network (ONN) modules, which leverage the speed and energy efficiency of photonic computing in the complex task of object detection within computer vision. We detail the architecture in Figure 2 and present the process of the Optical Neural Networks (ONN) in Section 3.1, the optoelectronic integration strategy in Section 3.2, the knowledge distillation technique in Section 3.3 and the final detection process in Section 3.4.

3.1 OPTICAL NEURAL NETWORKS (ONNs)

Optical Neural Networks (ONNs) leverage optical components such as interferometers, modulators, and photonic circuits to perform computations traditionally carried out by electronic processors. The main advantage of ONNs over conventional electronic neural networks is their inherent parallelism and speed, which allows them to handle matrix-vector multiplications at ultra-low latency while consuming much less power compared to electronic models.

ONN architecture The architecture of our ONN model and its associated mathematical formulation of light propagation are illustrated in Figure 3. The forward propagation process in a diffractive optical neural network can be systematically divided into two main stages: propagation and modulation. During propagation, each pixel acts as a secondary source, emitting a wave that transmits its signal to the subsequent layer. As the light advances, it encounters the modulation stage, where its characteristics are altered, either in phase or amplitude, depending on the nature of the modulation layer. The underlying physical model, which is particularly vital for on-chip implementations, is governed by the rigorous Rayleigh-Sommerfeld diffraction equation (Goodman, 2005). Such approach dispenses with the need for restrictive far-field or small-angle approximations, thereby ensuring a more faithful representation of light propagation. In this framework, every pixel in a given layer, located at coordinates (x_i, y_i, z_i) , serves as the origin of a secondary wave. The propagation of this wave between adjacent layers is precisely described by

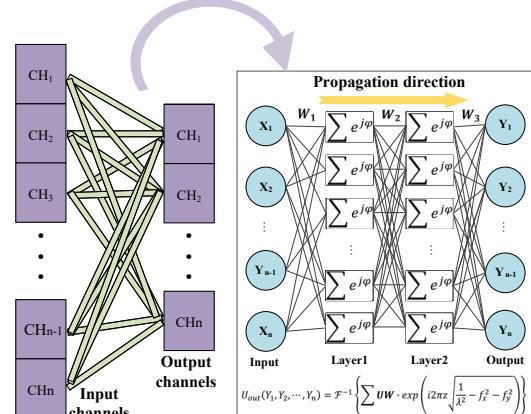


Figure 3: The architecture pipeline and mathematical modeling of the ONN module.

216 the following equation:
 217

$$218 \quad w_i^l(x, y, z) = \frac{L}{r^2} \left(\frac{1}{2\pi r} + \frac{1}{j\lambda} \right) \exp \left(j \frac{2\pi r}{\lambda} \right). \quad (1)$$

$$219$$

$$220$$

221 Here, $w_i^l(x, y, z)$ denotes the contribution of a single neuron, which can be regarded as a secondary
 222 wave source. The parameter of subscript i refers to the pixel index within the l^{th} propagation layer, λ
 223 represents the wavelength of the light, and L specifies the axial distance between adjacent layers, while
 224 k designates the index of the subsequent layer. The term $r = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2}$
 225 defines the Euclidean distance between two pixels, with (x, y, z) and (x_i, y_i, z_i) denoting their
 226 respective spatial coordinates. Furthermore, $j = \sqrt{-1}$ is the standard imaginary unit.
 227

228 In this work, we employ a simplified diffractive model as a representative example, noting that
 229 it can be **substituted with any ONN architecture** possessing sufficient representational capacity.
 230 The choice of the diffractive model stems from its inherent similarities to convolution operations.
 231 Free-space diffraction fundamentally constitutes a convolution with an impulse response function,
 232 while phase/amplitude modulation can be conceptually equivalent to a convolution kernel with
 233 specific receptive field characteristics. To implement convolution layers with arbitrary input-output
 234 channel configurations, we utilize $N_{in} \times N_{out}$ optical network units to construct a channel-combining
 235 convolution layer. This configuration can be simplified through strategic reuse of fundamental optical
 236 network modules and the segmentation of effective optical field.
 237

3.2 HYBRID OPTOELECTRONIC OBJECT DETECTION NEURAL NETWORKS

238 The key innovation in our general photoelectric object detection framework is that: (1) maintains
 239 electronic processing in early stages for robust feature extraction, (2) selectively offloads computa-
 240 tionally intensive operations to photonic hardware in deeper stages. Notably, our framework is
 241 **compatible with any detection architecture**. In this work, we demonstrate its effectiveness using
 242 both RegNet (Radosavovic et al., 2020) and ViT-Base (Dosovitskiy et al., 2020) as backbones, with
 243 RegNet serving as the primary example in the following sections.
 244

3.2.1 BASELINE OBJECT DETECTION ARCHITECTURE

245 Our framework builds upon FCOS (Tian et al., 2019), which is a fully convolution one-stage object
 246 detector that predicts objects by regressing bounding boxes and classification scores directly at each
 247 feature map location. Taking the **RegNet-Y** as the backbone, an initial stem layer followed by **four**
 248 **main stages** (Stage 1, Stage 2, Stage 3, Stage 4). Each stage comprises *a sequence of bottleneck*
 249 *blocks* that progressively reduce spatial resolution while increasing channels and learning hierarchical
 250 features, the architecture is detailed in [Appendix A.2](#). Actually, our framework is suitable for any
 251 detection approaches, not limited to these four-stage methods.
 252

3.2.2 HYBRID CNN-ONN ARCHITECTURE

253 **Electronic** To integrate optical computing into the object detection pipeline, we design a hybrid
 254 backbone architecture commences with an initial electronic segment, M_A , where typically comprises
 255 the first stage (or stages 1 to k , where $k \in \{1, 2, 3\}$) of the RegNet backbone, responsible for
 256 processing the raw input image data. These CNN layers capture low and mid-level features of
 257 image, such as precise edge and texture information, maintain compatibility with standard vision pre-
 258 processing. However, the raw high-dimensional image data for these initial tasks will be suboptimal
 259 if we directly apply ONNs, due to challenges in implementing identical non-linear optically with
 260 high fidelity or without significant energy for active optical elements. Therefore, by first processing
 261 the input with this robust electronic segment, we extract and refine a rich set of features that are
 262 more amenable and efficiently processed by the subsequent ONN modules (segment M_B), effectively
 263 preparing the data for the strengths of optical computation.
 264

265 **Hybrid** To harness the advantages of photonic computation, we selectively replace the computa-
 266 tionally intensive later stages (stages 2 to 4) of the RegNet-Y backbone with ONN modules. After
 267 the electronic layer process, the deeper feature abstraction and semantic representation are offloaded
 268 to the ONN for acceleration and energy-efficient processing, as the **Hybrid Model** part shown in
 269

Figure 2. The ONN module is implemented using a free-space diffractive optical network configured to approximate the convolution layers via Fourier optics, the detailed architecture as illustrated in Section 3.1. In summary, our optoelectronic integration strategy offers flexibility in partitioning the backbone. The hybrid backbone is a sequential composition of an initial electronic segment, M_A , processed by CNNs, and a subsequent photonic segment, M_B , processed by ONNs. This process can be represented as follows:

$$M_{\text{hybrid}} = M_{A, \text{Stages } 1 \dots k} \otimes M_{B, \text{Stages } k+1 \dots N} \quad (2)$$

Here, ' \otimes ' denotes sequential processing. The electronic segment $M_{A, \text{Stages } 1 \dots k}$ comprises the initial k stages of the RegNet-Y backbone to extract lower-mid level features, which can be chosen from $\{1, 2, 3\}$, allowing for different configurations of initial electronic processing. Specifically, $k=4$ denotes that the framework with a fully CNN model without ONNs. Consequently, the photonic segment $M_{B, \text{Stages } k+1 \dots N}$ consists of the remaining stages, from Stage $k+1$ up to Stage N (where N is the total number of main stages in RegNetY, typically 4).

3.3 KNOWLEDGE DISTILLATION FOR ONN NON-LINEARITY ENHANCEMENT

A significant challenge for ONNs is effectively implementing complex non-linear activation functions and learning the intricate non-linear mappings achieved by deep electronic networks. To address this, we employed a knowledge distillation strategy, the architecture present in Figure 4. This process occurs during the training of the ONN components and involves the following two main models:

- **Teacher Model:** A fully electronic, pre-trained baseline FCOS with CNN-based or Transformer-based backbone in object detection dataset, which provides the learned feature representations for better understanding of images to the student.
- **Student Model:** A series of ONN modules shown in Section 3.1, segment of the backbone M_B is realized as the student model. These ONNs leverage distinct optical attributes (e.g., high-speed linear processing, unique analog responses) and capture the nonlinear ability from the teachers.

The goal of distillation is to transfer the "knowledge" from the teacher's electronic backbone (corresponding to those in M_A) to the student's M_B segment. This is achieved by encouraging the output feature maps of the ONN modules in the student network to mimic the output feature maps of the corresponding electronic stages in the teacher network. The distillation loss, \mathcal{L}_{KD} , can be formulated as the Mean Squared Error (MSE) loss between the feature maps:

$$\mathcal{L}_{KD} = \sum_{i \in S_{M_B}} \lambda_i \cdot \frac{1}{N_i} \sum_{j=1}^{N_i} (f_{T,j}^i(x) - f_{S,j}^i(x))^2 + L_{kl}(P_T, P_S) \quad (3)$$

where P_T and P_S are the output logits of the teacher and student model, respectively. L_{kl} denote the Kullback-Leibler Divergence and S_{M_B} is the set of backbone stages within the M_B segment (i.e., stages $k+1$ to N), λ_i are weighting factors for the i -th stage, $f_{T,j}^i(x)$ and $f_{S,j}^i(x)$ represent the j -th element of the flattened feature maps from the teacher and student networks at stage i for input x , respectively, and N_i is the total number of elements in the feature map for stage i (e.g., $N_i = H_i \times W_i \times C_i$ for feature maps with spatial dimensions $H_i \times W_i$ and C_i channels). The inner summation calculates the squared error element-wise, which is then averaged by dividing by N_i to compute the MSE for that stage. By training the M_B (ONN) portions of the student network to replicate the behavior of the highly teacher-staged, we effectively imbue the ONNs with enhanced non-linear processing capabilities.

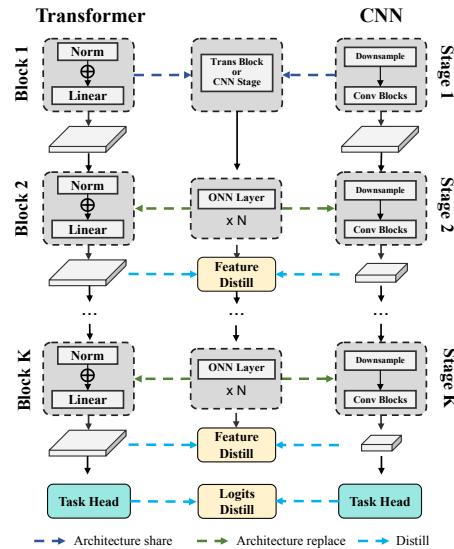


Figure 4: Distillation architecture for ONNs. The teacher model is flexible for any CNN-based and Transformer-based approaches.

324 3.4 DETECTION HEAD AND LOSS FUNCTION
325

326 The distilled photoelectric features from the distillation process in Section 3.3 through the ONN
327 modules and then fed into a task-specific detection head which operates in a fully convolution manner,
328 making dense, per-pixel predictions across the spatial dimensions of the feature maps. During training
329 stage, we minimize the total loss, which consists of the distillation loss L_{kd} and the detection loss
330 L_{det} , performs simultaneous classification and bounding box regression : $\mathcal{L}_{\text{det}} = \mathcal{L}_{\text{cls}} + \lambda_{\text{bbox}} \mathcal{L}_{\text{bbox}}$.

$$331 \quad \mathcal{L}_{\text{total}} = \lambda_{\text{kd}} \mathcal{L}_{\text{KD}} + \lambda_{\text{det}} \mathcal{L}_{\text{det}} = \lambda_{\text{kd}} \mathcal{L}_{\text{KD}} + \mathcal{L}_{\text{cls}} + \lambda_{\text{bbox}} \mathcal{L}_{\text{bbox}} \quad (4)$$

333 At inference time, the trained model processes the input image, predicts bounding boxes and labels in
334 real-time with low power consumption, leveraging the optical layers.

336 4 EXPERIMENTS
337

338 4.1 EXPERIMENTS SETUP

339 **Dataset & Models** We evaluated our proposed hybrid Optoelectronic object detection framework on
340 the MS COCO 2017 dataset (Lin et al., 2014), a standard benchmark for large-scale object detection.
341 The dataset contains over 118,000 training images and 5,000 validation images, covering 80 object
342 categories. Performance was evaluated using the standard mean Average Precision (mAP) metric
343 at IoU thresholds from 0.5 to 0.95 (mAP@[.5:.95]). We further evaluate our approach on (Caesar
344 et al., 2020), a large-scale outdoor autonomous driving dataset to demonstrate the effectiveness and
345 generalizability (see Appendix A.3). Our implementation was verified on various backbones, e.g.,
346 RegNet and ViT-Base. All models were trained on NVIDIA A800 GPUs, details can be found in
347 the Appendix A.1. The optical simulation method employed in our work is grounded in established
348 practices widely used in the EDA and computer architecture communities (Binkert et al., 2011;
349 Zhou et al., 2021; Xu et al., 2024b), ensuring the credibility of latency, area, and energy estimates.
350 Our diffractive ONN simulation approach also has been experimentally validated in multiple peer-
351 reviewed studies (Lin et al., 2018; Fu et al., 2023; Luo et al., 2019). Notably, the design parameters
352 used in our model are derived from experimentally demonstrated systems in (Lin et al., 2018; Fu
353 et al., 2023), reinforcing the practical relevance and feasibility of our architecture.

354 4.2 MAIN RESULTS ANALYSIS
355

356 Table 1: Detection Performance on MS COCO with image resolution of 677×400 .

357 Method	358 Setting	359 AP_{50}	359 AP_{75}	359 $AP@[.5:.95]$	359 Relative SOTA (%)
360 RegNet-Y	361 Baseline	361 46.5	361 31.2	361 29.8	361 100%
	362 Hybrid-1 \times layer ONN	362 39.6	362 26.0	362 24.9	362 83.6%
	363 Hybrid-2 \times layer ONN	363 30.5	363 17.5	363 17.5	363 58.7%
	364 Hybrid-3 \times layer ONN	364 19.6	364 8.0	364 9.5	364 31.9%
	365 Distill-1 \times layer ONN	365 41.6	365 27.3	365 26.3	365 88.3%
366 ViT-Base	367 Baseline	367 64.5	367 48.9	367 45.0	367 100%
	368 Hybrid-1 \times layer ONN	368 58.8	368 41.1	368 38.2	368 85.0%
	369 Hybrid-2 \times layer ONN	369 47.0	369 28.5	369 27.8	369 61.8%
	370 Distill-1 \times layer ONN	370 60.1	370 42.4	370 41.8	370 93.0%

371 4.2.1 SCALABILITY COMPARISON WITH ELECTRONIC LEARNING PROTOCOLS

372 **Hybrid Optoelectronic Performance** While the core motivation for exploring hybrid optoelec-
373 tronic architectures lies in their potential for substantial efficiency gains—such as reduced latency
374 and lower energy consumption due to the distinct *electrical attributes* of optical processing. The
375 RegNet-Y and ViT-base model, a purely electronic implementation of CNN-base and Transformer-
376 base architecture, achieves an mAP of 29.8% and 48.9%, serving as our reference, as shown in
377 Table 1. These hybrid models aim to leverage the *optical attributes* of ONNs, such as ultra-speed
378 parallel processing for linear operations (e.g., convolutions, matrix multiplications). However, we
379 observe a progressive decline in AP as more layers are offloaded to the optical domain. “Hybrid-1

x layer ONN" (e.g., one RegNet-Y stage replaced) drops to an AP of 24.9 (83.6% of baseline), while "Hybrid-3 x layer ONN" (e.g., three RegNet-Y stages replaced) shows the most significant degradation with an AP of 9.5 (31.9% of baseline). This performance degradation can be attributed to several inherent differences between mature electronic computation and current practical ONN implementations. While ONNs excel at rapid linear transformations, they may not natively support the same range or precision of non-linear activation functions commonly used in CNNs. Furthermore, optical computations can be more susceptible to analog noise (e.g., thermal fluctuations, detector shot noise, fabrication imperfections in photonic circuits) and may operate at a lower effective numerical precision compared to 32-bit floating-point operations typical in electronic GPUs.

To further verify robustness, we conducted quantitative experiments under varying noise levels (0%, 3%, 5%, 10%). Results show that the mAP of the hybrid ONN drops modestly from 41.8% to 40.1% under 10% phase noise, while the KD-enhanced version retains 96% of the original hybrid result and 89% of the baseline accuracy (originally 93%). This confirms the resilience and robustness of our method under real-world conditions.

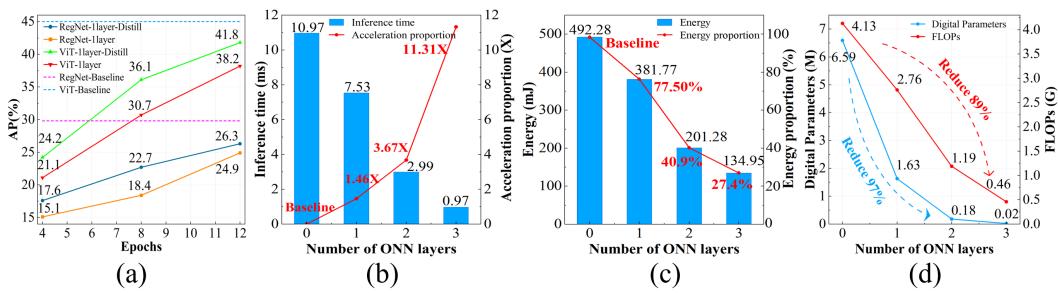


Figure 5: The performance across different numbers of ONN layers on : a) Different epochs. b) Acceleration of inference time. c) Energy consumption. d) FLOPs and parameters reduction.

Knowledge Distillation The performance degradation in non-distilled hybrid models, as detailed above, directly substituting electronic layers with optical ones can therefore lead to a significant functional mismatch, stems from the inherent discrepancies between the electrical attributes of conventional CNNs or Transformers and the current optical attributes of ONN counterparts (potentially different non-linear responses, susceptibility to analog noise, and distinct precision characteristics). To address these, our distill approach transfers the "knowledge" from the teacher's electronic backbone to the student ONNs model. As shown in Table. 1, architecturally identical to worse performance "Hybrid-1 x layer ONN" but trained with our distillation strategy, it achieves an AP of 41.8, recovering performance to **93.0%** of the baseline. The performance of distilling various numbers of ONN layers at different epochs are also presented in Figure 5a. Summary all, the knowledge distillation serves as a powerful bridge, guiding the ONN student to achieve a functional outcome comparable to the sophisticated electronic teacher, which contributes the following features:**i) Compensates for Non-linearity Disparities, ii) Mitigates Impact of Lower Precision and Analog Noise, iii) Provides Effective Learning Signals in a Constrained Space.** More details analysis can be found in [Appendix A.2.4](#).

4.2.2 COMPUTATIONAL EFFICIENCY OF HYBRID OPTOELECTRONIC NETWORKS.

Optical computing offers several fundamental advantages over its electronic counterpart, particularly for operations prevalent in CNNs and Transformer architectures. Firstly, computations in the optical domain can, in principle, occur at the speed of light and optical systems exhibit massive intrinsic parallelism. For instance, a simple lens can perform a 2D Fourier transform on an entire image plane simultaneously, processing all pixels in parallel. This inherent parallelism is key to accelerating matrix-vector multiplications and convolutions. Secondly, power consumption can be drastically reduced. Passive optical components consume negligible power, and active components are continuously improving. A third critical advantage is scalability with input resolution. Certain optical processing schemes, such as Fourier optics-based convolution or systems utilizing a fixed Point Spread Function (PSF), offer a potential $O(1)$ computational complexity for the core optical operation with respect to the number of input pixels ($H \times W$). These fundamental advantages translate into significant

432 theoretical speedups for specific neural network operations when implemented on specialized optical
 433 neural network (ONN) hardware.

434 For instance, we show **how the ONN module accelerates CNN computations to $10^5 \times$** . By replacing
 435 a 4-stage CNN with a 2-stage hybrid optoelectronic architecture incorporating two ONN layers, we
 436 reduced the electronic processing time by $T_{cnn} \approx 8ms$, shown in the Figure 5b. Specifically, our
 437 ONN photonic chip is composed of a laser source, an electro-optic modulator (EOM), a diffractive
 438 optical neural network (DONN), a photodetector (PD) and an array of Schottky barrier diodes
 439 (SBD). The temporal response of each component is denoted as t_{laser} , t_{eom} , t_{onn} , t_{pd} and t_{sbd} ,
 440 respectively. The EOM switching speed (4.46 ps) and PD response time (10.40 ns) are based on
 441 (Zhang et al., 2025; Wu et al., 2025). The contribution to the overall operational time of Schottky
 442 diodes and the laser is negligible due to the normally-open configuration, where $t_{sbd} = t_{laser} = 0$
 443 s. L represents the distance between adjacent layers, and c represents the speed of light. Therefore,
 444 $t_{onn} = 3L/c = 3 \times 250\mu m/c \approx 2.50$ ps. The overall operational time for a single ONN stage is
 445 then determined by:

$$446 \quad T_{onn} = t_{EOM} + t_{onn} + t_{PD} = 10.40 \text{ ns} \quad (5)$$

447 By insteading of the electronic modules (CNNs) with ONNs. The efficient improves $T_{factor} =$
 448 $T_{cnn}/2*T_{onn} = 8ms/20.8ns \approx 3.8 \times 10^5$ times, this represents a theoretical speedup of five orders
 449 of magnitude for the core optical operation itself. Such a component-level improvement underscores
 450 the transformative potential of ONNs and contributes significantly to the overall system-level speedups
 451 observed in hybrid architectures. Obviously, increasing Optical Neural Network (ONN) layers in
 452 our hybrid system dramatically reduces the framework inference time. The chart shows processing
 453 time dropping from approximately 11 ms for the all-electronic baseline (0 ONN layers, full CNNs) to
 454 just around 1.0 ms when 3 ONN layers are used, accelerating **11.3x** compared to the baseline. Our
 455 experimental investigation also assessed the impact of increasing Optical Neural Network (ONN)
 456 layer integration on energy consumption and model complexity, specifically concerning digital
 457 parameters and electronic FLOPs. Each ONN chip consists of one of laser, electro-optic modulator,
 458 photodetector, passive diffractive network, and a Schottky diode array. Based on research literature,
 459 we found that the total power consumption of each ONN layer is:

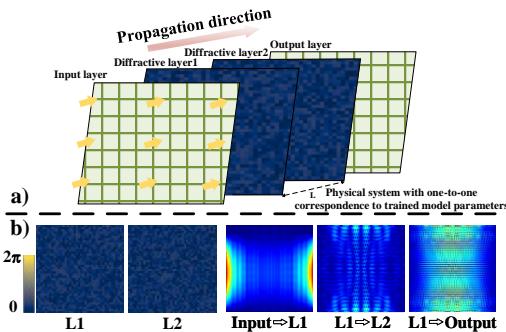
$$460 \quad E_{total} = E_{EOM} + E_{PD} + E_{SDA} + E_{Laser} \quad (6)$$

461 Since a single laser can be shared across multiple diffractive layers in a multi-layer ONN system, only
 462 one laser is required regardless of the number of layers. As depicted in the Figure 5c and Figure 5d,
 463 incorporating up to 3 ONN layers reduces energy consumption to just 27.4% of the all-electronic
 464 baseline (dropping from approximately 492 mJ to 134.95 mJ). Concurrently, this strategy slashes
 465 the number of digital parameters by up to 97% (from 6.7M down to 0.1M) and reduces electronic
 466 FLOPs by up to 89% (from 4.1 GFLOPs to 0.4 GFLOPs).

467 In summary, by strategically offloading computationally intensive tasks from electronic to the
 468 optical domain, our hybrid optoelectronic networks can break through the efficiency bottlenecks
 469 faced by purely electronic systems. This makes them particularly promising for high-throughput,
 470 low-latency, and energy-critical applications in areas such as autonomous driving, real-time video
 471 analysis, and edge AI, aligning with the experimental latency improvements demonstrated in our work.

472 **Visualization** Moreover, we visualize the distilled optical features by performing numerical
 473 simulations using Lumerical FDTD. As illustrated in Figure 6a, our optical neural network comprises
 474 an input layer, two intermediate diffractive layers (each with a distance of $L = 250, \mu m$), and
 475 an output layer. The phase modulation profiles of the diffractive layers are directly determined
 476 by the trained weights of the ONN model. Figure 6b shows the detailed phase distributions of the
 477 intermediate diffractive layers, along with the corresponding simulation results of light field prop-
 478 agation through all four layers of the ONN.

479 **LLM Assistance:** We employed LLMs exclusively
 480 for text polishing; they were in no way involved in research ideation.



481 Figure 6: ONN experimental architecture and the Dis-
 482 tribution of the Diffracted Field simulated in FDTD.

486 REFERENCES
487

488 Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu,
489 Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator.
490 *ACM SIGARCH computer architecture news*, 39(2):1–7, 2011. 7

491

492 Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In *Proceedings*
493 *of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp.
494 535–541, 2006. 3

495

496 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
497 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
498 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
499 *recognition*, pp. 11621–11631, 2020. 7, 14

500

501 Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient
502 object detection models with knowledge distillation. *Advances in neural information processing*
503 *systems*, 30, 2017. 3

504

505 William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven Kolthammer, and Ian A
506 Walmsley. Optimal design for universal multiport interferometers. *Optica*, 3(12):1460–1465, 2016.
507 2

508

509 MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for general
510 3D object detection. <https://github.com/open-mmlab/mmdetection3d>, 2020. 14

511

512 Andrea Cordaro, Brian Edwards, Vahid Nikkhah, Andrea Alù, Nader Engheta, and Albert Pol-
513 man. Solving integral equations in free space with inverse-designed ultrathin optical meta-
514 gratings. *Nature Nanotechnology*, 18(4):365–372, April 2023. ISSN 1748-3387, 1748-
515 3395. doi: 10.1038/s41565-022-01297-9. URL <https://www.nature.com/articles/s41565-022-01297-9>. 3

516

517 Lorenzo De Marinis, Marco Cococcioni, Piero Castoldi, and Nicola Andriolli. Photonic neural
518 networks: A survey. *Ieee Access*, 7:175827–175841, 2019. 2

519

520 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
521 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
522 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
523 *arXiv:2010.11929*, 2020. 5

524

525 Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring, Xuan Li, Maik Stappers,
526 Manuel Le Gallo, Xin Fu, Anton Lukashchuk, Arslan S Raja, et al. Parallel convolutional
527 processing using an integrated photonic tensor core. *Nature*, 589(7840):52–58, 2021. 2

528

529 Tingzhao Fu, Yubin Zang, Yuyao Huang, Zhenmin Du, Honghao Huang, Chengyang Hu, Minghua
530 Chen, Sigang Yang, and Hongwei Chen. Photonic machine learning with on-chip diffractive optics.
531 *Nature Communications*, 14(1):70, 2023. 2, 7

532

533 Ross Girshick. Fast r-cnn. In *Proceedings of the IEEE international conference on computer vision*,
534 pp. 1440–1448, 2015. 3

535

536 Joseph W Goodman. *Introduction to Fourier optics*. Roberts and Company publishers, 2005. 4

537

538 Ziyu Gu, Yesheng Gao, and Xingzhao Liu. Optronic convolutional neural networks of multi-layers
539 with different functions executed in optics for image classification. *Optics Express*, 29(4):5877–
5889, 2021. 1

540

541 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
542 *preprint arXiv:1503.02531*, 2015. 3

540 Shiyue Hua, Erwan Divita, Shanshan Yu, Bo Peng, Charles Roques-Carmes, Zhan Su, Zhang Chen,
 541 Yanfei Bai, Jinghui Zou, Yunpeng Zhu, Yelong Xu, Cheng-kuan Lu, Yuemiao Di, Hui Chen,
 542 Lushan Jiang, Lijie Wang, Longwu Ou, Chaohong Zhang, Junjie Chen, Wen Zhang, Hongyan Zhu,
 543 Weijun Kuang, Long Wang, Huaiyu Meng, Maurice Steinman, and Yichen Shen. An integrated
 544 large-scale photonic accelerator with ultralow latency. *Nature*, 640(8058):361–367, April 2025.
 545 ISSN 1476-4687. doi: 10.1038/s41586-025-08786-6. URL <https://doi.org/10.1038/s41586-025-08786-6>. 3

547 Michael Kissner, Leonardo Del Bino, Felix Päsler, Peter Caruana, and George Ghalanos. An all-
 548 optical general-purpose cpu and optical computer architecture. *Journal of Lightwave Technology*,
 549 2024. 3

551 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 552 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. 1, 2

553 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
 554 backbones for object detection. In *European conference on computer vision*, pp. 280–296. Springer,
 555 2022. 14

557 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 558 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision-
 559 ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
 560 part v 13*, pp. 740–755. Springer, 2014. 7

561 Xing Lin, Yair Rivenson, Nezih T Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi, and Aydogan
 562 Ozcan. All-optical machine learning using diffractive deep neural networks. *Science*, 361(6406):
 563 1004–1008, 2018. 1, 2, 3, 7

565 Yi Luo, Deniz Mengu, Nezih T Yardimci, Yair Rivenson, Muhammed Veli, Mona Jarrahi, and
 566 Aydogan Ozcan. Design of task-specific optical systems using broadband diffractive neural
 567 networks. *Light: Science & Applications*, 8(1):112, 2019. 7

569 Xiangyan Meng, Guojie Zhang, Nuannuan Shi, Guangyi Li, José Azaña, José Capmany, Jianping
 570 Yao, Yichen Shen, Wei Li, Ninghua Zhu, et al. Compact optical convolution processing unit based
 571 on multimode interference. *Nature Communications*, 14(1):3000, 2023. 1

572 Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, Brian Edwards, Firooz Aflatouni, and Nader Engheta.
 573 Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix
 574 multiplication. *Nature Photonics*, 18(5):501–508, 2024a. 2

576 Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, Brian Edwards, Firooz Aflatouni, and Nader
 577 Engheta. Inverse-designed low-index-contrast structures on a silicon photonics platform for vec-
 578 tor–matrix multiplication. *Nature Photonics*, 18(5):501–508, May 2024b. ISSN 1749-4885, 1749-
 579 4893. doi: 10.1038/s41566-024-01394-2. URL <https://www.nature.com/articles/s41566-024-01394-2>. 3

581 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
 582 network design spaces. In *Proceedings of the IEEE/CVF conference on computer vision and
 583 pattern recognition*, pp. 10428–10436, 2020. 5, 14

585 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 586 real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern
 587 recognition*, pp. 779–788, 2016. 3

588 Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg,
 589 Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al. Deep learning with coherent
 590 nanophotonic circuits. *Nature photonics*, 11(7):441–446, 2017. 2, 3

592 Kyle Shiflett, Avinash Karanth, Razvan Bunescu, and Ahmed Louri. Albireo: Energy-efficient
 593 acceleration of convolutional neural networks via silicon photonics. In *2021 ACM/IEEE 48th
 Annual International Symposium on Computer Architecture (ISCA)*, pp. 860–873. IEEE, 2021. 3

594 Kyle Shiflett, Avinash Karanth, Razvan Bunescu, and Ahmed Louri. Flumen: Dynamic processing
 595 in the photonic interconnect. In *Proceedings of the 50th Annual International Symposium on*
 596 *Computer Architecture*, pp. 1–13, 2023. 3

597 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 598 modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*,
 599 volume 34, pp. 13693–13696, 2020. 1

600 Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
 601 detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 602 9627–9636, 2019. 3, 5

603 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 604 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 605 *systems*, 30, 2017. 1, 3

606 Dongliang Wang, Yikun Nie, Gaolei Hu, Hon Ki Tsang, and Chaoran Huang. Ultrafast silicon
 607 photonic reservoir computing engine delivering over 200 TOPS. *Nature Communications*, 15(1):
 608 10841, December 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-55172-3. URL <https://www.nature.com/articles/s41467-024-55172-3>. 3

609 Gordon Wetzstein, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk Englund, Marin Soljačić,
 610 Cornelia Denz, David AB Miller, and Demetri Psaltis. Inference in artificial intelligence with deep
 611 optics and photonics. *Nature*, 588(7836):39–47, 2020. 3

612 Anna Wirth-Singh, Jinlin Xiang, Minho Choi, Johannes Fröch, Luocheng Huang, Eli Shlizerman,
 613 and Arka Majumdar. Compressed meta-optical encoder for image classification. In *CLEO: Funda-*
 614 *mental Science*, pp. FF1J-1. Optica Publishing Group, 2024. 3

615 Changming Wu, Heshan Yu, Seokhyeong Lee, Ruoming Peng, Ichiro Takeuchi, and Mo Li.
 616 Programmable phase-change metasurfaces on waveguides for multimode photonic convolu-
 617 tional neural network. *Nature Communications*, 12(1):96, January 2021. ISSN 2041-
 618 1723. doi: 10.1038/s41467-020-20365-z. URL <https://www.nature.com/articles/s41467-020-20365-z>. 3

619 Jianfeng Wu, Jialin Zhang, Ruiqi Jiang, Hao Wu, Shouheng Chen, Xinlei Zhang, Wenhui Wang,
 620 Yuanfang Yu, Qiang Fu, Rui Lin, et al. High-sensitivity, high-speed, broadband mid-infrared
 621 photodetector enabled by a van der waals heterostructure with a vertical transport channel. *Nature*
 622 *Communications*, 16(1):564, 2025. 9

623 Jinlin Xiang, Shane Colburn, Arka Majumdar, and Eli Shlizerman. Knowledge distillation circum-
 624 vents nonlinearity for optical convolutional neural networks. *Applied Optics*, 61(9):2173–2183,
 625 2022. 3

626 Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes, Thach G Nguyen, Sai T
 627 Chu, Brent E Little, Damien G Hicks, Roberto Morandotti, et al. 11 tops photonic convolutional
 628 accelerator for optical neural networks. *Nature*, 589(7840):44–51, 2021. 3

629 Zhihao Xu, Tiankuang Zhou, Muzhou Ma, ChenChen Deng, Qionghai Dai, and Lu Fang. Large-scale
 630 photonic chiplet taichi empowers 160-tops/w artificial general intelligence. *Science*, 384(6692):
 631 202–209, 2024a. doi: 10.1126/science.adl1203. URL <https://www.science.org/doi/abs/10.1126/science.adl1203>. 3

632 Zhihao Xu, Tiankuang Zhou, Muzhou Ma, ChenChen Deng, Qionghai Dai, and Lu Fang. Large-scale
 633 photonic chiplet taichi empowers 160-tops/w artificial general intelligence. *Science*, 384(6692):
 634 202–209, 2024b. 7

635 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
 636 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv*
 637 *preprint arXiv:2203.03605*, 2022. 3

638 Zanyun Zhang, Beiju Huang, Qixin Wang, Zilong Chen, Ke Li, Kaixin Zhang, Meixin Li, Hao
 639 Jiang, Jiaming Xing, Tianjun Liu, et al. Polarization-insensitive silicon intensity modulator with a
 640 maximum speed of 224 gb/s. *Photonics Research*, 13(2):274–285, 2025. 9

648 Tiankuang Zhou, Lu Fang, Tao Yan, Jiamin Wu, Yipeng Li, Jingtao Fan, Huaqiang Wu, Xing Lin,
649 and Qionghai Dai. In situ optical backpropagation training of diffractive optical neural networks.
650 *Photonics Research*, 8(6):940–953, 2020. [15](#)

651 Tiankuang Zhou, Xing Lin, Jiamin Wu, Yitong Chen, Hao Xie, Yipeng Li, Jingtao Fan, Huaqiang
652 Wu, Lu Fang, and Qionghai Dai. Large-scale neuromorphic optoelectronic computing with a
653 reconfigurable diffractive processing unit. *Nature Photonics*, 15(5):367–373, 2021. [7](#)

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 703 704 705 Appendix A 706 707

708 Technical Appendices and Supplementary Material 709 710

711 In this section, we provide a supplementary material to support the findings presented in the main
712 paper, including an extended dataset and training information, Section A.1, detailed network archi-
713 tectures, Section A.2, additional experimental results, Section A.3, and qualitative visualizations,
714 Section A.4.

715 A.1 DATASET AND TRAINING DETAILS 716

717 **nuScenes** The nuScenes (Caesar et al., 2020) is a large-scale outdoor scene dataset and a com-
718 prehensive resource for autonomous driving research, which includes 700 scenes for training, 150
719 for validation, and 150 for testing. For our experiments, we utilized the full training set comprising
720 approximately 28,130 samples and the validation set with 6,019 samples. Each sample includes data
721 from 6 cameras, 1 LIDAR, 5 RADARs, GPS, and IMU. Our object detection task primarily focuses
722 on the camera-based detection, e.g., cars, pedestrians, cyclists, using the provided 3D bounding
723 box annotations projected into the 2D image planes. We follow the official train/validation split.
724 Input images from nuScenes were employed 900x1600 pixels for processing. For the nuScenes 2D
725 detection task, we take the same evaluation strategy as COCO’s, with average precision and recall
726 indicator.

727 **Implementation details.** Our code implementation is based on the MMDetection3D (Contributors,
728 2020), all models in the main manuscript are trained for 12 epochs with batch size 1 on 32 A800
729 GPUs. We use Stochastic Gradient Descent (SGD) optimizer, with learning rate of 1×10^{-2} for
730 regnet and AdamW, with learning rate of 1×10^{-4} for ViT-B, on COCO and nuScenes datasets,
731 respectively. Specifically, we only use the *front view of the camera* in nuScenes dataset for training
732 and evaluation. In this appendix, unless explicitly stated, the results are conducted on 8 A800 GPUs.
733 For distillation, models with ONNs are trained in two stages: (1) pretraining the full electronic
734 baseline as teacher model, (2) freezing teacher model and distilling feature of ONN-replaced blocks
735 using feature and logits loss.

736 A.2 NETWORK ARCHITECTURE AND PROCESS 737

738 This section outlines the specific configurations of the backbone architectures used in our experiments
739 and presents the process of forward propagation in Optical Neural Network (ONN).

740 A.2.1 ViT-BASE 741

742 For experiments on transformer-based backbones, we employed ViT-Base with Patch Size 16. The
743 architecture consists of an initial patch embedding layer, stacked Transformer blocks, and a final layer
744 norm which is shown in Figure 7.(a). Each Transformer block includes a multi-head self-attention
745 (MHSA) module with 12 heads and a feed-forward network (FFN) with a 4 expansion and the model
746 contains 12 transformer blocks, hidden size 768. Specifically, ONN modules replace the last N blocks
747 during hybridization. We follow ViTDet (Li et al., 2022) to construct different level features for FPN.
748

750 A.2.2 REGNET-Y 751

752 RegNet-Y (Radosavovic et al., 2020) is used as backbone for cnn-based model. It consists of a stem,
753 followed by four stages, which has 1, 3, 7 and 5 blocks, respectively, which are shown as Figure 7.(b).
754 Each block follows the standard bottleneck structure with group convolution. In addition, there
755 will be a downsampling operation in each stage, and ONN module replaces CNN module after
downsampling. Here, we present a 2-layer ONN hybrid framework configured as example in Table 2.

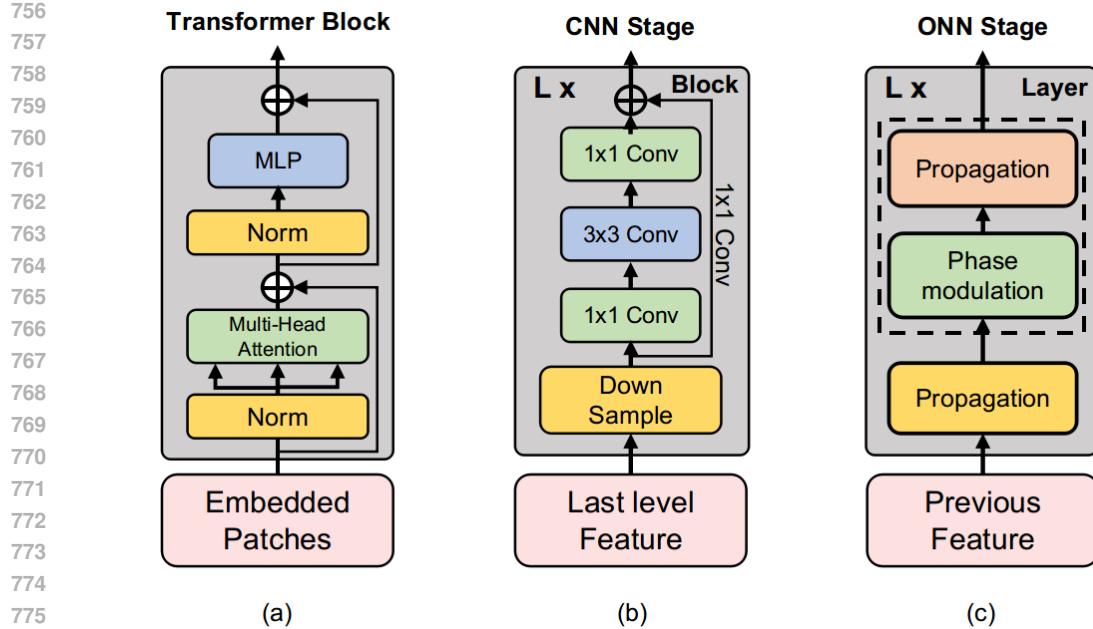


Figure 7: The architecture of ViT blocks (a), stages of RegNet (b) and ONN stages (c).

Table 2: RegNet-Y Backbone Architecture Specifications

Stage	Channels	Depth	Stride	ONN Replacement
S1	64	1	2	✓(Electronic)
S2	128	3	2	✓(Electronic)
S3	160	2	2	✓(ONN)
S4	256	2	2	✓(ONN)

A.2.3 OPTICAL NEURAL NETWORKS

We present the detailed architecture of ONN, which is shown in Figure 7.(c). It is mainly composed of the propagation module and the stacked ONN blocks in series. Furthermore, each block contains a propagation module and a phase modulation module.

Forward propagation Optical Neural Networks (ONNs) are a new class of computational models that leverage optical components such as interferometers, modulators, and photonic circuits to perform computations traditionally carried out by electronic processors. The main advantage of ONNs over conventional electronic neural networks is their inherent parallelism and speed, which allows them to handle matrix-vector multiplications at ultra-low latency while consuming much less power compared to electronic models.

The incident field at the first layer, denoted as \mathbf{U}_0 , subsequently propagates through a cascade of diffractive optical layers. This process culminates in the generation of the optical field at the output plane, designated as \mathbf{U}_{N+1} , which represents the final output of the network at the imaging plane (Zhou et al., 2020):

$$\mathbf{U}_{N+1} = \mathbf{W}_{N+1} \left(\prod_{k=N}^1 \mathbf{M}_k \mathbf{W}_k \right) \mathbf{U}_0,$$

where, \mathbf{U}_{N+1} represents the vectorized optical field at the $(N+1)^{\text{th}}$ layer, corresponding to the output plane. The matrix \mathbf{W}_k denotes the diffractive weight matrix that models forward light propagation from the $(k-1)^{\text{th}}$ layer to the k^{th} layer. In addition, $\mathbf{M}_k = \text{diag}(e^{j\phi_k})$ describes a diagonal modulation matrix at the k^{th} layer, where ϕ_k specifies the vector of phase modulation coefficients.

810 For a diffractive optical neural network that comprises N intermediate layers, the detector positioned
 811 at the imaging plane measures the intensity distribution of the resulting optical field. This measured
 812 intensity then serves as the network’s inference output, denoted by the following presentation \mathbf{O} :
 813

$$814 \quad \mathbf{O} = |\mathbf{U}_{N+1}|^2 = \left| \mathbf{W}_{N+1} \left(\prod_{k=N}^1 \mathbf{M}_k \mathbf{W}_k \right) \mathbf{U}_0 \right|^2$$

$$815$$

$$816$$

$$817$$

818 A.2.4 SUPPLEMENTARY FOR KNOWLEDGE DISTILLATION

$$819$$

820 The role of knowledge distillation is to act as a powerful bridge, guiding the ONN student to achieve
 821 functionality comparable to that of the sophisticated electronic teacher. The following features
 822 illustrate why this process is effective, which correspond to Section 4.2.1:

- 824 • **Compensates for Non-linearity Disparities:** The teacher network has learned complex
 825 data manifolds using its robust electronic non-linearity. While the student ONN, even if its
 826 native optical non-linearity are different or less expressive, is trained via KD to reproduce
 827 the output feature distributions or logit patterns of the teacher. This forces the ONN to
 828 configure its linear optical transformations and available non-linear mechanisms in such a
 829 way that the overall block-wise or stage-wise function approximates that of the teacher.
- 830 • **Mitigates Impact of Lower Precision and Analog Noise:** The teacher model often pre-
 831 trained on large datasets and possessing a well-designed architecture, has learned powerful
 832 inductive biases for the task and provides a “clean” high-precision target representation. By
 833 training the ONN student to match these target features, it encourages the student to learn
 834 representations that are robust enough to yield the correct output despite underlying analog
 835 noise or limitations in optical precision. The ONN learns to focus on the salient, high-signal
 836 aspects of the teacher’s representation that are crucial for the task.
- 837 • **Provides Effective Learning Signals in a Constrained Space:** The parameter space of an
 838 ONN is tied to physical device properties (e.g., phase shifts in MZIs, properties of optical
 839 materials). Optimizing these parameters solely with a downstream task loss can be highly
 840 challenging. KD provides rich, dense, intermediate supervisory signals (the teacher’s feature
 841 maps) at various points in the network. This guidance makes the optimization problem more
 842 tractable, helping the student ONN navigate its constrained parameter space to find effective
 843 solutions that align with the proven representations of the electronic teacher.

844 A.3 MORE EXPERIMENTS

$$845$$

846 This section provides a more comprehensive set of experimental results, including performance on
 847 the nuScenes dataset and further ablation studies.

$$848$$

849 Table 3: Detection Performance on nuScenes Validation dataset.

850 Method	851 Setting	852 AP_{50}	853 AP_{75}	854 $AP@[.5:.95]$	855 Relative SOTA (%)	856 Recall@[.5:.95]
857 RegNet-Y	858 Baseline	859 41.2	860 17.8	861 20.3	862 100%	863 46.4
	864 Hybrid-1 \times layer ONN	865 38.3	866 16.8	867 18.9	868 93.1%	869 43.7
	870 Hybrid-2 \times layer ONN	871 33.8	872 13.8	873 16.2	874 79.8%	875 41.2
	876 Hybrid-3 \times layer ONN	877 23.7	878 8.1	879 10.4	880 51.2%	881 34.1
882 ViT-Base	883 Distill-1 \times layer ONN	884 40.0	885 17.9	886 19.8	887 97.5%	888 46.2
	889 Baseline	890 52.5	891 24.5	892 27.1	893 100%	894 52.7
	895 Hybrid-1 \times layer ONN	896 51.1	897 22.2	898 25.3	899 93.4%	900 50.8
	901 Hybrid-2 \times layer ONN	902 46.7	903 19.0	904 22.5	905 83.0%	906 49.2
	907 Distill-1 \times layer ONN	908 52.0	909 23.9	910 26.3	911 97.1%	912 51.6

864 **Main results on nuScenes.** To further evaluate the generalizability of our framework, we conduct
 865 experiments on the nuScenes dataset, a large-scale benchmark for autonomous driving containing

864 diverse and complex outdoor scenes, shown in Table 3. Using the same hybrid backbone configura-
 865 tions as in COCO, we evaluate performance with 1–3 stages replaced by ONN modules. As shown in
 866 Table 3, the results show that our framework achieves comparable precision to the electronic baseline,
 867 with significant gains in inference speed and energy efficiency.
 868

869
 870 **Table 4: Performance of Different Non-linear Functions in ONN module on COCO dataset.**

871 Method	872 Setting	873 <i>AP₅₀</i>	874 <i>AP₇₅</i>	875 AP@[.5:.95]	876 Recall@[.5:.95]
877 RegNet-Y	878 Baseline	879 47.1	880 32.5	881 30.7	882 67.9
	883 abs + learning bias	884 40.8	885 26.9	886 25.8	887 63.8
	888 labs ^{l2}	889 41.1	890 27.0	891 25.9	892 64.8
	893 labs ^{l2} + learning bias	894 41.4	895 27.2	896 26.2	897 64.6

878 **Ablation on ONN Activation Functions.** Due to the physical constraints of optical hardware,
 879 implementing nonlinear activation functions within ONNs is non-trivial and must conform to the
 880 underlying physics of light propagation. We conduct experiments using a variety of nonlinearities
 881 that are either physically realizable or approximable in optical systems, including absolute value ($|x|$),
 882 squared magnitude ($|x|^2$), and learned bias-shifted activations, the results as shown in Table 4. Among
 883 these, we observe that $|x|^2$ and **learned bias activations** consistently yield the best performance.
 884 Importantly, these nonlinearities functions also have strong physical relevance in optical systems:
 885

- 886 • The **absolute function** ($|x|$) represents taking the *amplitude of the optical field* while
 887 discarding its phase. This simplification is common in optical systems where only intensity
 888 (not phase) is directly measurable.
- 889 • The **squared magnitude function** ($|x|^2$) corresponds to converting the *complex amplitude*
 890 of a light field into the measurable *light intensity* captured by detectors. This is the core
 891 operation in optical sensing and makes $|x|^2$ a naturally compatible nonlinearity for ONNs.

892 This alignment between mathematical formulation and optical measurability ensures that our design
 893 is not only effective in performance but also practical for real-world ONN hardware implementation.
 894 These results suggest that simple, physically grounded nonlinearities, when paired with our distillation
 895 framework, can provide sufficient expressiveness for object detection tasks without requiring complex
 896 or non-implementable optical operations.
 897

898 **Table 5: Performance of Number of Blocks per Stage.**

899 Method	900 Setting	901 <i>AP₅₀</i>	902 <i>AP₇₅</i>	903 AP@[.5:.95]	904 Recall@[.5:.95]
905 RegNet-Y	906 Baseline	907 47.1	908 32.5	909 30.7	910 67.9
	911 1	912 39.6	913 25.9	914 24.8	915 63.5
	916 2	917 41.4	918 27.2	919 26.2	920 64.6
	921 4	922 41.3	923 27.0	924 26.1	925 64.5

906 **Effect of ONN Layer Depth.** In this experiment, we evaluate how the depth of each ONN layer,
 907 measured by the number of stacked optical blocks, affects performance. Specifically, for each ONN
 908 stage replacing a portion of the backbone, we test using [1, 2, 4] optical blocks in sequence, where
 909 each block consists of an optical modulation layer and a simple physically realizable nonlinearity
 910 (e.g., $|x|^2$ or bias-shifted activation), the results presented at Table 5.
 911

- 912 • **1 Block:** This configuration minimizes optical depth, reducing latency but limits the capacity
 913 of the optical feature extractor.
- 914 • **2 Blocks:** Offers a balance between depth and learnability while remaining efficient and
 915 physically feasible.
- 916 • **4 Blocks:** Increases representation power but can amplify optical noise and lead to diminish-
 917 ing returns.

We observe that using **2 blocks per ONN layer achieves the best performance**, offering a strong trade-off between feature expressivity and optical robustness. The performance of 1 block setting is not satisfactory, while the 4-block setup shows slight performance drop due to accumulated phase noise and weaker generalization under hardware variability. These results suggest that **moderate ONN depth is optimal in hybrid systems**, where the goal is not only accuracy but also energy efficiency and robustness to physical noise.

Table 6: Ablation of different output channels on nuScenes.

Method	Setting	AP ₅₀	AP ₇₅	AP@[.5:.95]	Recall@[.5:.95]
RegNet-Y	Baseline	41.2	17.8	20.3	46.4
	[288, 256]	38.3	16.8	18.9	43.7
	[288, 128]	39.0	16.9	19.2	43.5
	[288, 32]	39.3	17.4	19.5	43.7
	[288, 16]	39.1	17.0	19.3	43.3

Ablation experiments of output channels. We investigate how variation of the number of input and output channels in ONN modules affects detection performance. The impact of the output channels of ONN modules for Hybrid-1 \times layer ONN is shown in Table 6. "Setting" column represents the input and output channels of the ONN module. Surprisingly, we find that fewer channel numbers of 32 output channels get the best performance.

Table 7: Detection Performance by adding noise to the model on MS COCO.

Method	Setting	AP ₅₀	AP ₇₅	AP@[.5:.95]	Recall@[.5:.95]
RegNet-Y	Baseline	46.5	31.2	29.8	67.0
	Hybrid-1 \times layer ONN	39.6	26.0	24.9	63.3
	Rodom noisy	39.5	25.6	24.7	63.1

Robustness of Noisy. To evaluate the robustness of our distillation-based framework, we inject uniform distribution noise into the ONN modules during the training phase, simulating real-world optical imperfections such as diffraction error, sensor noise, and analog drift, as shown in Table 7. Despite these disturbances, hybrid model maintains stable performance, demonstrating improved tolerance to noise and enhanced generalization. This confirms that distillation not only improves feature expressivity, but also acts as an implicit regularizer for noisy hardware.

Table 8: Detection Performance of different distillation strategies on nuScenes dataset.

Method	Setting	AP ₅₀	AP ₇₅	AP@[.5:.95]	Relative SOTA (%)
RegNet-Y	Baseline	41.2	17.8	20.3	100%
	Single-stage	40.0	17.9	19.8	97.5%
	Two-stage	38.7	16.5	18.8	92.6%

Different distillation strategies. We further explore the impact of different distillation strategies on the performance of the hybrid photoelectronic network, focusing on two paradigms of single-stage and two-stage strategies as follows, and the experiments presented in Table 8:

- **Single-stage:** For the student model training, we employ a distillation approach that leverages both backbone features and head logits from the teacher detector as supervisory signals. This ensures comprehensive knowledge transfer while maintaining efficiency.
- **Two-stage strategy:** The two-stage distillation pipeline first aligns the student's backbone features with those of the teacher detector, focusing solely on backbone-level knowledge transfer, ensuring effective feature learning while maintaining computational efficiency.

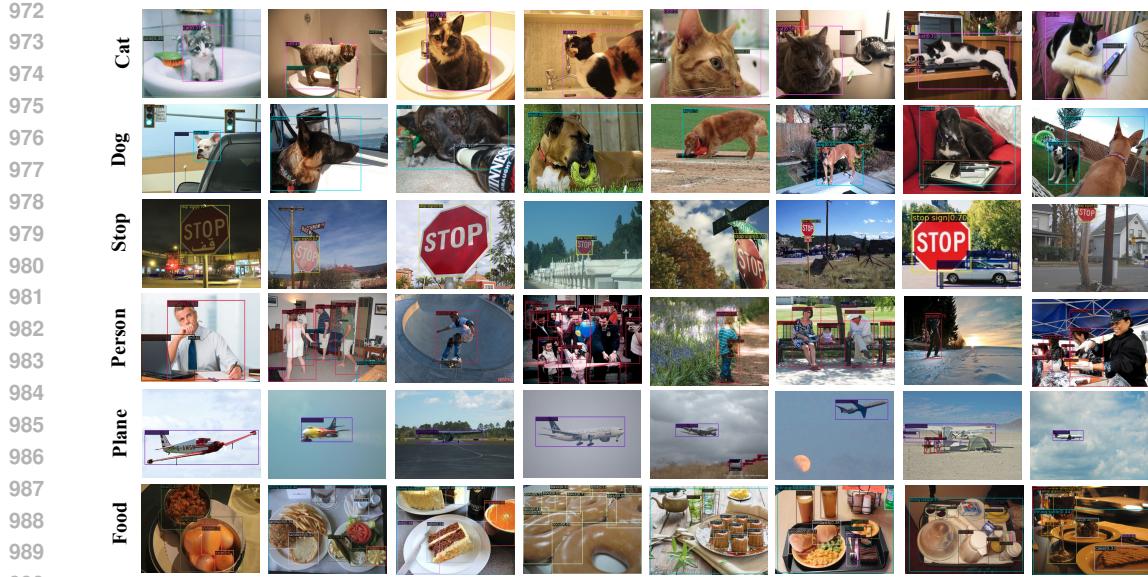


Figure 8: Detection visualization of our framework on the COCO dataset.

Figure 9: Detection performance of our framework on the nuScenes dataset.

A.4 VISUALIZATION AND ANALYSIS

We provide additional qualitative visualizations for both COCO and nuScenes:

COCO visualization The Figure 8 presents qualitative detection results from our top-performing hybrid model (Hybrid-1 + Distill) on a diverse set of images from the MS COCO dataset. The examples show performance across various scenes, object densities, and scales, which demonstrate robust performance across challenging scenarios, including varying object scales, complex occlusions, and crowded scenes, highlighting the model’s generalization capability. Notably, the results exhibit precise localization and high classification confidence even for small or partially obscured objects, validating the effectiveness of our approach.

nuScenes visualization Figure 9 presents qualitative detection results on challenging scenes from the nuScenes validation set. These examples highlight the model’s performance in diverse conditions,

1026 including varying weather, lighting (day/night), and complex urban environments, showcasing
1027 detections for key autonomous driving object classes.
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079