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Abstract

Predictive coding graphs (PCGs) are a recently introduced generalization to predic-
tive coding networks, a neuroscience-inspired probabilistic latent variable model.
Here, we prove how PCGs define a mathematical superset of feedforward artificial
neural networks (multilayer perceptrons). This positions PCNs more strongly
within contemporary machine learning (ML), and reinforces earlier proposals to
study the use of non-hierarchical neural networks for ML tasks, and more generally
the notion of topology in neural networks.

Figure 1: PCGs trained with IL generalize the structure of FNNs to arbitrary graphs, including loops
and non-hierarchical structures, which are not trainable using BP.

1 Introduction

Predictive coding networks (PCNs), based on the neuroscientific framework predictive coding,
have recently gained attention in machine learning (ML) [23, 15] for their increased biological
plausibility compared to backpropagation (BP) [14, 4, 21], their parallelizability [18] and potential
for probabilistic/generative modeling [8, 10, 26]. These networks can also be extended to arbitrary
topologies, called predictive coding graphs (PCGs) [16].

When applied to supervised learning, standard (hierarchical) PCNs have the same outputs as traditional
feedforward neural networks (FNNs, or multilayer perceptrons) during testing (i.e. inference) [24, 2].
This enables direct comparison of BP with PCN’s training phase, also called inference learning (IL) –
which has been the focus of most recent work on PCNs in ML [20, 13, 17, 6]. In this work we revisit
the testing (inference) phase, and formally prove that PCGs are a superset of feedforward neural
networks. This follows from the combination of two insights.

The first is that discriminative PCNs are equivalent to FNNs during testing, for which we provide
a simple proof. This is a stronger variant of related statements in the literature which show how
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PCNs converge to an FNNs’ computations [24, 2]. This subtle but important reframing enables the
formal statement that the universal approximation theorem (UAT) [1] holds also for PCNs. The UAT
is a foundational result which historically provided strong theoretical justification for using FNNs
[12]. Its applicability to PCNs however, although generally believed in the PC community, lacked a
principled formal proof. To the author’s best knowledge, this is provided here for the first time, by
virtue of the PCN-FNN testing equivalence.

Our second insight is that PCGs define a mathematical superset of PCNs, which we also prove
formally. In ref. [16] it was well-illustrated how hierarchical structures could be obtained with PCGs
by masking weights. However, precisely how such masked PCGs relate to PCNs and FNNs was
unclear (i.e. their cost functions and dynamics), since a detailed formal analysis was lacking. Here,
we prove that a PCG with a particular choice of weight matrix is exactly equivalent to a PCN, both in
structure and dynamics.

Combining these two insights leads to the non-trivial conclusion that PCGs should be understood as
a structural superset of FNNs that includes FNNs as a special case, as visualized in fig. 1. We believe
this result substantially clarifies the relation between PC and traditional neural networks, as recently
argued in [23]. Moreover, understanding PCGs in this way is potentially very interesting given
the topological nature of important advances in ML in the past, such as residual/skip connections
[5, 25, 9]. Thus, we underscore the point made by [16]: PCGs are a promising framework for studying
the importance of network topology in ML tasks. Finally, our work also highlights the value of
mathematical studies of PCNs, complementary to experimental approaches more commonly found in
the literature.

2 Results

We first prove how PCNs are FNNs during testing, followed by how PCNs are subsets of PCGs. The
problem setup is as follows: we are given a dataset of N labeled samples {x(n),y(n)}Nn=1 split into
a training set and a test set, where x(n) ∈ Rnx is a datapoint with dimension nx and y(n) ∈ Rny its
corresponding label with dimension ny .

2.1 PCNs are FNNs during testing

We provide definitions and state the first result. We separate a neural network’s activity rule (i.e.
changing activity of nodes, operating during training and testing) and learning rule (changing weights,
operating only during training) [7].

Definition 1. A FNN is defined by a set of nodes aℓi ∈ R in layers with nℓ ∈ N+ nodes, with
0 ≤ ℓ ≤ L, 1 ≤ i(ℓ) ≤ nℓ and n0 = nx.2 Its activity rule is:

0 < ℓ ≤ L, ∀i : aℓi = f
(∑

j

wℓ−1
ij aℓ−1

j

)
, (1)

with ∀i, a0i = xi, and where wℓ
ij ∈ R, 0 ≤ ℓ < L are the weights, and f is a non-linear, element-wise

activation function.

Note that for FNNs, the learning rule is usually defined separate from the network definition, i.e.
the canonical training algorithm backpropagation (BP) defines the learning rule: ∆wℓ

ij ∝ ∂L/∂wℓ
ij

where L is some loss function. For PCNs, however, the learning rule is typically understood to be
part of the network definition itself.

Definition 2. A PCN is defined by a set of nodes aℓi ∈ R in layers with nℓ ∈ N+ nodes, with
0 ≤ ℓ ≤ L, 1 ≤ i ≤ nℓ and n0 = nx. Its energy is EN =

∑L
ℓ=1

∑nℓ

i=1(ϵ
ℓ
i)

2, with ϵℓi = aℓi − µℓ
i

and µℓ
i = f

(∑nℓ−1

j=1 wℓ−1
ij aℓ−1

j

)
, where wℓ

ij ∈ R, 0 ≤ ℓ < L are the weights, and f is a non-linear

2The index i for FNNs/PCNs is always defined with respect to layer ℓ, but we leave out this dependence
henceforth for simplicity.
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element-wise activation function. Its activity rule is (using hats for minimized values):
0 < ℓ < L, ∀i : âℓi = argmin

aℓ
i

EN (training) (2)

0 < ℓ ≤ L, ∀i : âℓi = argmin
aℓ
i

EN (testing), (3)

with ∀i, a0i = xi, and during training ∀i, aLi = yi. The learning rule is:

0 ≤ ℓ < L, ∀i, j : ŵℓ
ij = argmin

wℓ
ij

EN (training), (4)

with ∀i : a0i = xi, a
L
i = yi.

Theorem 1. During testing, a PCN is equivalent to an FNN.

We prove this in appendix A.1, and provide an intuition here. Testing means that only the activity
rule is relevant, and that ∀i : a0i = xi. Equivalence between an FNN and PCN then means that (1) is
equivalent to (3):

ℓ > 0, ∀i : âℓi = argmin
aℓ
i

EN ⇐⇒ aℓi = f
(∑

j

wℓ−1
ij aℓ−1

j

)
. (5)

To prove this, start from the left hand side, and find the minimum of EN by taking derivatives w.r.t.
aℓi , and setting to zero. This yields the following system of equations (cf. appendix B):

∂EN

∂aℓi
=

 ϵℓi −
nℓ∑
j=1

wℓ
jiϵ

ℓ+1
j f ′

(∑
m

wℓ
jmaℓm

)
= 0 if 1 ≤ ℓ < L (6)

ϵLi = 0 if ℓ = L (7)
This may be solved by seeing that since ϵLi = 0 by (7), ϵL−1

i = 0 by (6) – an argument which can be
continued for each layer until ϵ1i = 0. Then, by definition of ϵℓi , one has the right hand side of 5. This
can be formalized by backwards induction.

Our proof is simpler than similar proofs in the literature that we are aware of [19, 17, 2], since we
employ a more general definition of the activity rule. Instead of (2), (3), these works define the
activity rule of PCNs as ∆ai ∝ ∂E/∂ai, which is shown to converge to (1). This however assumes
gradient-based dynamics, which we argue is unnecessary using the more principled definition of IL
as Expectation Maximization (as discussed e.g. in [23]). In public PCN implementations [22], (1)
was already used during testing, a practice we have now given a more principled justification.

A corollary of this proof is that since FNNs are universal function approximators [1, 12], so are
PCNs. This fact, although probably widely believed in the PC community, did not yet have a rigorous
justification to the author’s best knowledge. We also remark that by changing the definition of aℓi in
the FNN, and correspondingly changing µℓ

i in the PCN, to e.g. a convolutional prediction [23] or
skip connections, the above result may be trivially extended to any hierarchical structure, i.e. not just
MLPs.

2.2 PCNs are subsets of PCGs

We now define a PCG, a PCN generalization introduced by [16]. This work nicely illustrated how
different network topologies, such as hierarchical networks, could be obtained by masking the PCG
weight matrix. However, it was not discussed how the resulting energies and dynamics (activity and
learning rules) relate to PCNs. Here, we provide a rigorous proof that a PCG with a certain choice of
weight matrix is equivalent to a PCN. This enables the statement that PCGs are supersets of PCNs
(as was mentioned in [23], but not yet proven). For clarity, we use tildes and Greek indices for PCG
nodes and weights, and Latin indices for the PCN.
Definition 3. A PCG is defined by a set of nodes aα ∈ R, α = 1, ..., N , and an energy EG =

∑
α ϵ2α,

with ϵα = aα − µα and µα = f
(∑N

β=1 wαβaβ

)
, where wℓ

αβ ∈ R are the weights, and f is a
non-linear element-wise activation function. Its activity rule is:

nx < α ≤ N − ny : âα = argmin
aα

EG, (training) (8)

nx < α ≤ N : âα = argmin
aα

EG, (testing) (9)
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with aα = xα for 0 < α ≤ nx, and during training aα = yi for N − ny < α ≤ N, 1 ≤ i ≤ ny.
The learning rule is:

∀α, β : ŵαβ = argmin
wαβ

EG (training), (10)

with aα = xα for 0 < α ≤ nx and aα = yi for N − ny < α ≤ N with 1 ≤ i ≤ ny .
Theorem 2. The PCG is a superset of the PCN through its weight matrix w̃. With layers defined
by {nℓ}Lℓ=0, with nℓ ∈ N+,

∑
ℓ nℓ = N , partitioning nodes ã into layers aℓ ∈ Rnℓ ; and weights w̃

into block matrices w̃ℓk ∈ Rnℓ×nk , the choice w̃ℓk = w̃ℓkδkℓ−1 ≡ wℓ−1 (with wℓ the PCN weight
matrix) implies that their objective functions are equivalent:

EG = EN + C (11)

where C is a constant. Moreover, their activity rules are equivalent, both during training and testing:

argminaℓ
i
EN = argminaα

EG (training),

argminaℓ
i
EN = argminaα

EG (testing),
(12)

and their learning rules are equivalent:

argminwℓ
ij
EN = argminwαβ

EG (training). (13)

Other choices of non-zero block matrices leads to skip connections, backward (skip) connections and
lateral connections.

The proof is given in A.2. It involves defining the exact mapping of nodes and weights, for which we
again provide a brief intuition. From {nℓ}Lℓ=0, one may define a partitioning of node indices as:

I = {1, . . . , n0︸ ︷︷ ︸
layer 0

, n0 + 1, . . . , n0 + n1︸ ︷︷ ︸
layer 1

, . . . , sL−1 + 1, . . . , sL︸ ︷︷ ︸
layer L

},
(14)

where sℓ =
∑ℓ

k=0 nk. With this, the PCG weights w̃ may be partitioned into block matrices w̃ℓk,
containing weights from layer k to layer ℓ, which yields:

w̃ =


w̃00 w̃01 . . . w̃0L

w̃10 w̃11
...

...
. . .

w̃L0 . . . w̃LL

 =


0 0 . . . 0

w0
...

w1

...
. . .

0 . . . wL−1 0

 . (15)

Here, in the last equality we set the hierarchical structure using w̃ℓk = w̃ℓkδkℓ−1 ≡ wℓ−1, with δij
the Kronecker delta, identifying the PCN weight matrices wℓ. The proof then proceeds to show how
this leads to the same energy (up to a constant), and identical dynamics (activity and learning rules),
both during training and testing.

The main corollary of our theorem is that during testing, PCGs are also a superset of FNNs, by virtue
of theorem 1. As a consequence, PCGs are also universal function approximators when a hierarchical
structure (15) is chosen. Whether PCGs with additional connections can also approximate any
function is left for future work.

The superset nature of PCGs is illustrated in fig. 2, complementing fig. 4 in [16]. A partitioned weight
matrix is shown, where block matrices are color-mapped to visualizations of connections allowed
by PCGs: forward (skip) connections like FNNs, and additionally backward (skip) connections and
lateral connections.

3 Discussion

We have proven how PCGs form a mathematical superset of FNNs. By virtue of using IL, a more
biologically plausible alternative to BP [4, 21], they generalize FNNs to arbitrary graphs. This
clarifies the relation between traditional neural networks and PCNs, the latter not being widely known
in the broader ML community (as also recently argued by [23]).
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Figure 2: A PCG weight matrix partitioned into block matrices (N = 10 nodes, partitioned by
4 layers with 2, 3, 3, and 2 nodes/layer, respectively). In traditional ANNs trained with BP, only
feedforward connections (blue and red blocks) are trainable, whereas the full matrix is trainable with
IL. This figure extends fig. 4 in [16].

In the process, we showed that PCNs are equivalent to FNNs during testing – a subtle change from
earlier work showing that PCNs converge to FNNs. As such, this provides a rigorous argument for
why the universal approximation theorem is applicable to PCNs, a statement which does not appear
yet in the PC literature to the author’s knowledge.

PCGs allow a large new set of structures untrainable by BP, as was already argued by [16]. Our results
rigorously show how these models includes FNNs as a special case. Moreover, fig. 2 clarifies how
skip connections can be seen as a part of the PCG weight matrix w̃ (extending fig. 4 in [16]). Such
connections are the main innovation in ResNets [5], and are well-known provide great benefits for
many ML tasks compared to standard MLPs [25, 9]. Understanding these as a part of w̃, then, begs the
question of whether the remainder of w̃ – that is, backward (skip) connections, lateral connections and
self-connections – does, by analogy, also bring benefits. Future work should investigate this. So far,
only all-to-all connected PCGs (the full matrix except self-connections) have been studied empirically
[16]: these appear not to perform as well as hierarchical PCNs/FNNs, but they do outperform other
all-to-all connected networks for classification on MNIST by a large margin (12-35% better than
Boltzmann machines and Hopfield networks for three datasets), which is encouraging.

A practical limitation of current PCG implementations is that using non-feedforward connections
comes at a computational cost, because gradient-based inference of nodes is relatively expensive.
In FNNs, the time complexity of testing one batch is O(LM), where M = max({nℓnℓ+1}ℓ) is the
number of weights in the largest block matrix in w̃ [23]. In contrast, in PCGs this is O(N2T ) where
T is the number of inference steps. If sparsity of the PCG weight matrix is leveraged, this reduces
to O(dNT ) where d is the number of nonzero weights. For an FNN with a comparable number
of weights, one has d ≈ LM . I.e., testing one batch is a factor NT slower in a PCG. This is not
necessarily undesirable, however, since increased testing time could potentially be compensated by
other favorable properties of the training algorithm and topology used. For further discussion of
practical issues in PCNs and PCGs, we refer to [23].

As also mentioned in [23], we emphasize that the non-feedforward connections in w̃ introduce a
notion of recurrence distinct from that in recurrent neural networks (RNNs), cf. fig. 2. RNNs, made
specifically to handle sequential data, have recurrence with respect to ‘data time’, characterized by
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weight sharing. In PCGs, by contrast, recurrence is in ‘inference time’, like in Hopfield networks [7].
This distinction was not yet highlighted in [16].

Finally, our work underscores the value of theoretical work and rigorous mathematical arguments
for studying PCNs, which is still limited in the literature – a point also recently made by [3, 23]. By
providing theoretical justification, such work can usefully guide and constrain future experimental
studies of PCNs.
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A Proofs

This appendix provides proofs for the two theorems in the main text.

A.1 PCNs are FNNs during testing

This section proves theorem 1.

Proof. We have to prove (5), which we do using backwards induction. The induction hypothesis is,
for some k < L:

∀i : aki = f
(∑

j

wk−1
ij ak−1

j

)
⇐⇒ ϵki = 0 . (16)

The base case is ℓ = L, by (7):

∀i : ϵLi = 0 ⇐⇒ aLi = f
(∑

j

wL−1
ij aL−1

j

)
. (17)

Then, by (6), for ℓ = k:

∀i : ϵk−1
i −

nk−1∑
j=1

wk−1
ji ϵkj f

′
(∑

m

wk−1
jm ak−1

m

)
= 0 (18)

Then, by the induction hypothesis (16) ϵkj = 0, so:

∀i : ϵk−1
i = 0. (19)

So, by induction the hypothesis (16) is proven for all ℓ ≤ L. ■
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Figure 3: Mapping between PCN indices (blue nodes) and PCG indices (below nodes). Note that
layers may have different widths nℓ. i denotes PCN index within a layer, and Iℓ is defined by (22).
One weight is shown in orange using PCN indices (top) and PCG indices (bottom), cf. (26).

A.2 PCNs are subsets of PCGs

This section proves theorem 2.

Proof. The PCN energy is:

EN =

L∑
ℓ=0

nℓ∑
i=1

[
aℓi − f

( nℓ−1∑
j=1

wℓ−1
ij aℓ−1

j

)]2
, (20)

where wℓ ∈ Rnℓ×nℓ+1 are matrices, and a0 = x, aL = y. It is useful to define the sum of node
indices up to layer ℓ as sℓ =

∑ℓ
k=0 nk where we additionally define s−1 = 0. Then, partition the

PCG node indices i as follows (cf. fig. 3):

I = {1, . . . , n0︸ ︷︷ ︸
I0

, n0 + 1, . . . , n0 + n1︸ ︷︷ ︸
I1

, . . . , sL−1 + 1, . . . , sL︸ ︷︷ ︸
IL

}.
(21)

We defined Iℓ as the node indices in layer ℓ, i.e.:

Iℓ = {sℓ−1 + 1, sℓ−1 + 2, . . . , sℓ} . (22)

Thus we have, if α ∈ Iℓ, the corresponding PCN index i(ℓ) = α − sℓ, meaning we can map PCG
nodes to PCN nodes as follows:

ãα = aℓi , (23)

such that sums over these nodes may be written as∑
α∈Iℓ

=

nℓ∑
i=1

. (24)

The partition (21) also allows us to partition the weight matrix into block matrices. Defining
w̃ℓk ∈ Rnℓ×nk the full weight matrix becomes:

w̃ =


w̃00 w̃01 . . . w̃0L

w̃10 w̃11
...

...
. . .

w̃L0 . . . w̃LL

 . (25)
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Each matrix w̃ℓk contains weights from layer ℓ to layer k, cf. fig. 2. To obtain a hierarchical structure,
one sets w̃ℓk = w̃ℓkδkℓ−1 ≡ wℓ−1, where δij is the Kronecker delta, and we have found a mapping
with the PCN weight matrix wℓ. Equivalently, this can be stated as follows: if α ∈ Iℓ, then

w̃αβ =

{
wℓ

ij if β ∈ Iℓ−1

0 else
(26)

where i = α− sℓ, j = β − sℓ (cf. fig. 3). This results in:

w̃ =


0 0 . . . 0

w̃10
...

w̃21

...
. . .

0 . . . w̃LL−1 0

 =


0 0 . . . 0

w0
...

w1

...
. . .

0 . . . wL−1 0

 (27)

Now, the PCG energy is:

EG =

N∑
α=1

[
ãα − f

( N∑
β=1

w̃αβ ãβ

)]2
(28)

We decompose the outer and inner sum according to (21), which we can write using (22):

N∑
α=1

=
∑
α∈I0

+
∑
α∈I1

+ · · ·+
∑
α∈IL

which yields

EG =
∑
α∈I0

[
ãα − f

( ∑
β∈I0

w̃αβ ãβ +
∑
β∈I1

w̃αβ ãβ + · · ·+
∑
β∈IL

w̃αβ ãj

)]2
+

∑
α∈I1

[
ãα − f

( ∑
β∈I0

w̃αβ ãβ +
∑
β∈I1

w̃αβ ãβ + · · ·+
∑
β∈IL

w̃αβ ãβ

)]2
...

+
∑
α∈IL

[
ãα − f

( ∑
β∈I0

w̃αβ ãβ +
∑
β∈I1

w̃αβ ãβ + · · ·+
∑
β∈IL

w̃αβ ãβ

)]2
,

(29)

which we have written out to illustrate the decomposition into the block matrices in (25). If we then
use the mappings (23), (24), and (26), this yields:

EG =

n0∑
i=1

[
a0i − f(0)

]2
+

n1∑
i=1

[
a1i − f

( n0∑
j=1

w0
ija

0
j

)]2
+ · · ·+

nL∑
i=1

[
aLi − f

( nL−1∑
j=1

wL−1
ij aL−1

j

)]2
=

n0∑
i=1

[
a0i − f(0)

]2
+

L∑
ℓ=1

nℓ∑
i=1

[
aℓi − f

( nℓ−1∑
j=1

wℓ−1
ij aℓ−1

j

)]2
= EN + C

(30)

Observe that during both training and testing, the lowest layer is clamped to the data, i.e. one always
has ∀i, a0i = x0. Hence, the extra term C =

∑
i[a

0
i − f(0)]2 in EG can be considered constant with

respect to both the activity and learning rules, since one has (using the mappings (23), (24), and (26)):

0 < ℓ < L, argminaℓ
i
EN = argminaα

EG

0 ≤ ℓ < L, argminwℓ
ij
EN = argminwαβ

EG.
(31)
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during training, and similarly during testing:
0 < ℓ ≤ L, argminaℓ

i
EN = argminaα

EG. (32)

In sum, both during training and testing, the dynamics of a PCG with weight matrix (27), is exactly
equal to the dynamics of the PCN, with equal energies up to a constant. 3 As a consequence, since
other choices of weight matrix leads to other architectures (e.g. all-to-all connectivity) [16], PCGs
define a superset of PCNs.4 ■

B Update Rules

Here we derive the gradient-based updates for the activity rule and the learning rule. To clarify the
relation to other works, we do this for the two main conventions found in the literature:

• ‘Matrix-Activation’, i.e. µi = f
(∑

j wijaj

)
. This is the convention most often considered

for FNNs, used in the main text.
• ‘Activation-Matrix’, i.e. µi =

∑
j wijf (aj). This is often considered in the PC literature,

e.g. [20, 16].

We note that for the latter convention, the proofs above remains the same, with one slight exception
in the second proof. In the final step, the constant term in EG becomes C =

∑
i(a

0
i )

2, since the
non-linearities f are multiplied by zero.

B.1 PCN, matrix-activation

Activations (eq. 6):
∂E

∂aℓi
=

1

2

∑
k,j

2ϵkj

[
δkℓδji − f ′

(∑
m

wk−1
jm ak−1

m

)∑
m

wk−1
jm δk−1ℓδmi

]
= ϵℓi −

∑
j

ϵℓ+1
j f ′

(∑
m

wℓ
jmaℓm

)
wℓ

ji

where δij is the Kronecker delta. For the weights:

∂E

∂wℓ
ab

= −1

2

∑
k,i

2ϵki f
′
(∑

j

wk−1
ij ak−1

j

)′ ∑
j

xk−1
j δiaδjbδ

k−1ℓ

= −ϵℓ+1
a f ′

(∑
j

wℓ
aja

ℓ
j

)
aℓb.

B.2 PCN, activation-matrix

For completeness, we show the same derivation for the alternative convention.
∂E

∂aℓi
=

1

2

∑
k,j

2ϵkj

[
δkℓδji −

∑
m

wk−1
jm f ′(ak−1

m )δk−1ℓδmi

]
= ϵℓi − f ′(aℓi)

∑
j

ϵℓ+1
j wℓ

ji

And for the weights:
∂E

∂wℓ
ab

= −1

2

∑
k,i

2ϵki
∑
j

δiaδjbδ
k−1ℓf(ak−1

j )

= −ϵℓ+1
a f(aℓb).

3The mapping in the last layer may be checked by observing that since nL = ny by assumption, one has
yi = aL

i = aα where 1 ≤ i < ny and N − ny < α ≤ N ⇐⇒
∑L−1

k=0 nk < α ≤
∑L

k=0 nk ⇐⇒ α ∈ IL.
4As a practical note, we mention that in implementations weight updates are typically calculated for all i, j

automatically using matrix multiplication. This means one should ensure weights are appropriately set to zero
according to (27) to keep the desired structure.
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C Initialization

We mention one final point relevant to using PCGs in practice. As mentioned, PCNs perform
iterative gradient-based minimization of EN with respect to ‘hidden’ (non-clamped) activations
in layers 0 < ℓ < L during training. Unlike in FNNs, the result of inference (and hence, model
performance) depends on initialization of these nodes. Typically in the PC literature, this is done
using a ‘feedforward pass’ through the network, which typically appears to give better performance
than random or zero initialization [11]. Writing activations at inference iteration t as aℓi = aℓi(t), the
feedforward initialization is defined by:

ℓ = 0, ∀i : a0i (0) = xi

ℓ = L, ∀i : aLi (0) = yi

0 < ℓ < L, ∀i : aℓi(0) = µℓ
i = f

( nℓ−1∑
j=1

wℓ−1
ij aℓ−1

i (0)
)

For our work, this is relevant insofar as the scheme crucially depends on having a feedforward
structure: for a PCG with both forward and non-forward connections, an analogous scheme is not
obvious. This means that if one desires to get the results quoted in the literature for PCNs but using a
PCG, this scheme has to be separately implemented (cf. e.g. the library implemented in [23]).
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