Overcoming Fairness Trade-offs via Pre-processing: A Causal Perspective

CHARLOTTE LEININGER, LMU Munich, Germany
SIMON RITTEL, LMU Munich, Germany and Munich Center for Machine Learning (MCML), Germany
LUDWIG BOTHMANN, LMU Munich, Germany and Munich Center for Machine Learning (MCML),

Germany

Training machine learning models for fair decisions faces two key challenges: The fairness-accuracy trade-off results from
enforcing fairness which weakens its predictive performance in contrast to an unconstrained model. The incompatibility of
different fairness metrics poses another trade-off — also known as the impossibility theorem. Recent work identifies the bias
within the observed data as a possible root cause and shows that fairness and predictive performance are in accord when
predictive performance is measured on unbiased data. We offer a causal explanation for these findings using the framework of
the FiND (fictitious and normatively desired) world, a “fair”” world, where protected attributes have no causal effects on the
target variable. Our contribution is twofold: First, we unify insights from previously separate lines of research and establish a
new theoretical link that demonstrates how both the fairness-accuracy and the trade-off between conflicting fairness metrics are
naturally resolved in this FIND world. Second, we propose appFiND, a new method for evaluating the quality of the FiND
world approximation via pre-processing in real-world scenarios where the true FiND world is not observable. In simulations
and empirical studies, we demonstrate that these pre-processing methods are successful in approximating the FiND world
and resolving both trade-offs. Our results provide actionable solutions for practitioners to achieve fairness and high predictive
performance simultaneously.
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1 Introduction

The use of automated decision-making (ADM) systems has become popular in a variety of fields that were
previously solely controlled by humans, including sensitive areas such as loan applications [38], hiring choices [26],
and the criminal justice system [2]. Such systems have been shown to suffer from bias with respect to certain
protected attributes (PAs) — such as gender or race — which is in conflict with a variety of anti-discrimination laws,
such as the US Civil Rights Act of 1964 or the Charter of Fundamental Rights of the European Union. In response,
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this concern has led to a growing body of literature on fairness-aware machine learning (fairML), proposing various
methods to measure and achieve fairness for ADM systems based on machine learning (ML) models.

This was followed by the observation that fulfilling a fairness notion comes with a decrease in accuracy — the
fairness-accuracy trade-off (see, e.g., [16, 18, 32]). Concurrently, with the multitude of suggested fairness metrics
came the realization that some of them cannot be met at the same time. There appears to be a trade-off between
several fairness metrics, that cannot be satisfied simultaneously unless in some special cases — also referred to as the
impossibility theorem [15, 36]. Newer studies have questioned these seemingly inevitable trade-offs, particularly
in relation to the potential bias present in the data [7, 24, 60]. When fairness and accuracy are measured on such
biased data, the results must be assumed to be similarly exposed to bias. This raises the need to eliminate bias from
the data and evaluate these metrics on unbiased data instead. In doing so, it suggests that fairness and accuracy
can enhance each other rather than conflict. Similarly, by obtaining unbiased data that represents a “fair world”,
measuring fairness with respect to different fairness metrics should yield consistent rather than conflicting results.

1.1 Our Contributions

In this paper, we adopt a causal perspective to form a new theoretical link between previous findings in fairML
to show how both the fairness-accuracy trade-off and the trade-off between conflicting fairness metrics can be
overcome. Therefore, we investigate the trade-offs in a causal framework of a “fair world” and utilize the FiND
(fictitious and normatively desired) world proposed by Bothmann et al. [9]. They provide a philosophically sound
definition of a fair world, where the PAs have no causal effect on the target, neither directly nor indirectly.

First, we examine the theoretical implications of this FIND world and demonstrate the theoretical resolution
of the trade-offs: We show that and explain why the FiND world ensures fairness at both the individual and the
group level, overcoming the trade-off between incompatible fairness metrics. At the same time, this allows us to
overcome the fairness-accuracy trade-off by explaining how enforcing a fairness metric on a model trained in the
real world leads to improved predictive performance in the FiND world.

Second, we examine the practical implications of this newly formed connection between the trade-offs. Since
we do not have access to the FiND world in real life, we need to approximate it. For this, we compare two causal
pre-processing approaches: fairadapt [51] and residual-based warping [8]. We demonstrate the effectiveness of the
pre-processing methods in a simulation study by evaluating these approximations against the true FiND world,
hence resolving the trade-offs practically via pre-processing. Additionally, we propose a new evaluation method
“appFiND” to assess whether the pre-processing approximates the FIND world in real-world use cases (where we
do not know the FIND world). Therefore, we utilize an in-processing method that evaluates a model’s performance
for increasing strengths of a fairness constraint. We observe that for FIND world data as well as for pre-processed
data fairness is satisfied without sacrificing predictive performance, confirming that the pre-processing effectively
eliminated bias. Concurrently, we show how all fairness metrics that are subject to the trade-off between competing
fairness notions are simultaneously satisfied when using pre-processing methods that approximate the FiND world.
We therefore present actionable methods for how both the fairness-accuracy trade-off and the trade-off between
various fairness metrics can be overcome in practice.

Lastly, we validate our findings from the simulated setup on a real-world dataset, using data from the Home
Mortgage Disclosure Act (HMDA) dataset. Our results confirm that the causal pre-processing methods are equally
capable of successfully aligning fairness and performance on real datasets while satisfying multiple fairness metrics.
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1.2 Related Work

While the widespread assumption that there is a trade-off between fairness and accuracy has already been explored
from various angles [16, 18, 32, 49, 66], a growing number of fairML approaches are challenging this trade-
off [5, 21, 44, 52, 55]. In particular, recent works suggest bias as a possible cause of this apparent conflict [7, 24, 27,
28, 31, 46, 54]. For instance, enforcing fairness constraints has been shown to enhance accuracy when evaluated on
unbiased data [7, 54]. Besides, Menon and Williamson [46] frame the trade-off in terms of the dependence between
the PA and the target label, showing that one can only achieve maximum accuracy and fairness simultaneously in
the case of perfect independence. As we determine in the causal framework in Section 2.2.1, the assumption of
(conditional) independence between PA and outcome aligns with the assumptions of the FIND world.

Closely related to our approach is the work by Wick et al. [60] who tackle the fairness-accuracy trade-off
from a non-causal viewpoint. They conclude that the trade-off itself is a false notion if accuracy is measured on
test data that is equally biased as the training data. Therefore, one must assume that the corresponding accuracy
measurements are also biased and it is crucial to evaluate accuracy on the unbiased — fair — labels. By simulating
fair labels on the test set, they show that fairness and accuracy are positively related. We build on these findings
by integrating the generation of fair labels into the causal FiND world framework. This allows us to provide a
theoretical explanation for the trade-off from a causal perspective and, additionally, to offer a practical solution for
overcoming the trade-off by pre-processing that approximates the FIND world. Therefore, we are able to address
the trade-off in both simulated and real-world settings.

Regarding the impossibility theorem, Bell et al. [4] examine the two exceptions of the impossibility theorem
where fairness metrics can be satisfied simultaneously: the case of equal group base rates and the case of perfect
prediction. They conceive “fairness regions” in which they quantify the possible options of aligning the fairness
metrics subject to the trade-off when one of these special cases is approximately satisfied. We also investigate the
special case of equal group base rates and derive that it is, by design, fulfilled in the FIND world.

2 Theoretical Framework
2.1 Conception of FiIND World

Fairness in ML has often been approached by employing quantitative group fairness metrics. However, the use
of such “classical” metrics has been criticized, as their blind application — without considering the underlying
structure of the data or potential biases — can be blatantly unfair [17, 25, 47]. Bothmann et al. [9] therefore derive a
philosophically grounded definition of what a normatively fair treatment is and support this by taking into account
causal considerations.

In fact, even from a philosophical perspective, there appears to be no single answer to “what fairness is”. Instead,
they show that the conception of fairness always depends on multilayered normative evaluations that depend on
the context or task at hand: Building on Aristotle, a treatment is considered fair if equals are treated equally and
unequals unequally. They define the concept of “task-specific equality” and thereby require normative stipulations
to define when individuals are considered to be equal in a certain task. When considering causal relationships in the
real world, a PA can have a causal effect on the target. This may be due to a variety of reasons, including biases
introduced during the data collection process or historical biases, stemming from historic discrimination against
the protected group. They argue that taking such causal relationships into account in a prediction process thus can
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e.g. Fairadapt [51], Warping [9]
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(a) Factual real world (b) Counterfactual FIND world

Fig. 1. Assumed causal DAGs of the (a) real world and (b) FIND world for the credit application example introduced in
Section 2.1.1, with shaded nodes being observed, i.e., accessible for model training. In the FiND world, the PA A has no children,
its descendants according to the causal graph from the real world lack a causal bias from A. To distinguish these counterfactual
features from their real equivalents, we denote them with an asterisk. For further details, we refer to Section 4.1.

represent a normatively unfair treatment. The reasoning behind this is that societal norms as well as several legal
requirements demand not to differentiate between individuals based on their PAs. This implies that individuals are
to be considered equal if they only differ in their association with a protected group. In order for a treatment to be
normatively fair, one must therefore move the decision-making process to a world without causal effects from the
PA on the target.

2.1.1 The FiND World

In the “fictitious, normatively desired” (FIND) world introduced by Bothmann et al. [9], the PAs have no causal
effect on the target, neither directly nor indirectly.! They distinguish this counterfactual FIND world from the real
world, in which direct and indirect causal effects from the PAs on the target may exist.

Assuming acyclic causal relations and causal sufficiency, the model of the FIND world and real world can be
represented using a Bayesian network where nodes represent random variables. A directed edge denotes a causal
effect, while a directed path with more than two variables implies an indirect one. Throughout the paper we will use
the example of a credit application with binary PA A, target Y (risk of credit non-repayment), features X4 (credit
amount), Xp (debt) and a confounder X (age). The corresponding directed acyclic graphs (DAGs) for the real and
FiND world are illustrated in Figure 1. Any PA is assumed to be a root node and is shared between both worlds, i.e.,
remains unchanged. By contrast, the missing effect of PAs on features yields a counterfactual FiND representation
which we denote by X* to distinguish them from X that are observed in the real world.

For any a,d’ of the set of possible group memberships <7, the setting of the FIND world ensures that there is
no difference in distributions of outcomes Y* regarding the protected group a and unprotected group a’. Further,
individuals of a and a’ receive equal outcome Y* if they are equal with respect to their counterfactual features X*
and factual feature(s) Xc. In this manner, the FIND world represents a conceptual framework that ensures fairness
both on the group level and on the individual level (further explanation follows in Section 2.2).

I'They also provide an adjusted version for the case that certain path-specific effects are normatively deemed admissible, c.f. their Def. 3.7. For
the ease of presentation, we work with the stricter definition of no causal effects in the remainder — while extensions are straightforward and

only depend on the availability of suitable pre-processing methods.
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2.1.2  FiND World vs. “We’re All Equal” Worldview

While differing in their philosophical derivation of a fair world, the “We’re All Equal” (WAE) worldview by Friedler
et al. [29, 30] shares theoretical implications with the FIND world, but from a non-causal approach. The WAE
worldview reflects the assumption that in a construct space — an idealized, unobservable space holding unbiased
information of individuals — all groups are essentially the same. However, biases arise when mapping from the
construct space to the observed space, resulting in discriminatory representations that get transported into the
decision space. In order to be fair, the decision-making process must therefore be shifted to the construct space.
Therefore, WAE demands the target ¥ to be independent of the PA A:

Y 1L A. (1

The FiND world can be transferred to the WAE worldview to the extent that if there exists no (direct nor indirect)
causal effect from A on Y, Y is also statistically independent of A. Therefore, (1) is fulfilled in the FiND world.

2.1.3 FiND World vs. Counterfactual Fairness

Counterfactual fairness [39] is a causal fairness notion that compares factual and counterfactual predictions. In the
counterfactual world, an individual with a PA A = a belongs counterfactually to the group A = a’. A predictor ¥,
defined with latent exogenous variables U and observable features X, is considered counterfactually fair iff, for all
x€RPanda,d € &

P(?Aea(U) =Yy | X=x,A :a) :P(?Aea/(U) =y | X=x,A :a)' )

This ensures that the predicted outcome ¥ remains unchanged when the individual’s PA A is counterfactually
altered. This condition is fulfilled in the FIND world.? In addition, counterfactual fairness does not necessarily
fulfill fairness on the group level [56], which is a key difference to the FIND world (see Section 2.2.1).

2.1.4 FiND World vs. Individual Fairness

Individual fairness, as proposed by Dwork et al. [25], postulates that similar individuals should be treated similarly.
This is formalized using task-specific similarity metrics that ensure that the outcomes for two individuals of different
protected groups are similar if their features are similar. However, they acknowledge the difficulty of specifying
these metrics and propose to base their choice on the context of the task and feature space. The FIND world ties in
with this by normatively redefining the“task-specific equality” on the basis of social and legal requirements. This
involves a transformation procedure from the observed real world — where dissimilarities based on PAs may exist
but are deemed unjust — to a FIND world — where these dissimilarities are removed. This means individuals are
treated equally if they are equal in the FiND world (and if the predictor is individually well-calibrated, see [9], Def.
3.8) and thereby, individual level fairness is fulfilled. Note that this is generally different from the approach of
Dwork et al. [25], where similarity is evaluated in the real world.

2.2 Relation to Fairness Trade-offs

We can derive relations between the FiND world and the resolution of several fairness trade-offs. A key factor
responsible for this lies in the fact that the FIND world also inherently fulfills several group fairness notions.

2See [9], Section 3.4, for a more detailed comparison of the two concepts.
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2.2.1 Relation to Group Fairness

The assumption of Y | A in the FIND world has important implications for the fulfillment of several group metrics,
as also highlighted by Loftus et al. [43]. They make a similar connection between group fairness and counterfactual
fairness for cases where there are no causal paths between Y and A. This exactly is characterized in the FIND world.

Demographic Parity. Perhaps the most common group metric is demographic parity, defined as follows:
P{ =y|A=a)=PF =y|A=d), 3)
forally € {0,1}, a,d’ € «/. An alternative way of framing this condition is by the assumption of Independence [3],
Y LA “4)

Since A is assumed to be a root node and no back door paths can exist, any statistical dependence between A and ¥
is either due to a causal effect from A on Y or introduced by a common child X. From A 1L X*,Y* in the FIND
world immediately follows that a predictor ¥* trained on its representation, i.e., ¥* = f (X*) satisfies demographic
parity.

Equalized Odds. Similar connections apply to equalized odds, which requires that both groups have equal error
rates. Therefore, it includes both the conditions of false positive error rate balance and false negative error rate
balance. Formally, equalized odds is defined as:

PY=y|A=aY=y)=P¥ =y|A=d,Y =y), ©)

for ally € {0,1}, a,d’ € /. This condition ensures that the predictor ¥ is conditionally independent of A given the
true outcome Y, which also falls under the term Separation [3] and can be written as:

Y 1LA|Y. (6)

The independence of the target Y* (1) and the predictor ¥* (4) w.r.t. the PA A in the FIND world directly imply that
the predictor satisfies (6) by the compositional and weak union axioms of the compositional graphoid induced by
the causal DAG [41].

Predictive Parity. In the same way, relations can be drawn to Predictive Parity3, which ensures that for a predicted
outcome ¥ individuals in both protected and unprotected group have equal probability to truly belong to class Y.
Formally, this requires:

P(Y=y|V=yA=a)=P(Y =y|V=yA=d), @)
forally € {0,1}, a,a’ € /. This condition is also known as Sufficiency [3] and implies that the true outcome Y is
independent of A when conditioned on the predicted outcome ¥, expressed as:

Y1LA|Y. (®)

Following the same reasoning as for equalized odds, (8) is a direct consequence of Y* LI A, leading to predictive
parity being inherently satisfied in the FIND world.

3For hard-label predictors, this condition is referred to as predictive parity, as it ensures equal positive predictive values (PPV) for a and «’. For
predicted scores S, this condition is commonly termed calibration, demanding that for each score s the probability of belonging to the positive
class is equal for both a and
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2.2.2 Resolving the Trade-off Between Group Fairness Metrics

Parts of the fairML literature surround the problem that several group fairness metrics are mathematically incom-
patible with each other. This is known as the impossibility theorem [15, 36], which states that false positive rate
balance, false negative rate balance, and predictive parity cannot be satisfied simultaneously unless for two special
cases: one must either have equal group base rates (also falls under the term prevalence) for the protected and
unprotected group or perfect prediction.

However, as we have just derived, these metrics are all inherently fulfilled in the FiND word. In fact, the FiND
world represents one of the special cases of the impossibility theorem, namely equal base rates among groups [22].
This is due to the independence assumption of ¥ LI A of the FIND world, which implies that individuals from
protected and unprotected groups have the same probability of belonging to the positive class:

PY=1A=a)=PY =1A=d)=PY =1). 9)

This assumption can be normatively justified if we presume that different group base rates in the real world are
entirely attributable to historical discrimination and biases stemming from the data collection process. Therefore,
the FIND world is able to overcome the trade-off between competing fairness metrics naturally by design.

2.2.3 Resolving the Conflict Between Group Fairness and Individual Fairness

Additionally, as the FIND world approaches fairness on the individual level, it also overcomes a conflict between
group fairness and individual fairness notions. A similar observation is made by Binns [6], who argue that the
conflict between individual and group fairness depends on the worldview and the underlying normative principles a
decision-maker considers. By, e.g., adopting a WAE worldview, both individual and group approaches are driven
by the same moral assumptions that groups should be treated equally based on their PAs. The same considerations
apply to the FIND world, as observed group differences are assumed to be due to biases in the real world and
should therefore not be taken into account.

Coming back to the financial lending example, the existence of discrimination based on race and gender has
repeatedly been observed in various US mortgage markets [42]. From a policy perspective, to base the approval of
a loan on such historical disparities would constitute an unjust practice and is legally restricted under, e.g., the Fair
Housing Act and the Home Mortgage Disclosure Act (HMDA). This raises the need for decision-makers (in this
scenario, banks) to proactively implement substantive equality as described by Wachter et al. [59]. They argue that
in order to achieve fair treatment, one has to account for historical inequalities by actively re-leveling discriminated
individuals via bias-transforming actions (which can also be understood as some type of affirmative action). This
can be connected to the transformation from the real world to FiND world.

2.2.4 Resolving the Fairness-Accuracy Trade-off

As we move the prediction process into the FIND world, we are also able to overcome the fairness-accuracy
trade-off. Since all the investigated fairness notions are inherently embedded within the FIND world, enforcing a
fairness metric no longer leads to a decrease in predictive performance; instead, fairness and predictive performance
become aligned. Furthermore, this alignment enables us to reframe the quest for fair models: We can focus on high
predictive performance using the data representation of the FIND world for which fairness naturally holds.
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The FiND world thus resolves both fairness trade-offs by providing a unified causal framework. Moreover,
our findings have significant practical implications: if we can approximate the FIND world through suitable pre-
processing methods, it becomes possible to overcome these trade-offs in real-world applications. Successfully doing
so would eliminate the need to explicitly enforce specific fairness metrics, allowing high predictive performance to
naturally serve as the primary notion of fairness.

3 Approximating the FiND World
3.1 Pre-processing

Since we do not have access to data from the FIND world in practice, we need to project the real-world data into the
FiND world as a preliminary step. This can be understood as some type of fair representation learning [65]. Various
methods have been proposed to learn fair representations of the data (e.g., [11, 40, 53, 61, 65]). However, most of
them present non-causal techniques and do not apply to the specific assumptions of the FiIND world. Against this
background, we consider two causal pre-processing techniques to approximate the FIND world.

With fairadapt, Plecko et al. [50] present a pre-processing method using a causal approach. Their method is
based on quantile preservation and uses quantile regression forests [45]. They aim to approximate a counterfactual
world by constructing “fair twins”. Their method constructs these fair twins by transforming the observational
distribution for each individual to a fair-projection distribution. In doing so, they demand all individuals to have the
same PA after the fair twin projection, thereby setting the protected group to its baseline value. Note that this differs
slightly from the warping method (see below), which does not intervene on the PA but only on its descendants.
However, this distinction is not a problem here, as the protected attribute from the real world can replace the
baseline value in the joint distribution after the projection of the features X to meet the definition of the FiND
world. We use their R package fairadapt® to adapt the train and the test dataset, and in the following refer to this
as the “adapted world” data.

Bothmann et al. [8] propose another causal approach by introducing a residual-based warping method to
approximate the FiND world. Their method consists of intervening on the paths from the PA to its descendants by
transforming the observations for the protected group to the corresponding quantile of the unprotected group’s
distribution. They reduce the problem of estimating full distributions to estimating models for the location
parameters of their distributions. Therefore, they derive individual probability ranks by using a residual-based
approach. The method thereby derives “rank-preserving interventional distributions” (RPID), i.e., individuals of
the protected group maintain the group-specific pre-intervention ranks for each warped variable. By symmetry,
reversing the warping direction from the unprotected to the protected group is also feasible, as it produces the same
result of eliminating the effect of the PA. We use R functions from their GitHubrepository® for warping training
and test data, which will be referred to as the “warped world” data.

3.2 In-processing

We propose appFiND, a new evaluation method consisting of in-processing to assess whether the pre-processing
successfully approximates the FiND world. In-processing methods generally work by enforcing a desired fairness

“https://cran.r-project.org/web/packages/fairadapt/index.html
Shttps://github.com/slds-lmu/paper_2024_rpid
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constraint during model training, see, e.g., [12, 19, 20, 23, 63, 64]. In particular, we are interested in whether for a

model trained on i.i.d data from the real world, Disin = {(X;, y,)} and evaluated on pre-processed data, the

i=1>
performance improves when enforcing a fairness constraint. For this purpose, we consider the following constraint

optimization problem, which we implement by adding a fairness regularization term to the empirical risk:

Regularized Empirical Risk. For individuals i € {1,2,...,N} in Deg, their corresponding targets y; € {0,1} and
features x; € RY, we obtain the regularized empirical risk

N
reg f7 @tram Z yn "FA' C(ﬂ:lram) (10)

where L(yi, f (xi)) denotes the Bernoulli loss W1th predicted log-odds f(x;), and ., the vector of predicted
probabilities for all data samples X; € Zain = {x,} Y, with
1
R (11)

ﬁ[ = G(f(x») = m

The regularization term C(7) represents the fairness constraint controlled by the penalty parameter A. We refer to
C(7) as a regularization term, yet its purpose is not to reduce model complexity or improve generalization, but to
favor models that lead to fairer predictions.

Fairness constraint C. We penalize the difference in the average predicted probabilities between the protected
group memberships a and &’ with

cry=|L ¥ -y 4 (12)

Na irAj=a Ny JiAj=d
where N, and N, denote the total number of individuals per group. This can be seen as a form of demographic
parity constraint [1, 37] that is a necessary condition of the FIND world as we proved in Section 2.2.1.

Gradient Boosted Trees. To learn our model, we use gradient boosted trees in the R implementation of
xgboost [13]. We split our data randomly into 80% training data Py, and 20% test data Dregt = {(x;, y,-)}?i N1
and determine optimal hyperparameters d (depth of the trees) and 1 (learning rate) via random search with 3-fold
cross-validation on Zyain.

3.3 Fairness-Accuracy Trade-off Evaluation

To assess whether the pre-processing is able to resolve the fairness-accuracy trade-off, appFiND investigates
whether the performance of a model evaluated on pre-processed data improves as the fairness constraint C, used for
training on real-world data, increases. As a preliminary step, we find the smallest penalty parameter A* for which
C ( f (x)) < ¢ is fulfilled via grid search (trained on P, With the above optimal hyperparameters and evaluated on
hest) - Since € = 0 is unfeasible for probabilistic classifiers (for non-trivial cases such as # = 1.0 or £ = 0.0), we
set € = 0.01, thereby allowing fairness differences of up to 1%?°.

The choice of € = 0.01 is in some sense arbitrary and can be adapted based on the application context. While it allows fairness differences of

up to 1%, this threshold may lead to more substantial disparities when base rates are low. Alternatively, one could consider making € relative to
the base rate to better account for context-specific disparities.
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Algorithm 1 Fairness-Accuracy Trade-off Evaluation

Input Training dataset Piin, test dataset e, learning rate 1, tree depth d, optimal A*, interpolation steps S
p g g n P P p P

Output AUC values p, empirical group disparities 5
forn<0,1,...,5+1do
W s .
f « argmin Z L(yi, f(xi)) + w+A"-C(fiain) > Train model f with parameters 1, d with C from (12)
fe'%ﬂ xiegtrain
for x; € Ziest do

i+ o (f(x)) > Predict probabilities for test features Ziest = Ziest \ Zest
end for
Sn — C(Trrest) > Evaluate fairness via group disparity defined in (12)
Pn < auc (ﬁ:test, %est) > Evaluate performance via AUC
end for

We then apply Algorithm 1 that trains and evaluates models for different penalty parameters A = wA*, where w
1
S¥1°
(1 — &)-fulfillment of the fairness constraint C. In our experiments, we set the number of interpolation steps to S =9

ranges from 0.0 to 1.0 in increments of i.e., interpolates between the unconstrained model and the one with an
leading to 11 models in total. To evaluate the relation between fairness and accuracy, we record for each model its
fulfillment of fairness by measuring the difference in predicted group probabilities and evaluate performance using
the area under the ROC curve (AUC). We choose AUC over accuracy as the performance measure, since it allows
for a more nuanced assessment when classes are imbalanced.

4 Resolving the Trade-offs via Pre-Processing

4.1 Testing Approximation to the FiND World

The approximation of the FIND world via pre-processing can be evaluated using appFiND (Algorithm 1), based
on the following rationale: We already derived in Section 2.2.1 that in the FiND world demographic parity (DP)
holds. Thus, enforcing the fairness constraint C during model training using real world training data P, should

increase performance on FIND world test data Z;;

hest » as the FIND world accurately reflects the enforced fairness. If

for pre-processed test data we observe this same relationship — namely the same increase in performance — we can
conclude that the pre-processed data was able to learn the representation of the FiND world. In the following, we
investigate whether the fairadapt and warping pre-processing methods are able to approximate the FiND world and
can therefore overcome the fairness-accuracy trade-off and the trade-off between several fairness metrics. To further
validate the successful approximation of the FiIND world by the pre-processing methods, we additionally check
whether the differences in distributions of transformed variables between groups were resolved (see A.2 and B.2).

Simulation Setup. We return to the credit application example introduced in Section 2.1.1. According to the
corresponding DAG depicted in Figure 1, we generate synthetic data for both worlds. We consider the PA to be
binary and equally distributed, i.e., m, = 50% (this can, e.g., mimic gender). The simulated real world model
contains direct causal effects of the PA A on the features X and target Y, while the FiND world model has no
causal path from A to neither X nor Y. For more details on the setup, see Appendix A.l. In total, we conduct 25
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Fig. 2. Fairness-performance curves of predictors trained on real-world data %, for the simulation study in Section 4.2, with
95% confidence intervals. (a) Real world test data does not approximate (b) the FIND world due to inherent bias. By contrast,
(c) the adapted world and (d) warped world data do approximate the FIND world, as increasing fairness leads to increased AUC
(same monotonic relation as for (b) FIND world data).

simulation runs that each produces a dataset for the real and FiND world. We then apply the fairadapt and the
warping pre-processing to all simulated real world datasets. (Code for all experiments will be published upon
acceptance.)

4.2 Resolving the Trade-off between Fairness and Performance

Figure 2 presents the fairness-accuracy trade-offs in the different worlds. Using Algorithm 1, we train models for
increasing weights of fairness on real world Zin, but evaluate them regarding performance (AUC) and fairness on
real world, FiIND world, adapted world, and warped world test data, respectively. We use 1 — C(7tes¢) as a fairness
measure for better interpretability (high value is better). We additionally record the 95% confidence intervals of the
AUC.

For models trained and tested on real world data, we observe the typical trade-off between fairness and

performance (Figure 2a). In Figure 2b, we evaluate the same set of classifiers trained on real world data, but this

*
test*

time measure performance on FiIND world We see the exact opposite pattern: Classifiers with low fairness
violation C(frest) are also more accurate. This also aligns with our theory: When evaluating models that enforce
fair predictions (in terms of DP) on data that corresponds to the FiIND world where fairness is naturally fulfilled, a
model that is “fairer” will also be more accurate.

We observe the same relationship between fairness and performance also for adapted world (Figure 2c) and
warped world (Figure 2d) test data. On both pre-processed test sets, the performance of models increases with
lower fairness violations. We conclude that the pre-processed data are equally capable of reflecting a world that
incorporates fairness in the sense that there are no differences between groups in their outcomes and thus, ¥ L1 A.
Consequently, there can be no direct or indirect causal effects from PA A on Y. Therefore, we conclude that both
pre-processing methods are able to overcome the trade-off between fairness and performance in the simulated

setting and were successful in approximating the FIND world.
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Table 1. Comparison of fairness and performance metrics in real, adapted, and warped world for (a) the simulation study to
evaluate the pre-processing methods (Section 4.1) and (b) the HMDA experiment (Section 5). For (a) the simulation study, we
additionally record the standard deviation (sd) over the iterations in the subscript. For confidence intervals, see Table 2 in A.2.

(a) Simulation Study (b) HMDA Experiment
Fairness Performance Fairness Performance

World World

DPgy FPRyy FNRyy PPV AUCgy DP FPR FNR PPV AUC
Real 0.8250.020 0.782¢.024 0.954( 017 0.986¢.014 0.887¢.007 Real 0.809 0.840 0.823 0.891 0.716
FiND 0.9870_01| 0.9890.01] 0.991()‘()07 0.988()‘0]2 0.8970'006 FiND — —unkown— — —
Adapted 0.9820 912 0.9720.916 0.9840.013 0.975¢.015 0.886¢.008 Adapted 0.989 0.991 0.989 0.990 0.712
Warped 0.982()‘011 0.9640‘015 0~9740.016 09710‘018 0.893()‘013 Warped 0.994 0.988 0.990 0.975 0.713

4.3 Resolving the Trade-off between Fairness Metrics

The results from Section 4.2 offer another important insight. When the pre-processing methods are successful in
approximating the FiND world, we do not have to rely on using the in-processing method anymore to achieve
fairness by enforcing a fairness constraint. Instead, we can directly train models on pre-processed data that reflects
the FiND world in order to achieve fair predictions.

In the following, we train unconstrained models on the adapted world and warped world datasets, evaluating them
in terms of the compatibility of various fairness metrics. We record the fulfillment of fairness regarding demographic
parity (DP), false positive rate balance (FPR), false negative rate balance (FNR) and predictive parity (PPV) between
the protected a and unprotected group a’ (averaged over 25 simulations). Regarding performance, we report the
average AUC. To allow for comparative analyses, we perform the same evaluations on the real world and FiND
world datasets. The results are listed in Table 1a.

In the real world, we observe large fairness differences for DP and FPR up to 22%. In the FIND world, we obtain
much higher fairness values, the empirical differences are less than 1.3%. This matches our theoretical results that
in the FIND world the concerned fairness metrics are inherently satisfied. The same pattern can be validated for the
adapted and warped world, although we observe slightly higher differences than in the FiND world of up to 3.6%.
However, this is still considerably lower than in the real world. We therefore consider both pre-processed worlds to
approximately fulfill all fairness metrics. From this, we conclude that in our simulated setting the fairadapt and
warping pre-processing methods are both able to successfully overcome the trade-off between several fairness
metrics. We also conclude that models of real, FiND, adapt and warped world are all equally well performing
(where FiND, adapted and warped have even slightly better AUCs than the real world model). However, note that
the performance of the real world model is not directly interpretable as it still inherits bias.

5 Real Data Experiments

To further validate our results, we demonstrate that our findings from the simulated setup can be transferred to real
data experiments for which the FiND world model is inaccessible and needs to be approximated. For this purpose,
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Fig. 3. Assumed causal DAGs for the HMDA dataset of (a) the real and (b) the approximated FiND world alongside their
corresponding datasets. The non-shaded nodes in the approximated worlds are transformed since they are descendants of the PA
A in the real world. They are denoted with either a or w to indicate the applied transformation, FairAdapt [51] or Warping [9].

we use the 2022 Home Mortgage Disclosure Act (HMDA) dataset for the state Wisconsin.” This dataset is similar
to our previously considered credit assessment example and contains information on housing loan applications,
including details about the applicants and the corresponding loan decisions.

We consider race as the binary PA A. We filter the data regarding race by only selecting Black (protected group
a) and non-Hispanic White borrowers (unprotected group «’), as previous mortgage studies have highlighted the
most significant disparities in approval rates and treatment between these two groups [42]. This results in a total of
83,808 observations. The original dataset encompasses over 100 variables, for simplicity, we focus on the subset of
the following six: We include loan amount (Xy4), purpose of the loan (Xp), and debt ratio (Xp) as features as well
as age and gender (X¢) jointly as confounders. The target Y indicates whether an applicant was granted a loan
(1) or not (0)®. For more details on the data setup, see Appendix B. Figure 3 shows the assumed DAGs. The final
dataset consists of 94.8% White vs. 5.2% Black applicants and has an overall loan approval base rate of 66.8%.
The group-specific base rate for White applicants is 67.9%, and for Black applicants 48.6%.

5.1 Resolving the Trade-off between Fairness and Performance

As we do not have access to the FIND world in this real data setting, we rely solely on pre-processing to obtain
unbiased data that reflects the FIND world. For this purpose, we apply the fairadapt and the warping pre-processing
methods on the real HMDA train and test data. To check if the pre-processing successfully eliminated all causal
effects from the PA A on Y and is thereby able to approximate the FiND world, we apply appFiND (Algorithm 1).
The results are displayed in Figure 4. Additionally, we compare distributions in Appendix B.2.

For the real world HMDA data in Figure 4a, we again observe the common trade-off between fairness and
performance, where an increase in fairness from 80% (fairness of the unconstraint model) to 100% is accompanied
by a decrease in performance. The absolute decrease in performance is rather small in this case, which is due to the
highly imbalanced classes of the PA where @’ only makes up 5% of the data. In Figure 4b and Figure 4c, we again
see a positive connection between fairness and performance. Models that enforce higher fairness constraints during

"The dataset is accessible at https:/ffiec.cfpb.gov/data-browser/data/2022?category=states&items=WI.
8Note that the target ¥ in this case indicates the loan approval and does not contain information about whether the individual repaid the loan or

not. This varies slightly from the previous credit application example, where Y denoted the risk of credit repayment.
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Fig. 4. Fairness-performance curves of predictors trained on HMDA Zip.

training on real world train data also achieve higher performance on pre-processed test data. On both pre-processed
test sets, we see a range in fairness increase from 85% (unconstraint model) up to 100% which is accompanied by
an increase in performance. This increase is again rather small in absolute values but nonetheless indicates that
the pre-processed data reflect a world that incorporates this fairness. However, we observe differences between
fairadapt and warping as for warping we see a larger increase in performance while for fairadapt, the performance is
higher from the start (see varying y-axis values). Yet, we have to be cautious in over-interpreting these differences
in the AUC as we are more interested in the general trend towards increased performance. Similarly, the AUC on
the real world data is consistently higher than on pre-processed data. Note that this higher performance must not be
misinterpreted as favoring real-world data for evaluation; on the contrary: while the fully constrained real world
classifier is now fair wrt. DP, it still carries bias from the unfair representation of the data it was trained on. Instead,
in order to obtain a model that incorporates a fair representation of the data, we need to train and test models on the
pre-processed data and only in this way we can meaningfully evaluate performance.

5.2 Resolving the Trade-off between Fairness Metrics

We observe that the pre-processing methods are also able to overcome the trade-off between several fairness metrics
for the HMDA data. We proceed in the same manner as in Section 4.3 by directly training and evaluating models
on the pre-processed data. The results are displayed in Table 1b. For the real HMDA data, the fairness metrics are
not simultaneously satisfied, with fairness differences up to 20%. However, for the adapted and warped data, all
fairness metrics are approximately fulfilled. Regarding performance, we observe that models trained and evaluated
on real, adapted, and warped data all achieve similarly high AUCs.

6 Summary & Discussion

By establishing a new link between previous findings on fairML trade-offs and the causal framework of the FiIND
world, we show that both the trade-off between different fairness metrics and the trade-off between fairness and
accuracy can be resolved, both theoretically and practically. We show that the FIND world naturally satisfies
multiple fairness notions at both the individual and group levels, including those subject to the impossibility
theorem — thereby addressing the first trade-off. This theoretical foundation also reveals how the second trade-off
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can be overcome: by learning a FIND world representation of the data through pre-processing methods, practitioners
can achieve high predictive performance while maintaining fairness. To operationalize these insights, we introduce
a novel evaluation method appFiND that assesses the quality of FiIND world approximations in practice.

However, for the purpose of our study, we considered all dependencies between the PA and the target to be unjust
— and thus eliminated all corresponding causal paths. This varies from several other proposals in fairML literature
that only eliminate some path-specific effects from the PA on the target as they consider some features dependent
on the PA to be resolving variables [14, 34, 51]. Bothmann et al. [9] also consider an alternative definition of the
FiND world in which such paths can be deemed fair and need not be removed. Future work could investigate how
to extend our findings on such alternative FiND worlds, e.g., using [51], who propose conditional fairness metrics.
The question of which variables can be considered (non-)resolving also depends on the specific use case.

The assumed knowledge of the causal graph is a necessary requirement for causal pre-processing methods,
otherwise it is limited to purely statistical relations. Learning the true causal graph from data is beyond the scope
of this work and forms a separate research branch known as causal discovery or causal structure learning. For a
recent overview of the field, we refer the reader to Squires and Uhler [58] and Kitson et al. [35]. Nevertheless, we
highlight the limitation of a correctly specified DAG. In the presence of latent confounding or selection bias, the
resulting independence model can no longer be expressed by a DAG over the observed variables only. Besides, the
misspecification of the DAG can also degrade the effectiveness of the pre-processing methods in eliminating all
causal effects from the PA on Y. In the HMDA dataset, Gender can also be considered an additional PA which we did
not consider in our study. Modeling multiple PAs opens up the topic of intersectionality (see, e.g., [10, 33, 48, 62]),
which imposes another major challenge in fairML.

Since the FIND world represents a causal framework, we have focused on causal pre-processing methods.
However, future work could include evaluating non-causal pre-processing methods in their ability to approximate
the FiND world. Moreover, our study considered relatively simple DAGs. To further validate our results, applications
involving structurally more complex DAGs with a larger number of variables could be explored. While the
shown theory is independent from the complexity of the DAGs, it would be interesting to analyze how well the
transformation methods scale. Additionally, analyzing further real-world datasets would help to further demonstrate
the practical applicability and generalizability of our approach.

7 Conclusion & Outlook

Our results offer practical solutions for fairness-aware machine learning, where one does not have to choose
between fairness and high predictive performance anymore, nor between several classical fairness metrics. Instead,
one can shift the modeling and evaluation process to an approximated FIND world, using appropriate pre-processing
methods such as the fairadapt method or warping. To this end, we provide practitioners with appFiND, an evaluation
method that indicates whether the applied pre-processing method has successfully approximated the FIND world.
By directly training and testing models on data that approximates this FiIND world, we overcome the need to
explicitly enforce certain fairness metrics, as the approximation of the FiND world already incorporates a holistic
assurance of these fairness metrics. Rather, we can now focus on “just” achieving high predictive performance. We
have shown in a simulation study that the two covered pre-processing methods are able to approximate the FiND
world and showcased an application with real-world mortgage data.
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Future work could investigate if other pre-processing methods could be used for approximating the FiND world
and compare different pre-processing methods on diverse simulated and real-world data sets. Worthwhile directions
are further the incorporation of multiple PAs, aiming at intersectionality, and an investigation of the sensitivity of
the methods with respect to DAGs (partially) learned from data.
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A Simulation Study
A.1 Simulation Setup

We simulate the causal relationships of the fictitious credit application example depicted in Figure 1, using the R
package simcausal [57]. In the FIND world, we eliminate the PA’s effect by setting amount Xy, debt Xp, and the
target Y of A = a to their corresponding values among the A = &’ distributions X, X, and Y*:

Real world:
A ~B(my)
Xc ~ Ga(ac, Be)
X4 |Xc,A ~ Ga(ou(Xc,A), Ba(Xc,A))
Xp|Xc,A ~B(7p(Xc,A))
Y|Xu,Xp,Xc,A ~ B(my (X4, Xp,Xc,A))

FiND world:
A~ B(m)
Xc ~ Ga(ac, Bc)
X3 |Xc ~ Ga(oum(Xc,d'), Ba(Xc,d'))
X5 Xe ~B(np(Xc,d'))
Y |X3, Xp, Xc ~ B(ny (X3, Xp, Xc,d'))

In both worlds, the PA A is generated by a Bernoulli distribution with success probability 4 = 0.5, while the
confounder is Gamma distributed with o = 3.26 and B¢ = 10.91. For a4 and 4, we take linear combinations of
the features in combination with a log link, and for 7p and 7y a logit link. We simulate datasets of size N = 10,000
for each world, where we use the same seed for both worlds to assure comparability and perform 25 iterations.
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A.2 Approximating the FiND world
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Fig. 5. Distribution of X4 in simulated real, FiND, adapted and warped world per protected a and unprotected group a’

Table 2. Distribution of Y and Xp in simulated real, FiND, adapted and warped world per protected a and unprotected group a’

Real FiND Adapted  Warped
a=0.755 a=0569 a=0.585 a=0.569
P(Y = 1) r_ o ’_ ’_
a=0569 a=0569 a=0.569 da =0.569
P(Xp=1) a=0732 a=0928 a=0.922 a=0.927
b= @ =0927 d=0927 d=0927 d =0927

Table 3. Fairness and performance metrics in real, FiND, adapted, and warped world for the simulation study in Section 4.2
alongside their 95% confidence intervals. All predictors are trained and evaluated using data from the same world, e.g., trained
and evaluated on real world, trained and evaluated on FIND world, etc.

Fairness Performance
World
DP FPR FNR PPV AUC
Real 0.825(0.792,0.862)  0-782(0.750,0.836] 0-954(0.926,0.983) 0-986(0.9550.998] 0.887[0.895.0.899)
FIND  0.98710.9640.999] 0.98900.963,1.0000 0.991(0.976,0.999] 0.988(0.957,0.999] 0.897[0.8950.899]
Adapted  0.9820.959.0.9977 0.972(0.942,0.995] 0.984(0.954,0.9977 0-975[0.952,0.999]  0.8860.883,0.889)
Warped  0.982(9.950.0.996] 0.964(0.938.0.992) 0.974(0.043.0.998] 0.97110.9430.996) 0-893(0.888,0.899]
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B HMDA Experiment

B.1 Data Setup

We encode and filter the 2022 Home Mortgage Disclosure Act (HMDA) data of the state Wisconsin in the following
9

way” :

e Y: Binary target indicating loan approved (1) or not approved (0). The original variable “action taken” has
eight categories and encodes the status of the loan.

e A: Binary PA race with levels a Black applicant or ¢’ non-Hispanic White applicant.

e X,: Numerical variable of the amount of the covered loan, log-transformed.

e Xp: Binary variable indicating the purpose of the loan, (1) home purchase or not (0). The original variable
has four categories.

e Xp: The debt to income ratio, with binary category (1) high ratio or not (0).

e Xc: The joint confounders age and gender. Binary age indicates (1) age above 62 or not (0). Binary gender
indicates (1) female or not (0). (Note that gender is assumed to be binary purely for simplicity reasons and
does not reflect the authors’ personal view.)

B.2 Approximating the FiND world

B Protected Unprotected

Real Adapted Warped
0.5 0.5 0.54 5
0.4 0.4+ 0.44
203+ 0.3 / ‘ 0.3
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5 [
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Fig. 6. Distribution of X4 on real-world, adapted and warped HMDA data per protected a and unprotected group a’

9A detailed description of all variables is provided here: https:/ffiec.cfpb.gov/documentation/publications/loan-level-datasets/lar-data-fields
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Table 4. Distribution of ¥, Xp and Xp on real-world, adapted and warped HMDA data per protected a and unprotected group a’

Real Adapted  Warped

a=0486 a=0.677 a=0.679

PO=1) 0679 o —0679 d —0679
a=0347 a=0398 a=07384

P(XP = 1) ’_ ’_ ’_
d =039 d =039 d =0.390
Py = 1) a=0298 a=0335 a=0371
b= @ =0371 ¢ =0371 d=0371

Proceedings of EWAF’25. June 30 — July 02, 2025. Eindhoven, NL.



	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Theoretical Framework
	2.1 Conception of FiND World
	2.2 Relation to Fairness Trade-offs

	3 Approximating the FiND World
	3.1 Pre-processing
	3.2 In-processing
	3.3 Fairness-Accuracy Trade-off Evaluation

	4 Resolving the Trade-offs via Pre-Processing
	4.1 Testing Approximation to the FiND World
	4.2 Resolving the Trade-off between Fairness and Performance
	4.3 Resolving the Trade-off between Fairness Metrics

	5 Real Data Experiments
	5.1 Resolving the Trade-off between Fairness and Performance
	5.2 Resolving the Trade-off between Fairness Metrics

	6 Summary & Discussion
	7 Conclusion & Outlook
	References
	A Simulation Study
	A.1 Simulation Setup
	A.2 Approximating the FiND world

	B HMDA Experiment
	B.1 Data Setup
	B.2 Approximating the FiND world


