
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDERATED GRANGER CAUSALITY LEARNING FOR
INTERDEPENDENT CLIENTS WITH STATE SPACE REP-
RESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Advanced sensors and IoT devices have improved the monitoring and control of
complex industrial enterprises. They have also created an interdependent fabric
of geographically distributed process operations (clients) across these enterprises.
Granger causality is an effective approach to detect and quantify interdependen-
cies by examining how the state of one client affects the states of others over
time. Understanding these interdependencies helps capture how localized events,
such as faults and disruptions, can propagate throughout the system, potentially
leading to widespread operational impacts. However, the large volume and com-
plexity of industrial data present significant challenges in effectively modeling
these interdependencies. This paper develops a federated approach to learning
Granger causality. We utilize a linear state space system framework that leverages
low-dimensional state estimates to analyze interdependencies. This helps address
bandwidth limitations and the computational burden commonly associated with
centralized data processing. We propose augmenting the client models with the
Granger causality information learned by the server through a Machine Learning
(ML) function. We examine the co-dependence between the augmented client and
server models and reformulate the framework as a standalone ML algorithm pro-
viding conditions for its sublinear and linear convergence rates. We also study
the convergence of the framework to a centralized oracle model. Moreover, we in-
clude a differential privacy analysis to ensure data security while preserving causal
insights. Using synthetic data, we conduct comprehensive experiments to demon-
strate the robustness of our approach to perturbations in causality, the scalability to
the size of communication, number of clients, and the dimensions of raw data. We
also evaluate the performance on two real-world industrial control system datasets
by reporting the volume of data saved by decentralization.

1 INTRODUCTION

The rapid growth of IoT devices and sensor networks has increased the interdependencies between
process operations of decentralized systems, such as distributed manufacturing enterprises (Ok-
wudire & Madhyastha (2021), Srai et al. (2020)), supply chains (Lee & Billington (1993), Bernstein
& Federgruen (2005)), and power networks(Singh et al. (2018), Kekatos & Giannakis (2013)). These
systems comprise geographically distributed assets (e.g., machines and processes) that rely on ad-
vanced sensors and IoT technologies for monitoring and control. These technologies often generate
large volumes of high-dimensional time-series data that capture the operational state and reliabil-
ity of various system components. Ensuring reliable system-wide operations is challenging due to
operational interdependencies, which magnify the effects of fault propagation Bian & Gebraeel
(2014) and cascading failures Fu et al. (2023).

This paper focuses on systems with multiple geographically distributed entities— for example, man-
ufacturing and utility plant sites, which we refer to as clients—operating in an interconnected man-
ner. We examine the operational interdependencies in these multi-client systems using state-space
modeling and causal analysis to better understand their cause-and-effect relationships. Granger
causality Granger (1969) is an effective approach to detect and quantify interdependencies by ex-
amining how the state of one client affects the states of others over time. This approach captures
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how localized events, such as faults or disruptions, can propagate throughout the system, potentially
leading to widespread operational impacts.

The decentralized nature of data, coupled with its large volume and high dimensionality, presents
significant challenges in establishing causality through centralized data analysis. Aggregating data
from multiple sources in a central server can become inefficient and impractical as the scale and
complexity of the data increase. However, in many applications, it is possible to represent high-
dimensional data using low-dimensional state. In the context of causality analysis, low-dimensional
state enable the identification of critical interdependencies without aggregating raw data.

In this work, we use linear time-invariant (LTI) state space representation for individual models of a
multi-client system. Clients operate independently using only their client-specific information. The
measurements (i.e., raw data) at each client are assumed to be high-dimensional. Clients cannot
share their measurements, but can only share their low-dimensional state with a central server. Our
goal is to develop a federated learning framework that allows a decentralized system of clients to
collaboratively learn the off-diagonal blocks of the system’s state matrix that represent the cross-
client Granger causality—by sharing only their state with a central server. To achieve this, we pro-
pose augmenting client models with the off-diagonal information of state matrix through a Machine
Learning (ML) based function. To the best of our knowledge, this is the first study on federated
granger causality learning. Please refer to Appendix A.1 for preliminaries on state space modeling,
Kalman filter, and Granger causality, along their brief mathematical representations.

Research Objective: Our objective is to develop a federated learning framework in which the
augmented state gradually converges to the centralized state, thus achieving parity between a local
and a centralized (oracle) model. Through this process, the decentralized system learns the off-
diagonal blocks of the system’s state matrix, which capture client interactions by sharing only their
states with a central server rather than large volumes of high-dimensional measurements.

Main Contributions: Our key technical contributions can be delineated as follows:

1. We formulate a federated framework for a multi-client state space system that operates via
iterative optimization, where (1) the server learns cross-client Granger causality using low-
dimensional states from all clients, and (2) client models, augmented with ML functions,
implicitly capture these causality..

2. We prove convergence dependencies between server and client models, and reformulated
the server-client iterative framework as a standalone ML algorithm with sublinear and lin-
ear convergence rates in its gradient descent.

3. We define a centralized oracle benchmark and proved bounded differences between the
ground-truth and learned Granger causality, with matrix bounds under specific conditions.

4. We performed a theoretical analysis to ensure that the communications (both client-to-
server, and server-to-client) satisfy differential privacy.

5. Experiments on synthetic data highlight communication efficiency, robustness, and scala-
bility. We also validate the framework on real-world ICS datasets, reporting the volume of
data saved by decentralization without compromising the training loss.

2 RELATED WORK

Federated learning (FL) is a decentralized machine learning approach where model training occurs
across multiple clients, sharing only model updates with a central server. Traditional FL works
(McMahan et al. (2017), Yurochkin et al. (2019)) with horizontally partitioned data (Yang et al.
(2019b)), where each client has independent data sample but the same feature space. Our approach,
however, aligns more with Vertical Federated Learning (VFL), where clients hold different features
of the same sample. Since we use time-series data, in our case the features corresponds to the
measurements and the samples refer to the time stamp. Unlike conventional VFL setting such
as (Hu et al. (2019), Gu et al. (2021), Chen et al. (2020), Ma et al. (2023)), Hardy et al. (2017),
Yang et al. (2019a), Fang et al. (2021), Wu et al. (2020) which often involves sharing models to
a server and updating the client model, our framework allows each client to maintain its own
model—based on client-specific observations, without centralizing data or models.
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Split Learning and Multi Task Learning: Our method shares elements with both (1) split learning
(Vepakomma et al. (2018), Poirot et al. (2019), Thapa et al. (2022), Kim et al. (2017)) where different
parts of a model are trained separately, and (2) multi-task learning (Smith et al. (2017), Marfoq et al.
(2021), and Chen & Zhang (2022)), where tasks share a common representation. However, unlike
these methods, our approach maintains client models’ autonomy.

Granger Causality: While Vector Auto Regressive models are widely applied for Granger causality
(GC) learning such as Gong et al. (2015), Geiger et al. (2015), Hyvärinen et al. (2010), Huang et al.
(2019), Chaudhry et al. (2017), they struggle with systems involving hidden states. State-space (SS)
representations offer more flexibility for such systems, but applications of GC in SS models such as
Elvira & Chouzenoux (2022), Józsa et al. (2019), Balashankar et al. (2023) are primarily centralized.
A comprehensive review of GC can be found in Balashankar et al. (2023). Our framework extends
this by enabling federated GC learning in SS systems, where cross-client causality is inferred
by estimating off-diagonal blocks of the state matrix A, assuming client-specific observations
through a block diagonal output matrix C.

System Identification : Traditional system identification literature ( Keesman (2011), Simpkins
(2012), Gibson & Ninness (2005)) assumes centralized access to all data, violating the decentral-
ization premise of our framework. Recent methods such as Haber & Verhaegen (2014), Stanković
et al. (2015), Mao & He (2022) address this through low-rank and sparse techniques, but still require
centralized measurement aggregation or neighbor node knowledge. Our framework bypasses these
requirements by estimating the A matrix using low-dimensional states, retaining the ability to
infer causality without moving measurements.

Distributed Kalman Filter: Kalman filters estimate latent states from noisy data but face challenges
in decentralized settings. Distributed Kalman Filtering such as the ones discussed in Zhang et al.
(2022), Xin et al. (2022), Cheng et al. (2021), Olfati-Saber & Shamma (2005), Olfati-Saber (2007),
Farina & Carli (2018) allow for decentralized collaboration but typically assumes knowledge of the
A matrix or centralization after local filtering. In contrast, our approach estimates the A matrix
without prior system knowledge or data movement.

3 PROBLEM SETTING

We assume a server-client framework with M clients having operational interdependencies. Client
m observes high dimensional time series measurements ytm ∈ RDm , utilizes client-specific state
matrix Amm, and outputs low dimensional states (ht

m)c ∈ RPm (Dm >> Pm) via its client model
fc(.), s.t., (ht

m)c = fc(y
t
m;Amm). This model does not capture cross-client causality as it uses

only Amm (and not using Amn∀n ̸= m). The framework then proceeds iteratively as follows:

• Client m uses a ML function fML(.) to augment the client model, producing (ht
m)a,

where (ht
m)a = fa((h

t
m)c, fML(y

t
m; θm)) and fa(.) is the augmentation model. The

parameter θm encodes cross-client causality. Client m minimizes the loss (Lm)a =∥∥ytm−f−1
c

(
(ht

m)a
)∥∥2

2
w.r.t. θm, then communicates the tuple [(ht

m)a, (h
t
m)c] to the server.

• The server model fs(.) receives input (Ht)c =
[
(ht

1)c, ..., (h
t
M )c

]T
to produce (Ht)s =

fs
(
(Ht)c;

[
Âmn, Amm∀n ̸= m

])
. It optimizes the loss Ls =

∥∥(Ht)a − (Ht)s
∥∥2
2

w.r.t.
parameters Âmn, where (Ht)a =

[
(ht

1)a, ..., (h
t
M )a

]T
. The Âmn are the learned cross-

client Granger causality. The server then communicates the gradient of Ls to the clients.

A discussion on the possible choices of fc, fa, fML along with the rationale behind our models,
is provided in the Appendix A.2. A simplified pictorial description of the aforementioned problem
setting is shown in figure 1. A pseudocode for our proposed framework is given in Appendix A.3.

4 FEDERATED GRANGER CAUSALITY FRAMEWORK

Nomenclature: We define ht as the “predicted state,” i.e., the state predicted for time t based on
measurements yt−1, also called the “prior state estimate”, “one-step ahead prediction”, or “predicted

3
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Figure 1: Federated cross-client Granger causality learning framework

state estimate” in kalman filter literature. The variable ĥt is the “estimated state,” based on yt, also
known as the “posterior estimate”, “updated state estimate”, or “current state estimate” in literature.
Assumption 4.1 (Client Model). The client model fc(.) is a Kalman filter with access to client-
specific measurements ym∀m ∈ {1, ...,M}. It uses only the diagonal blocks of the state matrix
A and output matrix C (given by Amm, and Cmm respectively) . Eqs in the first column of Table
1 define the client model, using only Amm, and Cmm which are known apriori. If unknown, they
can be estimated locally using ym. The estimated and predicted states are (ĥt−1

m )c, and (ht
m)c, with

residual (rtm)c and Kalman gain (Km)c.

• Insufficiency of Client Models: The Kalman filter based client models provide optimal state es-
timation using client-specific measurements. However, they only utilize the diagonal blocks of the
state matrix (Amm), ignoring the off-diagonal blocks (Amn ∀n ̸= m). Consequently, the client
models cannot capture the cross-client Granger causality.

• Benchmark – A Centralized Oracle: The centralized oracle is a Kalman filter that accesses mea-
surements yt from all M components. Unlike the client model, the oracle’s state matrix A has
non-zero off-diagonal blocks representing cross-client causality. The third column of Table 1
describe the oracle, where (ĥt)o and (ht)o are its estimated and predicted states. The matrix C is
assumed to be block diagonal. Residual (rt)o, and Kalman gain Ko are similar to the client model.

Table 1: Equations for the Client Model, Augmented Client Model, and Centralized Oracle

Client Model Augmented Client Model Centralized Oracle
(ht

m)c = Amm · (ĥt−1
m )c (ht

m)a = Amm · (ĥt−1
m )a (ht)o = A · (ĥt−1)o

(rtm)c = ytm − Cmm · (ht
m)c (rtm)a = ytm − Cmm · (ht

m)a (rt)o = yt − C · (ht)o
(ĥt

m)c = (ht
m)c + (Km)c · (rtm)c (ĥt

m)a = (ĥt
m)c + θm · ytm (ĥt)o = (ht)o +Ko · (rt)o

4.1 AUGMENTED CLIENT MODEL

To address the above insufficieny, we augment the client models with ML function, enabling learn-
ing of Granger causality within their “augmented states”. The two salient characteristics of this ML
function must be as follows: (1) the parameter of that function must capture the Granger causality
(which is otherwise not captured by the client model), and (2) the function must only utilize the
client-specific parameters Amm and Cmm, and client-specific measurements ym.

We assume a additive augmentation model s.t., Augmented Client Model = Client Model +
ML function. Furthermore, as the underlying system is assumed to have a LTI state space represen-
tation, we make the following assumption on the ML function to facilitate mathematical insights:
Assumption 4.2. The ML function (augmenting the client model) is linear in ym ∀m ∈ {1, ...,M}

To draw analogies with the client model we state the augmented client model in the second col-
umn of Table 1. The estimated and the predicted augmented states are given by (ĥt

m)a and (ht
m)a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

respectively. The augmentation is defined in the third equation (of Table 1), where a linear ML
function given by θmytm is added to the estimated state of the client model to provide the estimated
augmented state. θm is the parameter of the ML function.

Client Loss: Similar to the client model, the augmented model also uses client-specific state matrix
(Amm) and output matrix (Cmm). The second row of Table 1 defines the augmented client model’s
residual. The loss function of the augmented client model is given by (Lm)a = ∥(rtm)a∥22.

We make the following claim which is validated later in our theoretical analysis and experiments:
Claim 4.3. The client model’s parameter θm captures the cross-client Granger causality informa-
tion of state matrix’s off-diagonal blocks Amn ∀n ̸= m, and m,n ∈ {1, ...,M}

At training iteration k, the learning of θm uses a gradient descent algorithm as shown in equation 1.
There are two partial gradients involved in this step: one corresponding to the augmented client loss
(Lm)a with a learning rate of η1, and the other to the server model’s loss Ls with a learning rate
of η2. Effectively, we are optimizing a weighted sum of (Lm)a and Ls, where the weights are
proportional to η1 and η2. In equation 1, the second term,∇θk

m
(Lm)a, can be computed locally at

the client. Using the chain rule, we expand the third term of equation 1 to derive equation 2, where
∇(ĥt

m)
a
Ls is communicated from the server, and∇θk

m
(ĥt

m)a is computed locally at client m.

θk+1
m = θkm − η1 · ∇θk

m
(Lm)a − η2 · ∇θk

m
Ls (1)

= θkm − η1 · ∇θk
m
(Lm)a − η2 ·

[
∇(ĥt

m)
a
Ls · ∇θk

m
(ĥt

m)a
]

(2)

Communication from Client to the Server: A tuple of the estimated states from the client, and the
augmented client model i.e., [(ĥt

m)a, (ĥ
t
m)c] are communicated from the client m to the server.

4.2 SERVER MODEL

Using the tuple of the estimates states communicated from all M clients, the objective of the server
model is to estimate the state matrix that encodes cross-client Granger causality in its off-diagonal
blocks. We also make the following assumption about the diagonal blocks of that state matrix:
Assumption 4.4. The diagonal blocks of the state matrix given by Amm ∈ RPm×Pm ∀m ∈
{1, ...,M} are assumed to be known apriori at the server.

Assumption 4.4 is reasonable as the diagonal blocks are known (or estimated) apriori at the clients,
and they need to be communicated only once before the onset of the model training.

We use the augmented model’s estimated state (ĥt
m)a, and the diagonal blocks Amm to compute

the predicted state (ht
m)a (second column of Table 1). These (ht

m)a ∀m are later used as training
labels for the server model. On the other hand, a direct consequence of assumption 4.4 is that only
the off-diagonal blocks of the state matrix need to be estimated by the server model. We denote
these estimated off-diagonal blocks are Amn ∈ RPm×Pn , n ̸= m ∀m,n ∈ {1, ...,M}.

Server Loss: The server model inputs states (ĥt
m)c (from all M clients), predicts states (ht

m)s as
output, and compares them against the true labels (ht

m)a. These predictions and labels are concate-
nated as (Ht)s :=

[
(ht

1)s, ..., (h
t
M )s

]T
, and (Ht)a :=

[
(ht

1)a, ..., (h
t
M )a

]T
respectively. Then the

loss of the server model is given by Ls = ∥(Ht)a − (Ht)s∥22
We now state a claim about the learning of the server model and validate it in later sections:

Claim 4.5. The estimated off-diagonal blocks Âmn ∀n ̸= m encode the augmented client model’s
ML parameter θm∀m ∈ {1, ...,M}

Server Model Learning: The learning of Amn also uses gradient descent with γ as the learning rate.
At training iteration k, the gradient descent of Amn is given by:

Âk+1
mn = Âk

mn − γ · ∇Âk
mn

Ls (3)

Communication from Server to Client: The gradient of the server’s loss w.r.t. estimated state of the
augmented client model i.e.,∇(ĥt−1

m )a
Ls ∈ RPm is communicated from the server to client m.
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Table 2: States predicted by the server model and the centralized oracle

Server Model Centralized Oracle

(ht
m)s = Amm(ĥt−1

m )c +
M∑

n ̸=m

Âmn(ĥ
t−1
n )c (ht

m)o = Amm(ĥt−1
m )o +

M∑
n ̸=m

Amn(ĥ
t−1
n )o

• Comparison to the Centralized Oracle: The predicted states of the centralized oracle can be
reformulated as shown in the second column of Table 2, which is analogous to the server model. It
is important to highlight that, while the oracle has access to the ground-truth state matrix, the
server approximates this matrix using the states provided by the client model.

5 UNDERSTANDING DECENTRALIZATION THROUGH A CENTRALIZED LENS

In this section, we substitute the server model terms with high-dimensional data y’s and replace the
client model terms with the estimated off-diagonal blocks Âmn’s. This reformulation makes the
framework appear “centralized” as the y’s and Âmn’s are available at one location. However, this is
purely a theoretical tool for analysis, and in practice, models are trained without any centralization.
Theorem 5.1 (Co-dependence). At the (k+1)th iteration, the augmented client model’s parameter
i.e., θk+1

m depends on the kth iter. of the server model’s parameter i.e., Âk
mn, n ̸= m, and vice versa.

Theorem 5.1 provides the following insights: (1) the augmented client model encodes the latest
estimation of the state matrix during learning, and (2) the server model’s estimated state matrix
depends on the most recent client model.. Building on these insights and theorem 5.1 we propose
corollary 5.2 on the convergence of the ML parameters in both the client and server models.

Corollary 5.2. θm converges if and only if Âmn , n ̸= m converges.

Next we state proposition 5.3 that gives the values of the optimal augmented client and server model
parameters given by θ∗m and Â∗

mn respectively. While the first condition gives the closed-form for
θ∗m as a function of the knowns; the second condition gives Â∗

mn as a function of θ∗m.
Proposition 5.3 (Optimal model parameters). If Amm ̸= 0, when augmented client and server
model parameter converges to θ∗m and Â∗

mn, n ̸= m, respectively then the following holds:

1. ytm − Cmm

(
Amm(ĥt

m)c +Ammθ∗mytm
)
= 0

2. Ammθ∗mytm −
∑

n ̸=m Â∗
mn(ĥ

t
n)c = 0

We now offer an alternative perspective, representing the framework as a standalone ML algorithm.
Theorem 5.4 unifies the iterative optimization of the server and client models into a unified equation.
Theorem 5.4 (Unified framework). The federated framework effectively solves the following re-
current equation:

∆k+1 = H ·∆k + J (4)
where,

∆k :=
[
vec(Âk

m1) . . . vec(Âk
m(m−1)) vec(Âk

m(m+1)) . . . vec(Âk
mM ) vec(θkm)

]T

H :=


P11 −2γ(V ⊤

12 ⊗ I) · · · −2γ(V ⊤
1M ⊗ I) γ(Q⊤

m1 ⊗R)
...

...
...

...
...

−2γ(V ⊤
M1 ⊗ I) · · · · · · PMM γ(Q⊤

mM ⊗R)
η2(Qm1 ⊗R⊤) · · · · · · η2(QmM ⊗R⊤) (I −G⊗ F )


J := [0 0 . . . vec(D)]

T with D := AT
mmCT

mm(rt−1
m )cy

t−1
m

T
and ⊗ is the Kronecker prod.

Pmm := (I − 2γ(ĥt−1
m )c(ĥ

t−1
m )

T

c ) ; Qmn := yt−1
m (ĥt−1

n )
T

c ; R := 2Amm ; G := yt−1
m yt−1

m
T

F := η1(2A
T
mmAmm) + η2(2A

T
mmCT

mmCmmAmm) ; Vmn := (ĥt−1
n )c(ĥ

t−1
m )c

T

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The augmented client’s and server’s loss functions i.e., (Lm)a and Ls are convex in θm and Âmn,
respectively, so their stationary points are global minima. Since θm and Âmn are elements of ∆ in
the recurrence equation 4, the stationary values can also be derived from its asymptotic behavior.
Lemma 5.5 provides the asymptotic convergence condition of equation 4 and its stationary values.
Lemma 5.5 (Convergence of framework). The federated framework converges if and only if
ρ(H) < 1. Furthermore, the stationary value of ∆ is given by ∆∗ = (I −H)

−1
J

Upon algebraic manipulation of equation 4 we can obtain the following recurrent linear equation:

∆k+1 = ∆k − (I −H) · [∆k −
(
(I −H)−1J

)
] = ∆k − (I −H) · [∆k −∆∗] (5)

Equation 5 is analogous to gradient descent of the proposed federated framework parameterized
by ∆. Let Lf represent the loss function of the federated framework, whose explicit functional
form is unknown. Under special conditions on Lf we analyze the convergence rate of the gradient
descent in the joint space of Âmn and θm. Leveraging well established results on gradient descent
we provide theorems 5.6 and 5.7 to discuss conditions for sub linear and linear convergence.

Theorem 5.6 (Sub linear conv.). If Lf is convex, and L-Lipschitz smooth in the joint space of Âmn,
and θm, with H chosen s.t., ∥I −H∥ ≤ 1, then convergence rate of Lf is O(1/k)

Theorem 5.7 (Linear conv.). If Lf is L-Lipschitz smooth, and µ-strongly convex in the joint space
of Âmn, and θm with H chosen s.t., ∥I −H∥ ≤ 2L

µ+L , then convergence rate of Lf is O((1− µ
L )

k)

6 ASYMPTOTIC CONVERGENCE TO THE CENTRALIZED ORACLE

We assume that the centralized oracle is convergent i.e., it has a zero steady state error. We first
analyze the convergence of the states learned using our approach to the oracle. Theorem 6.1 shows
that the predicted states of the augmented client model converge in expectation to the oracle.

Theorem 6.1. Let (ĥt,k
m )a := (ĥt

m)c + θkmytm, and (ht,k
m )a := Amm · (ĥt,k

m )a (see table 1). Then,
the following convergence result holds: limk→∞ E[∥(ht,k

m )a − (ht
m)o∥ = 0 ∀m ∈ {1, ...,M}

Proposition 6.2 shows that the norm difference between the estimated states of centralized oracle
and client model is bounded in expectation. We use this bound to establish the subsequent results.
Proposition 6.2. If the client model satisfies ρ(Amm − Amm(Km)cCmm) < 1 then ∃δmmax such
that the following bound holds: E[∥(ĥt

m)o − (ĥt
m)c∥] ≤ δmmax∀m ∈ {1, ...,M}

Next we analyze the error in estimating the state matrix. For any two clients m and n with n ̸= m,
let Â∗

mn be the stationary point for the off-diagonal block of the estimated state matrix. Let Amn be
the ground-truth for those off-diagonal blocks. Then theorem 6.3 and corollary 6.4 provide upper
bound on the estimation error of the state matrix without apriori knowledge of its ground-truth

Theorem 6.3. If ρ(Amm −Amm(Km)cCmm) < 1 then, E
[∥∥∑

n̸=m[Â∗
mn −Amn] · (ĥt−1

n )o
∥∥] ≤

∥Ammδmmax∥+ ∥
∑

n,n̸=m Â∗
mnδ

n
max∥ ∀m ∈ {1, ...,M}

Corollary 6.4. If ∃σn
min s.t., σn

min := minn ̸=m E[∥(ĥt−1
n )o∥] and the vectors [Â∗

mn−Amn]·(ĥt−1
n )o

are collinear ∀n ∈ {1, ...,M} and n ̸= m then ∀m ∈ {1, ...,M},∥∥∑
n ̸=m[Â∗

mn −Amn]∥F ≤ 1
σn
min
·
(
∥Ammδmmax∥+ ∥

∑
n,n̸=m Â∗

mnδ
n
max∥

)

7 PRIVACY ANALYSIS

In this section, we establish two theoretical results to ensure differential privacy of our framework.

Client: Each client m independently perturbs its client model’s, and augmented client model’s
estimated states before sending them to the server as follows:

h̃t
m,c = (ĥt

m)c +N (0, σ2
cI), h̃t

m,a = (ĥt
m)a +N (0, σ2

aI),

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e)

Figure 2: Loss functions at (a) client 1, (b) client 2, and (c) server during the first mean-shift. (e) l2
norm diff. between states of centralized oracle, server, client, augmented client models of client 2
(d) and evolution of Frobenius norm difference between estimation and ground-truth value of A21

Table 3: Cross-client Granger causality – estimated (Â) vs ground truth (A)

How does client 1 Granger causes client 2? How does client 2 Granger causes client 1?
Estimated Â21 Ground truth A21 Estimated Â12 Ground truth A12[
0.2793 0.2441
0.3351 0.3298

] [
0.25 0.25
0.25 0.25

] [
0.0186 −0.0113
0.0102 0.0010

] [
0 0
0 0

]

Server: The server computes the gradient ∇(ĥt
m)a

Ls and applies gradient clipping with clipping

threshold Cg and Gaussian noise addition as follows: g̃tm = Clip
(
∇(ĥt

m)a
Ls, Cg

)
+N (0, σ2

gI),

Theorem 7.1 (Client-to-Server Comm.). At each time step t, the mechanisms by which client m
sends h̃t

m,c and h̃t
m,a to the server satisfy (ε, δ)-differential privacy with respect to ytm, provided that

the noise standard deviations satisfy the following with ε = εc + εa and δ = δc + δa:

σc ≥
2ByBK

√
2 ln(1.25/δc)

εc
, σa ≥

2By(BK +Bθ)
√

2 ln(1.25/δa)

εa
,

Theorem 7.2 (Server-to-Client Comm.). At each time step t, the mechanism by which the server
sends g̃tm to client m satisfies (ε, δ)-differential privacy with respect to any single client’s data

(states), provided that the noise standard deviation satisfies: σg ≥
2Cg

√
2 ln(1.25/δ)

ε .

Please refer to Appendix A.5 for a discussion on privacy, along with the meaning of By , BK , Bθ.

8 EXPERIMENTS: SYNTHETIC DATASET

Dataset Description & Experimental Settings: The synthetic data simulates a multi-client linear
state space system with “mean-shifts” representing an anomaly or change in operating condition.
The absence of off-diagonal blocks of A matrix in client model affects the states only after a mean-
shift. This can be visualized in figure 2(d) whose details are explained later in this section. We
use the same client and server models discussed in section 4. All models are regularized to ensure
feasible solutions. Experiments began by checking convergence stability (ensuring ρ(H) < 1),
adjusting hyperparameters if needed. Unless noted otherwise, experiments used two clients (M = 2)
with Dm = D = 8, Pm = P = 2 ∀m. Exceptions apply to scalability studies.

Learning Granger Causality: We train the framework for a two-client system where the states
of client 1 Granger-causes client 2 and not vice versa i.e, Atrain

21 ̸= 0 and Atrain
12 = 0. The

training losses are given in figure 2(a)-(c). The l2 norm differences between (1) the client model
and the augmented client model, (2) the centralized oracle and the augmented client model, and (3)
the centralized oracle and the server model are shown in figures 2(d). These plots validate claims
4.3, 4.5, and theorem 6.1. Figure 2(e) track the Frobenius norm difference between the ground-truth
and estimated state matrices, which decreases during training, further validating theorem 6.3 and
corollary 6.4. The estimated and ground truth A matrices are mentioned in Table 3.

Robustness to Perturbation in Causality: We introduce perturbations to all elements of the off-
diagonal blocks of A matrix to assess the framework’s robustness. Specifically all elements of

8
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Table 4: Robustness to perturbations in causality and change in network topology

Perturbation⇒ ϵ = 5% ϵ = 45% ϵ = 85% ϵ = 125%
Framework (L2)a Ls (L2)a Ls (L2)a Ls (L2)a Ls

No client aug. – 10−5 – 10−5 – 10−5 – 10−5

No server model 0.22 – 0.58 – 0.88 – 1.135 –
Pre-trained client 0.22 0.007 0.58 0.015 0.88 0.022 1.135 0.028

Our method 0.39 0.003 0.57 0.007 0.76 0.010 0.93 .013
Net. Topology⇒ Preserving Reversing Eliminating Bidirectional

Framework (L2)a Ls (L2)a Ls (L2)a Ls (L2)a Ls

No client aug. – 10−5 – 10−5 – 10−5 – 10−5

No server model 0.182 – 0.24 – 0.279 – 0.127 –
Pre-trained client 0.182 0.006 0.24 0.065 0.279 0.012 0.127 0.014

Our method 0.37 0.003 0.35 0.033 0.40 0.006 0.34 0.008

training block matrix were perturbed to generate test data s.t., [Atest
21 ]i = [Atrain

21 ]i+ϵi ∀i ∈ 1, ..., P
where, ϵi = {5, 45, 85, 125}% of [Atrain

21 ]i ∀i.

Robustness to Change in Network Topology: We trained the system with (A(train)
21 ̸= 0,

A
(train)
12 = 0). We now modify the test data topology under four conditions: (1) preserving causality

(A(test)
21 = A

(train)
21 , A(test)

12 = 0), (2) reversing causality (A(test)
21 = 0, A(test)

12 ̸= 0), (3) eliminating

causality (A(test)
21 = 0, A(test)

12 = 0), (4) using bidirectional causality (A(test)
21 ̸= 0, A(test)

12 ̸= 0).

Interpreting Robustness Results: When A matrix changes during testing, we expect Ls and (L2)a
to be higher (than training). While a high Ls refers to a flag by the server model, a high (L2)a refers
to a flag by the client (client 2’s) model. We say a framework has learned causality if both server
and client models flag with alteration in causality (i.e., either perturbation or change in topology).

The testing losses for the robustness studies are shown in Table 4. For “our method”, both (L2)a and
Ls increase with increase in ϵ, further validating the claims 4.3 and 4.5. Table 4 also shows that with
change in the topology, Ls increases for “our method”. The reverse causality shows the highest Ls

values, thereby inferring that the server model learns causality and flags with alterations in causality.
Furthermore, the client model does not show a clear trend to change in network topology. Thus it
can generate false alarms (that there is change in causality) if inferencing is done only based on
(L2)a. Further investigation is need to analyze the reasons behind this observation.

Baselines: We benchmark our framework against three other versions of our framework: (1) same
framework without the client augmentation (this underscores the limitations of ignoring the effects
of interdependencies with other clients), (2) same framework but without the server model (this
highlights the importance of server model in improving the client augmentation), (3) pre-trained
client models as discussed in Ma et al. (2023) (this demonstrates the importance of the iterative
optimization in estimating the true interdependencies). Given the constraints on space, we present
the interpretation of our framework’s performance relative to these baselines in Appendix A.8.

Scalability Studies: We increase the dimensions of the measurements Dm, keeping the state di-
mensions Pm = 2, and M = 2. We trained and tested our framework with D = {2, 4, 8, 16, 32}.
We also validated the scalability w.r.t. the number of clients, by scaling M to {2, 4, 8, 16, 32} by
fixing Dm = D = 8 and Pm = P = 2 ∀m. The results for both studies are reported in Table
5. While there is a trend observed for scalability w.r.t. D, none of the studies shows any drastic
increase in the order of magnitude for Ls, thereby demonstrating that the framework is scalable in
both measurement dimension and number of clients.

Table 5: Server loss Ls by scaling measurement dim. D and number of clients M

Measurement Dim. (D) No. of Clients (M )
D = 16 D = 32 D = 64 D = 128 M = 2 M = 4 M = 8 M = 16
0.0027 0.0061 0.0090 0.0084 0.0003 0.0001 0.0026 0.0004
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Table 6: Description of the real-world industrial control system (ICS) datasets

Dataset M
∑M

m=1 Dm Dataset Description
HAI 4 86 Steam turbine-power & pumped-storage hydropower generation

SWaT 6 51 Water treatment facility

(a) (b) (c) (d)

Figure 3: (a) Server loss and (b) Client 4’s loss for HAI dataset, and (c) Sever loss and (d) Client 4’s
loss for SWaT dataset at a randomly chosen time

9 EXPERIMENTS: REAL WORLD DATASETS

Datasets: We utilized two ICS datasets – (1) HAI: Hardware-the-loop Augmented Industrial control
system Shin & Min (2023), and (2) SWaT: Secure Water Treatment Mathur & Tippenhauer (2016).
For both of the datasets, clients in our framework corresponds to the processes in the datasets.
Details of the raw data are given in Table 6.

Preprocessing: We first select the measurements with a high (≥ 0.3) pairwise Pearson correlation
with measurements from other clients. For each client m in the real-world dataset, client model
was obtained as follows: (1) Apply SVD to the measurement ym and select the top P right singular
vectors as the low-dimensional states, (2) Store Cmm as the product of the left singular vectors and
singular values up to P dimensions, (3) Fit a VAR model of the low-dimensional states to compute
Amm. The framework was then trained on nominal data, free of attacks.

Granger Causality Learning: We used the same state dimension P for all M clients in either
dataset. The server loss and the augmented client loss (at a randomly chosen client) during training
are provided in figure 3. We do not have a ground truth A matrix for any of the real-world datasets.
We first perform a centralized estimation of A matrix and considered that as our ground-truth. For
P = 2, the estimation error between federated and centralized method is provided in Table 7. We
also report the amount of data volume saved (in bytes) by utilizing our federated learning approach.

Table 7: Comparison federated and centralized method for real-world datasets

Dataset ∥Â−A∥F Data saved per comm. round
HAI 0.8140 144 bytes

SWaT 3.0816 176 bytes

10 CONCLUSION AND LIMITATIONS

This paper introduces a federated framework for learning Granger causality in distributed systems,
addressing high-dimensional data challenges. Using a linear state-space representation, cross-client
Granger causality is modeled as off-diagonal terms in the state matrix. The framework augments
client models with server-derived causal insights, improving accuracy. We provide theoretical guar-
antees, demonstrate convergence rates, and include a differential privacy analysis to ensure data
security. Experiments on synthetic and real-world datasets validate the framework’s robustness and
scalability. Limitations and potential future extensions are discussed in Appendix A.9 .
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A.1 PRELIMINARIES

• State-Space Model: A state-space model is a mathematical framework used to represent the
dynamics of a physical system as a set of measurements yt, states ht, all related through a difference
equation. It characterizes the system’s evolution over time by describing how its state transitions
and generates measurements, using two primary equations: the state transition equation (6) and the
observation (measurement) equation (7).

ht = Aht−1 +w (6)

yt = Cht + v (7)

Here, w and v are the i.i.d. Gaussian noise added to the states and measurements respectively.
The matrices A and C are called the state transition and observation (measurement) matrices, re-
spectively. The above representation is a linear time-invariant (LTI) model, as (1) the equations are
linear, (2) A, C, distributions of w and v are assumed to be stationary.

In a system represented by state-space model, knowledge of the state ht is fundamental for under-
standing the system dynamics. However in real world applications, one often observes only the
measurements yt without direct access to the states ht. Estimation of ht using yt is typically done
by a Kalman filter, explained next.

• Kalman Filter: A Kalman filter (KF) is an algorithm designed to provide optimal linear estimates
of the states based on measurement yt. A brief walk-through of the steps involved in a KF is
explained in the next paragraph.

ht = A · ĥt−1 (8)

rt = yt − C · ht (9)

ĥt = ht +K · rt (10)

At time t, the KF predicts the state ht using the previous estimate ĥt−1 (eq. 8). Upon receiving
a new measurement yt, it computes the residual rt, the difference between yt and the predicted
measurement C ·ht (eq. 9). The state estimate ĥt is then updated by adding a correction term K · rt
to its predicted state ht (eq. 10), with Kalman gain K determining the weight of the residual.

KF operates under the assumption of complete knowledge of A matrix, and other parameters such
as C, noise covariances, etc. Without a given A matrix, implementation of KF mandates its prior
estimation. Granger causality is one of the techniques used to explicitly estimate the A matrix.

• Granger Causality: A time series h1 is said to “granger cause” another time series h2, if h1

can predict h2. In the context of state space models, the state matrix A characterizes the granger
causality. For example, in a two state sytem, given in eq.(11), state h2 is said to “granger cause”
state h1 if A12 ̸= 0 [

ht
1

ht
2

]
=

[
A11 A12

A21 A22

]
·
[
ht−1
1

ht−1
2

]
+

[
w1

w2

]
(11)

Learning granger causality in a state space model involves estimation of A matrix. Estimating A ma-
trix often involves centralizing the measurements yt and performing a maximum-likelihood estima-
tion. However, in systems with decentralized components (clients), centralizing the measurements
yt from each component can be a challenge. This is especially true when yt is high dimensional.

Decentralized learning of A matrix is the primary objective of our paper.

A.2 DEFINING FUNCTIONS fc(.), fa(.), fML(.)

1. Client Model fc(.): The client model can be any machine learning model, such as neural
networks, linear regression, or a state space model. For mathematical tractability, we use a
state-space model.
One example of the client model can be an anomaly detection model. In this paper, we
assume a client model fc(.) is trained independently using only client-specific measure-
ments.
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2. ML Function fML(.):
The ML function fML(.) is a machine learning model that specifically captures the effects
of interactions (granger causality) with other clients. It enhances the awareness of the local
client model towards interdependencies with other clients.
In our implementation, we use linear regression as fML. At client m, fML takes only the
client-specific measurements ytm as input but encodes information from other clients during
the gradient update process. This allows the model to benefit from collective insights while
preserving data privacy.

3. Augmented Client Model fa(.):
The augmented client model fa(.) combines the client model fc and the ML function
fML to enhance the client model. In our case, this augmentation is achieved through a
simple addition:

fa(.) = fc(.) + fML(.)

However, more complex models like neural networks or higher-order polynomials can also
be used for augmentation. The output of fa(.) is designed to have the same dimension as
fc(.), ensuring that it serves as a direct enhancement to the client model without altering
its fundamental structure.

A.3 PSEUDOCODE

The pseudocode for running the client model is given in algorithm 1. The client model is run
independent at each client without any federated approach. The output of the client model i.e., the
estimated states (ĥt

m)c∀m, t are utilized in the federated Granger causal learning, whose pseducodoe
is Ts given in algorithm 2. T is the time series length, epoch is the maximum training epochs, tol is
the stoppage tolerance for the server loss and k is the iteration index.

Algorithm 1 Client Model

1: Inputs:T , Amm, Cmm

2: Choose at Client m: (Km)c
3: for t = 1 to T do
4: (ht

m)c ← Amm · (ĥt−1
m )c

5: (rtm)c ← ytm − Cmm · (ht
m)c

6: (ĥt
m)c ← (ht

m)c + (Km)c · (rtm)c
7: end for

A.4 PROOFS

A.4.1 PROOF OF THEOREM 5.1:

We know that the server loss Ls is given by,

Ls = ∥Ht
a −Ht

s∥22 (12)

We know from the definition of augmented client states that,

Ht
a =


(ht

1)a
.
.
.

(ht
m)a

 =


A11(ĥ

t−1
1 )a
.
.
.

Amm(ĥt−1
m )a

 (13)

We also know from the definition of server states Hs that,

Ht
s =


(ht

1)s
.
.
.

(ht
m)s

 =


A11(ĥ

t−1
1 )c +

∑
n ̸=1 Â

k
1n(ĥ

t−1
n )c

.

.

.

Amm(ĥt−1
m )c +

∑
n ̸=m Âk

mn(ĥ
t−1
n )c

 (14)
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Algorithm 2 Federated Learning of Granger Causality

1: Inputs:T , Amm, Cmm, (ĥt
m)c∀m ∈ {1, ...,M}, t ∈ {1, ..., T}

2: Choose: epoch, tol, k = 0
3: Initialize at Server: {A0

mn}m̸=n

4: Choose at Server: γ
5: Initialize at Client m: θ0m
6: Choose at Client: η1, η2
7: while k < epoch · T or Ls > tol do
8: for t = 1 to T do

9: for each client m do
10: (ht

m)a ← Amm · (ĥt−1
m )a

11: (ĥt
m)a ← (ĥt

m)c + θkm · ytm
12: Send [(ĥt

m)a, (ĥ
t
m)c] to the server

13: end for

14: At the server:
(Ht)a ← [(ht

1)a, ..., (h
t
M )a]

T and (Ht)c ← [(ht
1)c, ..., (h

t
M )c]

T

(Ht)s is computed using (ht
m)s = Amm(ĥt−1

m )c +
M∑

n ̸=m

Âk
mn(ĥ

t−1
n )c

Ls ← ∥(Ht)a − (Ht)s∥22
Send ∇(ĥt−1

m )a
Ls to the client m

Âk+1
mn ← Âk

mn − γ · ∇Âk
mn

Ls

15: for each client m do
16: θk+1

m ← θkm − η1 · ∇θk
m
(Lm)a − η2 · ∇θk

m
Ls

17: end for

18: end for
19: end while

Therefore the server loss Ls is given by,

Ls =

∥∥∥∥∥∥∥∥∥∥


A11(ĥ

t−1
1 )a − [A11(ĥ

t−1
1 )c +

∑
n ̸=1 Â

k
1n(ĥ

t−1
n )c]

.

.

.

Amm(ĥt−1
m )a − [Amm(ĥt−1

m )c +
∑

n ̸=m Âk
mn(ĥ

t−1
n )c]


∥∥∥∥∥∥∥∥∥∥

2

2

(15)

• (1) Update of Server Model Parameter:

We take derivative of Ls w.r.t. Âk
mn to obtain,

∇Âk
mn

Ls = −2
(
Amm(ĥt−1

m )a −
[
Amm(ĥt−1

m )c +
∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

])
(ĥt−1

n )
T

c (16)

Substituting equation 16 in equation 3 (i.e., gradient descent of Âmn) we obtain,

Âk+1
mn = Âk

mn + 2γ

(
Amm(ĥt−1

m )a −
[
Amm(ĥt−1

m )c +
∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

])
(ĥt−1

n )
T

c (17)

We know from the definition of augmented client model that,

(ĥt−1
m )a = (ĥt−1

m )c + θkmyt−1
m (18)

Substituting equation 18 in equation 17 we obtain,

Âk+1
mn = Âk

mn + 2γ
[
Ammθkmyt−1

m −
∑
n̸=m

Âk
mn(ĥ

t−1
n )c

]
(ĥt−1

n )
T

c (19)
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From equation 19 we observe that the (k + 1)
th iteration of server model parameter i.e., Âk+1

mn is
dependent on the kth iteration of augmented client model parameter i.e., θkm.

• (2) Update of Augmented Client Model Parameter:

At client m, the client loss (Lm)a is given by,

(Lm)a =

∥∥∥∥ytm − Cmm ·Amm ·
(
(ĥt−1

m )c + θkmyt−1
m

)∥∥∥∥2
2

(20)

The analytical derivative of (Lm)a w.r.t. θkm is given by,

∇θk
m
(Lt

m)a = −2 ·
(
Cmm ·Amm

)T · (ytm − Cmm ·Amm ·
[
(ĥt−1

m )c + θkmyt−1
m

])
· yt−1

m
T

(21)

Computing derivative of Ls w.r.t. (ĥt−1
m )a we have,

∇(ĥt−1
m )a

Ls = 2 ·AT
mm ·

(
Amm

[
(ĥt−1

m )a − (ĥt−1
m )c

]
−

∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

)
(22)

The derivative of (ĥt−1
m )a w.r.t. θkm is given by,

∇θk
m
(ĥt−1

m )a = yt−1
m

T
(23)

Substituting equations 21, 22, and 23 in equation 2 (i.e., gradient descent of θkm) we obtain,

θk+1
m = θkm + 2 · η1 ·

(
Cmm ·Amm

)T · (ytm − Cmm ·Amm ·
[
(ĥt−1

m )c + θkmyt−1
m

])
· yt−1

m
T

− 2 · η2 ·AT
mm ·

Amm

[
(ĥt−1

m )a − (ĥt−1
m )c

]
−

∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

 · yt−1
m

T

(24)

From equation 24 we observe that the (k + 1)
th iteration of augmented client model parameter i.e.,

θkm is dependent on the kth iteration of server model parameter i.e., Âk
mn.

A.4.2 PROOF OF COROLLARY 5.2:

Assume that θm converges to θ∗m even when Âmn diverges.

Therefore, using equation 24 we have,(
lim
k→∞

θk+1
m

)
=

(
lim
k→∞

θkm

)
+ 2 · η1 ·

(
Cmm ·Amm

)T · (ytm − Cmm ·Amm ·
[
(ĥt−1

m )c +

(
lim
k→∞

θkm

)
yt−1
m

])
· yt−1

m
T

− 2 · η2 ·AT
mm ·

Amm

[
(ĥt−1

m )a − (ĥt−1
m )c

]
−

∑
n ̸=m

(
lim
k→∞

Âk
mn

)
(ĥt−1

n )c

 · yt−1
m

T

Since, Âmn diverges, therefore limk→∞ Âk
mn =∞. We also know that θm converges, thus leading

to limk→∞ θkm = θ∗m. Therefore, LHS ̸= RHS. Hence our assumption is incorrect i.e., θm converges
if Âmn converges.

We proceed similarly in the other direction, by assuming Âmn converges even when θm diverges.
We then leverage equation 19 to contradict the assumption.

Therefore, θm converges if and only if Âmn converges
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A.4.3 PROOF OF PROPOSITION 5.3:

• Condition (1): Convergence of θkm implies∇θk
m
(Lm)a = 0. Therefore using equation 21 we get,

ytm − Cmm ·Amm ·
[
(ĥt−1

m )c + θ∗myt−1
m

]
= 0 (25)

• Condition (2): Convergence of Âk
mn implies∇Âk

mn
Ls = 0. Using equation 16 we obtain,

Amm(ĥt−1
m )a −

[
Amm(ĥt−1

m )c +
∑
n̸=m

Â∗
mn(ĥ

t−1
n )c

]
= 0 (26)

We also know the following from the definition of augmented client model:

(ĥt−1
m )a = (ĥt−1

m )c + θ∗myt−1
m (27)

Substituting equation 27 in equation 26 we have,

Ammθ∗myt−1
m −

∑
n ̸=m

Â∗
mn(ĥ

t−1
n )c = 0 (28)

A.4.4 PROOF OF THEOREM 5.4

We rewrite the server model parameter and augmented client model parameter update equations as
follows:

Âk+1
mn = Âk

mn + 2γ
[
Ammθkmyt−1

m −
∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

]
(ĥt−1

n )
T

c (29)

θk+1
m = θkm + 2 · η1 ·

(
Cmm ·Amm

)T · (ytm − Cmm ·Amm ·
[
(ĥt−1

m )c + θkmyt−1
m

])
· yt−1

m
T

− 2 · η2 ·AT
mm ·

Amm

[
(ĥt−1

m )a − (ĥt−1
m )c

]
−

∑
n ̸=m

Âk
mn(ĥ

t−1
n )c

 · yt−1
m

T

(30)

To handle the matrix equations 29 and 30, we first linearize them using the vectorization technique
described in definitions A.1.

Definition A.1. Vectorization of a matrix is a linear transformation which converts the matrix into
a vector. Specifically, the vectorization of a m × n matrix Z, denoted vec(Z), is the mn × 1
column vector obtained by stacking the columns of the matrix Z on top of one another: vec(Z) =
[z11, . . . , zm1, z12, . . . , zm2, . . . , z1n, . . . , zmn]

⊤

First, leverage definition A.1 to vectorize the matrix equation of update of Âmn mentioned in equa-
tion 19 to obtain:

vec

(
Âk+1

mn

)
= vec

(
Âk

mn

)
−2γvec

([
Âk

mn(ĥ
t−1
n )c+Ammθkmyt−1

m −
∑

p ̸=m,n

Âk
mp(ĥ

t−1
p )

c

]
(ĥt−1

n )
T

c

)
(31)

Similarly we vectorize update equation of θm in equation 24 to obtain:

vec

(
θk+1
m

)
= vec

(
θkm

)
− 2η2vec

([
AT

mmAmmθkmyt−1
m +

∑
n ̸=m

AT
mmÂk

mn(ĥ
t−1
n )c

]
yt−1
m

T
)

− 2η1vec

([
AT

mmCT
mmCmmAmm(θkmyt−1

m + (ĥt−1
m )c)−AT

mmCT
mmyt−1

m

]
yt−1
m

T
)
(32)

We observe many terms in equations 31 and 32 contain multiplication of two or three matrices. To
vectorize such terms we utilize definition A.2

Definition A.2. We express the multiplication of matrices as a linear transformation i.e, for any
three matrices X , Y and Z of compatible dimensions, vec(XY Z) = (Z⊤ ⊗X)vec(Y )

20
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Next, using definition A.2 and using Identity matrix of appropriate dimensions (whenever two ma-
trices are multiplied) s.t., vec(Y Z) = (ZT ⊗ I)vec(Y ) we obtain:

∆k+1 = H ·∆k + J (33)

where,

∆k :=
[
vec(Âk

m1) . . . vec(Âk
m(m−1)) vec(Âk

m(m+1)) . . . vec(Âk
mM ) vec(θkm)

]T

H :=


P11 −2γ(V ⊤

12 ⊗ I) · · · −2γ(V ⊤
1M ⊗ I) γ(Q⊤

m1 ⊗R)
...

...
...

...
...

−2γ(V ⊤
M1 ⊗ I) · · · · · · PMM γ(Q⊤

mM ⊗R)
η2(Qm1 ⊗R⊤) · · · · · · η2(QmM ⊗R⊤) (I −G⊗ F )


J := [0 0 . . . vec(D)]

T with D := AT
mmCT

mm(rt−1
m )cy

t−1
m

T
and ⊗ is the Kronecker prod.

Pmm := (I − 2γ(ĥt−1
m )c(ĥ

t−1
m )

T

c ) ; Qmn := yt−1
m (ĥt−1

n )
T

c ; R := 2Amm ; G := yt−1
m yt−1

m
T

F := η1(2A
T
mmAmm) + η2(2A

T
mmCT

mmCmmAmm) ; Vmn := (ĥt−1
n )c(ĥ

t−1
m )c

T

A.4.5 PROOF OF LEMMA 5.5

This is a direct consequence of theorem 5.4. Since all terms i.e., ∆, H, J ion equation 4 are matrices,
it is convergent if and only if ρ(H) < 1.

Let the stationary value (or value at convergence) for ∆ be denoted by ∆∗. Then from equation 4
we obtain the results as follows:

∆∗ = H∆ ∗+J

=⇒ (I −H) ·∆∗ = J

=⇒ ∆∗ = (I −H)−1 · J

A.4.6 PROOF OF THEOREM 5.6

For the loss function of the federated framework i.e., Lf we have the following gradient descent:

∆k+1 = ∆k − η∇Lf (∆
k) (34)

Equation 5 is analogous to gradient descent of Lf given in equation 34 s.t.,

(I −H) · (∆k −∆∗) = η∇Lf (∆
k) (35)

Also, from definition of L-Lipschitz smoothness we know that,

∥∇Lf (∆
k)∥ ≤ L∥∆k −∆∗∥ (36)

Multiplying both sides of equation 36 with η, and then substituting equation 35, we obtain:

∥(I −H) · (∆k −∆∗)∥ ≤ ηL∥∆k −∆∗∥ (37)

From well established theorems on gradient descent, we know that if Lf is convex and L-Lipschitz
smooth, the gradient descent converges with rate O(1/k) if η ≤ 1

L . Substituting that condition in
equation 37 we obtain:

∥I −H∥ ≤ 1 for O(1/k) rate of convergence

A.4.7 PROOF OF THEOREM 5.7

We follow the same argument as the last proof. However, we have the added condition of µ-
strong convexity. Using the convergence properties of gradient descent, a linear convergence rate is
achieved when η ≤ 2

µ+L .

Substituting η ≤ 2
µ+L in inequality 37 we obtain:

∥I −H∥ ≤ 2L
µ+ L

for O
(
(1− µ

L
)k
)

rate of convergence
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A.4.8 PROOF OF THEOREM 6.1

Definition A.3. If ρ(A − AKoC) < 1 then the oracle’s expected steady state error is zero and we
term such an oracle as convergent. For a convergent oracle the expected residuals E[∥ro∥] = 0.

From Table 1 we know that,

(rm)to = ytm − Cmm · (ht
m)o (38)

and, (rm)ta = ytm − Cmm · (ht
m)a (39)

Therefore, subtracting both the equations and taking expectation of the l2 norm of their difference
we obtain:

E
[
∥(rtm)a − (rtm)o∥

]
= E

[
∥Cmm · ((ht

m)a − (ht
m)o)∥

]
(40)

We know from definition A.3 that E[∥(rtm)o∥] = 0.

We also know that E[∥(rtm)a∥] = 0.

Therefore, E
[
∥((ht

m)a − (ht
m)o)∥

]
= 0

A.4.9 PROOF OF PROPOSITION 6.2

From Table 1 we know that,

(rm)to = ytm − Cmm · (ht
m)o (41)

and, (rm)tc = ytm − Cmm · (ht
m)c (42)

Subtracting both the equations and taking expectation of the l2 norm of their difference we obtain:

E
[
∥(rtm)o − (rtm)c∥

]
= E

[
∥Cmm · ((ht

m)o − (ht
m)c)∥

]
(43)

=⇒ E
[
∥(rtm)o − (rtm)c∥

]
= E

[
∥Cmm · (Amm(ĥt

m)o +
∑
n ̸=m

Amn(ĥ
t
n)o −Amm(ĥt

m)c)∥
]

(44)

=⇒ E
[
∥(rtm)o − (rtm)c∥

]
= E

[
∥Cmm ·Amm[(ĥt

m)o − (ĥt
m)c] + Cmm ·

∑
n ̸=m

Amn(ĥ
t
n)o∥

]
(45)

We know that E[∥(rtm)o∥] = 0. Given ρ(Amm −Amm(Km)cCmm < 1, the quantity E[∥(rtm)c∥] is
finite.

Therefore from inequality 45, we can say that E[∥(ĥt
m)o − (ĥt

m)c∥] ≤ δmmax where, δmmax is a
function of E[∥(rtm)c∥], Cmm, Amm,&

∑
n ̸=m Amn(ĥ

t
n)o.

A.4.10 PROOF OF THEOREM 6.3

After convergence, we know that:

(rtm)∗a = ytm − Cmm

(
Amm(ĥt

m)c +Ammθ∗mytm

)
(46)

We also know from∇Âmn
Ls = 0 the following:

Ammθ∗mytm −
∑
n ̸=m

Â∗
mn(ĥ

t
n)c = 0 (47)

Substituting equation 47 in equation 46 we obtain:

(rtm)
∗
a = ytm − Cmm

(
Amm(ĥt

m)c +
∑
n ̸=m

Â∗
mn(ĥ

t
n)c

)
(48)

We know from the residuals equation of centralized oracle that the following is true:

(rtm)o = ytm − Cmm

(
Amm(ĥt

m)o +
∑
n ̸=m

Amn(ĥ
t
n)o

)
(49)
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Subtracting equation 49 from 48, and using results from proposition 6.2 i.e., E[∥(ĥt
m)o− (ĥt

m)c∥] ≤
δmmax we obtain:

E
[∥∥ ∑

n ̸=m

[Â∗
mn −Amn] · (ĥt−1

n )o
∥∥] ≤ ∥Ammδmmax∥+ ∥

∑
n,n̸=m

Â∗
mnδ

n
max∥ ∀m ∈ {1, ...,M}

A.4.11 PROOF OF COROLLARY 6.4

If the vectors [Â∗
mn − Amn] · (ĥt−1

n )o are collinear ∀m ∈ {1, ...,M}, and minn ̸=m E[∥(ĥt−1
n )o∥]

exists. Then the following is true

E
[∥∥ ∑

n ̸=m

Â∗
mn −Amn · (ĥt−1

n )o
∥∥] = E

[∥∥ ∑
n ̸=m

Â∗
mn −Amn

∥∥.∥∥(ĥt−1
n )o

∥∥] (50)

≥
∥∥∥∥ ∑

n ̸=m

Â∗
mn −Amn

∥∥∥∥.(min
n ̸=m

E[∥(ĥt−1
n )o∥]

)
(51)

Let σn
min = minn ̸=m E[∥(ĥt−1

n )o∥], then using results of theorem 6.3 and inequality 51 we can infer

that,
∥∥∑

n ̸=m[Â∗
mn −Amn]

∥∥ ≤ 1
σn
min
·
(
∥Ammδmmax∥+ ∥

∑
n,n̸=m Â∗

mnδ
n
max∥

)
A.4.12 PROOF OF THEOREM 7.1

Proof. First, we calculate the ℓ2-sensitivities of (ĥt
m)c and (ĥt

m)a with respect to ytm.

From the definition of the estimated states of client model (see 1st column of Table 1) we know that,

(ĥt
m)c = (I −KmCm)ht

m + (Km)cy
t
m.

Since ht
m is constant, the sensitivity is:

∆Sc = max
yt
m,yt ′

m

∥∥(Km)cy
t
m − (Km)cy

t ′
m

∥∥
2

(52)

= ∥(Km)c∥2 · max
yt
m,yt ′

m

∥∥ytm − yt ′m
∥∥
2

(53)

≤ 2By∥(Km)c∥2 (54)
= 2ByBK (55)

From the definition of the estimated states of the augmented client model (see 2nd column of Table
1) we know that,

(ĥt
m)a = (ĥt

m)c + θmytm.

Thus, the associated sensitivity is:

∆Sa = max
yt
m,yt ′

m

∥∥∥(ĥt
m)a − (ĥt ′

m)a

∥∥∥
2

(56)

= max
yt
m,yt ′

m

∥∥(Km)cy
t
m + θmytm − (Km)cy

t ′
m − θmyt ′m

∥∥
2

(57)

= ∥(Km)c + θm∥2 · max
yt
m,yt ′

m

∥∥ytm − yt ′m
∥∥
2

(58)

≤ 2By∥(Km)c + θm∥2 (59)
≤ 2By(∥(Km)c∥2 + ∥θm∥2) (60)
= 2By(BK +Bθ) (61)

Therefore we obtain the conditions on σc and σa to ensure (ϵc, δc), and (ϵa, δa) differential privacy
respectively. Finally using Definition A.7 we say that the mechanism satisfies (ϵc + ϵa, δc + δa)-
differential privacy.
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A.4.13 PROOF OF THEOREM 7.2

Proof. We aim to compute the ℓ2-sensitivity of the clipped gradient matrix Clip
(
∇(ĥt

m)a
Ls, Cg

)
with respect to any single client’s data (states).

Using Definition A.8 we know that,∥∥∥Clip
(
∇(ĥt

m)a
Ls

)∥∥∥
F
≤ Cg. (62)

Let D and D′ be neighboring datasets differing only in the data (states) of a single client m. The
server computes the gradient matrix with respect to all clients’ augmented estimated states. The
change in the clipped gradient matrix due to the change in client m’s data is:

∆G = G−G′,

where

G = Clip
(
∇(ĥt

1)a
Ls, Cg

)
+ · · ·+ Clip

(
∇(ĥt

m)a
Ls(D), Cg

)
+ · · ·+ Clip

(
∇(ĥt

M )a
Ls, Cg

)
,

G′ = Clip
(
∇(ĥt

1)a
Ls, Cg

)
+ · · ·+ Clip

(
∇(ĥt

m)a
Ls(D

′), Cg

)
+ · · ·+ Clip

(
∇(ĥt

M )a
Ls, Cg

)
.

All terms except for the m-th client’s contribution remain the same in G and G′. Thus, the difference
simplifies to:

∆G = Clip
(
∇(ĥt

m)a
Ls(D), Cg

)
− Clip

(
∇(ĥt

m)a
Ls(D

′), Cg

)
.

Using the triangle inequality for the Frobenius norm:

∥∆G∥F =
∥∥∥Clip

(
∇(ĥt

m)a
Ls(D), Cg

)
− Clip

(
∇(ĥt

m)a
Ls(D

′), Cg

)∥∥∥
F

≤
∥∥∥Clip

(
∇(ĥt

m)a
Ls(D), Cg

)∥∥∥
F
+

∥∥∥Clip
(
∇(ĥt

m)a
Ls(D

′), Cg

)∥∥∥
F

≤ Cg + Cg = 2Cg.

Therefore, the ℓ2-sensitivity (with respect to the Frobenius norm) of the clipped gradient matrix is
bounded by 2Cg .

To achieve (ε, δ)-differential privacy, we add Gaussian noise to each element of the gradient matrix.
The standard deviation of the noise should be:

σg ≥
∆SL

√
2 ln(1.25/δ)

ε
=

2Cg

√
2 ln(1.25/δ)

ε
.

Adding Gaussian noise with standard deviation σg to each element of the gradient matrix ensures
that the mechanism satisfies (ε, δ)-differential privacy.

A.5 DISCUSSION ON PRIVACY ANALYSIS

We discuss a comprehensive privacy analysis of our federated Granger causality learning framework
within the context of differential privacy. We begin by introducing key definitions, which form the
foundation for our analysis. Readers are encouraged to refer to Dwork & Roth (2014) for a detailed
discussion on these definitions.

Definition A.4 (Differential Privacy). A randomized mechanism M satisfies (ε, δ)-differential
privacy if for all measurable subsets S of the output space and for any two neighboring datasets D
and D′ differing in at most one element,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.
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Definition A.5 (ℓ2-Sensitivity). The ℓ2-sensitivity ∆S of a function f : D → Rk is the maximum
change in the output’s ℓ2-norm due to a change in a single data point:

∆S = max
D,D′

∥f(D)− f(D′)∥2,

where D and D′ are neighboring datasets.
Definition A.6 (Gaussian Mechanism). Given a function f : D → Rk with ℓ2-sensitivity ∆S, the
Gaussian mechanismM adds noise drawn from a Gaussian distribution to each output component:

M(D) = f(D) +N (0, σ2Ik),

where σ ≥ ∆S
√

2 ln(1.25/δ)

ε ensures thatM satisfies (ε, δ)-differential privacy.
Definition A.7 (Sequential Composition). LetM1 andM2 be two randomized mechanisms such
that, (1)M1 satisfies (ε1, δ1)-differential privacy, and (2)M2 satisfies (ε2, δ2)-differential privacy.
When applied sequentially to the same dataset D, the combination ofM1 andM2 satisfies (ε1 +
ε2, δ1 + δ2)-differential privacy.
Definition A.8 (Clipping Function). Given a matrix G, the clipping function Clip(G,Cg) scales
G to ensure its Frobenius norm does not exceed Cg i.e.,

Clip(G,Cg) = G ·min

(
1,

Cg

∥G∥F

)
,

where ∥G∥F denotes the Frobenius norm of matrix G

To establish the main theoretical results related to privacy (theorems 7.1, and 7.2) , we rely on the
following assumptions:
Assumption A.9. The client’s measurement data ytm is bounded i.e., ∥ytm∥2 ≤ By, ∀m, t

Assumption A.10. The Kalman gain matrix (Km)c is bounded i.e., ∥(Km)c∥2 ≤ BK , ∀m
Assumption A.11. The aug. client model parameter θm is bounded i.e., ∥θm∥2 ≤ Bθ, ∀m
Assumption A.12. The predicted states of the client model i.e., (ht

m)c is constant w.r.t. ytm ∀m, t

Reasoning Behind Assumptions: The rationale behind the above assumptions are as follows:

1. Assumption A.9 is ensured by a stable state-space model. This means if the underlying
dynamics of the system is stable (called as “Bounded Input Bounded Output” stable in state
space literature), then the l2 norm of measurements i.e., ∥ytm∥22 are bounded.

2. Assumption A.10 is again ensured at the client model. This is because, at client m the
Kalman gain (Km)c is a tuning parameter that weights the correction term in a Kalman
filter algorithm (please refer to Appendix A.1).

3. Assumption A.11 is a direct consequence of regularizing machine learning at the aug-
mented client model. This is because θm is the ML parameter at client m, and regularizing
it implies bounding the ML parameter.

4. Assumption A.12 is enforced by the definition of Kalman filter (please see Appendix A.1).
This is because ht

m is the predicted state at time t−1 when the system was observing yt−1
m .

At the current time i.e., time t, ht
m is a constant for the model.

Readers are encouraged to refer to Abadi et al. (2016) for details on the gradient clipping & pertur-
bations explained in the context of deep neural networks.

A.6 ADDRESSING NON-IID DATA DISTRIBUTIONS

In this section we prove using theorem A.14 that our framework inherently encompasses non-IID
data across clients.

Proposition A.13 below gives an equation for the steady-state covariance matrix of a state-space
model. This proposition will serve as a pre-requisite in proving our main result in theorem A.14.
Proposition A.13. For the two-client system defined above, at time t, let the covariance matrix Σt

be defined as Σt := E[htht]. Then the steady-state covariance matrix satisfies, Σ∞ = AΣ∞AT+qI
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Proof. Using the state-space equation, we can write the covariance of ht+1 as,

E[ht+1ht+1T ] = E[(Aht + wt)(Aht + wt)
T
] (63)

Expanding the right-hand side, we get:

E[ht+1ht+1T ] = AE[hthtT ]AT + E[wtwtT ] +AE[htwtT ] + E[wthtT ]AT (64)

Since wtT is zero mean gaussian noise with covariance qI , we have,

E[wtwtT ] = qI. (65)

The noise are independent from the states (since noise as i.i.d.). Therefore,

E[htwtT ] = E[wthtT ] = 0. (66)

We can substitute equations 66, and 65 in equation 64 we obtain,

Σt+1 = AΣtA
T + qI (67)

Taking limt→∞ on both sides of equation 67 we obtain,

Σ∞ = AΣ∞AT + qI

For the ease of explanation, we assume a two client system with state space representation s.t.,

ht =

(
ht
1

ht
2

)
(68)

where, the state evolves according to the following dynamics (see appendix A.1 for preliminaries):

ht = Aht−1 +wt (69)

where:

• A =

(
A11 A12

A21 A22

)
with off-diagonal blocks A12 ̸= 0, and A21 ̸= 0

• wt is zero mean i.i.d. Gaussian process with covariance matrix qI , i.e., wt ∼ N (0, qI),
where q is the variance of the process noise and I is the identity matrix.

The corresponding measurement equation is:

yt = Cht + vt (70)

where vt is the is zero mean i.i.d. Gaussian measurement with covariance matrix rI , i.e.,
wt ∼ N (0, rI), where r is the variance of the measurement noise and I is the identity matrix.
measurement noise.

• Note: We consider a simpler case of diagonal covariance matrix for process and measurement
noise. If we can prove ht

1 and ht
2 are non-IID for this case, it will imply non-IID even for the general

case (non diagonal noise covariance).

Without loss of generality, we will consider A11 ̸= A22, and A12 ̸= 0, A21 ̸= 0. Then we have the
following theorem:
Theorem A.14. For the two-client state-space model defined above, the ht

1 and ht
2 of the state vector

are (1) not identically distributed, and (2) are dependent in the steady state (as t→∞)

Proof. (1) Non-Identical Distribution: The steady-state covariance matrix Σ∞ of the state vector
ht satisfies the equation of proposition A.13 as follows:

Σ∞ = AΣ∞AT + qI
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where Σ∞ =

(
σ11 σ12

σ12 σ22

)
is the steady-state covariance matrix, with σ11 and σ22 representing the

variances of h∞
1 and h∞

2 , respectively.

The system of equations derived from this Lyapunov equation for σ11, and σ22 is as follows:
σ11 = A2

11σ11 +A2
12σ22 + q (71)

σ22 = A2
21σ11 +A2

22σ22 + q (72)

Solving this system shows that the variances σ11 and σ22 are generally different. Therefore, ht
1 and

ht
2 are not identically distributed.

(2) Dependence: The covariance σ12 between h∞
1 and h∞

2 is given by the off-diagonal of Σ∞ s.t.,
σ12 = A11A21σ11 +A12A22σ22 + qA12A21 (73)

If A12 ̸= 0 or A21 ̸= 0, then σ12 ̸= 0, implying that the components h∞
1 and h∞

2 are dependent.

• Note: Theorem A.14 can be extended to a general M client state space model where terms such
as A2

12σ22 will be replaced by
∑

n ̸=m AmnΣnn∀m ∈ {1, ...,M}

A.7 INTERPRETATION OF THEORETICAL RESULTS

A.7.1 UNDERSTANDING DECENTRALIZATION THROUGH A CENTRALIZED LENS

1. Theorem 5.1: The theorem highlights the co-dependence between client and server mod-
els, showing that the update of the client model at iteration (k + 1) depends on the server
model’s parameters at iteration k, and vice versa. This interdependence facilitates coordi-
nated learning, ensuring that both models continuously align and refine their understanding
of cross-client causality during iterative optimization.

2. Corollary 5.2: This result establishes that the convergence of client model parameters
is intrinsically linked to the convergence of server model parameters, and vice versa. It
underscores the necessity for both models to stabilize simultaneously for the framework to
achieve a convergent solution, validating the iterative learning process.

3. Proposition 5.3: Proposition provides closed-form expressions for the optimal parameters
of the client and server models after convergence. These expressions serve as theoretical
benchmarks, helping to validate the framework’s capability to achieve optimal solutions
reflecting true interdependencies.

4. Theorem 5.4: This theorem formulates the decentralized learning process as a unified
recurrent equation. It demonstrates that the federated framework can be viewed as solving
a single recurrent system of linear equations, bridging client and server optimization steps
into a cohesive framework.

5. Lemma 5.5: The lemma provides the convergence conditions for the federated framework,
stating that convergence occurs if and only if the spectral radius of the recurrent system’s
transition matrix is less than 1. It also gives the stationary value of the combined parameter
vector, which represents the framework’s equilibrium state.

6. Theorem 5.6: If the joint loss function is convex and Lipschitz smooth, the theorem guar-
antees a sub-linear convergence rate of O(1/k) under appropriate step-size conditions. This
result ensures that the framework’s iterative optimization process is computationally effi-
cient and steadily progresses towards optimality.

7. Theorem 5.7: For strongly convex loss functions, this theorem establishes a linear con-
vergence rate of O((1 − µ/L)k), where µ is the strong convexity constant, and L is the
Lipschitz constant. This highlights the framework’s efficiency in scenarios where the loss
landscape is well-conditioned.

A.7.2 ASYMPTOTIC CONVERGENCE TO THE CENTRALIZED ORACLE

1. Theorem 6.1: The theorem demonstrates that the augmented client model’s predicted
states converge, in expectation, to those of a centralized oracle. This result provides a
theoretical guarantee that the framework approximates the oracle’s performance despite
operating in a decentralized manner.
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2. Proposition 6.2: The proposition bounds the difference between the estimated states of the
centralized oracle and the client model. It provides a measure of how well the decentralized
framework can approximate the centralized oracle, emphasizing the quality of the learned
interdependencies.

3. Theorem 6.3: This theorem provides an upper bound on the error in estimating the state
matrix’s off-diagonal blocks, which represent cross-client causality. The bound is given
without requiring prior knowledge of the oracle’s ground truth, demonstrating the robust-
ness of the framework’s causal inference.

4. Theorem 6.4: The corollary refines the error bound by incorporating conditions on the ora-
cle’s state predictions, offering tighter guarantees on the accuracy of the estimated causality
structure under specific statistical assumptions.

A.7.3 PRIVACY ANALYSIS

1. Theorem 7.1: The theorem formalizes the privacy guarantees for client-to-server com-
munication. It demonstrates how adding noise to client model updates ensures (ε, δ)-
differential privacy, protecting individual clients’ data while enabling accurate learning of
interdependencies.

2. Theorem 7.2: This theorem provides differential privacy guarantees for server-to-client
communication. It ensures that server updates shared with clients do not reveal sensitive
information about other clients’ data (measurements), maintaining privacy while support-
ing collaborative learning.

A.7.4 ADDRESSING NON-IID DATA DISTRIBUTIONS

1. Proposition A.13: The proposition establishes the steady-state covariance equation for the
state-space model, laying the groundwork for analyzing stability and convergence proper-
ties of the federated framework under stochastic dynamics.

2. Theorem A.14: The theorem proves that the federated framework inherently assumes and
handles non-IID data distributions across clients. It shows that the states of different clients
are both dependent and non-identically distributed, reflecting real-world heterogeneity.

A.8 PERFORMANCE AGAINST BASELINES

Based on the results in Table 4, the following observations can be made when comparing the perfor-
mance of our method against the three baselines:

1. No Client Augmentation: In this baseline, the clients do not augment their models
with machine learning functions, thus ignoring the effects of interdependencies with other
clients. As a result, the server model is not expected to learn cross-client causality. This
is evident in the server loss Ls, which remains constant at a minimal value of 10−5 across
all perturbations and topology changes. Without client augmentation, the framework nei-
ther learns nor detects causality changes. This underscores the importance of incorporating
interdependencies at the client level.

2. No Server Model: This baseline removes the server model entirely, leaving clients to
operate without any coordination. Here, the client loss (L2)a increases with higher levels
of perturbation (ϵ) and topology changes, thus raising a local (client-level) flag. However,
due to the absence of a server model, one cannot confirm that the increases in client loss
are due to changes in causality rather than local anomalies. This experiment highlights the
crucial role of the server model in capturing and validating interdependencies.

3. Pre-Trained Clients: In this case, the client models are augmented with machine learn-
ing functions but are pre-trained independently without any iterative optimization with the
server. Both the client loss (L2)a and the server loss Ls increase with higher perturbations
and topology changes. However, we observe larger Ls values compared to our method.
This suggests that this baseline is over-sensitive to changes in causality, possibly due to
overfitting at the client level in such pre-trained models. This observation requires further
investigation.
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A.9 LIMITATIONS AND FUTURE WORK

1. Scalability: While this paper focused on Granger causality using a linear state-space
model, it did not explore the scalability of the framework. Our current work derived the-
oretical characteristics based on linear assumptions, which, although insightful, may limit
applicability to more complex systems. The true potential of the framework emerges when
we replace the linear state-space model at the server with more advanced machine learning
models like Deep State Space Models, and Graph Neural Networks. These sophisticated
models can capture more intricate interdependencies among a larger number of clients
while still preserving data privacy. Investigating our framework with these enhancements
offers a rich avenue for future research, enabling it to handle complex, high-dimensional
data and providing deeper insights into the interconnected dynamics of large-scale systems.

2. Complex Interdependencies: The interdependencies in the current models are expressed
in the elements of A matrices. The extension of this work to stochastic interdependencies
also represents valuable direction for future research and opens the door to incorporating
probabilistic models such as Dynamic Bayesian Networks. Additionally, the interdepen-
dencies can also have time varying effects which are highly encountered in real world
applications and therefore worthy of investigation.

3. Higher Order Temporal Dependencies: In this framework, we considered only a constant
one-step time lag that is uniform across all clients. However, real-world systems often ex-
hibit more complex temporal dynamics, where dependencies can span multiple time steps
and vary significantly between clients. Investigating the theoretical characteristics of the
framework under higher-order temporal dependencies could provide deeper insights into its
performance and applicability. This extension is particularly important for capturing more
nuanced temporal patterns using Recurrent Neural Network, and Transformer making it
a promising avenue for future exploration.

4. Incorporating Decision Making: Both the server and client models in our framework
function as data analytic models. A natural extension is to incorporate decision-making
capabilities, where clients act based on local data while accounting for inferred interdepen-
dencies. This aligns with work in Multi-Agent Reinforcement Learning which emphasizes
centralized planning and decentralized execution. Investigating our framework within this
context offers a compelling direction for future research, as it could enable more dynamic
interactions between clients and the server while preserving data privacy.

5. Robustness: Our framework assumes ideal conditions, including synchronous updates and
reliable client participation. However, real-world scenarios often involve client dropout,
asynchronous updates, and even malicious clients. Addressing these challenges is essen-
tial to improve the framework’s robustness. Developing mechanisms to handle these issues,
particularly in adversarial settings, would enhance the system’s resilience and reliability.
Exploring such enhancements represents an important direction for future research.

6. Privacy and Security: Our approach was motivated by the logistical challenges of han-
dling high-dimensional measurements, rather than focusing primarily on privacy. To ad-
dress privacy concerns, we provided a preliminary analysis on differential privacy (see Ap-
pendix A.5), showing how noise can be added to protect client data while maintaining the
utility of learned interdependencies. This demonstrates the feasibility of privacy-preserving
methods, but further exploration is needed. Incorporating advanced techniques like ho-
momorphic encryption, zero-knowledge proofs, secure multiparty computation, or even
more sophisticated differential privacy methods could offer stronger privacy guarantees,
representing a fertile ground for further study.
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