
Compressed Computation: Dense Circuits in a Toy
Model of the Universal-AND Problem

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural networks are capable of superposition - representing more features than1

there are dimensions. Recent work considers the analogous concept for compu-2

tation instead of storage, proposing theoretical constructions. But there has been3

little investigation into whether these circuits can be learned in practice.4

In this work, we investigate a toy model for the Universal-AND problem which5

computes the AND of all
(
m
2

)
pairs of m sparse inputs. The hidden dimension that6

determines the number of non-linear activations is restricted to pressure the model7

to find a compute-efficient circuit, called compressed computation.8

We find that the training process finds a simple solution that does not correspond to9

earlier theoretical constructions. It is fully dense - every neuron contributes to every10

output. The solution circuit naturally scales with dimension, trading off error rates11

for neuron efficiency. It is similarly robust to changes in sparsity and other key12

parameters, and extends naturally to other boolean operations and boolean circuits.13

We explain the found solution in detail and compute why it is more efficient than14

the theoretical constructions at low sparsity.15

Our findings shed light on the types of circuits that models like to form and16

the flexibility of the superposition representation. This contributes to a broader17

understanding of network circuitry and interpretability.18

Class A yi = ReLU(uv1 + uv2 +Xi + b)

Class B1 yi = ReLU(uv1 + lv2 +Xi + b)

Class B2 yi = ReLU(lv1 + uv2 +Xi + b)

Class C yi = ReLU(lv1 + lv2 +Xi + b)

v1 v2 A B1 B2 C 4(A+ C −B1−B2)

0 0 0.05 0.05 0.05 0.05 0
0 1 0.15 0 0.15 0 0
1 0 0.15 0.15 0 0 0
1 1 0.25 0 0 0 1

Approximate truth table for each neuron class

Figure 1: Our found circuit: For every pair of inputs (e.g. v1, v2) the model neurons separate into 4
classes based on response to those inputs. A linear combination of those classes recreates the AND
operator, with some error (not shown).

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

1 Introduction19

Models have been found to learn to store a set of sparse features m in a vector of dimension d, where20

d ≪ m. They achieve this with a linear representation of nearly orthogonal vectors per feature, called21

superposition [Elhage et al., 2022]. By relying on the sparsity of feature activation, and tolerating22

a small amount of error due to overlap, an exponential number of features can effectively stored in23

the vector. An understanding of superposition has been critical for mechanistic interpretability of24

models: it has led to foundational concepts in interpretability, the development of interpretability25

tools (e.g. [Cunningham et al., 2023], [Ameisen et al., 2025]) and provided evidence for the Linear26

Representation Hypothesis [Park et al., 2023].27

But storage of features isn’t a full descriptor of how models work. Networks must also do efficient,28

useful computation with features. This presents two difficulties for the model. Firstly, models must29

be able to efficiently work with features that are already represented in superposition. This is called30

computation in superposition [Hänni et al., 2024]. Secondly, models need to deal with the fact that31

they are limited to a few parameters and calculation units (non-linear activation of neurons), called32

compressed computation [Braun et al., 2025].33

Just as an understanding of superposition is necessary to analyze activation space effectively, an34

understanding of computation will be necessary to analyze weights and circuits. Without these under-35

standings, activations/circuits can appear inscrutably commingled. A good theory of computation36

will allow tools and analysis of weights and circuits in a network.37

Theoretical models have been proposed that explore computation in superposition ([Hänni et al.,38

2024], [Bushnaq and Mendel, 2024], [Adler and Shavit, 2024]). These papers find constructions that39

operate directly on input/output features in superposition, and establish bounds on accuracy or model40

size. These constructions generally rely on sparse weights to ensure that neurons do get too much41

interference from irrelevant inputs, allowing estimates to be measured. We call a construction sparse42

if the parameter weights are zero or negligible with probability that approaches one.43

Adler and Shavit [2024] in particular notes that “logical operations like pairwise AND can be44

computed using O(
√
m′ logm′) neurons and O(m′ log2 m′) parameters. There is thus an exponential45

gap between the complexity of computing in superposition versus merely representing features, which46

can require as little as O(logm′) neurons”.47

Thus even with computation in superposition, models are very likely to face bottlenecks in compute,48

needing compressed computation. Our work focuses specifically on this case. We re-use the same49

Universal-AND problem setting of Hänni et al. [2024], but eliminate the main source of computation50

in superposition by using monosemantic input and output. A narrow hidden dimension is used to51

force reuse of neurons for multiple circuits, exploiting the sparsity of the inputs, and controlling the52

error from unrelated inputs interfering with the calculations.53

The Universal-AND problem is the task of efficiently emulating a circuit that takes m sparse boolean54

inputs and produces
(
m
2

)
outputs that each compute the AND operation of a given pair of inputs,55

described further in section 3. We train toy models with one layer of ReLU on this problem for56

various settings of sparsity, s, and hidden dimension size, d.57

We find that the model learns a simple binary-weighted dense circuit, i.e. the layer weights only take58

on two different values. This circuit effectively computes then stores all
(
m
2

)
outputs in superposition59

with some degree of noise, which can then be linearly read out with an additional linear layer. This60

circuit is only used when the inputs are sufficiently sparse. The same circuit design is used for almost61

all values of d, just with higher and higher noise from unrelated inputs.62

The circuit design is fairly robust and general. It can be extended to other Boolean circuit operations63

straightforwardly. We supply a theoretical analysis for how this circuit works and contrast its64

efficiency to the sparse construction described in Hänni et al. [2024].65

This circuit is particularly interesting as every intermediate neuron gives a useful contribution to every66

output. The model uses the increasing values of d as opportunities to distribute each computation as67

widely as possible, reducing error. It does not form distinct, sparse, non-overlapping circuits, even68

for d =
(
m
2

)
, where a naive perfect solution assigning each AND operation its own neuron would be69

possible.70

Our contributions include:71

2

• A novel construction for solving the Universal-AND problem with a 1-layer MLP with72

linear readout (section 5.1). We explain how the construction works and can be extended to73

other Boolean circuitry in one layer (section 6.1).74

• Evidence that this construction can be learned in standard training dynamics (section 5).75

• An approximate analysis of the asymptotic error of this circuit, with each input having76

variance O(s2/d). (section 6.2).77

2 Related Work78

Adler and Shavit [2024, On the Complexity of Neural Computation in Superposition] establishes79

lower/upper parameter and neuron bounds for circuits such as Universal-AND. Like Hänni et al.80

[2024], it supplies a sparse construction, and computes error bounds asymptotically. It also supplies81

an information-theoretic lower bound on the bits of parameters. Our model does not approach these82

theoretical limits, as we generously allocate parameters and only seek to restrict neurons. The paper83

establishes an exponential gap between the number of features that can be stored in an activation, and84

the number of computations that can be done in an equally sized network, demonstrating that models85

are likely to face strong pressures to compress computation to as few neurons as possible.86

Elhage et al. [2022] and Scherlis et al. [2022] explore superposition in toy models and investigate how87

computation is done. The problem setups used in both cases are focused on representation and have88

largely trivial computation. They rely on a hidden layer smaller than the input size, which means they89

cannot easily distinguish between the computation in superposition and compressed computation.90

Bushnaq and Mendel [2024, Circuits in Superposition: Compressing many small neural networks]91

examines computation in superposition for a different non-trivial problem. They also focus on sparse92

theoretical constructions and their asymptotic behavior, and do not explore what models actually93

learn or if a dense circuit could perform better.94

3 Background And Setup95

Hänni et al. [2024, Toward A Mathematical Framework for Computation in Superposition] first96

posed the question of how computation in superposition works. They introduce the Universal-AND97

problem, which computes the full set of pairwise AND operations on a set of inputs.98

Formally, the Universal-AND problem considers a set of Boolean inputs v1, · · · , vm taking values in99

{0, 1}. The inputs are s-sparse, i.e. at most s are active at once, Σvi ≤ s. The problem is to create a100

one-layer MLP model that computes a vector of size d, called the neuron activations, such that it’s101

possible to read out every vi ∧ vj using an appropriate linear transform.102

The problem as originally stated encodes the m inputs in superposition in activation vector of size d0103

but we omit this step and work directly on vi.104

For values of d ≪
(
m
2

)
there is not enough neurons to naively compute every possible AND pair105

separately. But if we assume s ≪ d, then the model can take advantage of the sparsity of the inputs106

to re-use the same model weights for unrelated calculations.107

Our model can be described mathematically as108

y = ReLU(Wv + b)

z = Ry + c

where W ∈ Rm×d, b ∈ Rd, R ∈ Rd×m2

, c ∈ Rm2

.109

In other words, W and b describe the "compute layer", while R and c describe the "readout layer".110

The existence of a readout layer makes the model effectively 2 layers deep. The readout weight matrix111

is large so the model is not bottlenecked on parameter count (unlike Adler and Shavit [2024]). Rather,112

the bottleneck is on the non-linear activations, the neurons. The readout layer should be understood113

as a trainable proxy for some more realistic setting, such as trying to learn a specific linear probe, or114

further model layers that are interested in a large fraction of possible pairwise AND operations.115

3

For convenience of indexing, the output has dimension m2 corresponding to ordered pairs. It is116

symmetric, and the diagonal is unused. This gives a target model output of117

ẑim+j =

{
vi ∧ vj i ̸= j

0 i = j

4 Method118

We trained the above two-layer model on synthetic data where exactly s values of vi are randomly119

chosen to be active (i.e. take value 1).120

We used RMS loss with different weighting per sample. This is because vi are sampled uniformly, so121

test cases of the form 0 ∧ 0 are much more common than 1 ∧ 0 and 1 ∧ 1. So we up-weighted the122

loss so that the expected contribution from each of those three cases is equal. This encourages the123

model to focus on the few active results rather than the vast sea of inactive results. We can justify this124

because the second layer is intended as a "readout" layer. It is a proxy for a larger network that needs125

a lot of Boolean operations, which would also have unbalanced optimization pressure.126

Weight decay of 10−6 is used to regularize the network. This matches real-world training runs, and127

encourages the model to focus on optimal circuits1. Each model was trained with 6000 epochs of 10k128

batches.129

We used m = 100, s = 3 except where noted differently.130

All experiments were trained on a single A40. The full code can be found in the supplemental131

materials[Anonymous].132

5 Results133

Figure 2: Model loss as d increases.

We find that at low s values, the model does find solutions that are capable of solving the Universal-134

AND problem, even extending to extremely low values of d. The model weights take on a simple135

pattern of binary weights described below.136

At higher values of s (starting at 10 for m = 100) this circuit breaks down. In some cases, the137

weights of W do not neatly separate into two values, but the readout matrix R is structured similarly138

(appendix A.1). In other cases, the model prefers to learn an additive approximation zim+j =139

0.4(vi + vj) (fig. 6).140

Figure 9 range of values the Binary Weights Circuit is learnt on.141

1Runs without weight decay show similar but higher variance results (appendix C.3).

4

5.1 The Binary Weighted Circuit142

The model generally tends towards neuron weights that are binary, i.e. takes on only one of two143

different values2. The specific choices of value seems randomized.144

Figure 3: Distribution of Wij values for 1 ≤ j ≤ 10.

Expressed mathematically145

Wij =

{
ui with probability pi
li with probability 1− pi

We discuss why how this circuit works in section 6.1.146

Figure 4 charts the specific values of ui, li, pi in shown in fig. 4. It illustrates that all neuron weights147

are clustered in a tight region and uipi + li(1− pi) ≈ 0.148

Figure 4: Distribution of upper/lower weights by neuron (d = 2000). Error bars show 90th-percentile
deviation from the weight being near to either the upper/lower bound. Charts for more values of d
can be found in appendix B.

5.2 Readout Charts149

Another way of viewing the model is in terms of how the neurons are read out by matrix R. Pick two150

arbitrary inputs (say v1 and v2), then plot each neuron in a scatter chart based on their weights (i.e.151

Wi1 on the x-axis, Wi2 on the y-axis). Color the neurons based on their readout weight for v1 ∧ v2152

(i.e. R(1m+2),i).153

The four corners of fig. 5 correspond to classes A (top right), C (bottom left), B1, and B2 as described154

in section 6.1. Class C has higher weights per-neuron as there are fewer neurons in that class than155

class A.156

2More formally, the measured circuits have a bimodal distribution with very low deviation from the modes.
In appendix B I give a formula that measures distance from a true binary distribution, which is small.

5

Figure 5: Readout weights by input weights
(d = 2000, s = 3) showing the Binary
Weighted Circuit

Figure 6: Readout weights by input weights
(d = 100, s = 50) showing a degenerate cir-
cuit.

6 Analysis157

6.1 Circuit Analysis158

The results show that for a wide range of parameters, the model tends towards binary weights where159

for any given neuron, the weights it uses only take on two different values, with no discernible pattern.160

Expressed mathematically161

Wij =

{
ui with probability pi
li with probability 1− pi

This resembles constructions from Hänni et al. [2024]. Their main result3 is a sparse construction162

which followed this exact pattern. We’ll call it the CiS Construction. It takes on values163

ui = 1 li = 0 pi = log2 m/
√
d

In the CiS Construction pi is small, and li is zero, meaning the neurons were only sparsely connected.164

This property was key in proving an upper bound on the loss of the model.165

But in the learned Binary Weighted Circuit we see quite different values. For d = 1000, we see166

values similar to the following, which we will use in the subsequent worked example4.167

ui = 0.1 li = −0.25 pi = 0.75

Notation: When the values are a constant, we’ll omit the i subscript.168

Unlike the CiS Construction, this is dense. Every neuron reads a significant value for every possible169

input.170

We now explain how neurons in this architecture can be used to approximate the AND operation with171

a linear readout. Without loss of generality, we focus on the first two input variables — that is, we172

aim to read out v1 ∧ v2 from the activations of d neurons that share the same values for u, l, and p,173

differing only in their randomly initialized weights.174

We can subdivide the neurons into 4 classes based on the weight used for each of the first two inputs,175

Wi1 and Wi2.176

3Hänni et al. [2024] also mentions a randomized dense construction which is also relevant. See appendix A.1
4As the readout matrix R can supply an arbitrary positive scaling, the only important details of u / l are their

signs and ratio. The magnitude tends to be around 1/
√
d as this minimizes regularization loss (weight decay) in

a two layer network. Appendix B includes more details on the exact values seen of u and v for different d.

6

Class A yi = ReLU(uv1 + uv2 +Xi + b) occurs with proportion p2

Class B1 yi = ReLU(uv1 + lv2 +Xi + b) occurs with proportion p(1− p)

Class B2 yi = ReLU(lv1 + uv2 +Xi + b) occurs with proportion p(1− p)

Class C yi = ReLU(lv1 + lv2 +Xi + b) occurs with proportion (1− p)2

Where Xi, the contribution from other inputs, is defined as
∑m

k=3 Wikvk. We call Xi the interference177

term.178

To simplify the explanation, for now we’ll ignore Xi. Later in section 6.2 we will model it as random179

variable of mean zero. We’ll also set b = 0.05; the exact choice of constants is not relevant to the key180

argument.181

Table 1 shows a truth table for the results of each class of neuron for the 4 possible values of v1, v2.182

v1 v2 A B1 B2 C 4(A+ C −B1−B2)

0 0 0.05 0.05 0.05 0.05 0
0 1 0.15 0 0.15 0 0
1 0 0.15 0.15 0 0 0
1 1 0.25 0 0 0 1

Table 1: Approximate truth tables for each neuron class, and their linear combination.

Taking the right linear combination of the 4 truth tables, we can recreate the AND truth table. This183

linear combination is a close match for the values seen in section 5.2.184

Taking a linear combination will always be possible if the 4 classes are linearly independent, which is185

true for quite a wide range of choices for the key parameters5.186

As there are many neurons in each class, the readout matrix can average over them, reducing the noise187

to reasonable levels. This is similar to the proofs on noise bounds in Hänni et al. [2024], discussed188

further in section 6.2.189

Finally, we note that the same argument and weights matrix can be adapted for other tasks. A190

different choice linear combination in the readout matrix can supply any other truth table instead191

(appendix A.2). And multiple inputs can be considered: with 3 inputs there are 8 possible neuron192

classes, to form in linear combination the 8 values of a 3-way truth table6.193

6.2 Circuit Efficiency194

Why is this dense Binary Weighted Circuit learned in preference to the CiS Construction described195

in Hänni et al. [2024]? We present an approximating argument that it produces lower loss values196

asymptotically.197

We do this by computing the variance of model output over randomly sampled sparse input. In198

other words, we want Var(zj). Without loss of generality, we choose j = 1m + 2, i.e. the output199

responsible for computing v1 ∧ v2.200

6.2.1 The variance of a single neuron yi201

As before, that lets us write yi, the neuron activations, with the contribution from v3, · · · , vm is202

folded into an interference term Xi:203

5In particular, if we re-add Xi, it tends to pull the classes’ truth tables towards co-linearity. So you can still
find a linear combination, but the coefficients grow as Xi gets noisier.

6Error grows swiftly with number of inputs, so more complex circuits in models no doubt rely on multiple
layers, discussed in Hänni et al. [2024].

7

Class A yi = ReLU(uv1 + uv2 +Xi + b) occurs with proportion p2

Class B1 yi = ReLU(uv1 + lv2 +Xi + b) occurs with proportion p(1− p)

Class B2 yi = ReLU(lv1 + uv2 +Xi + b) occurs with proportion p(1− p)

Class C yi = ReLU(lv1 + lv2 +Xi + b) occurs with proportion (1− p)2

Xi is defined as
∑m

k=3 Wikvk. As v is exactly s-sparse, we know between s values of vk will be 1,204

or rarely s− 2 or s− 1 values7. Each of these entries will contribute u or l depending on Wik. So,205

asymptotically, we can model Xi as independent and binomially distributed.206

Xi ∼ (u− l) Binom(s, p) + sl with Var(Xi) = (u− l)2sp(1− p)

With some further work, we can justify207

Var(yi) = Var (ReLU(Xi +O(1))) = O((u− l)2sp(1− p))

Now we can use this estimate to compute the variance of the model output for the CiS Construction208

and the Binary Weighted Circuit.209

6.2.2 The variance of output zj in the CiS construction210

In the CiS Construction, u = 1, v = 0. It sets up the readout matrix to compute zj as the mean of all211

yi in class A. There are approximately dp2 such neurons.212

VarCiS(zi) = Var

(
Σclass Ayi

dp2

)
= βsp(1− p)/dp2

The construction sets p = O(log2m/
√
d), so213

VarCiS(zi) = O(s/
√
d/ log2 m)

6.2.3 The variance of output zj in the Binary Weighted Circuit214

Meanwhile in the Binary Weighted Circuit, we pick readout weights based on the inverse of the215

4× 4 truth table matrix. It can be shown that the total readout weight for each neuron class class is216

O(
√
s/(u− l)). 8.217

So zj is the sum of dp2 class A neurons, each with readout weight O(
√
s/(u− l)dp2), plus similar218

for classes B1, B2 and C. Taking p = O(1) and applying the earlier formula for per-neuron variance219

vives220

VarBinary(zi) = O(s2/d)

So the Binary Weighted Circuit has superior efficiency when s grows slower than
√
d/ log2 m.221

This result matches intuition. Increasing p makes the circuitry more dense, i.e. the model is making222

use more neurons for each calculation. This increases the variance of individual neurons but gives223

you many more to average over. s determines that per-neuron noise, so determines the trade-off. The224

CiS Construction merely aimed to minimize the interference term of a single neuron, as this was225

critical for establishing provable error bounds.226

7Depending on the value of v1 and v2. With more rigor, we could condition on these values, compute
variance for each, then combine.

8This comes from Xi having variance proportional to s, but the neuron classes only differ from each other by
a constant translation of at most 2(u− l). As s increases, the classes be ReLU zero-points are at increasingly
similar points on the probability distribution.

8

Aside from accuracy considerations, the existence of weight decay also encourages dense circuits.227

This is because weight decay penalises a strong weight on a single neuron more than an equivalent228

collection of weaker weights on several neurons.229

7 Limitations230

This paper attempts to build on previous theoretical understanding in a more realistic trained setting,231

but toy models still fall short of real-world models. In particular, our use of monosemantic in-232

puts/outputs and choice of the Universal-AND problem are deliberate simplifications of superposition,233

and complex circuits found in practice.234

The experimental results show that the Binary Weighted Circuit is used at reasonable values of235

sparsity (fig. 9), but we have not performed a full sweep to fully characterize this. Nor have we236

explained why the particular values of u, v, p observed are used. Adler and Shavit [2024] gives much237

tighter and general bounds on what is possible, so we have focused on the mechanics of the circuitry.238

Section 6 relies on several approximations that are not rigorously proved. Future theoretical or239

empirical work would be needed to gain confidence in these claims.240

8 Conclusion241

We have established the dense Binary Weighted Circuit that solves the Universal-AND problem.242

We analytically describe the fundamental behaviour of the circuit and approximate its error rate.243

This represents a useful formulation for understanding compressed computation - previous works244

either described theoretical sparse circuits that are not learned in practice, or do not give an analytic245

description of the circuit. Braun et al. [2025] poses the question whether compressed computation246

and computation in superposition are “subtly distinct phenomena”; this paper answers yes, by finding247

compressed computation that arises even with monosemantic input/output.248

Dense circuits like these challenge the common assumption that circuits can be found by finding a249

sparse subset of connections inside a larger model, and give an additional explanation why features250

are rarely monosemantic. If it is better to have many shared noisy calculations than a smaller251

set of isolated, reliable ones, then a different set of techniques is needed to detect them. It is an252

important principle to be aware of while conducting interpretability work, or designing new network253

architectures.254

Given the novel structure of this circuit combined with its simplicity, we believe this problem and255

circuit can act as a good testbed for circuit-based interpretability tooling.256

9

References257

Micah Adler and Nir Shavit. On the complexity of neural computation in superposition. CoRR,258

abs/2409.15318, 2024. URL https://doi.org/10.48550/arXiv.2409.15318.259

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,260

Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,261

Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,262

Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,263

Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing264

computational graphs in language models. Transformer Circuits Thread, 2025. URL https:265

//transformer-circuits.pub/2025/attribution-graphs/methods.html.266

Anonymous. Accompanying code for this paper. URL https://anonymous.4open.science/r/267

uand-toy-model-80AD/uand.ipynb.268

Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, and Lee Sharkey. Interpretability269

in parameter space: Minimizing mechanistic description length with attribution-based parameter270

decomposition, 2025. URL https://arxiv.org/abs/2501.14926.271

Lucius Bushnaq and Jake Mendel. Circuits in superposition: Compressing many small272

neural networks into one. https://www.lesswrong.com/posts/roE7SHjFWEoMcGZKd/273

circuits-in-superposition-compressing-many-small-neural, 2024. Accessed: 2025-274

05-09.275

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-276

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,277

2023.278

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,279

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.280

arXiv preprint arXiv:2209.10652, 2022.281

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of com-282

putation in superposition. In ICML 2024 Workshop on Mechanistic Interpretability, 2024. URL283

https://openreview.net/forum?id=OcVJP8kClR.284

Sam Marks. What’s up with llms representing xors of arbitrary fea-285

tures? https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/286

what-s-up-with-llms-representing-xors-of-arbitrary-features, 2024. Accessed:287

2025-05-09.288

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry289

of large language models. In Causal Representation Learning Workshop at NeurIPS 2023, 2023.290

URL https://openreview.net/forum?id=T0PoOJg8cK.291

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, and Buck Shlegeris. Polysemanticity292

and capacity in neural networks. arXiv preprint arXiv:2210.01892, 2022.293

10

https://doi.org/10.48550/arXiv.2409.15318
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://anonymous.4open.science/r/uand-toy-model-80AD/uand.ipynb
https://anonymous.4open.science/r/uand-toy-model-80AD/uand.ipynb
https://anonymous.4open.science/r/uand-toy-model-80AD/uand.ipynb
https://arxiv.org/abs/2501.14926
https://www.lesswrong.com/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://www.lesswrong.com/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://www.lesswrong.com/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://openreview.net/forum?id=OcVJP8kClR
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://openreview.net/forum?id=T0PoOJg8cK

A Other Considerations294

We include brief notes on how our result interacts with related discussions regarding Computation In295

Superposition.296

A.1 Is this Just Feature Superposition?297

In a sense, the circuit found here bears a lot of resemblance to simply randomly embedding the298

m inputs in d dimensional space. In both cases, you get a mix of neurons with different response299

patterns, and you can approximate the AND operation by taking a dense linear combination of the300

neurons.301

Indeed, training the toy model with the first layer frozen to random values still results in a similar302

pattern of readouts (fig. 7). Hänni et al. [2024] includes a similar observation in Section 3.3.303

Figure 7: Readout weight by input weights (uniform initialization, d = 10000)

The circuit described in this paper uses binary weights, rather than some other random distribution.304

But we expect such a pure distribution is unlikely to replicate outside of toy models. Using binary305

weights simplifies analysis and has an improved loss, but only improves loss by a constant factor306

(fig. 8).307

Thus a key takeaway from the paper could be: For a set of sparse binary features stored in superposi-308

tion with sufficiently random directions, it is possible to linearly readout any Boolean circuit, subject309

to a certain amount of error. This sort of dense circuitry is easily learnt and is robust to the exact310

distribution, so we should expect it to be a common mechanism in real world models.311

A.2 XOR Circuits312

Marks [2024] observes that readout directions corresponding to XOR of input features commonly313

occur in models. Marks argues that these will cause linear probes to fail to generalize. I.e. if a probe314

trained to predict v1 only on data where v2 = 0, then it will be just as likely to identify v1 ⊕ v2 as it315

is v1. These give opposite answers when out of distribution v2 = 1, breaking the probe.316

11

Figure 8

Our result gives an explanation for why XOR circuits may be readaoutable, but probes still have317

some generalizability. Using the procedure described in section 6.1, for any boolean circuit of v1,318

v2, we can get the readout weights of neuron classes that approximate it. Let’s apply that for v1 and319

v1 ⊕ v2 under the same numeric values of u, l and b used for table 1.320

v1 ∼ 4A− 4B1 +
8

3
B2− 8

3
C

v1 ⊕ v2 ∼ 20

3
B1 +

20

3
B2− 40

3
C

While both target functions are linearly decodable, the XOR direction requires significantly larger321

weights. As a result, under typical regularization schemes9 the v1 direction is likely to be favoured.322

B Binary Weight Charts323

We supply binary weight charts for a range of values of d. Recall that m = 100, s = 3. Error bars324

show 90th-percentile, so indicate the extent to which the individual weights associated with a neuron325

do not perfectly match u / l.326

9For some choices of p when using L1 norm relative preference may reverse. Nonetheless, the general
principle holds: one of the two linearly accessible directions will be favoured.

12

13

In fig. 9 we measure the similarity of the entire weights matrix to a binary distribution, using327

score = 1− mean
i,j

2min(|Wij − ui|, |Wij − li|)
ui − li

for ui = max
j

Wij , li = min
j

Wij

Figure 9: Similarity of learned weight matrix to a binary distribution for various d, s

14

Figure 10: p, or the proportion of Wij entries above mean
j

Wij

C Other experiments328

C.1 Train/test329

We ran some models with 10% of the space of generated data held out to ensure that the learned330

circuit was capable of generalization. The change in loss was extremely small (appendix C.1) and331

there were no qualitative changes to note.332

15

C.2 Varying m333

As R has m2 rows, it is not feasible to scale up this toy model to significant values of m. This is a334

natural consequence of avoiding activation superposition in inputs/outputs. We did vary the value of335

m to establish that the general patterns replicate at values of m between 50 and 200 (fig. 11, fig. 12).336

Figure 11

Figure 12

C.3 Weight Decay337

Weight decay generally encourages training to use the most efficient circuits. This can be convenient338

for circuit analysis as it simplifies things without doing long training runs. It also keeps the norm of339

model parameters in a constrained reasonable range which makes reading graphs easier. Without it,340

the model could double W and b, halve R and c and have the exact same loss.341

I ran the same training without weight decay and got similar, but messier results (fig. 13). I also ran342

the training for four times longer to check convergence, and found that gave similar clustering to the343

results with weight decay (fig. 14).344

16

Figure 13 Figure 14

17

	Introduction
	Related Work
	Background And Setup
	Method
	Results
	The Binary Weighted Circuit
	Readout Charts

	Analysis
	Circuit Analysis
	Circuit Efficiency
	The variance of a single neuron yi
	The variance of output zj in the CiS construction
	The variance of output zj in the Binary Weighted Circuit

	Limitations
	Conclusion
	Other Considerations
	Is this Just Feature Superposition?
	XOR Circuits

	Binary Weight Charts
	Other experiments
	Train/test
	Varying m
	Weight Decay

