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ABSTRACT

In the human brain, sequences of language input are processed within a dis-
tributed and hierarchical architecture, in which higher stages of processing en-
code contextual information over longer timescales. In contrast, in recurrent neu-
ral networks which perform natural language processing, we know little about
how the multiple timescales of contextual information are functionally organized.
Therefore, we applied tools developed in neuroscience to map the “processing
timescales” of individual units within a word-level LSTM language model. This
timescale-mapping method assigned long timescales to units previously found to
track long-range syntactic dependencies. Additionally, the mapping revealed a
small subset of the network (less than 15% of units) with long timescales and
whose function had not previously been explored. We next probed the functional
organization of the network by examining the relationship between the processing
timescale of units and their network connectivity. We identified two classes of
long-timescale units: “controller” units composed a densely interconnected sub-
network and strongly projected to the rest of the network, while “integrator” units
showed the longest timescales in the network, and expressed projection profiles
closer to the mean projection profile. Ablating integrator and controller units af-
fected model performance at different positions within a sentence, suggesting dis-
tinctive functions of these two sets of units. Finally, we tested the generalization
of these results to a character-level LSTM model and models with different archi-
tectures. In summary, we demonstrated a model-free technique for mapping the
timescale organization in recurrent neural networks, and we applied this method
to reveal the timescale and functional organization of neural language models.1

1 INTRODUCTION

Language processing requires tracking information over multiple timescales. To be able to predict
the final word “timescales” in the previous sentence, one must consider both the short-range context
(e.g. the adjective “multiple”) and the long-range context (e.g. the subject “language processing”).
How do humans and neural language models encode such multi-scale context information? Neuro-
scientists have developed methods to study how the human brain encodes information over multiple
timescales during sequence processing. By parametrically varying the timescale of intact context,
and measuring the resultant changes in the neural response, a series of studies (Lerner et al., 2011;
Xu et al., 2005; Honey et al., 2012) showed that higher-order regions are more sensitive to long-
range context change than lower-order sensory regions. These studies indicate the existence of a
“hierarchy of processing timescales” in the human brain. More recently, Chien & Honey (2020)
used a time-resolved method to investigate how the brain builds a shared representation, when two
groups of people processed the same narrative segment preceded by different contexts. By directly
mapping the time required for individual brain regions to converge on a shared representation in
response to shared input, we confirmed that higher-order regions take longer to build a shared repre-
sentation. Altogether, these and other lines of investigation suggest that sequence processing in the

1The code and dataset to reproduce the experiment can be found at https://github.com/
sherrychien/LSTM_timescales
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brain is supported by a distributed and hierarchical structure: sensory regions have short process-
ing timescales and are primarily influenced by the current input and its short-range context, while
higher-order cortical regions have longer timescales and track longer-range dependencies (Hasson
et al., 2015; Honey et al., 2012; Chien & Honey, 2020; Lerner et al., 2011; Baldassano et al., 2017;
Runyan et al., 2017; Fuster, 1997).

How are processing timescales organized within recurrent neural networks (RNNs) trained to per-
form natural language processing? Long short-term memory networks (LSTMs) (Hochreiter &
Schmidhuber, 1997) have been widely investigated in terms of their ability to successfully solve se-
quential prediction tasks. However, long-range dependencies have usually been studied with respect
to a particular linguistic function (e.g. subject-verb number agreement, Linzen et al. 2016; Gulor-
dava et al. 2018; Lakretz et al. 2019), and there has been less attention on the broader question of
how sensitivity to prior context – broadly construed – is functionally organized within these RNNs.
Therefore, drawing on prior work in the neuroscience literature, here we demonstrate a model-free
approach to mapping processing timescale in RNNs. We focused on existing language models that
were trained to predict upcoming tokens at the word level (Gulordava et al., 2018) and at the char-
acter level (Hahn & Baroni, 2019). The timescale organization of these two models both revealed
that the higher layers of LSTM language models contained a small subset of units which exhibit
long-range sequence dependencies; this subset includes previously reported units (e.g. a “syntax”
unit, Lakretz et al., 2019) as well as previously unreported units.

After mapping the timescales of individual units, we asked: does the processing timescales of each
unit in the network relate to its functional role, as measured by its connectivity? The question is mo-
tivated by neuroscience studies which have shown that in the human brain, higher-degree nodes tend
to exhibit slower dynamics and longer context dependence than lower-degree nodes (Baria et al.,
2013). More generally, the primate brain exhibits a core periphery structure in which a relatively
small number of “higher order” and high-degree regions (in the prefrontal cortex, in default-mode
regions and in so-called “limbic” zones) maintain a large number of connections with one another,
and exert a powerful influence over large-scale cortical dynamics (Hagmann et al., 2008; Mesulam,
1998; Gu et al., 2015). Inspired by the relationships between timescales and network structure in
the brain, we set out to test corresponding hypotheses in RNNs: (1) Do units with longer-timescales
tend to have higher degree in neural language models? and (2) Do neural language models also ex-
hibit a “core network” composed of functionally influential high-degree units? Using an exploratory
network-theoretic approach, we found that units with longer timescales tend to have more projec-
tions to other units. Furthermore, we identified a set of medium-to-long timescale “controller” units
which exhibit distinct and strong projections to control the state of other units, and a set of long-
timescale “integrator units” which showed influence on predicting words where the long context is
relevant. In summary, these findings advance our understanding of the timescale distribution and
functional organization of LSTM language models, and provide a method for identifying important
units representing long-range contextual information in RNNs.

2 RELATED WORK

Linguistic Context in LSTMs. How do LSTMs encode linguistic context at multiple timescales?
Prior work suggested that the units sensitive to information that requires long-range dependencies
are sparse. By ablating one unit at a time, Lakretz et al. (2019) found two units that encode infor-
mation required for processing long-range subject-verb number agreement (one for singular and one
for plural information encoding). They further identified several long-range “syntax units” whose
activation was associated with syntactic tree-depth. Overall, Lakretz et al. (2019) suggests that a
sparse subset of units tracks long-range dependencies related to subject-verb agreement and syntax.
If this pattern is general – i.e. if there are very few nodes tracking long-range dependencies in gen-
eral – this may limit the capacity of the models to process long sentences with high complexity, for
reasons similar to those that may limit human sentence processing (Lakretz et al., 2020). To test
whether long-range nodes are sparse in general, we require a model-free approach for mapping the
context dependencies of every unit in the language network.

Whole-network context dependence. Previous work by Khandelwal et al. (2018) investigated the
duration of prior context that LSTM language models use to support word prediction. Context-
dependence was measured by permuting the order of words preceding the preserved context, and
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observing the increase in model perplexity when the preserved context gets shorter. Khandelwal
et al. (2018) found that up to 200 word-tokens of prior context were relevant to the model perplexity,
but that the precise ordering of words only mattered within the most recent 50 tokens. The token-
based context-permutation method employed in this study was analogous to the approach used to
measure context-dependence in human brain responses to movies (Hasson et al., 2008) and to audi-
tory narratives (Lerner et al., 2011).

Inspired by the findings of Khandelwal et al. (2018) and Lakretz et al. (2019), in the present study we
set out to map the context-dependence across all of the individual units in the LSTM model. This en-
abled us to relate the timescales to the effects of node-specific ablation and the network architecture
itself. In addition, our context manipulations included both context-swapping (substituting alterna-
tive meaningful contexts) and context-shuffling (permuting the words in the prior context to disrupt
inter-word structure), which allowed us to better understand how individual words and syntactically
structured word-sequences contribute to the the context representation of individual hidden units.

3 METHODS

3.1 LANGUAGE MODELS AND CORPUS

We evaluated the internal representations generated by a pre-trained word-level LSTM language
model (WLSTM, Gulordava et al., 2018) as well as a pre-trained character-level LSTM model
(CLSTM, Hahn & Baroni, 2019) as they processed sentences sampled from the 427804-word
(1965719-character) novel corpus: Anna Karenina by Leo Tolstoy (Tolstoy, 2016), translated from
Russian to English by Constance Garnett.

For the WLSTM, we used the model made available by Gulordava et al. (2018). The WLSTM has
a 650-dimensional embedding layer, two 650-dimensional hidden layers and an output layer with
vocabulary size 50,000. The model was trained and tested on Wikipedia sentences and was not
fine-tuned to the novel corpus. Therefore, we only used sentences with low perplexity from the
novel in our main timescale analysis. We performed the same analysis using the Wikipedia test set
from Gulordava et al. (2018) and obtained similar results (See Section 5.3, Figure A.4A, Appendix
A.2.1). For the CLSTM, we used the model made available by Hahn & Baroni (2019). The CLSTM
has a 200-dimensional embedding layer, three 1024-dimensional hidden layers and an output layer
with vocabulary size 63. The model was trained on Wikipedia data with all characters lower-cased
and whitespace removed. We tested the model with sentences sampled from Anna Karenina as the
WLSTM model, and we obtained bits-per-character (BPC) similar to what Hahn & Baroni (2019)
reported in their original work.

3.2 TEMPORAL CONTEXT CONSTRUCTION PARADIGM

In order to determine the processing timescales of cell state vectors and individual units, we mod-
ified the “temporal context construction” method developed by Chien & Honey (2020). Thus, the
internal representations of the model were compared across two conditions: (1) the Intact Context
condition and (2) the Random Context condition. In both conditions, the model was processing the
same shared sequence of words (for example, segment B), but the preceding sentence differed across
the two conditions. In the Intact Context condition, the model processed segment B (the shared seg-
ment) preceded by segment A, which was the actual preceding context from the original text. In the
current study, for example, segment A and B are connected by “, and” within long sentences from
the novel corpus (Figure 1A), to ensure the temporal dependencies between A and B. In the Random
Context condition, however, the model processed the same shared input (segment B), but the context
was replaced by segment X, which was a randomly sampled context segment from the rest of the
corpus. Segment X was therefore not usually coherently related to segment B. For the WLSTM
timescale analysis, we chose long sentences in the Intact Context condition that satisfied the follow-
ing constraints: (1) mean perplexity across all words in the sentence < 200, (2) the shared segment
was longer than 25 words, and (3) the context segment was longer than 10 words. 77 sentences are
included as trials in our analyses. In the Random Context condition, we preserved the same shared
segments and randomly sampled 30 context segments (each longer than 10 words) from other parts
of the novel. For the CLSTM timescale analysis, we used the same 77 long sentences in the Intact
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Context condition, and randomly sampled 25 context segments (with length > 33 characters) for the
Random Context condition.

Figure 1: Method for mapping processing timescales of individual units. A. Example sentences for
the model to process in the Intact Context and Random Context condition. In the Intact Context
condition, the shared segment is preceded by an intact context from the corpus; while in the Ran-
dom Context condition, this preceding context segment is replaced by randomly sampled context
segments. B. Schematic hidden state activation of the neural network. When the model starts to
process the shared segment preceded by different context between the two context conditions, the
hidden unit activation difference (i.e. the mean absolute difference of unit activation between the
two conditions) decreases over time with different rates. The expected decreasing pattern of acti-
vation difference of a long-timescale unit and a short-timescale unit are shown schematically in the
green and red curves, respectively.

In brief, the model is processing the same input (the shared segment) with different preceding context
(the intact vs. random context). We can now measure the context dependence of individual units
by examining how the cell state activations differ between the two conditions, while the network is
processing the shared segments with identical input. Any difference in internal representations must
arise from the context manipulation, since the current input is the same. A decrease in activation
difference over time implies that the units exposed in the Intact context and Random context start
to build a similar representation as they process the shared input. For a long-timescale unit, whose
current state is dependent on information in the far-preceding context, we will see that the activation
difference is preserved across contexts (Figure 1B, green curve), even while the unit is processing
the shared input. On the other hand, for a short-timescale unit whose activation is driven largely by
the current input, we will see that the activation difference drops quickly (Figure 1B, red curve) as
the unit processes the shared input.
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4 HIERARCHICAL ORGANIZATION OF TIMESCALES ACROSS LAYERS

Do higher levels of the LSTM model exhibit greater context-dependence? Lakretz et al. (2019) ob-
served that long-range functional units were more common in higher layers, and in general, higher-
levels of hierarchical language model exhibit longer range context-dependence (Jain et al., 2019;
Jain & Huth, 2018). Therefore, to validate our stimuli and the sensitivity of our methods, we first
compared the processing timescales of different hidden layers in both of the LSTMs, by correlating
the cell state vectors, column by column, between the Intact condition and Random condition.

We found that both layers showed near-zero correlation when processing the different context, and
the correlation increased as they began to process the shared input. In the WLSTM, the correlation
increased more slowly for second-level cell state vectors than for first-level cell state vectors. Thus,
the representation of second-level cell state is more sensitive to the different context than the first
level. Similarly, for the CLSTM model, the third-level cell state exhibited longer-lasting context
sensitivity than lower levels (Figure 2). This observation of longer context-dependence in higher
stages of processing is consistent with prior machine learning analyses (Lakretz et al., 2019; Jain &
Huth, 2018) and is also analogous to what is seen in the human brain (Hasson et al., 2015; Chien
& Honey, 2020; Lerner et al., 2011; Jain et al., 2019). Based on the finding of longer context
dependence in higher layers, we examined single units in the highest level hidden units, i.e. the
second level of WLSTM (n=650) and the third level of CLSTM (n=1024).

Figure 2: Context effect measured by cell-state vector correlation at different layers in word-level
LSTM (WLSTM) and character-level LSTM (CLSTM). A. Correlation curves of the WLSTM cell-
state vectors across the Intact Context condition and Random Context condition as a function of
input token. In both models, the correlation increased as the models began to process the shared
segment. Higher-level cell states exhibited a slower increase in correlation, compared to lower-level
cell states, indicating that the higher-levels retain more of the prior context information for longer.
B. As for A, but applied to the three levels of CLSTM. Similar to the WLSTM, higher-level cell
state of the CLSTM showed more context sensitivity than the lower-level cell state.

5 PROCESSING TIMESCALES OF INDIVIDUAL UNITS WITHIN LSTM LAYERS

5.1 QUANTIFYING SINGLE UNIT TIMESCALES

We examined the absolute single unit activation difference when processing the shared segments
preceded by different context. As expected, most of the hidden units showed different activation
when the input tokens were different (i.e. while processing the non-shared context in the Intact
Context and Random Context conditions). However, once the shared input tokens begin (at t = 0)
the Intact-Random activation differences drop (Figure A.1A, A.1B).

We used the rate at which the curves drop to quantify the processing timescale, as this is a measure
of how quickly the responses align across different context conditions. To quantify the timescale of
individual units, we fit the activation difference curves with a logistic function:

Y (x) =
L

1 + e−k(x−x0)
+ d (1)
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As shown in Figure A.1A and Figure A.1B, the logistic function fit the raw activation difference
curves. We then computed the ”timescale” of each unit as the time-to-half-maximum of the logistic
decay. In particular, for the WLSTM we used the activation difference Y (0) at the beginning of the
shared segment, and at the end of the shared segment Y (24) (Y (79) for the CSLTM) to calculate
the time-to-half-maximum of unit i as:

timescalei = dY −1(
Yi(0)− Yi(24)

2
)e (2)

where the inverse function Y −1(y) identifies the largest integer t, for which Y (t) < y. We included
635 units in WLSTM and 1012 units in CLSTM for further analysis after excluding the units which
could not be accurately fit by a logistic function (See Appendix A.1).

5.2 DISTRIBUTION OF UNIT TIMESCALES IN LSTM LANGUAGE MODELS

The results showed that of the 635 WLSTM units whose processing timescale we mapped, approx-
imately 70% of the units were insensitive to long-range context (processing timescale < 3 words):
their activation difference dropped immediately at onset of the shared segment. In contrast, only
approximately 13% of the units had a timescales > 7 words (Figure A.2A). Figure 3A shows the
absolute activation difference of all units in WLSTM sorted by timescale (long to short). Some of
the longer-timescale units continued to exhibit a large activation difference even when processing
the shared segments for more than 20 tokens.

As we were testing the same word-level LSTM previously studied by Lakretz et al. (2019), we
began by examining the timescales of hidden-state units that were already known to be involved
in processing context-dependence language information: a “singular number unit” 988, a “plural
number unit” 776, and a “syntax unit” 1150. We found that, compared to other units, both “number”
units had medium timescales (∼ 3 words, ranked 129 of 635 units), while the “syntax” unit had a
long timescale (∼ 7 words, ranked 64 of 635 units) (Figure A.1).

We repeated the timescale mapping in the CLSTM model, and again identified a small subset of
long-timescale units (Figure 3B, Figure A.2B). Although there were overall more units in CLSTM,
over 63% of the units were insensitive to the context (timescale < 3 characters). Fewer than 15% of
the units exhibited timescale > 10 characters, and the unit with the longest timescale only dropped
to its half-maximum activation-difference after 50 characters of shared input.

5.3 TIMESCALE VARIATION ACROSS DATASETS AND CONTEXT CONDITIONS

To ensure that the timescales we measured were robust across datasets, we conducted the same
analysis on WLSTM using the Wikipedia testing dataset used in Gulordava et al. (2018). The
mapped timescales were highly correlated (r=0.82, p<0.001) across the Anna Karenina dataset and
the Wikipedia dataset (Appendix A.2.1, Figure A.4A).

Similarly, to confirm that the timescales measured were not specific to our testing using the “, and”
conjunction point, we also measured timescales at an alternative segmentation point, and found that
the timescales were largely preserved (r=0.83, p<0.001), notwithstanding there were a small set of
notable exceptions (Appendix A.2.2, Figure A.4B).

Although we measured the timescales of context dependence using “token distance”, these measures
are not invariant to changes in the the “syntactic distance”. For example, if one were to replace a
comma with a ”full stop”, then the token distance would be unaltered but the syntactic distance
could be greatly altered. Indeed, we found that most units showed little context dependence when
the preceding context segment ended with a “full stop”, which served as a clear signal for the end of
a sentence (Appendix A.2.3, Figure A.4C).

Finally, we examined whether the contextual information retained by the language models (and the
associated timescales measurement) was sensitive to linguistic structure in the context, or whether it
was primarily driven simply by the presence or absence of individual words. To this end, we gener-
ated text for the Random Context condition by shuffling the order of words from the Intact segment.
We found that while the presence of individual words did play an important role in determining the
context representations (and thus the timescales), several units showed a longer timescale when the
prior context was composed of coherently structured language (Appendix A.2.4, Figure A.4D).
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Figure 3: Timescale organization in word-level LSTM (WLSTM) and character-level LSTM
(CLSTM) language model. A. Absolute activation difference for each WLSTM hidden unit over
time, with units (rows) sorted by timescales. A small set of long-timescale units (top) sustain an
activation difference during shared segment processing, but most (bottom) are context-insensitive
short-timescale units. B. Absolute activation difference for each CLSTM unit over time, with units
sorted by timescales. Similar to the WLSTM, a small set of long-timescale CLSTM hidden units
maintain long-range contextual information.

6 CONNECTIVITY OF MEDIUM- TO LONG-TIMESCALES UNITS IN LSTMS

Having mapped the timescales of each processing unit, we next asked: how does the processing
timescale of a unit relate to its functional role within the network? More specifically, are units
with longer timescales also units with high degree in the connectivity network? To answer these
questions, we analyzed (1) the projection strength of each unit and (2) the similarity of the overall
projection pattern (hidden-to-gates) across different units. The projection patterns were defined
using the direct weight projections from one hidden unit at time t to the input and forget gate of
other hidden units at time t+ 1.

In LSTMs, the amount of contextual (ct−1) and input (c̃t) information stored in the cell state (ct)
is determined by the forget gate (ft) and input gate (it) activation (Eq. 3); and the activation of the
gates it and ft are determined by the current input at time t and the hidden units at time t−1 through
weight matrices U and W (Eq. 4, 5).

ct = ft � ct−1 + it � c̃t (3)

it = σ(Uixt +Wiht−1 + bi) (4)
ft = σ(Ufxt +Wfht−1 + bf ) (5)

Here, we were interested in understanding how the contextual information over different timescales
is projected from the hidden units to the input and forget gates of other units, and further influence the
update of cell states. Thus, we analyzed the network connectivity focusing on the weight matrices
Wi and Wf within the highest layer of the WLSTM or CLSTM.

6.1 STRONG PROJECTIONS FROM LONG-TIMESCALE HIDDEN UNITS TO GATE UNITS

Units with longer processing timescales made a larger number of strong projections (|z-score|>
5, Appendix A.3) to the input and forget gates of other units in both WLSTM (r=0.31, p<0.001,
Figure 4A) and CLSTM models (r=0.24, p<0.001, Figure A.5A). Furthermore, we found that the
“syntax” unit (Unit 1150) reported by Lakretz et al. (2019) in the WLSTM model possessed the
largest number of strong projections to the input and forget gates of all other units, and the major
recipients from Unit 1150 were units with medium- to long-timescale units (Figure 4B).
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6.2 IDENTIFY CONTROLLER UNITS IN LSTM LANGUAGE MODELS

The presence of strong projections from the “syntax” unit to other long-timescale units motivated us
to further explore whether high-degree, long-timescale units in the LSTM also densely interconnect
to form a “core network”, perhaps analogous to what is seen in the brain (Hagmann et al., 2008;
Mesulam, 1998; Baria et al., 2013). If so, this set of units may have an especially important role
in controlling how prior context is updated and how it is used to gate current processing, analogous
to the controller system in the brain (Gu et al., 2015). To identify these putative “controller units”,
we binarized the network by identifying the top 258 projection weights from the weight matrices
(see Appendix A.3), which provided the edges for a network analysis. We then used k-core analysis
(Batagelj & Zaversnik, 2003) to identify the “main network core” (the core with the largest degree)
of the network (Figure A.3). At the maximal k = 5, the k-core analysis yielded a set of densely
interconnected nodes, composed of many long-timescale and medium-timescale units (Figure A.3),
also labeled in red in Figure 4A). We (tentatively) refer to this set as the “controller” set of the net-
work. Performing the same k-core analyses on the CLSTM model, we observed that the main core
network was again composed of disproportionately many medium and long-timescale “controller”
units (Figure A.5A).

Figure 4: Timescale and connectivity organization in a word-level LSTM. A. Long-timescale units
exhibited stronger projections from the hidden state at time t to the forget gate and input gate at
time t + 1. B. Strength of hidden-forget gate and hidden-input gate projections from a high-degree
“syntax” unit to all other units. The units receiving strong projections (|z-score|> 5) are labeled. C.
Ablating the two sets of long-timescale units results in different impact to the LSTM performance.
Specifically, ablating “controller” units impaired overall word prediction (upper panel), while ablat-
ing “integrator” units impaired prediction of words in the later part of the sentences (bottom panel).
D. Multi-dimensional scaling representation of network connectivity. The distance between two
nodes indicates the similarity of their hidden-to-gate connection patterns. The size of each node
indicates its degree (the number of strong projections from that node to the gate units). An edge
between nodes indicates a significant hidden-to-gate projection between them.

6.3 DISTINCTIVE ROLES OF LONG-TIMESCALE CONTROLLER AND INTEGRATOR UNITS

We used multi-dimensional scaling (MDS) to visualize the similarity of projection patterns across
LSTM units. We recovered a 2-dimensional MDS embedding, in which the inter-unit distances was
defined based on the similarity of their hidden-to-gate projection patterns (i.e., similarity of values
in the unthresholded LSTM weight matrices Wi and Wf ). We visualized the MDS solution as a
graph structure, in which each node is a unit, and the edges reflect connection properties of that unit.
Figure 4D shows the resulting 2-D space, with units color-coded by their timescale.

“Controller units” (labeled on Figure 4D) were positioned around the periphery of the MDS space,
suggesting that these units expressed projection patterns that were distinct from other “controller”
units and also from the rest of the network. In contrast, we observed several long-timescale units
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positioned in the center of the MDS space, suggesting that the projection patterns of these units were
similar to the mean projection pattern. We refer to this more MDS-central set as the “integrator units”
(labeled in green in Figure 4A). Similar to the WLSTM, the projection patterns of the “controller
units” in the CLSTM were distinct from other units in the network, according to the MDS results
(Figure A.5C). However, we did not observe “integrator units” positioned in the center of the MDS
space of the CLSTM.

Are the “controller” and “integrator” units particularly important for the model’s ability to predict
the next token? To test the functional importance of these subsets of units, we conducted group
ablation analyses (See Appendix A.4). Ablating controller units reduced the accuracy of token
prediction overall, while ablating integrator units only reduced prediction accuracy for the last words
of the sentences (Figure 4C). The results confirm that the putative controller and integrator nodes
are functionally significant, with distinctive roles in the WLSTM language model.

Finally, to test the generalization of the timescale and connectivity analyses to a different model
architecture, we conducted preliminary analyses on a Gated Recurrent Unit (GRU) language model
(Cho et al., 2014) and another word-level LSTM model with a smaller hidden size (100 units) per
layer. The models were trained using similar parameter settings as in Gulordava et al. (2018) un-
til they converged without any model-specific optimization. We found similar sparsity of long-
timescale units in both models, but did not observe the same relationship between timescales and
connectivity (Appendix A.5; A.6; Figure A.7; A.8; A.9; A.10).

7 DISCUSSION

We demonstrated a new method for mapping the timescale organization in recurrent neural language
models. Using this method, we mapped the timescale distributions of units within word-level and
character-level LSTM language models, and identified a small set of units with long timescales. We
then used network analyses to understand the relationship between the timescale of a unit and its
connectivity profile, and we distinguished two subsets of long-timescale units with seemingly dis-
tinctive functions. Altogether, we proposed methods combining timescale and connectivity analyses
for discovering timescale and functional organization in language models.

The units with longer processing timescales included some units whose role in long-range lan-
guage dependencies had already been established (Lakretz et al., 2019), but almost all of the long
timescale units are of unknown function. The timescale mapping procedure described here provides
a model-free method for identifying nodes necessary for long-range linguistic and discursive pro-
cesses (e.g. tracking whether a series of words constitutes an assertion or a question). Future studies
of these neural language models could focus on the specific linguistic information tracked by the
long-timescale units, especially the “controller” units which control the information flow of other
units in the network.

The current study measured unit timescales using a simple token distance, and so the method may
be applied to understanding recurrent neural nets beyond language models. It will be insightful
for future studies to investigate whether the processing timescales characterized via token distance
are comparable to those measured using functional measures, such as syntactic distance. Relat-
edly, while we explored the timescale variance under several context conditions, a more thorough
investigation will be needed to examine how the timescales of individual units may vary at different
positions within a sentence, both in terms of token location and syntactic location.

Processing timescales may exhibit an analogous hierarchical organization in LSTMs and in the
human cerebral cortex: in both cases, a subset of nodes with high degree and high inter-connectivity
express unusually long timescales. More detailed testing of this apparent correspondence is required,
however, because units within an LSTM layer are not spatially embedded and constrained as in
biological brains, and thus the LSTM units do not express a spatially graded timescale topography.
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A APPENDIX

A.1 UNITS EXCLUDED FROM TIMESCALE ANALYSIS

We excluded 1 unit in the WLSTM model and 5 units in CLSTM model which were not properly
fit using the logistic function; we further excluded 14 units in the WLSTM model and 7 units in the
CLSTM model which either did not show a non-zero activation difference before the shared segment
started, or whose activation differences increased when started to process the shared segment. After
these exclusions, 635 units remained in the WLSTM and 1012 units remained in the CLSTM for
further analysis.

A.2 TIMESCALE ANALYSES ACROSS DIFFERENT DATASETS AND CONTEXT CONDITIONS

A.2.1 WIKIPEDIA TEST DATASET

The Anna Karenina corpus used in the current study has a different linguistic structure from the
Wikipedia corpus on which the WLSTM and CLSTM models were trained. Although we analyzed
only the Anna Karenina sentences with low perplexity, it was important to test the robustness of our
results across datasets. Thus, we mapped the timescale of each unit using the Wikipedia test set, as
used by Gulordava et al. (2018). Specifically, we sampled 500 long sentences containing “, and”
for the Intact Context condition. As before, we generated sentences by preceding the “shared input”
segment (after the conjunction) with either the original prior context segment, or a randomly chosen
prior context segment. Same as the original analysis, we then replaced the context segment with
30 context segments randomly sampled from other parts of the test set for generating the Random
Context condition. The mapped timescales using the Wikipedia test set were highly correlated with
the novel corpus, suggesting the robustness of unit timescales (Figure A.4A).

A.2.2 TIMESCALES MEASURED IN THE MIDDLE OF A SENTENCE

To examine how the timescales of individual units may vary across different positions in a sentence,
we varied the location of the segmentation point. Instead of using the conjunction (“, and”) as the
segmentation point, we chose an arbitrary segmentation point: the 15th token of a long sentence, to
separate context segment and shared input segment. In the Random Context condition, we replaced
the context segment with the first 15 tokens from other sentences of the corpus. We found that
the unit timescales were highly correlated with the condition where we used the conjunction as the
segmentation point with several units shift their timescales to either directions (Figure A.4B). This
analysis was conducted using Wikipedia test set.

A.2.3 TIMESCALE RESET AT THE BEGINNING OF A SENTENCE

To examine if the timescales of individual units can flexibly reset at the beginning of a sentence, we
conducted the same timescale analysis but using a “full stop” as the segmentation point instead of the
conjunction “, and”. Thus, if the original test string was “The girl kicked the call, and the boy caught
it”, then the full-stop version of the test string would be “The girl kicked the ball. The boy caught it.”
In this setting, the context segment and shared input segment in the Intact Context condition are two
consecutive sentences. To ensure the temporal dependence between the context segment and shared
input segment, we sampled 100 consecutive sentence pairs from the Anna Karenina corpus. Note
that this is not possible using the Wikipedia test set from Gulordava et al. (2018), because that set
is composed of unrelated sentences. The Random Context condition was generated by replacing the
first sentence with randomly sampled sentences from other parts of the novel. We found that when
using “full stop” to segment context and shared input, most units in the network showed timescale
near 0, indicating near-zero dependence on the linguistic context from the text preceding the full
stop (Figure A.4C). This suggests that the units in LSTM tend to “reset” their context representation
at the beginning of a sentence.

A.2.4 CONTEXT REPRESENTATION SHAPED BY INDIVIDUAL WORDS

Inspired by the token-shuffling procedure of Khandelwal et al. (2018), we explored whether the
context representations of individual units in the LSTM were shaped by individual words, rather
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than coherent sequences of words. For this analysis, instead of replacing the context with syntac-
tically structured segments from other part of the corpus, we generated the “random context” by
shuffling the order of words within the context segment. We then mapped the unit timescales as
before, by examining the unit activation difference as a function of the distance from the onset of
shared input. Intriguingly, we found that most of the units showed similar timescales across the
context-replacement and context-shuffling procedures (Figure A.4D). This suggests that the context
representations in LSTMs largely depend on the presence of individual words in the context, rather
than their appearance within coherent linguistic sequences. However, we did observe a subset of
units (labeled in the Figure, and almost all long-timescale units) whose timescales were longer when
context was replaced rather than shuffled. For this subset of units, the ability to maintain a represen-
tation of prior context over many tokens depends on that prior context being a coherent linguistic
sequence. This subset of units are a promising target for future studies of syntactic representations
in LSTMs.

A.3 IDENTIFYING STRONG HIDDEN-TO-GATE PROJECTIONS

First, for each hidden unit, we concatenated the corresponding rows in the Whi and Whf matrices,
to generate a single “hidden-to-gate” projection vector for that hidden unit. Next we we z-scored
the vector to get standardized projection values from that unit to all other units in the network.
Using |z-score|> 5 as criterion, we identified a total of 258 “strong projections” from all hidden
units to the input gate and forget gate in the WLSTM. The projection strength of each unit was
then calculated based on its number of ”strong projections” (Figure 4A). Although the criterion |z-
score|> was selected to better visualize the results in Figure 4, different criteria did not change the
results that units with longer timescales have more strong projections. For example, using |z-score|>
3 as threshold we obtained corr(timescale, projections) = 0.30, p<0.001; |z-score|> 4 we obtained
corr(timescale, projections) = 0.35, p<0.001.

Next, we identified the edges corresponding to the top 258 magnitude weight-values within the
combined Whi and Whf matrices. Together, these edges formed a ”strong-projection network”.
Finally, we used k-core analysis to identify the main core of the strong-projection network. This
main core composed our ”controller units” (Figure A.3).

Using the same criteria and method, we identified a total of 390 “strong projections” from all hidden
units to the input gate and forget gate in the CLSTM. We then extracted the top 390 weight values
from the weight matrices to construct a “strong-projection network” and again identified the main
core network, composed the “controller units” for the CLSTM model (Figure A.5A, A.5B)

A.4 ABLATION ANALYSES ON PUTATIVE CONTROLLER AND INTEGRATOR UNITS

To examine the non-trivial roles of the controller and integrator units identified in the word-level
LSTM model, we performed a preliminary group ablation analysis to look at how ablating the con-
troller units influences model performance on predicting the next token, relative to the ablation of a
random set of units. Specifically, since long-timescale integrator units should have most effect pre-
dicting tokens at the later part of the sentences (i.e., when more context is integrated), we examined
the model performance on predicting tokens at two different positions: (1) all the tokens regard-
less of their positions in the sentences (“All tokens” condition), and (2) the last tokens of sentences
(“Final tokens” condition).

We evaluated the effects of ablation on model performance by measuring the differences of proba-
bilities (∆P) assigned to the target words (∆P = probability of target word in ablated model minus
probability of target word in original model). Ablation effects for controller units (N=9) and inte-
grator units (N=10) were compared against a baseline of ablating the same number of randomly-
selected units from layer 2 of the LSTM (Figure 4C). We used the test corpus used by Gulordava
et al. (2018) and measured the average performance of each model across 100 text-batches, ran-
domly sampled from the Wikipedia test dataset. Each text-batch was composed of 1000 tokens that
start at the beginning of a sentence.

In the “All tokens” condition, we calculated the ∆P for every token in the tested text, while in the
“Final tokens” condition, we calculated ∆P only at the last token of every sentence (i.e. the token
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right before the full stop“.” of each sentence). We then average the ∆P in both conditions across
text-batches to get a mean performance difference between the ablated model and the intact model.

Ablating controller units reduced the probabilities assigned to the target words, more so than ablating
random units (Figure 4C, controller vs. random across 100 text batches: Cohen’s d = -4.85, t = -
34.28, p<0.001). In contrast, ablating integrator units reduced the probabilities less than ablating
random units (integrator vs. random: Cohen’s d = 2.50, t = 17.67, p<0.001). We hypothesized
that that the integrator units mostly influence the model’s prediction performance for tokens where
long-range information is especially relevant, such as in the later portions of clauses and sentences.
Consistent with this, we found that, when we examined the ablation effects only for tokens in the
final position of a sentence, ablating integrator units reduced the probabilities more than ablating
random units (Cohen’s d = -0.34, t = -2.41, p = 0.017). Interestingly, ablating controller units
reduced the probability of sentence-final targets less than random units (Cohen’s d = 0.67, t = 4.74,
p<0.001).

In summary, these ablation results indicate a non-trivial functional role for the controller and in-
tegrator units, despite the fact that each subset of units is composed of only 10 amongst 650 total
hidden units. Also, the putative controller and integrator sets appear to have distinctive roles within
the WLSTM, with the controllers supporting accurate predictions overall, while the integrator units
appear to boost accurate predictions at the end of sentences.

A.5 MAPPING THE TIMESCALE ORGANIZATION IN A GRU LANGUAGE MODEL

A.5.1 TRAINING

To explore whether the timescale mapping methods, and our findings, may generalize to other model
architectures, we trained and studied a word-level GRU language model (Cho et al., 2014). As far as
possible, we applied similar parameters in the GRU as were used for the LSTM by Gulordava et al.
(2018): the same Wikipedia training corpus, the same loss function (i.e. cross-entropy loss), and the
same hyperparameters except for a learning rate initialized to 0.1, which we found more optimal to
train the GRU. The GRU model also had two layers, with 650 hidden units in each layer.

We trained the GRU model for 30 epochs, at which point the GRU converged to a validation per-
plexity of 118.36. Note that since we adapted similar training settings as were used for training
the LSTM model by Gulordava et al. without model-specific optimization, the perplexity is higher
than that of the LSTM model reported in Gulordava et al. (2018) (perplexity = 52.1 in the English
corpora, after training for 40 epochs and selecting the model with the lowest perplexity out of 68
combinations of different hyperparamters). We then analyzed the timescale of its hidden units using
the same method as was used for analyzing the LSTMs, and using the test data derived from the
training Wikipedia corpus.

A.5.2 TIMESCALE ORGANIZATION OF A GRU MODEL

Similar to the LSTM model of Gulordova et al, the majority of the units in the GRU also showed
shorter timescales. More specifically, we found: (1) the second layer of the GRU model was more
sensitive to prior context than the first layer, as in the LSTM (A.7A); (2) the distribution of timescales
across units was similar in the GRU and LSTM, although the GRU showed a more right-skewed
distribution with a larger proportion of short-timescale units (A.7B, C).

A.5.3 TIMESCALE VERSUS NETWORK CONNECTIVITY IN A GRU MODEL

We also performed the timescale vs. network connectivity analyses on the GRU model. Because the
update of hidden states in GRU are controlled by the reset and update gate, we measured the projec-
tion patterns of hidden units by analyzing the matrix of combined hidden-to-update-gate and hidden-
to-reset-gate weights. In contrast to the LSTM models, hidden units in the GRU that we trained did
not show a relationship between longer timescales and stronger hidden-to-gate projections (A.8A).
Moreover, when using k-core analysis to identify subunits of interconnected high-degree units, the
core network in the GRU contained many units with long to short timescales. Interestingly, when
we visualized the position of the k-core units in the MDS space, they tended to locate at the edge
of the space, similar to what we found in LSTM. This indicates that, as in the LSTM, the core units
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in the GRU have distinctive profiles, distant from one another and from other units in the network
(A.8B). However, we did not observe the pattern of “integrator units” in the GRU as in the LSTM.

These apparent similarities and differences between LSTM and GRU are intriguing, but we empha-
size that (1) the perplexity of this GRU model is much higher than the LSTM, due to the sub-optimal
parameter settings, and that (2) comparing the LSTM and GRU connection patterns is not straight-
forward, as the overall distribution of weights is different. Further work will be required to determine
comparable thresholds for “strong” projections and “high-degree units” in each case. As we noted
in the manuscript and above, the connectivity results are exploratory; however, we believe that the
GRU analysis demonstrates how these methods can be extended to map and compare the functional
organization of language models of different architecture.

Finally, we note that when conducting the timescale analysis on an incompletely trained GRU model
(trained∼10 epochs, validation perplexity≈ 350), the timescale distribution was more right-skewed
(Figure A.6B) than the better-trained GRU (Figure A.7B). Altogether, these results suggest that the
long-timescale units in GRU were gradually formed during the training process.

A.6 MAPPING THE TIMESCALE ORGANIZATION IN A WORD-LEVEL LSTM WITH DIFFERENT
HIDDEN SIZE

To examine whether the number of hidden units in the model would affect the timescale organization
in an LSTM, we trained another 2-layer word-level LSTM model with the same Wikipedia corpus
and similar parameter settings as in Gulordava et al. (2018), but with only 100 hidden units in
each layer. We called this model LSTM-100. We trained the model for 56 epochs until the model
converged to a validation perplexity 98.75, and conducted the same analysis as described in the main
text to map the timescales of LSTM-100. Because LSTM-100 have overall less weight connections,
we use |z-score|> 3 as criteria to determine the “strong” hidden-to-gate projections for connectivity
analyses.

Regarding the timescale distribution in LSTM-100, we found that the results were similar to the
650-unit word-level LSTM model, in that: (1) the second layer of LSTM-100 showed more context
sensitivity than the first layer, and (2) although it was difficult to quantitatively compare the unit-
level timescale distribution between the LSTM-100 model and the LSTM with 650 units, they both
contain a similarly small subset of long-timescale units. (A.9).

We did not observe a significant correlation between the unit timescale and number of strong projec-
tions generated by each unit in the LSTM-100 model: the long-timescale units in the LSTM-100 did
not have more connections than short-timescale units. When visualizing the MDS space of connec-
tivity similarity of LSTM-100, the “controller units” identified using the k-core analysis were located
in the edge of the space, similar to the 650-unit LSTM model. Interestingly, we observed a subset of
long-timescale units in the center of the MDS space, analogous to the “integrator units” found in the
650-unit LSTM model. Altogether, the pattern of “integrator units” might be a commonly evolved
feature that is shared between LSTM model architectures, but not with GRU architectures.
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Figure A.1: Example single units activation differences across tokens in word-level LSTM (WL-
STM) and character-level LSTM (CLSTM) language models. A. Single units activation differences
across tokens in the WLSTM, with logistic curve fits overlaid. The error bars indicate 95% con-
fidence interval across trials. The example units include the functional units reported by (Lakretz
et al., 2019). B. Example units activation differences in CLSTM model. The three units were ran-
domly selected from long-, medium- and short-timescales units.

Figure A.2: Logistic fitted curves of activation difference in individual units in word-level and
character-level LSTM language model, colored by timescale. A. Logistic fitted curves of activation
difference over time of all units in word-level LSTM. The color indicates the timescale measured by
full-width half-maximum (FWHM) of the curve. B. Logistic fitted curves of activation difference
over time of all units in character-level LSTM.
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Figure A.3: The core network consists of “controller units” identified in word-level LSTM model.

17



Published as a conference paper at ICLR 2021

Figure A.4: Mapped timescales across different datasets and context conditions. A. Timescales mea-
sured using Wikipedia test set from Gulordava et al. (2018) are highly correlated with the timescales
measured using Anna Karenina (r=0.82, p<0.001). B. Timescales measured in the middle of a sen-
tence (based on the token number) are highly correlated with timescales measured at the conjunction
of a sentence(“, and”) (r=0.83, p<0.001). C. Timescales measured between sentences (i.e., using
“full stop” to segment context and shared segments), vs. within sentence (i.e., using “comma” to
segment context and shared segments). Most of the units showed little context dependence when the
segmentation performed at the beginning of a sentence, suggesting a “reset” of context representa-
tion in these units. D. Timescales measured by replacing the context with syntactically structured
segments vs. with the shuffled context tokens. Most of the units showed similar timescales under
the two conditions, and several units showed longer timescales (i.e. preserved more context) when
the context segments were syntactically structured.
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Figure A.5: Timescale and connectivity organization in a character-level LSTM (CLSTM). A.
Longer-timescale units have overall stronger projections from the hidden units at time t to the forget
gates and input gates at time t+ 1. B. The main core network (k = 4) formed by the controller units
in the CLSTM. C. The multidimensional scaling space of the hidden-to-gate connection pattern of
all units. The distance between nodes indicates their hidden-to-gate connection similarity; the size
of the node indicates the number of strong projections from the node; and the line between two
nodes indicates a significant projections between them.

Figure A.6: Mapped timescale organization in an incompletely trained GRU language model. A.
Correlation curves of the GRU hidden-state vectors across the Intact Context condition and Random
Context condition as a function of input token. Similar to the word level LSTM, the second layer
of the GRU model was more sensitive to prior context than the first layer. B. Both GRU and LSTM
models showed sparse long-timescale units compared to rich short-timescale units. However, the
unit timescale distribution in the incompletely trained GRU is more right-skewed, indicating that the
long-timescale units have not emerged due to insufficient training. C. Absolute activation difference
for each second-layer (incompletely trained) GRU unit over time.
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Figure A.7: Mapped timescale organization in a GRU language model. A. Correlation curves of the
GRU hidden-state vectors across the Intact Context condition and Random Context condition as a
function of input token. The second layer of the GRU model was more sensitive to prior context
than the first layer. B. Distributions of unit timescales are similar in GRU as in LSTM. Both models
showed sparse long-timescale units compared to rich short-timescale units. C. Absolute activation
difference for each second-layer GRU unit over time.
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Figure A.8: Timescale-connectivity analyses in a GRU language model. A. Different from LSTM,
the GRU we analyzed did not show the pattern that units with longer timescales exhibited more
strong projections (r=-0.10, p=0.01). B. Multi-dimensional scaling (MDS) of connectivity similarity
in GRU. The size of each node indicates its degree. An edge between nodes indicates a significant
hidden-to-gate projection between them. The “controller units” identified in GRU using k-core
analysis (labeled on the graph) tend to locate at the edge of the MDS space, similar to the LSTM.
However, we did not observe the “integrator units” in the center of the MDS space. The long-
timescale units in the GRU are more distributed in the MDS space compared to those in the LSTM.
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Figure A.9: Mapped timescale organization in an LSTM language model with 100 hidden units per
layer (LSTM-100). A. Correlation curves of the LSTM cell-state vectors across the Intact Context
condition and Random Context condition as a function of input token. Similar to the word-level
LSTM reported in the main text, the second layer of the LSTM-100 model was more sensitive to
prior context than the first layer. B. Distributions of unit timescales in LSTM with 100 units and
in LSTM with 650 units. Both models showed sparse long-timescale units compared to rich short-
timescale units. C. Absolute activation difference over time of LSTM-100 second-layer units sorted
by timescale.
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Figure A.10: Timescale-connectivity results in an LSTM language model with 100 hidden units per
layer (LSTM-100). A. Different from the LSTM with 650 units, LSTM-100 did not show the pattern
that units with longer timescales exhibited more strong projections (r=-0.05, p=0.64). B. Multi-
dimensional scaling (MDS) results in LSTM-100. Similar to LSTM with 650 units, the “controller
units” identified in LSTM-100 using k-core analysis (labeled red on the graph) tend to locate at the
edge of the MDS space, similar to the LSTM. Furthermore, there are several long-timescale units
located in the center of the MDS, analogous to the “integrator units” in the LSTM with 650 units.
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