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Abstract

To obtain more training data for a target task, one can draw upon related but
distinct datasets, or auxiliary datasets. We put forth the problem of dataset
projection—finding subsets of auxiliary datasets that are most aligned with
a target dataset. These so-called projected datasets can be used as training
data to improve performance on target tasks while being substantially
smaller than the auxiliary dataset. We then develop a framework for solving
such dataset projection problems and demonstrate in a variety of vision
and language settings that the resulting projected datasets, when compared
to the original auxiliary datasets, (1) are closer approximations of target
datasets and (2) can be used to improve test performance or provide analysis
for the target datasets.

1 Introduction

The use of larger datasets has been a key driver of recent progress in machine learning.
Indeed, language and computer vision models trained on datasets containing billions of
documents (Brown et al., 2020) and images (Sun et al., 2017; Mahajan et al., 2018) make
the classic ImageNet (Russakovsky et al., 2015) benchmark look small in comparison. So,
when training machine learning models, there is a strong inclination to use as much data
as possible. This can amount to the costly process of collecting and labeling more data, or
incorporating auxiliary data from related but separate datasets.

Indeed, auxiliary datasets can be used to improve generalization (Peng et al., 2019; Beery
et al., 2020) and out of distribution robustness (Schneider et al., 2020; Mårtensson et al.,
2020). They can also give rise to learning richer representations (Maurer et al., 2016; Qiu
et al., 2021) and better initializations via pretraining (Radford et al., 2018; Caron et al., 2019).
All of these reinforce the conventional wisdom that more data leads to better performance
(Rosenfeld et al., 2020; Kaplan et al., 2020). As a result, when given the option of using an
auxiliary dataset, a typical strategy is to use all of it.

However, blindly using auxiliary data turns out to hurt model performance in certain cases.
For example, pooling medical imaging data from multiple hospitals causes models to detect
hospital sources instead of just medical symptoms (Zech et al., 2018). Large language
datasets can over-represent certain populations while excluding marginalized populations
(Bender et al., 2021). The widely used ImageNet benchmark (Russakovsky et al., 2015)
is often used as an auxiliary dataset for other tasks, yet was shown to contain spurious
correlations such as men holding fish (Xiao et al., 2021). In light of the fact that auxiliary
data may include irrelevant or harmful biases, how can we best use auxiliary data for a
particular task while avoiding potential downsides?

To answer this question, we consider the task of identifying a subset of the auxiliary data that
is most aligned with the target data, which we call the dataset projection problem. As we will
demonstrate, using the “right” subset of auxiliary data can be important for certain target
tasks. In particular, intelligently and automatically selected subsets of auxiliary data have
the potential to decrease sources of unwanted biases, amplify useful features, and ultimately
improve task performance.
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Figure 1: Adding auxiliary ImageNet data
to a small CIFAR10 dataset (blue curve) can
improve performance, but adding too much
hurts performance. Training exclusively on
auxiliary ImageNet data isolates this behav-
ior (orange curve). This indicates that Ima-
geNet contains patterns that hurt CIFAR10
generalization.
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Figure 2: Accuracy of a linear classifier when
augmenting a small dataset with biased auxil-
iary data for the Gaussian example in Figure
3. Increasing the amount of auxiliary data
causes the classifier to lose accuracy. Adding
target-aligned data can mitigate the bias and
improve performance over the original train-
ing data.

Our contributions. In this paper, we analyze the limitations of indiscriminately using
auxiliary data, and develop methods to better leverage such data. Specifically:

1. Through three experiments, we exhibit scenarios where using the entire auxiliary
dataset can hurt model performance, and demonstrate how manually selecting what
auxiliary data to use improves performance.

2. We formulate the problem of projecting datasets, and develop methods to solve this
problem that can automatically find target-aligned subsets of auxiliary datasets.

3. We demonstrate on a variety of vision and language tasks that our methods find
projected datasets that are better approximations of target datasets than the original
auxiliary dataset. In particular, we find that these datasets can improve downstream
performance when augmenting the target dataset, even when compared to the
original auxiliary dataset.

4. Our framework enables a new, model-free analysis that uses projections of auxiliary
to characterize the composition of the target dataset in.

2 Can indiscriminate use of auxiliary datasets hurt
performance?

The current trend in machine learning is to use more data when it is available. However, recent
studies have raised concerns about the unintended consequences of blindly incorporating
new dataset sources. For instance, pneumonia detectors learned to identify hospital-specific
markers rather than pneumonia itself when data was pooled (Zech et al., 2018). Furthermore,
combining data from multiple surveys can introduce new sources of sampling error and
nonresponse bias (Lohr & Raghunathan, 2017).

Motivating example with CIFAR10 and ImageNet. The consequences of using
auxiliary data manifest themselves in commonly-studied machine learning settings as well.
Suppose we want to train a CIFAR10 classifier, but only have a limited amount of CIFAR10
data. To improve performance, we can augment our limited CIFAR10 dataset using relevant
classes of ImageNet as auxiliary data. As we increase the amount of ImageNet data,
performance initially improves (see blue curve in Figure 1). However, we find that adding
too much ImageNet data degrades performance instead.
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(a) Training data (b) Training + auxiliary data
(c) Training + target-aligned
data

Figure 3: A synthetic example showing how auxiliary data can harm performance. The
optimal and estimated linear classifiers are plotted in the solid and dashed lines respectively.
(a) Training data is sampled from Gaussian distributions, and (b) auxiliary data comes from
a skewed Gaussian that biases the estimated classifier. (c) Subsampling the auxiliary data
to be aligned with training data can reduce the auxiliary bias and improve performance.

Why does this happen? It turns out that the model is overfitting to the patterns in the
ImageNet data. This trend becomes even clearer when we train a model only on the data
sourced from ImageNet (see orange curve in Figure 1). While some amount of ImageNet
data alone can provide useful features for CIFAR10, too much ImageNet data introduces
irrelevant patterns that hurt performance.

Linear example. To better understand this phenomenon, we construct a simplified
linear example which replicates the empirical trends observed with CIFAR10 and ImageNet.
Consider a binary classification problem with labels y ∈ {−1,+1} and data x drawn from a
class conditional Gaussian distribution with mean y · µ:

x ∼ N (y · µ, I) (1)

With only a few training datapoints, the estimated linear classifier can have high error (see
Figure 3a). To improve performance, we can augment the training data with an auxiliary
dataset. In this case, our auxiliary data z comes from a skewed and rotated Gaussian
distribution instead:

z ∼ N (y · µ,Σ) (2)

where Σ is different from the identity. Adding too much of this auxiliary data biases the
estimated linear classifier and actually hurts performance (see Figure 3b).

However, not all of the auxiliary data is harmful. Ideally, we would like to keep auxiliary
data that is most aligned with our original training dataset, and discard irrelevant data.
A natural way to achieve this is to fit multivariate Gaussian distributions to the training
data, and restrict the auxiliary data to those that fall within a 95% confidence region (see
Figure 3c). Augmenting the training data with this target-aligned subset reduces the bias
and improves performance, as measured in Figure 2.

Controlled synthetic setting. We further recreate this phenomenon in a controlled,
synthetic setting to show that indiscriminately using auxiliary data can be harmful due to
spurious correlations. Our synthetic setting involves rendering photorealistic images with
Blender and the 3DB framework (Leclerc et al., 2021). First, we generate a biased auxiliary
dataset of cats and dogs, where 90% of cats are indoors and 90% of dogs are outdoors.
For the target test dataset, we generate an unbiased dataset where the background is not
correlated with the class at all. Training models on the full auxiliary dataset (containing the
spurious correlation) leads to an average test accuracy of 90.4% while training models on a
manually chosen subset of the auxiliary dataset (without the spurious correlation) leads to a
significantly higher average test accuracy of 97.6%. Here, using strictly more data leads to
worse performance due to the spurious background correlation in the full auxiliary dataset.
Figure 4 shows examples of the biased auxiliary data and the unbiased subset.

Full details for reproducing all three of these examples are in Appendix A.
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(a) Biased dataset and unbiased ideal subset
of synthetic images generated via 3DB.
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Figure 4: (a) Training on the 15k-image biased dataset (top) results in 7% lower accuracy
than training on the 3k-image unbiased, ideal subset of the dataset (bottom) when the model
is tested on an unbiased test set. (b) Accuracy curves for each training set.

3 Dataset projection

Motivated by the limits of indiscriminately using auxiliary datasets, we aim to answer: How
can we extract the relevant portions of auxiliary datasets for a target dataset? Unlike two
of the three examples in Section 2 (linear example and the controlled synthetic example),
real-world datasets do not always have clear patterns for manually filtering out irrelevant
auxiliary data. Instead, we would like an automatic way to extract a target-aligned subset
of auxiliary data.

More formally, let p be the target data distribution, and let q be the auxiliary data distribution.
We assume that q is composed of k source distributions, q1, . . . , qk. Our goal is to find a
linear combination of source distributions {qi} that best matches the target distribution p.
We can formulate this task as the following optimization problem:

min
α

EX∼p,Y∼q̂ [d(X,Y )]

subject to q̂ =

k∑
i=1

αiqi,

k∑
i=1

αi = 1, αi ≥ 0
(3)

where d is a distance metric over datasets, (X,Y ) are datasets sampled from (p, q̂), and
αi denotes the proportion of each source distribution qi used for approximating the target
distribution p. Intuitively, this can be thought of as “projecting” the target distribution
p onto the space spanned by source distributions qi. Hence, we refer to this optimization
problem as dataset projection.

Note that this formulation is well-defined for any two datasets drawn from distributions
p and q. For example, both the source and the target could be unlabeled data, or sub-
sets/concatenations of datasets. For the remainder of this paper, we will assume the target
distribution q to be a class-wise subset of the target dataset, and leave the source distribution
completely unrestricted and potentially unlabeled. Projecting target classes allows us to
then subselect and pseudo-label source data for the target task. This differs from the
closely-related field of domain adaptation, which typically has the opposite assumption of a
labeled source distribution and an unrestricted target.

Source distributions. To apply our dataset projection framework, an auxiliary distribu-
tion q needs to be split into multiple source distributions qi. How can we get these source
distributions? In supervised settings, a natural way to split an auxiliary dataset is to use
existing class or attribute labels. In completely unsupervised settings, we can automatically
split an auxiliary distribution with unsupervised clustering methods. These two approaches
can be combined to generate even finer-grained source distributions.
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Algorithm 1 Active set algorithm for projecting datasets with soft active set estimate Ai

that helps to dampen and stabilize the updates

1: α0
i = 1/k, Ai = 0.5 for i = 1 . . . k // Initialize feasible point & soft active set estimate

2: for t = 0, 1, . . . do
3: if αt is stationary point then
4: Return αt

5: end if
6: g = ∇f(αt) // Estimate numerical gradient of the dataset projection objective
7: (α̃t, Ãt) = DampedUpdate(αt, At, g) // Active set update
8: (αt+1, At+1) = SearchUpdate(α̃t, Ãt, g) // Line search update
9: end for

Algorithm 2 Specialized dataset projection for MMD distances with quadratic programming
of a target dataset Y onto the source datasets X1, . . . , Xk with parameters B, ϵ

1: for i = 1 . . . k do
2: for j = 1 . . . k do
3: Kij = exp(−γ · MMD(Xi, Xj)) // Calculate kernel distances of the source datasets
4: end for
5: ki = exp(−γ · MMD(Xi, Y )) // Calculate kernel distances with the target dataset
6: end for
7: α = argminα

1
2
αTKα+ kTα subject to α ∈ [0, B]k,

∣∣∑
i αi − k

∣∣ ≤ ϵ

In this work, we adopt the following principle: use all available information to sub-divide
datasets before resorting to unsupervised clustering. This provides a diverse array of settings
with varying degrees of supervision: one can use the WordNet hierarchy for ImageNet, emoji
multilabels for Twitter data, and clustering methods for unsupervised datasets like STL.
Crucially, our framework can project any auxiliary dataset onto any target dataset, including
those with different labels or no labels at all. A detailed discussion of these splitting strategies
for dataset projection and the specific splits for each dataset is in Appendix B.

Distance metric. Our framework uses a metric to measure the distance between two
datasets. In principle, one could use any distance metric. In this work, we employ the
Maximum Mean Discrepancy (MMD) score (Gretton et al., 2012), a statistic that measures
the similarity of two distributions. This metric has been successfully used in prior works
to learn generative models (Kar et al., 2019; Dziugaite et al., 2015) and detect distribution
shift (Rabanser et al., 2019). We provide an overview of the MMD score in Appendix B.

3.1 Solving the dataset projection problem.

Solving equation 3 has several challenges. There is a simplex constraint on the optimization
variables α and the objective is stochastic and non-differentiable with respect to the variables
α. To tackle this problem, we develop three approaches: (1) an active set solver motivated
by simplex methods with theoretical convergence guarantees (Cristofari et al., 2020), (2) a
projected gradient descent (PGD) solver based on the widely used proximal method, and (3)
a quadratic programming reduction for the specific case of MMD metric. We provide a brief
overview highlighting our technical work in developing these approaches.

Active set. Although active set solvers are well-suited for simplex contraints, they were
not developed for stochastic problems. Indeed, noisy gradients can cause active set methods
to oscillate variables between zero and non-zero. A technical contribution of our work is to
stabilize the optimization with damped updates (Line 7 of Algorithm 1). This enables active
set methods to converge, summarized in Algorithm 1.

Quadratic program. In the special case of the MMD metric, equation 3 can be reduced
to a quadratic program and solved with an off-the-shelf solver. This can be viewed as an
extension of Kernel Mean Matching (Gretton et al., 2009). The key difference, however, is to
develop a kernel for datasets instead of samples. We summarize the solver in Algorithm 2.
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Vision Datasets

CIFAR10 (Krizhevsky, 2009)
STL10 (Adam Coates, 2011)

Oxford-IIIT Pet (Parkhi et al., 2012)
ImageNet (Russakovsky et al., 2015)

3DB (Leclerc et al., 2021)

Language Datasets

SST (Socher et al., 2013)
Yelp (Zhang et al., 2015)

Emoji (Barbieri et al., 2018)
Emotion (Mohammad et al., 2018)
DailyDialog (Chapuis et al., 2020)

Table 1: All datasets used in our
dataset projection benchmark.

Target 
Train Data

Target 
Test Data

Projected 
Data

Auxiliary 
Data

Dataset 
Projection

Train

Test

Figure 5: Pipeline for validating alignment and aug-
menting target data via training. After projecting
onto the auxiliary dataset, we can (1) train a model
on the projected data to validate target-alignment
and (2) augment target training data to improve
test performance.

In practice, we find the active set solver performs best in language settings while the quadratic
programming solver works best for vision settings. The projected gradient solver is the
simplest, but performs the worst and is not recommended for general use. Further details for
all of our solvers, including convergence analysis and the quadratic programming reduction,
are in Appendix B.

4 Projected datasets in practice

How well does our framework for projecting datasets work empirically? First, we perform an
extensive evaluation of our framework, in order to validate that our projected datasets are
indeed more target-aligned than the original auxiliary datasets. We then highlight potential
use-cases for projected datasets. In particular, we find that projected datasets can improve
downstream performance and provide insights on the composition of the target dataset.

Experimental setup. Our benchmark for projecting datasets spans five vision datasets for
image classification and five language datasets for sentiment analysis, summarized in Table
1. Each scenario in the benchmark consists of one auxiliary dataset and one target dataset,
resulting in a total of 36 scenarios. In all scenarios, we use our framework to project each
class from the target dataset onto the auxiliary dataset, using either our active set or PGD
solver, and compare to the random baseline of uniformly using all sources (i.e. αi = 1/k for
i = 1 . . . k). The complete description of the experimental setup and corresponding datasets
is deferred to Appendix C.

4.1 Validating alignment with the target dataset

To solve the dataset projection problem, our framework aims to maximize alignment with
the target dataset. But how can we validate whether our solvers actually achieve this goal?

To this end, we leverage a suite of metrics that quantify the alignment of a projected dataset
with the target dataset. Note that it may not always be possible to reach perfect alignment
with a projected dataset. This can occur when the auxiliary and target datasets are too
distinct, or if the sources are too coarse. Nonetheless, we can still project datasets with
our framework to find the most target-aligned subset. In this section, we validate whether
projected datasets are more target-aligned than the original auxiliary dataset.

A natural metric is the MMD score from equation 3 between the target and projected
dataset. However, a more holistic approach is to evaluate with additional metrics that are
not directly optimized. Thus, we validate our results using distance metrics from (Zeng
et al., 2017) for the vision settings and similarity metrics for the natural language settings
(Manning et al., 2010). We confirm in Figure 6 that the projected datasets are indeed closer
to the target than the original auxiliary dataset. Figure 7 demonstrates this improvement
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Figure 6: We validate that projected datasets have lower distance to the target dataset,
using additional distance metrics. These metrics are (left) 1D-statistics based on contrast,
luminance, and random filter response (RFR) for vision datasets and (right) similarity
metrics based on TF-IDF and Jaccard coefficients for language datasets.

Auxiliary (ImageNet) Projected (ImageNet) Target (Oxford-IIIT Pet)

Figure 7: Visually comparing AS-PD (Middle) with random data from the auxiliary (Left)
and target (Right) datasets. While the auxiliary dataset includes wild outdoor cats, the
projected dataset contains mainly indoor household cats which aligns with the target dataset.

visually—projected cats from ImageNet have backgrounds that are more aligned with the
target. This improvement in target approximation holds for nearly all choices of the auxiliary
and target datasets, which we evaluate and plot for the rest of our benchmark in Appendix D.

4.2 Analyzing the target dataset

In this section, we highlight the use of our framework as an analysis tool for the target dataset
without needing to train and interpret any downstream models. Specifically, our projection
produces a subset of sources that characterizes the composition of the target dataset, thereby
explaining what kind of data exists within the target. For example, Figure 8 plots the
projection of the Emotion dataset onto the Emoji subclasses. The resulting proportions
informs us about what kinds of Emoji data is closest to each Emotion class. “Optimistic”
emotion data is closest to data with Christmas tree and sparkling emojis, while “sad” emotion
data is closest to data with crying emojis. Figure 9 shows a similar analysis for projections
onto ImageNet cats, revealing that CIFAR10 contains primarily household cats, while STL10
contains cats found in the wild. Additional examples can be found in Appendix E.

4.3 Augmenting the target dataset

A natural use case for auxiliary data is to augment the target dataset to reach higher test
accuracy. In this section, we use projected datasets as extra training data (in addition to the
target data itself), and evaluate performance on target test data, as illustrated in Figure 5.
We compare to the baselines of using no auxiliary data (Target Only) and augmenting
uniformly with all auxiliary sources (Target + Random). Tables 2 and 3 highlight a subset of
our vision and language results, and the full suite of experiments is deferred to Appendix D.
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Figure 8: A visualization of the composition of Emotion classes (Optimistic and Sad)
according to their projections onto the Emoji dataset. Additional examples showing the
projections of the Angry and Joy classes onto the Emoji dataset are in Appendix E.
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Figure 9: A visualization of the composition of the CIFAR10 and STL10 cat classes, according
to their projections onto ImageNet cats. Additional examples showing the projections of
Oxford-IIIT Pet and 3DB cats are in Appendix E.

We find that augmenting the target dataset with projected data often improves performance
in both sentiment analysis (Table 2) and image classification (Table 3). For example,
augmenting DailyDialog with projected data from Emotion (AS-PD) increases test accuracy
by 30% over both baselines. Similarly, augmenting STL10 with projected data from Oxford-
IIIT (QP-PD) increases test accuracy by 18% over both baselines. This demonstrates that
auxiliary data can more effectively augment existing data if we first apply dataset projection.
Similar trends for the full benchmark are shown in Tables 8 and 12 for all 36 settings.

Data augmentation & domain adaptation. Two related areas are data augmentation
and domain adaptation. In principle, these areas are not strictly in competition with dataset
projection—any auxiliary data added via dataset projection can still be augmented or
adapted. In Appendix D, we run experiments that study projected datasets with state of the
art approaches in data augmentation and domain adaptation. To summarize, we find that
projected datasets provide improvements that are indeed complementary to both of these
areas, either outperforming or improving upon these methods. These experiments highlight
how the benefits of dataset projection stem from increasing the size of target datasets, while
data augmentation and domain adaptation aim to make better use of the target dataset.

5 Related work

Dataset projection is related to various methods including dataset pruning (Angelova et al.,
2005), core-set construction (Tsang et al., 2005), and dataset distillation (Wang et al., 2018;
Nguyen et al., 2021). These methods attempt to reduce the size of a single dataset while still
retaining the most “valuable” training data signal. In contrast, our goal in dataset projection
is to match a target dataset to the span of multiple auxiliary sources.

The use of an auxiliary dataset is related to the field of auxiliary learning (Vincent et al.,
2008; Zhang et al., 2014; Mordan et al., 2018; Liu et al., 2019), in which additional tasks
are used during training to help improve performance on a target task. Crucially, these
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Auxiliary Target Target Only
Target +
Random

Target +
PGD-PD

Target +
AS-PD

Target +
QP-PD

Yelp SST 74.2± 6.0 60.8± 8.9 65.6± 12.0 78.6± 2.9 68.2± 4.0
DailyDialog Emoji 12.4± 3.6 14.0± 3.3 12.8± 2.9 24.4± 1.0 8.2± 1.3

SST Emotion 37.6± 4.3 39.4± 4.1 42.8± 7.8 45.2± 4.7 31.0± 6.2
Emoji Yelp 28.6± 1.9 29.2± 3.0 27.0± 5.4 34.4± 5.7 31.6± 4.1

Emotion DailyDialog 37.4± 6.3 37.6± 5.0 35.0± 8.0 67.4± 6.0 56.8± 8.5

Table 2: Augmenting a target dataset with auxiliary data for sentiment analysis. In language
settings, augmenting with AS-PD typically performs the best.

Auxiliary Target Target Only
Target +
Random

Target +
PGD-PD

Target +
AS-PD

Target +
QP-PD

ImageNet CIFAR10 43.6± 0.4 54.8± 2.1 55.3± 1.8 57.0± 3.0 67.9± 0.7
CIFAR10 Oxford-IIIT 52.1± 1.9 54.2± 2.5 55.4± 2.0 59.5± 2.9 73.4± 0.5

Oxford-IIIT STL10 54.2± 2.8 54.3± 3.1 65.1± 1.4 61.6± 1.1 72.5± 0.9
Oxford-IIIT 3DB 69.8± 1.6 73.4± 7.2 82.2± 3.3 82.3± 10.2 96.3± 1.6

Table 3: Augmenting a target dataset with auxiliary data for image classification. In vision
settings, augmenting with QP-PD typically performs the best.

approaches train on auxiliary tasks alongside the primary task, whereas dataset projection
extracts target-aligned subsets of auxiliary data without requiring any auxiliary task.

Works have also explored modifying synthetic data generation processes to more closely
resemble a target dataset. Kar et al. (2019) and Devaranjan et al. (2020) used a parameterized
graphics engine and probabilistic scene grammars to match a target dataset of scenes. On
the other hand, dataset projection is agnostic to the way in which auxiliary data is generated
and can be used to select from any type of data source. Our work is also broadly related to
the field of domain adaptation (Wang & Deng, 2018; Wilson & Cook, 2020; Farahani et al.,
2021), which aims to adapt models trained on an auxiliary dataset to improve performance
on a target dataset. In contrast, dataset projection is completely model-agnostic and answers
the fundamental question of how to align the data. Furthermore, domain adaptation methods
typically assume a labeled source dataset with a potentially unlabeled target dataset, whereas
dataset projection assumes the opposite: a labeled target dataset with a potentially unlabeled
source dataset. Using our framework with domain adaptation to align both the model and
data jointly is an interesting future direction.

Our method builds on an extensive line of work on minimization over simplex constraints
(Bertsekas, 1982; Birgin & Martínez, 2002), as well as distance metrics that measure the
similarity of two image distributions (Gretton et al., 2012). Our simplex formulation of
aligning multiple dataset sources uses constraints with similarities to the problems posed
by Hashimoto (2021), but for a different purpose and objective. While Hashimoto (2021)
uses their framework to study theoretical scaling laws for models generalization, we solve the
optimization problem to search for target-aligned subsets of auxiliary data.

6 Conclusion

In this work, we pose the problem of dataset projection and develop methods to find the
most target-aligned subset of auxiliary data. When using a biased auxiliary dataset, we
demonstrate that it can be beneficial to use just a portion of the data rather than all of it.
In these situations, dataset projection can select subsets of the data that better approximate
the target dataset and can lead to better test performance when augmenting the target
dataset. We highlight these trends empirically on a variety of language and vision datasets
and further highlight the use of our framework as an analysis tool. Our work takes a step
towards understanding when more data is useful, and finding more useful data.

9



Under review as a conference paper at ICLR 2023

References
Andrew Y. Ng Adam Coates, Honglak Lee. An analysis of single layer networks in unsuper-

vised feature learning. In AISTATS, 2011.

A. Angelova, Y. Abu-Mostafam, and P. Perona. Pruning training sets for learning of object
categories. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), 2005.

Francesco Barbieri, Jose Camacho-Collados, Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and Horacio Saggion. Semeval 2018 task 2:
Multilingual emoji prediction. In Proceedings of The 12th International Workshop on
Semantic Evaluation, pp. 24–33, 2018.

Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa-Anke, and Leonardo Neves.
TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification. In
Proceedings of Findings of EMNLP, 2020.

Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, Markus Meister,
and Pietro Perona. Synthetic examples improve generalization for rare classes. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
863–873, 2020.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the
2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623, 2021.

Dimitri P Bertsekas. Projected newton methods for optimization problems with simple
constraints. SIAM Journal on control and Optimization, 20(2):221–246, 1982.

Ernesto G Birgin and José Mario Martínez. Large-scale active-set box-constrained opti-
mization method with spectral projected gradients. Computational Optimization and
Applications, 23(1):101–125, 2002.

Carmo P Brás, Andreas Fischer, Joaquim J Júdice, Klaus Schönefeld, and Sarah Seifert. A
block active set algorithm with spectral choice line search for the symmetric eigenvalue
complementarity problem. Applied Mathematics and Computation, 294:36–48, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised
pre-training of image features on non-curated data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2959–2968, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments.
Advances in Neural Information Processing Systems, 33:9912–9924, 2020.

Emile Chapuis, Pierre Colombo, Matteo Manica, Matthieu Labeau, and Chloé Clavel. Hier-
archical pre-training for sequence labelling in spoken dialog. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 2636–2648, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.239.
URL https://www.aclweb.org/anthology/2020.findings-emnlp.239.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.aclweb.org/anthology/2020.findings-emnlp.239


Under review as a conference paper at ICLR 2023

Andrea Cristofari, Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi. A two-stage
active-set algorithm for bound-constrained optimization. Journal of Optimization Theory
and Applications, 172(2):369–401, 2017.

Andrea Cristofari, Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi. An active-set
algorithmic framework for non-convex optimization problems over the simplex. Computa-
tional Optimization and Applications, 77:57–89, 2020.

Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Learning to generate synthetic
datasets. In ECCV, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative
neural networks via maximum mean discrepancy optimization. In Uncertainty in Artificial
Intelligence (UAI), 2015.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras.
Robustness (python library), 2019a. URL https://github.com/MadryLab/robustness.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and
Aleksander Madry. Adversarial robustness as a prior for learned representations. arXiv
preprint arXiv:1906.00945, 2019b.

Francisco Facchinei, Andreas Fischer, and Christian Kanzow. On the accurate identification
of active constraints. SIAM Journal on Optimization, 9(1):14–32, 1998.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of
domain adaptation. Advances in Data Science and Information Engineering, pp. 877–894,
2021.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and
Bernhard Schölkopf. Covariate shift by kernel mean matching. Dataset shift in machine
learning, 3(4):5, 2009.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research (JMLR), 13(25):
723–773, 2012. URL http://jmlr.org/papers/v13/gretton12a.html.

William W Hager and Hongchao Zhang. A new active set algorithm for box constrained
optimization. SIAM Journal on Optimization, 17(2):526–557, 2006.

Tatsunori Hashimoto. Model performance scaling with multiple data sources. In International
Conference on Machine Learning (ICML), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. In Arxiv preprint arXiv:2001.08361, 2020.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak,
David Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate
synthetic datasets. In IEEE/CVF International Conference on Computer Vision (ICCV),
2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

11

http://arxiv.org/abs/1810.04805
https://github.com/MadryLab/robustness
http://jmlr.org/papers/v13/gretton12a.html


Under review as a conference paper at ICLR 2023

Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav
Vineet, Kai Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, Ashish Kapoor, and
Aleksander Madry. 3db: A framework for debugging computer vision models. In Arxiv
preprint arXiv:2106.03805, 2021.

Shikun Liu, Andrew J Davison, and Edward Johns. Self-supervised generalisation with meta
auxiliary learning. arXiv preprint arXiv:1901.08933, 2019.

Sharon L Lohr and Trivellore E Raghunathan. Combining survey data with other data
sources. Statistical Science, 32(2):293–312, 2017.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan
Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In European Conference on Computer Vision (ECCV), 2018.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information
retrieval. Natural Language Engineering, 16(1):100–103, 2010.

Gustav Mårtensson, Daniel Ferreira, Tobias Granberg, Lena Cavallin, Ketil Oppedal, Alessan-
dro Padovani, Irena Rektorova, Laura Bonanni, Matteo Pardini, Milica G Kramberger,
et al. The reliability of a deep learning model in clinical out-of-distribution mri data: a
multicohort study. Medical Image Analysis, 66:101714, 2020.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of
multitask representation learning. Journal of Machine Learning Research, 17(81):1–32,
2016.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko.
Semeval-2018 task 1: Affect in tweets. In Proceedings of the 12th international workshop
on semantic evaluation, pp. 1–17, 2018.

Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu Cord. Revisiting multi-task
learning with rock: a deep residual auxiliary block for visual detection. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data
augmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 774–782, 2021.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Mo-
ment matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1406–1415, 2019.

Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xiao-Ping Zhang, Dong Wu, and Tao Mei.
Boosting video representation learning with multi-faceted integration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14030–14039,
2021.

Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. Failing loudly: An empirical
study of methods for detecting dataset shift. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

12



Under review as a conference paper at ICLR 2023

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”:
Explaining the predictions of any classifier. In International Conference on Knowledge
Discovery and Data Mining, 2016.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive
prediction of the generalization error across scales. In International Conference on Learning
Representations (ICLR), 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge. In International Journal of
Computer Vision (IJCV), 2015.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge. Improving robustness against common corruptions by covariate shift
adaptation. arXiv preprint arXiv:2006.16971, 2020.

Kendrick Shen, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z HaoChen,
Tengyu Ma, and Percy Liang. Connect, not collapse: Explaining contrastive learning for
unsupervised domain adaptation. In International Conference on Machine Learning, pp.
19847–19878. PMLR, 2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In International Conference on Computer Vision
(ICCV), 2017.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services
for the World. In Proceedings of the 22nd Annual Conferenec of the European Association
for Machine Translation (EAMT), Lisbon, Portugal, 2020.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm
training on very large data sets. Journal of Machine Learning Research (JMLR), 2005.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In International Conference
on Machine Learning (ICML), 2008.

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing,
312:135–153, 2018.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM
Transactions on Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The
role of image backgrounds in object recognition. In International Conference on Learning
Representations (ICLR), 2021.

John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano, and
Eric Karl Oermann. Variable generalization performance of a deep learning model to
detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11):
e1002683, 2018.

Yu Zeng, Huchuan Lu, and Ali Borji. Statistics of deep generated images. arXiv preprint
arXiv:1708.02688, 2017.

13

https://www.aclweb.org/anthology/D13-1170


Under review as a conference paper at ICLR 2023

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection
by deep multi-task learning. In European Conference on Computer Vision (ECCV), 2014.

14



Under review as a conference paper at ICLR 2023

A Examples from Section 2 on the limits of auxiliary data

In this section, we provide all the specifics for the three experiments discussed in Section 2.
These experiments demonstrate how indiscriminate usage of all auxiliary data can actually
harm performance.

A.1 Training on ImageNet data for CIFAR10

In the first example (Figure 1), we showed that training on more ImageNet data does not
always improve CIFAR10 performance. Indeed, although adding a small amount of ImageNet
does boost CIFAR10 performance, adding too much ultimately decreases accuracy. The blue
line shows the performance of a CIFAR10 classifier when we add auxiliary ImageNet data
to one thousand CIFAR10 training examples. The orange line shows the performance of a
CIFAR10 classifier when we only train on the auxiliary ImageNet data. In both cases, we
find that optimal CIFAR10 performance is reached after adding approximately ten thousand
ImageNet datapoints. After this point, adding more ImageNet data degrades the classifier’s
accuracy.

Our experimental setup for this setting follows our main experimental setup but with one
main difference: to examine the effect of auxiliary data, we vary the size of the auxiliary
dataset in the amounts of 2k for k = 4 . . . 16. Otherwise, the remaining specifics (how we
select auxiliary data from ImageNet and training parameters) match our benchmark, and
are described in Appendix C.

A.2 Gaussian example

In this section, we provide the specifics of the Gaussian example from Section 2, where we
showed how restricting data from auxiliary Gaussians can improve the resulting classifier.

Data generation. The target data is generated from 2-dimensional Gaussians with a
class-conditional distribution of

p(x|y) ∼ N (y · µ, I) (4)

for µ = (2, 0). The auxiliary data is also generated from 2-dimensional Gaussians with
the same mean but different covariance. Specifically, the auxiliary data has a conditional
distribution of

paux(x|y) ∼ N (y · µ,Σ) (5)

for Σ = R diag([s, 1/s])RT where s = 4 and R is the standard rotation matrix

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(6)

for θ = π/8. In other words, paux is equivalent to a rotated and scaled version of p with the
same mean. This rotation and scaling amounts to the bias introduced from the auxiliary
dataset.

We generate n = 12 datapoints Dtarget = {xi, yi} from the target distribution split evenly
between the two classes, and generate m = 2 . . . 200 datapoints Dauxiliary = {x′

i, y
′
i}i=1...m

from the auxiliary distribution, also split between the two classes.

Clipping auxiliary data. To clip the auxiliary data and get a target-aligned subset, we
simply throw away all datapoints that lie outside a high confidence region of the Gaussians
estimated from the target dataset. Specifically, use the following steps:

1. We estimate the class conditional mean and covariance matrix of the target dataset.
Specifically, we calculate the sample mean µy and covariance Σy of each class in
the target data, {xi : yi = y} ⊆ Dtarget. This gives us an estimated distribution
p̂(x|y) = N (µy,Σy) for the target distribution.
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Biased Dataset (Unbiased) Ideal Subset (Unbiased) Test Dataset

Figure 10: The full 15k-image auxiliary dataset (Left) contains a background bias where dogs
appear more frequently outdoors and cats appear more frequently indoors. We only show
dog images here to highlight the background bias. The unbiased 3k-image subset (Middle)
does not have any background bias. Training on the unbiased subset results in better test
accuracy on the unbiased test set (Right), showing that more data is not always more helpful.

2. We calculate the Mahalanobis distance of each auxiliary datapoint to the estimated
Gaussian of its class p̂(x|y), i.e.

MD(x, y) =

√
(x− µy)TΣ

−1
y (x− µy) (7)

3. We then discard all auxiliary points whose Mahalanobis distances lies outside of a
certain threshold. Specifically, the resulting subset is the following:

Drestricted = {(x′, y′) : MD(x′, y′) ≤ r for (x′, y′) ∈ Dauxiliary} (8)

for r = 3.

Fitting the linear classifier. In the experiment shown in Figure 2, we measure how
adding auxiliary data affects the performance of a linear classifier with a small amount of
target data. Similar to the previous experiment on augmenting CIFAR10 data with ImageNet
data, we find that adding too much auxiliary data hurts accuracy in this Gaussian example.

Specifically, we add data from the auxiliary dataset to the training data in various amounts
from 2 . . . 100, and fit a linear classifier. We use the default LogisticRegression function
from Scikit-learn. Test error is measured over an independent, random sample of 1000
additional samples from the original training distribution p. Error bars are averaged over
five random seeds. We also compare to the analytically optimal classifier:

hopt(x1, x2) =

{
1, if x1 ≥ 0

−1, otherwise

A.3 Training on biased 3DB data

Inspired by the common story of machine learning models picking up on biases between
animals and their backgrounds (Ribeiro et al., 2016), we construct a binary classification
task with explicitly planted biases. In contrast to the Gaussian example, we generate a more
realistic setting of cats and dogs using the Blender renderer and the 3DB framework (Leclerc
et al., 2021). In contrast to the CIFAR10 and ImageNet example, where the exact ImageNet
patterns that hurt CIFAR10 generalization are unknown, we can instead construct a setting
with an explicit bias. Since this is a controlled experiment, it enables us to do the following:

1. Validate in isolation that biased auxiliary data can hurt performance in situations
more complex than the Gaussian example.

2. Demonstrate how an "ideal" target-aligned subset can remove this bias and improve
performance over using all of the original auxiliary data

Data generation. We begin by constructing an auxiliary dataset with a background bias.
Specifically, we generate 50 images for each (3D-model, background) pairing. We use 15 cat
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3D-models and 15 dog 3D-models for the training data. We choose 1 indoor background
and 1 outdoor background to be shared by both classes. Then, we choose 8 new indoor
backgrounds to appear with cats, and 8 new outdoor backgrounds to appear with dogs. We
hold out 1 indoor background, 1 outdoor background, and three 3D-models per class for the
test set.

Our resulting training set has a strong background bias; 90% of cats are indoors, and 90% of
dogs are outdoors. Meanwhile, the test set consists of two entirely new backgrounds and is
unbiased: half of the images use an outdoor background and the other half use an indoor
background irrespective of the class. We show examples of generated train and test dog
images on the left and right panels of Figure 10 respectively.

The ideal target-aligned subset. The ideal subset of auxiliary data is one that does not
introduce a background bias. Specifically, we can accomplish this goal by choosing images
that use the shared indoor and outdoor backgrounds as the “ideal” subset. Then, cats and
dogs are equally likely to appear on either indoor or outdoor backgrounds. This ensures
that the backgrounds do not confer any useful correlations for predicting the class, removing
the background bias. Examples of the ideal dog subset are shown shown in the middle of
Figure 10.

Fitting a classifier. We train ResNet-18 models on both the full auxiliary dataset and
the target-aligned subset and evaluate their test performance on the unbiased test set. Most
training details are the same as the training details for the vision experiments in the rest of
the paper, which are described in Appendix C.3. The main differences are the following.

• We train for 120 epochs for the full 15k-image auxiliary dataset, and we train for 600
epochs for the unbiased 3k-image subset (so that the total number of SGD iterations
across both settings is the same).

• We use a learning rate of 0.1, and we only do a learning rate drop one time, halfway
through training.

Indiscriminately training on the full, biased dataset results in a test accuracy of 90.4%± 2.1.
On the other hand, training on the smaller, target-aligned subset improves the accuracy by
over 7% to 97.6%± 0.6, respectively. This suggests that when a bias exists in the auxiliary
data, it can be harmful to use the full dataset as opposed to just a target-aligned subset.

B How to project datasets

In this section, we describe in detail the framework that we developed to solve the dataset
projection problem. Specifically:

1. We provide a brief background on the active set optimization method that we build
upon (Appendix B.1).

2. We describe the exact algorithms of our active set (Appendix B.2) and PGD
(Appendix B.3) solvers.

3. We provide a more detailed description of how we obtain source distributions
(Appendix B.6).

4. We outline specifically how we compute the distance metric between datasets
(Appendix B.7).

B.1 Overview of active set framework

We build upon an extensive line of work on active set optimization frameworks for minimiza-
tion over the simplex (Bertsekas, 1982; Birgin & Martínez, 2002; Brás et al., 2017; Cristofari
et al., 2017; Facchinei et al., 1998; Hager & Zhang, 2006). This family of algorithms can
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Algorithm 3 The damped active set update DampedUpdate(α,A, g) for simplex optimization,
which applies a momentum update to the active set A and performs a coordinate step to the
iterate α.
1: // Select coordinate to update and calculate hard active set for current iterate
2: j = argmini{gi}
3: Ã = {i : αi ≤ ϵgT (ei − α)}
4:
5: // Apply damped update to the soft active set estimate to stabilize the current active set
6: A = βA
7: for i ∈ Ã do
8: A = A+ (1− β)
9: end for

10: Ã = {i : Ai > 0.5}
11: N = {i :i≤ 0.5, i ̸= j}
12:
13: // Apply coordinate update
14: Set α̃Ã = 0, α̃N = αN , α̃j = αj +

∑
h∈Ã αh

15: return (α̃, A)

solve problems of the following form:

min
α

f(α) subject to
k∑

i=1

αi = 1, αi ≥ 0 (9)

where f is the objective function to be minimized over the simplex. Existing algorithms have
favorable properties, such as global convergence to stationary points in non-convex settings
(Cristofari et al., 2020).

Our algorithm is an adaptation of the framework from Cristofari et al. (2020) to the stochastic
and non-differentiable setting, in order to solve the dataset projection problem from Equation
equation 3.

As a brief overview, the simplex algorithm from Cristofari et al. (2020) consists of two
main steps. First, the method calculates an estimate of the active set, and performs a
single coordinate update based on this update. Second, the method then calculates a search
direction, and performs a line search in this direction. With these updates, Cristofari et al.
(2020) show that this method has linear convergence to a stationary point for non-convex
problems with simplex constraints.

However, the method as originally proposed was not intended for stochastic and non-
differentiable optimization. Indeed, if we attempt to directly apply this algorithm to solve
the dataset projection from Equation equation 3, we run into two main problems. First, the
estimate of the active set can vary due to the stochasticity in the objective when sampling a
dataset. This causes coordinates to rapidly fluctuate between being in and out of the active
set between iterations, which prevents the method from converging. Second, the method
requires a gradient calculation for both the active set estimate and the search direction.
However, the objective from Equation equation 3 is non-differentiable with respect to the
simplex variables.

B.2 Extending the active set framework from Cristofari et al. (2020)

In order to address these two problems and solve the dataset projection problem, we modify
the active set simplex algorithm in two ways.

Damped updates for estimating the active set. In order to stabilize the algorithm,
we need to stop the active set estimates from fluctuating too much. To do this, we instead
introduce a soft active set estimate which varies between [0, 1] for each coordinate. Then, to
determine if a coordinate is in the active set or not, we simply threshold the soft estimate at
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Algorithm 4 The search direction update SearchUpdate(α,A, g), which uses a stale gradient
and line search to update the iterate α with line search parameters (γ, δ). Here, P∆ is the
projection operator onto the simplex.

1: // Compute a search direction that obeys the active set estimate
2: d = P∆ (α− sg)− α
3: for i : Ai > 0.5 do
4: di = 0
5: end for
6:
7: // Armijo line search
8: if gT d < 0 then
9: λ = 1

10: while f(α+ λd) > f(α) + γλgT d do
11: λ = δλ
12: end while
13: else
14: λ = 0
15: end if
16: return α+ λd // Second update

Algorithm 5 Projected gradient descent (PGD) solver for projecting datasets with step
size γ

1: α0
i = 1/k for i = 1 . . . k // Initialize feasible point

2: for t = 0, 1, . . . do
3: g = ∇f(αt) // Estimate numerical gradient of the dataset projection objective
4: αt = Proj∆(αt + γ · g) // Gradient update with projection onto simplex
5: end for

0.5: coordinates with a soft estimate greater than 0.5 are in the active set, and coordinates
below are not. Finally, each iteration we update the soft estimate with a momentum-style
update to damp the variability at each iteration. This stabilizes the soft estimate, and creates
a more consistent active set across iterations that enables the method to converge. The
specific steps for calculating and updating the soft active set are in lines 5-11 of Algorithm 3.
The rest of the active set update remains the same as in Cristofari et al. (2020).

Numerical estimation for gradients. The active set algorithm has two updates that
require gradient directions. However, the dataset projection problem is non-differentiable due
to the sampling procedure. Instead, we use numerical estimation to calculate the gradient.
Specifically, we use the central difference formula for estimating the gradient. Furthermore,
in the second step of the framework, we use a stale gradient from the previous update to keep
computational overhead low. This contrasts with the original framework, which uses a fresh
gradient for the iterate after the initial active set update step. Otherwise, the remainder of
the second update is the same as in Cristofari et al. (2020), and is shown in Algorithm 4.

B.3 Projected gradient descent

As an another approach, we can apply projected gradient descent (PGD) to solve Equation 3.
Similarly to the active set approach, we can use numerical gradient estimates to directly
optimize α, and project α back to the simplex after every step. Although PGD does not
have the global convergence guarantee that the active set method does, PGD is an simple
technique for solving constrained optimization problems in deep learning settings. The PGD
solver is shown in Algorithm 5.
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out variables, of each solver over iterations.

Figure 11: Convergence of the loss objective and number of zero entries for each solver (PGD,
Active Set, and Active Set with damped updates) over iterations. The vanilla active set
method struggles with the stochasticity, and has large jumps in loss and size of the active
set. The PGD solver makes consistent but slow progress, and oscillates around the optimal
active set. Our solver using damped updates can leverage the superior convergence of active
set methods but stabilizes the updates, and is able to find the optimal active set within 16
iterations.

B.4 Convergence analysis

In this section we demonstrate how active set methods struggle to converge with stochasticity,
and how our damped update addresses this problem. To isolate the effect, we construct
a minimal problem of minimizing f(x) = wTx+ ∥x∥22 subject to ∥x∥1 ≤ 1 for a randomly
generated w. This is a non-stochastic convex problem with a unique solution, and indeed
both active set and projected gradient descent methods can both solve this problem.

The issue arises when there is noise in the gradients. We can simulate this by adding standard
Gaussian noise to 10% of the coordinates in the gradient at each step. If we attempt to
apply the standard active set method with noisy gradients, we see that the loss and active
set becomes highly unstable in Figure 11. We also see that the PGD solver converges stably,
but takes much longer to do so and oscillates around the optimal active set. In contrast,
our damped version of the active set solver allows us to utilize the faster convergence of the
active set method without the oscillating convergence. Indeed, in this setting our method
finds the optimal active set within 16 iterations, which neither vanilla active set nor PGD is
able to do in 500 iterations.

B.5 Quadratic Programming reduction

In the special case of MMD metric, equation 3 can be reduced to a quadratic program.
Specifically, if we assume the distance to be the squared MMD distance, we can rewrite
equation 3 as

min
α

EY∼q̂,Y ′∼q̂ [k(Y, Y
′)]− 2EX∼p,y∼q̂ [k(X,Y )]

subject to q̂ =

k∑
i=1

αiqi,

k∑
i=1

αi = 1, αi ≥ 0
(10)

Moving one of the constraints into the objective, we get

min
α

∑
i

∑
j

αiαjEY∼qi,Y ′∼qj [k(Y, Y
′)]− 2

∑
i

αiEX∼p,y∼qi [k(X,Y )]

subject to
k∑

i=1

αi = 1, αi ≥ 0

(11)
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(a) STL10 cluster. (b) CIFAR10 "blue" cluster of the car class.

Figure 12: Examples of clusters created when using a robust representation and unsupervised
learning to separate auxiliary datasets into source distributions. (a) A cluster from the
STL10 dataset, which has no label information and (b) a cluster from the CIFAR10 car class,
which contains mostly blue images.

Rewriting this in matrix form and relaxing the simplex constraint to be within a tolerance ,
we have

min
α

αTKα− 2αT k

subject to

∣∣∣∣∣∑
i

αi − k

∣∣∣∣∣ ≤ ϵ, B ≥ αi ≥ 0
(12)

where Kij = EY∼qi,Y ′∼qj [k(Y, Y
′)] and ki = EX∼p,y∼qi [k(X,Y )] for some kernel k. This

formulation carries similarities to the Moment Matching Algorithm from Gretton et al. (2009),
with one major difference: the MMD metric uses a kernel k that is defined over datasets,
whereas the original Moment Matching Algorithm uses a kernel defined over individual data
points.

Thus, to create the kernel matrix for dataset projection, we need to define a kernel over
datasets. To this end, we can recursively use the MMD metric again, but this time as a
kernel for an MMD over datasets. Specifically, we define the following dataset kernel:

k(X,Y ) = exp(−γ · MMD(X,Y )2) (13)

where γ is a hyperparameter and MMD(X,Y ) calculates the typical MMD distance between
two datasets (X,Y ).

B.6 Determining source distributions

To apply dataset projection to real-world datasets, we need to divide an auxiliary distribution
into multiple source distributions to search over. We do so primarily with two main strategies:
either by using existing labels when available, or generating source distributions with
unsupervised clustering methods.

Using label information. In some cases, datasets may already have existing class or
attribute labels. For example, suppose that the target dataset is CIFAR10 and the auxiliary
dataset is ImageNet. When projecting the CIFAR10 dog class onto ImageNet, each ImageNet
class that is a dog breed can be considered a separate source distribution. Note that the
labels for the auxiliary dataset do not need to strictly line up with labels in the target dataset.
For example, the Emoji dataset has labels corresponding to emoticons such as a Christmas
tree, a camera, and the sun. These labels may not have an obvious correspondence to the
labels of other datasets such as the five star ratings from the Yelp dataset. Our framework
can simply use the auxiliary labels as a way to divide the data into source distributions, and
then project each target class onto the auxiliary data to re-assign labels for the target task.

Unsupervised data. Sometimes no label information is available. For example, suppose
we want to project CIFAR10 classes onto the unsupervised STL10 dataset. The STL10
dataset is completely unlabeled and can contain images of objects that are completely
irrelevant to the base CIFAR10 class. In such cases, we can use unsupervised clustering
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techniques to find source distributions. For our vision settings, we use k-means clustering
based on robust representations because it has been shown to lead to good visual alignment
within each cluster (Engstrom et al., 2019b). We show several examples from an STL10
cluster in Figure 12.

Combined label and clustering. The previous two approaches for dividing an auxiliary
distribution into source distributions can be combined to obtain even finer-grained source
distributions. This can enable source distributions to capture a narrower population, which
can then be used to find more accurate projections of the target dataset. For example, when
using CIFAR10 as an auxiliary dataset, we can not only break the dataset into subsets
corresponding to its classes, but also use clustering techniques to break each class subset into
finer-grained categories. We show an example of this in Figure 12, which shows a blue-car
cluster within the CIFAR10 car class.

B.7 Distance metric for dataset projection

In this section, we expand on the specific distance metric used in the objective of the dataset
projection problem. This objective is the fundamental metric that guides the solvers towards
“target-aligned” subsets.

We use what is known as the unbiased estimate for the Maximum Mean Discrepency (Gretton
et al., 2012), as defined in Equation 14:

MMD(x, y) =

 1

m2

m∑
i,j=1

k(xi, xj) +
1

mn

m∑
i=1

n∑
j=1

k(xi, yj) +
1

n2

n∑
i,j=1

k(yi, yj)

 1
2

(14)

where k(x, y) = exp(−α · 1
2∥x− y∥22) is a kernel with hyperparameter α.

This score was originally proposed as a way to distinguish whether two distributions were
different or indistinguishable via a two-sample hypothesis test. In our setting, we consider
the datasets as sampled from the source and target distributions, and use the MMD score as
the metric for distance without the hypothesis testing component.

However, these MMD scores run into numerical issues when the feature dimension of the
dataset is extremely large. These issues make it not possible for the MMD score to distinguish
between, for example, two different image distributions. However, Rabanser et al. (2019)
found that calculating the MMD score in the encoded representation space of a neural
network was significantly more effective than the original feature space, and in fact was
the most powerful way to perform the traditional two-sample hypothesis test for detecting
distribution shift.

Thus, in this work we use the MMD score in the feature space of a neural network, as
suggested by Rabanser et al. (2019). For the vision setting we use a randomly initialized
encoder network, which found to be as effective as pretrained variants (Rabanser et al.,
2019). For the language setting we use a pretrained BERT model from HuggingFace (Devlin
et al., 2018). To select the hyperparameter α, we measured the MMD statistic over a range
of possible α and selected one that resulted in a statistically significant hypothesis test in
distinguishing the original auxiliary data from the target data. For the vision settings, this
turned out to be α = 500, and for the language settings this was α = 0.01.

C Experimental details

In this section, we provide a complete description of the datasets used and the experimental
setup for projecting datasets and training models.

C.1 Datasets

In this section, we describe each of the datasets used in the experiments of Section 4. A
table summary of how we assigned the auxiliary dataset, the target dataset, and the held-out
test set of the target dataset is shown in Table 4.
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Our computer vision experiments use four standard classification datasets — ImageNet
(Russakovsky et al., 2015), Oxford-IIIT Pet (Parkhi et al., 2012), CIFAR10 Krizhevsky
(2009), and STL10 (Adam Coates, 2011) — and one synthetic dataset generated using 3DB
(Leclerc et al., 2021). Our natural language experiments use five sentiment analysis datasets
— Stanford Sentiment Treebank (Socher et al., 2013), Emotion Recognition (Mohammad
et al., 2018; Barbieri et al., 2020), Emoji Prediction (Barbieri et al., 2018; 2020), Yelp
Reviews (Zhang et al., 2015), and DailyDialog Act Corpus (Chapuis et al., 2020).

Target Test Auxiliary Source
Distribution

ImageNet - - Train Set Class labels
CIFAR10 Train Set (1000) Test Set (1000) Train Set Combined

Oxford-IIIT All but test set Random 250 per class All but test set Class labels
STL10 Train Set (500) Test Set (800) Unlabeled data Clustering
3DB Validation Set (1000) Test Set (1000) Train Set Attribute labels

SST Validation set Test set Train Set Sentiment scores
Emoji Validation set Test set Train Set Emoji labels

Emotion Validation set Test set Train Set Emotion labels
Yelp Train set (2nd half) Train set (1st half) Test set Review scores

DailyDialog Validation set (100) Test set Train Set Emotion labels

Table 4: We summarize the portions of each dataset used when the given dataset is chosen as
the target, test, or auxiliary dataset. For example, when CIFAR10 is the target distribution,
we project 1000 images from each class of CIFAR10’s training set onto the auxiliary dataset.
When testing a model (e.g., one trained on the projected dataset) on CIFAR10, we test on
the held-out test set of CIFAR10. When CIFAR10 is used as an auxiliary dataset, we use
both the CIFAR10 class labels and unsupervised clustering to get source distributions.

Personally identifiable information or offensive content. The datasets we use are
all open source and widely-used in the community. Nonetheless, there is a non-zero chance
that the data contains personal information or offensive content. For example, unsupervised
datasets such as the images in STL10 may contain such images since the dataset has, by
definition, not been supervised. The sentiment analysis datasets may contain negative
sentences that are possibly offensive towards people, such as racist messages posted on
Twitter or ad-hominen attacks in negative Yelp reviews. To our knowledge, we are not aware
of any such data within these datasets, and have not explicitly encountered them in our
research.

C.1.1 Image classification

We standardize all of the image classification tasks into a single unified setting. Specifically,
all images are resized to have the same resolution (32× 32), and for each scenario, we use
classes that are shared between datasets. For example, when projecting Oxford-IIIT onto
CIFAR10, we choose the auxiliary dataset to be the the CIFAR10 classes cat and dog, and
project the corresponding classes in Oxford-IIIT onto the cluster-based sources of the cat
and dog classes.

ImageNet. ImageNet is the largest vision dataset we consider, and it is substantially
larger (both in size and number of classes) than all the other vision datasets. Hence, we use
ImageNet primarily as an auxiliary dataset. Specifically, we use the training set of ImageNet.

To get source distributions for a particular class, we find that class in the WordNet hierarchy
and use every descendant ImageNet class as a source for the class. For example, for the “dog”
class, we find the dog node in the WordNet hierarchy and use all the various breeds of dogs
under this node as individual source distributions for the dog class.

CIFAR10. The target and test datasets for CIFAR10 are random subsets of the training
and test data respectively. Specifically, we randomly subsample 1000 examples from each
class to match the ImageNet dataset.
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When CIFAR10 is used as an auxiliary dataset, we split the training data into sources
with a combination of class labels and unsupervised clustering. Specifically, we first encode
each example into a robust feature representation. We do this with an adversarially robust
ImageNet classifier (Engstrom et al., 2019a), as this is known to be more aligned with human
visual features (Engstrom et al., 2019b). We used the open-source pre-trained ℓ2 robust
model for ϵ = 3. For each class, we then cluster the training data into 16 clusters using
the robust representations and the MiniBatchKMeans function from Scikit-learn. These 16
clusters form the source distributions for the corresponding CIFAR10 class.

Oxford-IIIT Pet. The Oxford-IIIT Pet dataset is originally not split into a training set
and test set. Thus, we randomly select 250 cats and 250 dogs for use as a test set, and use
the remaining data as the train set.

When Oxford-IIIT Pet is used as auxiliary data, we use the entire Oxford-IIIT Pet dataset,
other than the 250 cats and 250 dogs that were set aside as the test set. Specifically, we
use the fine-grained labels of dog breeds and cat breeds to divide the dataset into source
distributions. In other words, the dog breeds form the source distributions for the dog class,
and the cat breeds form the source distributions for the cat class. In total, there are 12 cat
breeds and 23 dog breeds, each with (on average) 200 images per cluster.

STL10. The target and test datasets are random subsets of the training and test data,
with 500 and 800 examples each, respectively.

We use the unlabeled data in STL10 as the auxiliary data. Similar to CIFAR10, since there
are no sources, we use unsupervised clustering to generate the sources. However, in this case
since there are no class labels, we rely purely on unsupervised clustering. Specifically, we use
the same methodology as for CIFAR10, but instead create 160 clusters total that are not
necessarily separated by class (instead of 16 clusters for each of 10 classes).

3DB. 3DB is a synthetic rendering platform that allows the user to generate synthetic
image data by specifying a 3D-model, an HDRI background, and a variety of other parameters
such as the camera location, camera and object orientation, and the scene brightness (Leclerc
et al., 2021). In our case, we generate a “CIFAR10-like” synthetic dataset with this renderer.
Specifically, we use this framework with free, Blender-compatible 3D-models that we find
online from sketchfab.com, as well as free HDRI backgrounds from polyhaven.com.

We first describe how we make the training set for 3DB. For each class that we want to
generate (e.g., airplane or dog), we find 15 high-quality 3D-models and 25 HDRI backgrounds.
We also choose 4 distinct camera settings in terms of height and zoom — in particular, we
allow the camera to have a zoom factor of either 1.5 or 3.0, and we choose the camera height
to be 0 or 11. This gives a total of 1500 unique triplets of (3D-model, HDRI background,
camera setting) per class. For each such choice of 3D-model, background, and camera setting,
we generate 1000 different images by rotating the camera around the object by a random
angle and randomly varying the brightness of the generated image.

Our validation and test sets use similar 3DB parameters, but they are generated independently
with different 3D models and HDRI backgrounds. Specifically, we choose 3 new 3D-models
per class and find 10 new HDRI backgrounds in total. For each class, we randomly choose
4 out of the 10 backgrounds to be associated with that class, in order to add a realistic
background bias. This helps us mimic real image datasets like CIFAR10, where there also
exists a background bias. For each class, we use exactly one of the 4 possible height and
zoom settings for the camera instead of using all 4. These settings are shown in Table 5.

Using this combination of 3D-models and backgrounds for each class, we generate 1000
images for each validation set and test set.

Thus, we now associate the train, validation, and test sets of 3DB with the dataset projection
setting. When using 3DB as the auxiliary dataset, we use the training set, which has 1500
unique labeled source distributions per class. Each source corresponds to a specific triplet of

1We choose camera heights to be 0 or -1 instead in the case of the two classes airplane and bird
because those classes are usually photographed from below rather than from above.
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Class Height Zoom

Airplane -1 1.5
Automobile 0 3.0

Bird 0 3.0
Cat 0 1.5
Deer 1 1.5
Dog 0 1.5
Frog 1 3.0
Horse 0 1.5
Ship 0 3.0
Truck 0 1.5

Table 5: Height and zoom values (randomly) chosen for each class in the 3DB validation and
test sets.

(3D-model, HDRI background, camera setting). When using 3DB as the target dataset, we
use the validation set of 3DB, and when using 3DB as the test set, we use the test set of
3DB.

C.1.2 Sentiment analysis.

Similar to the computer vision setting, we standardize all of the language datasets into a
single unified setting. Specifically, all datasets are loaded via the Datasets package built by
HuggingFace. All sentences are tokenized with the BertTokenizerFast tokenizer from the
pre-trained bert-base-case model on https://huggingface.co/ with maximum length
padding and truncation. All datasets are subsampled to 100 examples total.

Note that, since each sentiment analysis task has a different goal, we cannot canonicalize all
scenarios to predict the same set of labels like we could in the computer vision setting. For
example, it is unclear at what point a 1 through 5 star rating on a Yelp review translates to
positive or negative sentiment in the Stanford Sentiment Treebank.

Stanford Sentiment Treebank (SST). The target and test datasets for SST are random
subsets of the corresponding validation and test splits. When SST is used as an auxiliary
dataset, we take the SST train set and discretize the sentiment scores into 10 bins of size 0.1.
Each bin forms a source distribution for the auxiliary SST dataset. The dataset is available
at https://huggingface.co/datasets/sst.

Emoji. The Emoji dataset is a subset of the tweet_eval dataset on HuggingFace. Specif-
ically, the target and test datasets for Emoji are random subsets of the correspond-
ing validation and test splits. When used as an auxiliary dataset, we use the emoji
labels to divide the dataset into 20 source distributions. The dataset is available at
https://huggingface.co/datasets/tweet_eval.

Emotion. The Emotion dataset is a subset of the tweet_eval on HuggingFace. Specifically,
the target and test datasets for Emotion are random subsets of the corresponding validation
and test splits. When used as an auxiliary dataset, we use the emotion labels to divide the
dataset into 4 source distributions. The dataset is available at https://huggingface.co/
datasets/tweet_eval.

Yelp. The Yelp dataset does not have a validation set, so we split the training data to get
a target dataset. Specifically, the target dataset is the second half of the Yelp training split,
and the test dataset is the test split.

The Yelp auxiliary data comes from the first half of the Yelp training split. This subset
is further divided into source distributions by using the review scores of each example.
Specifically, we divide the subset into 5 source distributions corresponding to 1 star reviews
through 5 star reviews. The dataset is available at https://huggingface.co/datasets/
yelp_review_full.
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DailyDialog. The DailyDialog dataset is the dyda_e subset of the sillicone dataset,
a collection of resources designed for spoken language. We make one modification to the
dataset: since some of the classes have fewer than 100 examples while others have thousands,
we subset the dataset to classes (3, 4, 6) (corresponding to happiness, no emotion, and
surprise) which have sufficient representation. We then balance the classes to have no more
than 100 examples per class.

The target and test datasets thus come from the corresponding validation and test splits.
When used as auxiliary data, we divide the training set into 3 source distributions cor-
responding to the emotion labels. The dataset is available at https://huggingface.co/
datasets/silicone.

C.2 Dataset projection benchmark

In this section, we provide the full experimental setup for projecting datasets, and train-
ing neural networks to either evaluate the projection or to use the projection as dataset
augmentation.

C.2.1 Experimental setup

For each experiment we choose two datasets, one auxiliary dataset and one target dataset.
For final evaluation, we evaluate on the test set of the target dataset.

At a high level, we first use active set or PGD to project each class of the target dataset
onto the auxiliary dataset as described in Appendix B. After finding the projected dataset,
we validate its effectiveness by training deep learning models on it and reporting the mean
and standard deviation of the test accuracy over 5 training runs. These training runs can be
in combination with the target dataset (to measure augmentation performance) or without
the target dataset (to validate the projection method).

C.2.2 Baselines

We compare three different methods of choosing a subset of the auxiliary data to determine
the most effective one. In the rest of this section, we refer to them as follows.

• AS-PD: We find the projected dataset via active set.
• PGD-PD: We find the projected dataset via PGD.
• QP-PD: We find the projected dataset via quadratic programming.
• Random (Baseline): We use a equally-sized subset of the auxiliary dataset chosen

uniformly at random from the sources. This baseline isolates the importance of
finding the “right” subset of the auxiliary dataset.

C.3 Training specifics for image classification

Our computer vision models are trained with settings that are standardized across all
experiments in this paper.

• We use a standard ResNet-18 architecture (He et al., 2016).
• We always randomly subsample 100 examples for each dataset we use during model

training. In other words, all training datasets (e.g. the target dataset, the projected
dataset, the random portion of the auxiliary dataset) have size 100.

• We use SGD to train for 100 epochs. We set the batch size to 32, the learning rate
to 0.1 (with learning rate drops every 33 epochs), the momentum parameter to 0.9,
and the weight decay to 5e−4.

• For data augmentation of the regular training runs (the ones not labeled as “DA”), we
use random crop and random horizontal flip. When using stronger data augmentation
(the ones labeled as “DA”), we use the default settings of TrivialAugment (Müller &
Hutter, 2021).
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• For each experiment, we repeat each training run with 5 different seeds in order to
get the mean and standard deviation of the test accuracies.

C.4 Training specifics for sentiment analysis

Our language models are trained with settings that are standardized across all experiments
in this paper.

• We use a standard BERT architecture (He et al., 2016), specifically the pretrained
bert-base-cased from HuggingFace.

• We use the HuggingFace Trainer to fine-tune with the default arguments.

• Data augmentation via backtranslation is done via the French language using the
open source translation Opus-MT models Helsinki-NLP/opus-mt-en-ROMANCE and
Helsinki-NLP/opus-mt-ROMANCE-en from HuggingFace (Tiedemann & Thottingal,
2020).

• For each experiment, we repeat each training run with 5 different seeds in order to
get the mean and standard deviation of the test accuracies.

C.5 Projecting dataset specifics

When projecting datasets, we use the same following settings for both AS-PD and PGD-PD,
most of which are typical settings from the optimization literature:

• We use ϵ ∈ {1, 0.1, 0.01, 0.001, 0.0001}
• We use a learning rate of γ = 1

• We use a tolerance level of 10−6. If an iteration does not change by more than this
amount, we terminate the algorithm

• We run for a maximum of 1000 iterations

• We use a momentum parameter of β = 0.9 for the soft active set update

• We use (δ, γ) = (0.9, 0.9) as parameters for the Armijo line search

• We use α = 500 as the MMD kernel hyperparameter

For QP-PD we use the following settings:

• We use ϵ = 0.01 as the tolerance threshold for the quadratic program

• We use B = # of sources to allow any individual source to have maximum influence

• We use γ = 100 as the MMD kernel hyperparameter between datasets

• We use α = 500 as the MMD kernel hyperparameter between examples

• We used CVXPY to solve the QP with the default solver, OSQP (https://osqp.
org/)

C.6 Compute requirements

All experiments across all scenarios can in theory be run with a single 1080Ti with 1 CPU
core (double-threaded). Most projection and training runs can be completed within a few
hours, depending on the number of source distributions. For the projections onto the 3DB
auxiliary dataset, we use multi-processing with 4 CPU cores and 2 GPUs to accelerate the
projection process due to the large number of source distributions, which makes the numerical
gradient estimate expensive. Due to the large number of scenarios and experiments, we run
our scenarios in parallel across a cluster consisting of 56 GPUs (1080Ti). In total, there
are 36 scenarios, 3 training experiments per scenario, 4-5 methods per experiment, and 5
random seeds, for a total of 2340 models trained.
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Figure 13: Comparing test accuracies after projecting CIFAR10 on ImageNet and training
on either (1) the projected dataset (2) a random subset of the full auxiliary dataset. Even
though the entire projected dataset (marked by the dotted line) is a strict subset of the
full auxiliary dataset, training on just the projected dataset gives higher test accuracy than
training on the full auxiliary dataset (marked by the datapoint at the far right of the blue
line of the graph).

D Additional experimental results

We include additional experimental results not presented in the main paper here. We begin
with an overview of all our additional experiments, followed by the full set of the results.

Measuring target-alignment via training. One approach to validate our projected
datasets is to train a model on the projected data, and evaluate that model on the target
dataset, as depicted in Figure 5. Intuitively, a better alignment with the target dataset
should lead to better accuracy. Indeed, we find that our framework can find projections that
are more accurate at predicting the target dataset. The full table of results evaluating our
projections for PGD-PD and AS-PD on our benchmark are in Table 7 and Table 11.

Ablation: alignment of the complementary subset. Since our framework searches
for the most target-aligned subset, we would expect the complementary subset to have poor
alignment with the target dataset. Indeed, this sanity check turns out to be the case: in
Table 7 we evaluate the complementary subsets of those chosen by our framework (Not
PGD-PD and Not AS-PD), and find that these subsets have even worse performance than
the random baseline.

Comparing AS-PD with training on the full auxiliary dataset. Figure 13 compares
training on the projected dataset (AS-PD) with training on the full auxiliary dataset. The
projected dataset is smaller, and training on an equally-sized random subset of the full
auxiliary dataset results in worse performance at all dataset sizes up to the total size of
AS-PD. Using even more auxiliary data, including the full auxiliary dataset, only degrades
performance further, due to the biases present in the auxiliary dataset. In this case, training
only on the smaller projected dataset is beneficial compared to training on all available
auxiliary data, even though the full auxiliary dataset has strictly more datapoints than the
projected dataset.

Comparing AS-PD and PGD-PD. In Table 6, we examine the differences between
the projected datasets found using PGD and active set. Overall, AS-PD performs slightly
better, and both methods of solving dataset projection outperform sampling uniformly at
random from the auxiliary dataset.

Quantitative comparison of AS-PD and the random baseline via distance metrics.
In Figure 6, we showed that when projecting Oxford-IIIT onto ImageNet, the projected
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Aux. \Target CIFAR10 Oxford-IIIT Pet STL10 3DB

ImageNet 2.54 1.64 1.40 −0.10
CIFAR10 1.83 2.84 −1.68 5.49

Oxford-IIIT Pet 2.83 −2.20 0.82 −2.74
STL10 1.73 2.56 2.03 0.90
3DB 1.33 0.88 2.72 2.94

Table 6: Improvement of active set over PGD in approximating target datasets, measured
by the difference in test accuracy between a model trained on AS-PD and a model trained
on PGD-PD. Both methods improve approximation over uniformly random sampling from
the full auxiliary dataset, but active set is slightly better than PGD (that is, the measured
difference is positive) in 16 out of 20 settings.

dataset is much closer in distance to the target dataset than the auxiliary dataset is. We
showed this for the MMD distance, which we explicitly use active set and PGD to opimize
for, as well as for 3 alternate distance metrics discussed in (Zeng et al., 2017) — the contrast,
luminance, and random filter response (RFR). For completeness, we produce the same plot
for every possible choice of auxiliary dataset and target dataset. In the majority of cases,
such as in Figure 14, the quantitative distance metrics add further confirmation that the
projected dataset is more effective at approximating the target dataset than the original
auxiliary dataset. In a few cases, although dataset projection is able to decrease the MMD
distance to the target dataset, it does not always decrease the other distance metrics.

D.1 When projected datasets can and can’t help

Surprisingly, projected datasets that approximate the target better do not always lead to
better results when augmenting the target. When using 3DB as the auxiliary data, projected
datasets are better at approximating the target, but the Random baseline is often better
at augmenting the target. This may be because the 3DB dataset is generated by pairing
random backgrounds with random 3D-models of each class—thus, training on the baseline
dataset encourages invariance to background and different 3D-models, which may actually
be more beneficial for generalization. Understanding exactly what properties of a projected
dataset make it most useful for augmentation is an interesting future direction.
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Figure 14: 1D distance metrics showing how close the projected and auxiliary datasets are
to the target dataset (lower is better). 3DB is the target dataset.
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Figure 15: 1D distance metrics showing how close the projected and auxiliary datasets are
to the target dataset (lower is better). STL is the target dataset.
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Figure 16: 1D distance metrics showing how close the projected and auxiliary datasets are
to the target dataset (lower is better). Oxford-IIIT Pet is the target dataset.
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Figure 17: 1D distance metrics showing how close the projected and auxiliary datasets are
to the target dataset (lower is better). CIFAR10 is the target dataset.

D.2 Experiments for vision benchmark

We present the complete set of results for our image classification scenarios. In Table 7,
we record the target-alignment of our projected datasets as measured by training on the
projected dataset. In Table 8, we record the performance of training on the target dataset
augmented with projected data. In Table 9, we record similar results but combined with
TrivialAugment data augmentation.

D.3 Domain adaptation

In this section, we compare to SwAV (Caron et al., 2020), a unsupervised domain adaptation
approach based on contrastive pre-training. This method was found to be state of the art in
domain adaptation (Shen et al., 2022). We compare our method with SwAV in the setting
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Auxiliary Target Random PGD-PD
Not

PGD-PD AS-PD
Not

AS-PD

ImageNet

CIFAR10

33.9± 0.4 35.5± 0.7 27.3± 0.7 37.0± 1.0 30.7± 0.8
Oxford-IIIT Pet 53.6± 0.8 50.5± 2.9 54.6± 1.9 53.0± 4.1 54.5± 1.1

STL10 12.2± 1.9 28.3± 0.7 10.7± 2.5 33.8± 1.2 13.1± 1.5
3DB 22.6± 1.0 24.3± 0.3 22.2± 0.8 25.4± 0.8 22.6± 0.7

ImageNet 50.1± 2.5 51.8± 1.5 48.0± 2.1 55.4± 1.6 51.8± 2.4
CIFAR10 Oxford-IIIT 53.0± 1.0 49.4± 1.5 49.4± 1.7 55.6± 2.1 51.3± 1.9
STL10 Pet 51.6± 2.4 54.0± 1.9 49.2± 0.8 53.3± 2.1 50.9± 2.3
3DB 52.0± 2.9 49.0± 1.9 48.8± 2.3 53.7± 1.6 49.1± 1.1

ImageNet

STL10

37.4± 1.0 37.7± 0.5 37.0± 0.5 38.3± 1.1 37.3± 0.8
CIFAR10 41.2± 1.2 34.8± 4.3 35.5± 1.1 38.8± 0.5 38.1± 1.5

Oxford-IIIT Pet 55.5± 1.5 50.1± 3.5 49.7± 2.2 55.1± 0.9 52.2± 1.2
3DB 24.6± 1.2 26.3± 1.3 21.0± 1.1 30.4± 1.5 24.5± 1.9

ImageNet

3DB

27.0± 5.0 22.2± 1.7 16.3± 2.4 29.5± 1.7 22.1± 1.6
CIFAR10 30.8± 3.7 32.7± 4.5 19.6± 3.1 35.4± 1.0 23.8± 0.9

Oxford-IIIT Pet 66.8± 8.8 68.4± 14.4 55.9± 12.8 71.2± 8.0 56.3± 12.1
STL10 12.6± 4.0 34.8± 3.5 5.7± 4.0 37.7± 4.0 12.2± 3.4

Table 7: Approximating target datasets with auxiliary data. In this experiment, we train
on auxiliary data and test on target data. Higher test accuracy corresponds to better
approximation quality. AS-PD typically performs the best, and PGD-PD also typically
outperforms Random.

Auxiliary Target Target Only
Target +
Random

Target +
PGD-PD

Target +
AS-PD

Target +
QP-PD

ImageNet

CIFAR10

43.6± 0.4 54.8± 2.1 55.3± 1.8 57.0± 3.0 67.9± 0.7
Oxford-IIIT Pet 51.9± 2.1 54.2± 2.6 54.8± 2.0 59.3± 0.2 70.0± 1.2

STL10 41.0± 1.6 37.2± 1.8 44.6± 0.4 44.3± 1.1 56.0± 0.6
3DB 43.6± 1.1 50.0± 2.2 43.2± 0.9 49.4± 0.6 -

ImageNet 49.3± 1.3 58.2± 2.7 55.1± 2.2 57.4± 3.7 71.4± 1.0
CIFAR10 Oxford-IIIT 52.1± 1.9 54.2± 2.5 55.4± 2.0 59.5± 2.9 73.4± 0.5
STL10 Pet 47.6± 0.9 54.2± 2.5 55.7± 1.9 55.0± 2.3 64.2± 1.4
3DB 51.1± 1.9 53.8± 3.8 51.8± 2.7 55.7± 1.0 -

ImageNet

STL10

41.7± 2.3 55.9± 1.0 53.2± 2.1 55.1± 1.3 59.3± 9.7
CIFAR10 39.5± 0.9 58.6± 1.8 53.2± 0.8 58.4± 1.6 68.4± 1.2

Oxford-IIIT Pet 54.2± 2.8 54.3± 3.1 65.f1± 1.4 61.6± 1.1 72.5± 0.9
3DB 42.8± 2.4 52.2± 1.5 46.9± 0.8 51.0± 1.4 -

ImageNet

3DB

84.0± 2.1 89.4± 1.6 83.2± 0.6 87.7± 1.4 91.1± 1.3
CIFAR10 80.5± 2.0 89.0± 3.3 86.3± 0.4 89.5± 0.5 94.8± 0.6

Oxford-IIIT Pet 69.8± 1.6 73.4± 7.2 82.2± 3.3 82.3± 10.2 96.3± 1.6
STL10 68.5± 5.8 76.5± 6.9 77.8± 1.6 79.6± 1.7 87.4± 2.5

Table 8: Augmenting a target dataset with auxiliary data for vision scenarios. In this
experiment, we add auxiliary data to a target dataset for training, and test on target data.
For all target datasets, we can find an auxiliary dataset in which augmenting with AS-PD
or PGD-PD performs the best. For each target dataset, we highlight the choice of auxiliary
dataset where either AS-PD or PGD-PD has the largest benefit in augmenting the target
dataset.

where ImageNet is the auxiliary dataset with the goal of improving performance on CIFAR10,
Oxford-IIIT Pet, STL10, and 3DB.

We use the released ImageNet models from https://github.com/facebookresearch/swav.
We note several differences in the experimental setup. (1) The released model uses a ResNet-
50 architecture, which is larger than the ResNet-18 architecture we used in our experiments,
and (2) the model was pretrained on the entire ImageNet dataset, whereas our projected
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Auxiliary Target DA
Random
+ DA

PGD-PD
+ DA

AS-PD
+ DA

ImageNet

CIFAR10

45.5± 1.0 52.6± 0.9 55.2± 1.5 52.3± 3.3
Oxford-IIIT Pet 53.1± 2.2 52.6± 1.7 53.5± 2.7 57.8± 3.3

STL10 47.5± 1.8 37.1± 0.9 44.8± 1.3 44.9± 1.2
3DB 46.2± 2.1 48.2± 0.6 47.0± 1.9 48.0± 1.4

ImageNet

Oxford-IIIT Pet

47.0± 2.2 50.6± 4.4 57.0± 2.8 50.9± 3.5
CIFAR10 54.0± 3.1 53.5± 2.8 56.4± 2.0 58.1± 2.0
STL10 48.9± 2.0 48.9± 1.4 55.8± 3.1 53.2± 1.3
3DB 52.4± 3.5 50.7± 2.9 50.7± 2.3 50.4± 2.5

ImageNet

STL10

48.9± 1.6 54.0± 1.1 53.8± 1.5 52.9± 1.0
CIFAR10 49.7± 0.9 57.8± 1.5 57.3± 1.5 56.1± 3.1

Oxford-IIIT Pet 54.5± 4.3 51.9± 1.7 63.0± 1.1 58.7± 2.5
3DB 48.6± 1.1 48.5± 0.5 49.6± 0.3 49.0± 1.2

ImageNet

3DB

92.1± 1.9 93.6± 1.4 92.4± 0.8 94.3± 0.5
CIFAR10 91.4± 1.8 94.4± 0.6 92.4± 1.3 94.5± 1.0

Oxford-IIIT Pet 73.0± 7.6 59.5± 2.9 91.5± 0.9 86.3± 13.3
STL10 86.9± 2.3 91.3± 0.8 89.1± 1.0 88.2± 0.6

Table 9: Augmenting a target dataset with auxiliary data, combined with TrivialAugment
data augmentation. In this experiment, we add auxiliary data and TrivialAugment to a
target dataset for training, and test on target data. For all target datasets, we can find an
auxiliary dataset in which augmenting with AS-PD or PGD-PD performs the best. For
each target dataset, we highlight the choice of auxiliary dataset where either AS-PD or
PGD-PD has the largest benefit in augmenting the target dataset.

Method CIFAR10 Oxford-IIIT STL10 3DB

QP-PD 67.9± 0.7 71.4± 51.0 59.3± 9.7 91.1± 1.3
SwAV (Caron et al., 2020) 63.9± 3.9 56.0± 1.7 19.0± 2.7 90.8± 0.7

Table 10: A comparison between projected datasets and a contrastive pre-training approach
called SwAV (Caron et al., 2020) recently found to be competitive with state of the art (Shen
et al., 2022). Here, we adapt ImageNet as the auxiliary dataset to CIFAR10, Oxford-IIIT
Pets, STL10, and 3DB. Note that SwAV uses a much larger auxiliary dataset and model
architecture but struggles to adapt to the low amount of data in the target dataset.

datasets use a much smaller subset corresponding to the WordNet hierarchy. Both of these
differences favor SwAV.

The results are summarized in Table 10. We find that in our projected dataset setting,
state-of-the-art domain adaptation does not perform as well as directly adding ImageNet
data via projected datasets. This trend is because in these settings, the amount of data in
the target dataset is low enough such that adding more data helps significantly more than
pretraining. This is highlighted by the STL10 target, where the pretrained SwAV grossly
overfits to the STL10 target dataset and has poor performance.

D.4 Experiments for language benchmark

We present the complete set of results for our sentiment analysis scenarios. In Table 11,
we record the target-alignment of our projected datasets as measured by training on the
projected dataset. In Table 12, we record the performance of training on the target dataset
augmented with projected data. In Table 13, we record similar results but combined with
back-translation data augmentation.
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Auxiliary Target Random PGD-PD
Not

PGD-PD AS-PD
Not

AS-PD

Emoji

SST

57.6± 10.1 54.8± 7.5 56.2± 6.6 57.0± 0.0 54.0± 4.1
Emotion 52.2± 4.7 50.6± 3.9 57.0± 7.8 55.8± 3.5 57.4± 0.5

Yelp 50.4± 7.7 49.4± 5.2 57.8± 6.0 55.8± 6.7 50.6± 9.1
DailyDialog 51.6± 4.8 61.2± 9.8 51.4± 4.5 56.6± 11.4 55.6± 1.9

SST

Emoji

3.2± 1.0 4.0± 1.5 5.4± 2.6 5.4± 2.1 4.0± 1.5
Emotion 3.8± 1.5 4.2± 1.5 5.2± 1.3 4.2± 1.2 3.6± 0.8

Yelp 4.2± 1.8 4.8± 1.7 4.8± 1.7 6.4± 3.1 3.2± 0.4
DailyDialog 2.6± 0.5 6.2± 3.1 3.6± 1.2 5.0± 2.8 3.0± 0.0

SST

Emotion

16.6± 7.0 27.0± 6.3 13.4± 4.1 29.2± 2.8 31.0± 0.0
Emoji 16.2± 5.3 20.4± 3.3 15.0± 1.8 28.6± 2.3 28.6± 3.5
Yelp 16.4± 5.7 20.4± 8.8 22.8± 10.0 29.0± 2.7 24.6± 6.7

DailyDialog 15.0± 6.7 23.8± 7.6 20.2± 6.8 29.8± 2.9 30.4± 1.4

SST

Yelp

21.8± 1.6 22.6± 3.2 19.4± 2.7 22.2± 2.4 24.4± 0.8
Emoji 21.0± 0.0 19.0± 2.6 21.0± 0.0 23.2± 4.1 16.8± 2.9

Emotion 21.0± 0.0 22.8± 2.2 20.8± 0.4 21.2± 4.3 19.6± 4.1
DailyDialog 21.0± 0.0 21.8± 1.3 21.6± 1.4 23.2± 2.6 20.4± 6.6

SST

DailyDialog

14.6± 3.1 16.8± 1.0 15.8± 2.0 17.4± 3.4 14.2± 2.4
Emoji 13.6± 2.2 13.6± 1.5 14.4± 2.9 23.6± 2.5 19.6± 4.2

Emotion 14.6± 2.4 19.4± 5.9 15.0± 4.3 23.4± 5.8 12.0± 2.7
Yelp 16.6± 3.3 13.6± 0.5 14.2± 1.5 16.6± 5.0 13.2± 3.1

Table 11: Approximating target datasets with auxiliary data. In this experiment, we train
on auxiliary data and test on target data. Higher test accuracy corresponds to better
approximation quality. AS-PD typically performs the best, and PGD-PD also typically
outperforms Random.

Auxiliary Target Target Only
Target +
Random

Target +
PGD-PD

Target +
AS-PD

Target +
QP-PD

Emoji

SST 74.2± 6.0

66.2± 8.8 71.4± 6.1 77.0± 6.7 64.8± 8.8
Emotion 61.2± 7.4 64.8± 9.9 75.8± 9.0 62.8± 6.9

Yelp 60.8± 8.9 65.6± 12.0 78.6± 2.9 68.2± 4.0
DailyDialog 63.6± 12.1 76.4± 5.4 76.4± 6.1 60.8± 6.9

SST

Emoji 12.4± 3.6

12.4± 3.8 14.6± 3.4 24.0± 2.7 7.2± 2.1
Emotion 15.0± 4.1 13.8± 4.1 23.6± 2.2 7.6± 2.3

Yelp 13.0± 3.8 13.6± 3.1 22.6± 2.2 8.4± 2.2
DailyDialog 14.0± 3.3 12.8± 2.9 24.4± 1.0 8.2± 1.3

SST

Emotion 37.6± 4.3

39.4± 4.1 42.8± 7.8 45.2± 4.7 31.0± 6.2
Emoji 39.2± 1.3 39.4± 4.7 44.0± 4.3 30.2± 6.9
Yelp 41.6± 3.2 40.4± 4.9 44.8± 4.2 31.8± 8.1

DailyDialog 43.2± 4.1 42.6± 8.0 42.6± 4.5 30.0± 6.6

SST

Yelp 28.6± 1.9

27.4± 2.4 29.4± 4.8 30.0± 4.1 32.8± 6.0
Emoji 29.2± 3.0 27.0± 5.4 34.4± 5.7 31.6± 4.1

Emotion 27.8± 6.9 28.6± 4.9 33.6± 4.3 34.4± 3.9
DailyDialog 29.0± 6.4 33.2± 4.8 32.0± 5.2 30.0± 6.6

SST

DailyDialog 37.4± 6.3

37.0± 5.7 42.6± 5.4 61.2± 3.4 55.0± 8.7
Emoji 36.0± 4.9 42.6± 5.9 66.2± 6.1 58.8± 9.4

Emotion 37.6± 5.0 35.0± 8.0 67.4± 6.0 56.8± 8.5
Yelp 38.2± 5.6 36.0± 7.3 64.6± 7.5 56.0± 10.0

Table 12: Augmenting a target dataset with auxiliary data for language scenarios. In this
experiment, we add auxiliary data to a target dataset for training, and test on target data.
For each target dataset, we highlight the choice of auxiliary dataset where either AS-PD or
PGD-PD has the largest benefit in augmenting the target dataset.
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Auxiliary Target DA Random + DA PGD-PD + DA AS-PD + DA

Emoji

SST 78.4± 3.5

78.4± 3.5 78.2± 2.1 78.4± 2.1
Emotion 76.8± 6.5 76.0± 4.0 76.2± 5.7

Yelp 77.8± 1.9 78.0± 3.4 80.2± 2.7
DailyDialog 76.2± 4.7 76.0± 2.6 80.8± 2.7

SST

Emoji 22.8± 3.2

22.8± 3.2 22.2± 1.7 24.2± 1.9
Emotion 23.2± 1.3 22.8± 1.7 24.0± 0.6

Yelp 22.8± 1.3 23.6± 2.7 24.2± 4.0
DailyDialog 23.8± 2.0 23.6± 1.9 25.0± 2.4

SST

Emotion 50.6± 9.0

50.6± 9.0 56.0± 4.7 59.2± 7.4
Emoji 52.6± 6.7 52.6± 5.1 59.6± 4.4
Yelp 53.4± 6.7 53.6± 3.3 58.2± 3.8

DailyDialog 51.8± 8.0 51.2± 4.2 57.6± 9.0

SST

Yelp 32.4± 4.3

32.4± 4.3 32.2± 6.5 35.8± 3.7
Emoji 33.8± 6.6 33.6± 6.6 36.8± 4.2

Emotion 30.2± 3.2 33.2± 5.3 36.6± 5.4
DailyDialog 29.4± 1.9 32.8± 5.6 35.8± 4.4

SST

DailyDialog 76.2± 2.0

76.2± 2.0 75.6± 1.2 75.4± 2.3
Emoji 75.4± 1.7 75.2± 1.9 76.2± 1.5

Emotion 76.0± 2.7 76.0± 1.1 75.0± 2.5
Yelp 74.8± 2.9 76.8± 1.5 75.0± 1.8

Table 13: Augmenting a target dataset with auxiliary data, combined with back-translation
augmentation via the French language. In this experiment, we add auxiliary data and
back-translated data to a target dataset for training, and test on target data. For each target
dataset, we highlight the choice of auxiliary dataset where either AS-PD or PGD-PD has
the largest benefit in augmenting the target dataset.
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Figure 18: A visualization depicting the result of projecting various classes of the Emotion
dataset (angry and joy) onto the Emoji dataset. Each doughnut corresponds to the subset of
the Emoji dataset that is closest to the target Emotion class as calculated by our framework.

Lion
7%

Siamese cat
57%

Persian cat
9%

Tabby cat
27%

(a) Oxford-IIIT Pet

Siamese cat
15%

Persian cat
85%

(b) 3DB

Figure 19: A visualization depicting the result of projecting cat classes from various target
datasets (Oxford-IIIT Pet and 3DB) onto the ImageNet cats. Each doughnut represents
the subset of the ImageNet cats that is closest to the cat class from the target dataset as
calculated by our framework.

E Visualizations of projected datasets

In this section, we present additional visualizations of projected datasets. These visualizations
provide a way to analyze the composition of a target dataset via inspection of the resulting
source distributions proportions.

Figure 18 shows the projection of the Angry and Joy classes of the Emotion dataset onto the
Emoji dataset. Here, we see that the Angry projection consists of an Emoji with tears and
an Emoji with a tongue sticking out. We suspect this is due to the usage of these emojis
in sarcastic or cynical expressions that are most closely aligned with the Angry class, since
the Emoji dataset does not contain any clearly angry emojis. The Joy projection contains
generally happy emojis, including a heart emoji that none of the other Emotion classes had.

Figure 19 shows the projection Oxford-IIIT Pet and 3DB onto ImageNet cats. The Oxford-
IIIT Pet projection has largely household cats, except for a small proportion of lions. The
3DB projection consists primarily of two types of cats, suggesting that the 3DB cats do not
contain very much variation.
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