
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

StylizedFacePoint: Facial Landmark Detection for Stylized
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ABSTRACT
Facial landmark detection forms the foundation for numerous face-
related tasks. Recently, this field has gained substantial attention
and made significant advancements. Nonetheless, detecting facial
landmarks for stylized characters still remains a challenge. Existing
approaches, which are mostly trained on real-human face datasets,
struggle to perform well due to the structural variations between
real and stylized characters. Additionally, a comprehensive dataset
for analyzing stylized characters’ facial features is lacking. This
study proposes a novel dataset, the Facial Landmark Dataset for
Stylized Characters (FLSC), which contains 2674 images and 4086
faces selected from 16 cartoon video clips, together with 98 land-
marks per image, labeled by professionals. Besides, we propose
StylizedFacePoint: a deep-learning-based method for stylized facial
landmark detection that outperforms the existing approaches. This
method has also proven to work well for characters with styles out-
side the training domain. Moreover, we outline two primary types
of applications for our dataset and method. For each, we provide a
detailed illustrative example.

CCS CONCEPTS
• Computing methodologies → Interest point and salient
region detections; Image processing.

KEYWORDS
facial landmark detection, stylized face, neural networks, landmark-
related application

1 INTRODUCTION
Facial landmark detection refers to the process of detecting a series
of predetermined landmarks on the face. The positions of these
landmarks provide crucial information about features such as the
approximate facial structure and expression. Consequently, facial
landmark detection serves as a fundamental task in numerous face-
related applications[4, 7, 19].

Currently, there are numerous well-performing methods in the
field of facial landmark detection[14, 17, 31]. However, the detection
of landmarks specifically for stylized characters has received little
exploration and continues to face several challenges. To begin with,
significant variances in facial structure, the positioning of facial
features, and proportions are evident between stylized characters
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and human faces. Additionally, each stylized character possesses
its own distinct artistic style, adding further intricacy. Of utmost
importance is the current absence of a facial landmark dataset
tailored specifically to stylized characters.

To address these problems and fill the absence in this area, we
amassed a large collection of images from cartoon movies and cre-
ated a Facial Landmark dataset for Stylized Characters (FLSC). This
dataset comprises 2674 images and 4086 annotated stylized faces.
To maintain consistency with previous research, we annotated 98
landmarks for each face. This dataset can be a valuable resource
for further face-related research.

To better extract the facial landmarks for stylized characters, we
propose StylizedFacePoint: a novel method designed to improve
the precision of stylized facial landmark detection. This method
employs a stacked hourglass network[40] as its primary architec-
ture. After each level of the hourglass network, we incorporate
regression for offset heatmaps and neighbor heatmaps on 𝑥-axis
and 𝑦-axis, respectively[17]. The heatmaps generated by the cur-
rent stage of hourglass network are concatenated with the input
features after merging, serving as the input for the subsequent stage
of the network. This method helps to capture the complex structure
of stylized faces and achieve higher accuracy compared to existing
methods.

Finally, we demonstrate several applications of stylized char-
acters’ facial landmark detection. The first category is to utilize
landmarks as a bridge variable, and we give a detailed example of
how to connect audio and controller values using our proposed
dataset and method. The second category is to transfer the domain
of some current tasks which rely on facial landmarks, and we also
exemplify this category of applications by introducing the case of
3D face reconstruction.

In summary, our main contributions can be summarized as fol-
lows:

• We create a facial landmark dataset for stylized characters,
which could be widely utilized in future research.

• We propose an approach named StylizedFacePoint for land-
mark detection. It achieves higher accuracy compared to
other methods.

• Wepropose several applications based on landmark detection
for stylized characters.

2 RELATEDWORK
2.1 Human Facial Landmark Datasets
Here we present a brief introduction to existing human facial land-
mark datasets:

• 300 Faces in-the-Wild (300W): consists of 3148 train sam-
ples and 689 test samples. Test samples have 300 indoor and
300 outdoor, in-the-wild images. It covers a large variation of
identity, expression, illumination conditions, pose, occlusion,
and face size.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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WFLW  Annotation Normal Case Multiple Faces Large Pose Low-light 

Figure 1: Left: WFLW annotation Right: Samples of labeled images. Our dataset contains samples with large poses, multiple
faces, or low-light conditions. Images ©Disney Enterprises, Inc.

Dataset
Name

Landmark
Number

Train & Test
Samples Data Domain

300W [28] 68 3148 + 689 human face
AFLW [20] 21 20000 + 4386 human face
COFW [3] 29 1345 +507 human face
WFLW [38] 98 7500 + 2500 human face
jha,et al. [16] 15 600+150 2D cartoon face
Stricker,et al.[30] 60 1157+289 2D manga face
Artistic-Faces [41] 68 128+32 2D artistic face
Sindel et al. [29] 68 2361+80 2D artistic face
FLSC 98 3274 + 812 3D cartoon face

Table 1: Comparison between current facial landmark
datasets and our FLSC dataset.

• Annotated Facial Landmarks in-the-Wild (AFLW) have
24386 annotated images. The dataset contains a wide variety
of natural face positions in addition to frontal and near-
frontal faces.

• Caltech Occluded Faces in-the-Wild (COFW) are more
difficult in terms of occlusion and position as it aims to show
faces in realistic settings. The average occlusion rate for faces
in this dataset is 28%, with variable degrees of occlusion, and
types of occlusion vary a lot.

• Wider Facial Landmarks in-the-Wild (WFLW) contains
10000 face photos that were captured in many circumstances.
Besides landmarks, it also has comprehensive attribute an-
notations. i.e., occlusion, pose, make-up, illumination, blur,
and expression for analysis.

There are also some stylized landmark datasets currently available.
However, these datasets suffer from a limitation in terms of the
quantity of images. In contrast, our dataset boasts a larger image
corpus and encompasses a wider variety of styles. We will provide
a brief introduction to them in Section 2.3. A comparison between
these datasets and our dataset (FLSC) is presented in Table 1.

2.2 Regular Facial Landmark Detection
In early computer vision tasks, traditional methods like NLoG and
DoG [22] were used for landmark detection. Belhumeur et al. [1]
proposed non-parametric global detectors combined with local de-
tectors for joint landmark prediction. Markuš et al. [24] used binary
decision trees to locate landmarks efficiently. With the development

of neural networks, landmark detection has benefited from deep
learning. Coordinate Based Regression (CBR) and Heatmap Based
Regression (HBR) are now the most popular methods, which tend
to predict coordinates and heatmaps respectively.

Coordinate Based Regression: The CBR method requires fewer pa-
rameters but lacks precision. Researchers enhance it by cascading
CNN modules for global-to-local transition [23, 26, 31, 32]. Another
approach is incorporating an auxiliary network like PFLD [14].
Novel loss functions include ACR loss [11], using a logarithmic func-
tion, and Wing loss [13], adapting shape and gradient adjustments
based on error magnitude. Other techniques like AnchorFace [39]
employ anchors and a separation and aggregation solution strategy
to tackle pose variations, and RetinaFace [6] detects minute faces
in dense crowds while maintaining landmark regression precision.
The ATF [21] model is trained using various datasets for landmark
detection. It integrates a feature extraction network with multiple
landmark regression networks, thereby enhancing the precision of
the feature extraction module.

Heatmap Based Regression: The HBR method achieves higher land-
mark accuracy but with a longer running time and a larger pa-
rameter size. Optimizations include generative and adversarial net-
works [2, 8, 27, 45] and semi-supervised learning techniques for
pseudo-label generation [9, 10, 17]. Efficient networks such as the
stacked hourglass network[40], U-Net[5], and HRNet[35] are com-
monly utilized for generating high-quality heatmaps.Paper [12]
uses knowledge distillation to compress and transfer the original
large-parameter network model. Several studies have employed
cascaded CNNs in the CBR method, thereby further enhancing
the efficacy of the HBR method [34]. Ada loss [33] and Adaptive
Wing loss [37] adjust the loss function for heatmap characteristics.
Moreover, STAR loss [44] assesses the anisotropism of the predicted
distribution to capture the semantic ambiguity inherent in heatmap
regression.

2.3 Stylized Facial Landmark Detection
Compared to facial landmark detection for real human faces, re-
search on stylized faces is relatively scarce. Agarwal et al. [16]
manually label landmarks for 750 cartoon images and combined
them with 2000 facial images to create a new training set. Stricker
et al. [30] use a deep alignment network on the Manga109 dataset,
and modify the landmarks definition based on the facial character-
istics of anime characters. Jordan et al. [41] employed a three-step



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

StylizedFacePoint: Facial Landmark Detection for Stylized Characters ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

training process in their own dataset, which includes original im-
ages from the art face dataset and art-style images generated by
applying style transfer to facial images. Sindel et al. [29] performed
landmark detection on art-style faces. Besides style transferring,
they also use geometric transformations to expand their dataset.
Their network architecture used global and local networks with
cascaded ResNet modules for landmark detection. Huo et al. [15]
also performed a 17-landmark detection on web caricature.

However, the two popular stylized landmarks detectors [29, 41]
currently excel primarily on artistic faces, showing poorer per-
formance on images with other styles. Moreover, despite training
on our new dataset, the existing landmark detection models still
demonstrate certain biases. Consequently, we propose Stylized-
FacePoint, a novel landmark detection model based on heatmap
regression. We will provide a detailed introduction to our method
in Section 4.

2.4 Applications of Landmark Detection
The accurate localization of facial landmarks plays a pivotal role in
extracting crucial information regarding facial features, expressions,
and various other facial attributes. Consequently, a substantial num-
ber of studies in the domain of facial analysis are centered around
the detection and localization of facial landmarks. As an illustration,
the Deformable Style Transfer [19] method necessitates the precise
alignment of specific facial landmarks across facial images and styl-
ized facial images. By accurately detecting facial landmarks in both
images, enhanced key point matching outcomes can be achieved,
thereby yielding superior style transfer effects. The incorporation
of facial landmark information is also essential in numerous 3D
facial reconstruction studies. As an instance, Deng et al. [7] em-
ployed 2D facial images to regress the positions of 3D landmarks,
employing the distance from ground truth as the supervised loss
for network training. Similarly, Cai et al. [4] employed 68 facial
landmarks extracted from 2D caricatures to regress the shape and
orientation of the 3D mesh. We also demonstrate several applica-
tions of stylized characters’ facial landmark detection using our
StylizedFacePoint landmark detector in Section 6.

3 DATASET DESIGN
To the best of our current knowledge, a dataset focused on 3D
stylized characters’ facial landmark detection is notably absent.
Therefore, we introduce the Facial Landmark Dataset for Stylized
Characters (FLSC) dataset to address this void.

Image Selection
Our approach begins with the careful selection of 16 video clips
from famous cartoon movies, containing more than 50 characters.
These clips mostly consist of characters engaged in singing ac-
tivities, which contain rich facial movements. For each video, we
systematically capture one image every 5 frames. After that, we
ensure a diverse representation of facial expressions. From this
collection of images, we manually select those with clear facial fea-
tures and exclude images with high similarity. These steps ensure
a proper and diverse representation of facial expressions. Cases of

multi-faces and non-front-face are also included in our dataset. De-
tailed information and comparisons with other landmark datasets
are elaborated in Table 1.

Landmarks Model
The selection of a suitable landmarks model is crucial for accurate
facial landmark detection and following works. From various al-
ternatives, we choose the landmark model proposed in the WFLW
dataset, notable for its comprehensive 98-point representation per
face. This choice provides a relatively detailed depiction of facial
attributes, enhancing the dataset’s utility.

Annotation Process
Expert data annotators were engaged to label the images in our
dataset. Subsequently, We manually validate the accuracy and con-
sistency of the annotations. Apart from landmark points, our dataset
also includes bounding boxes and facial expressions. These expres-
sions are categorized into seven distinct emotions: Neutral, Sad,
Surprise, Happy, Angry, Disgust, and Afraid.

By meticulously designing the FLSC dataset and employing ro-
bust annotation processes, we aim to contribute a valuable resource
for stylized characters’ facial landmark detection and analysis.

4 METHOD
In this section, we will introduce a new method: StylizedFacePoint,
for landmark detection. The Hourglasses Network[42], serving as a
foundational model, is presently prevalent in facial landmark regres-
sion tasks. Our approach leverages a stacked Hourglass Network
[40] as its backbone. Additionally, we integrate offset regression
prediction and neighbor regression prediction into the heatmap
regression of landmarks. The pipeline of StylizedFacePoint is illus-
trated in Figure 2.

A facial image (3 ×𝑊 × 𝐻 ) undergoes processing within the
feature extraction module, comprising CNNs and residual networks.
The extracted features (𝐶 ×𝑊 ′ × 𝐻 ′) are then forwarded to the
first-stage hourglass network along with its corresponding resid-
ual block. The feature output from the (𝑖 − 1)-th stage hourglass
network is connected with the input feature of the (𝑖 − 1)-th stage,
serving jointly as the input for the 𝑖-th stage. This iterative stack-
ing of networks enables progressive extraction of facial features,
enhancing the model’s capability. Subsequently, after traversing
through 𝑆 stages of networks, precise landmark location informa-
tion is determined. Each hourglass network generates 𝑁 heatmaps,
where𝑁 denotes the number of pre-defined facial landmarks. These
normalized heatmap depict the probability distribution of predicted
facial landmarks. Finally, the Soft-Argmax function[25] is employed
to infer the landmark coordinates 𝑝 from a single heatmap ℎ:

𝑝 = 𝑆𝑜 𝑓 𝑡𝐴𝑟𝑔𝑚𝑎𝑥 (ℎ) =
∑︁
𝑖

ℎ𝑖𝑝𝑖 (1)

Where 𝑝𝑖 is the probability of the predicted landmark located in
𝑦𝑖 ∈ R2.

By employing the stacked hourglass network, we obtain𝑁 heatmaps
of facial landmarks. The high-resolution image (𝑊 ×𝐻 ) undergoes
processing within the feature extraction network and the stacked
hourglass network, yielding low-resolution heatmaps (𝑊 ′ × 𝐻 ′).
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Stage 1

Input Image 𝑰 Predicted Landmarks𝒚

𝑯 ∶ 𝑁 Position Heatmaps
𝑯𝒐𝒙 ∶ 𝑁 x-Offset Heatmaps

𝑯𝒐𝒚 ∶ 𝑁 y-Offset Heatmaps
𝑯𝒏𝒙 ∶ 𝐶 ∗ 𝑁 x-Neighbor Heatmaps

𝑯𝒏𝒚 ∶ 𝐶 ∗ 𝑁 y-Neighbor Heatmaps

Stage n

Hourglass

Residual Block ∑ Soft-argmaxFeature Extraction Module

…Heatmap Sets Heatmap Sets

Heatmaps Sets

Hourglass

Network Structure

Figure 2: The architecture of StylizedFacePoint. We use a stacked Hourglasses Network of 4 stages. Following each stage of the
hourglass network, the offset regression module and neighbor regression module are applied (Input and ouput images ©Disney
Enterprises, Inc.).

To enhance the precision of heatmap regression, we introduce two
offset regression modules separately on 𝑥-axis and 𝑦-axis. Addition-
ally, considering the local positional correlation among landmarks,
we integrate neighbor regression modules on 𝑥-axis and 𝑦-axis as
supervision for training.

After each stage of the hourglass network outputs features, they
traverse through five residual modules to generate five types of
heatmaps, comprising: 1. 𝑁 landmark position heatmaps; 2. 𝑁 pre-
diction offset heatmaps on 𝑥-axis; 3. 𝑁 prediction offset heatmaps
on 𝑦-axis; 4. 𝐵 ∗ 𝑁 neighbor prediction offset heatmaps on 𝑥-axis,
where 𝐵 represents the number of neighbors of the current land-
mark; 5. 𝐵 ∗ 𝑁 neighbor prediction offset heatmaps on 𝑦-axis.

The heatmap regression loss 𝐿𝐻 can be defined as:

𝐿𝐻 =
1

𝑁𝑊𝐻

𝑁∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐻∑︁
𝑘=1

(ℎ𝑖 𝑗𝑘 − ℎ∗
𝑖 𝑗𝑘

)2 (2)

Here, 𝑁 represents the number of landmarks.𝑊 and𝐻 represent
the width and height of the output heatmap. ℎ𝑖 𝑗𝑘 andℎ∗

𝑖 𝑗𝑘
represent

the predicted and ground truth probability score value within the
corresponding region of the heatmap, respectively.

Due to the potential decrease in accuracy caused by smaller-sized
heatmaps, we introduce the offset regression module. Each output
offset map represents the offset between the precise position of the
landmark and the approximate position obtained from the heatmap.
The offset regression loss 𝐿𝑂 can be defined as:

𝐿𝑂 =
1
2𝑁

∑︁
ℎ∗
𝑖 𝑗𝑘

=1

2∑︁
𝑝=1

|𝑜𝑖 𝑗𝑘𝑝 − 𝑜∗
𝑖 𝑗𝑘𝑝

| (3)

Here, 𝑜𝑖 𝑗𝑘𝑝 and 𝑜∗
𝑖 𝑗𝑘𝑝

represent the predicted and ground truth
offset value within the corresponding region of the heatmap, re-
spectively.

To further enhance the accuracy of heatmap regression results,
we introduce the neighbor regression module. During training, the
neighbor regression module is utilized to predict the offset maps
for 𝐵 neighbor landmarks of the current landmark. The neighbor
regression loss 𝐿𝑁 can be defined as:

𝐿𝑁 =
1

2𝑁𝐵

∑︁
ℎ∗
𝑖 𝑗𝑘

=1

2∑︁
𝑝=1

𝐵∑︁
𝑏=1

|𝑛𝑖 𝑗𝑘𝑝𝑏 − 𝑛∗
𝑖 𝑗𝑘𝑝𝑏

| (4)

Here,𝑛𝑖 𝑗𝑘𝑝𝑏 and𝑛∗
𝑖 𝑗𝑘𝑝𝑏

represent the predicted and ground truth
offset distance between the current landmark and its neighbor
landmarks, respectively.

The total loss function of multi-branch heatmap regression mod-
ule 𝐿𝑡𝑜𝑡𝑎𝑙 consists of three components: heatmap regression loss
𝐿𝐻 , offset regression loss 𝐿𝑂 , and neighbor regression loss 𝐿𝑁 :

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐻𝐿𝐻 + 𝛼𝑂𝐿𝑂 + 𝛼𝑁 𝐿𝑁 (5)

Where 𝛼𝐻 , 𝛼𝑂 , 𝛼𝑁 denote the balancing coefficients of three
branches, respectively.

5 EXPERIMENTS
The experiments are conducted on our proposed dataset and the
WFLW dataset. We compare the results of two training methods.
Firstly, we train the model solely on FLSC dataset, referred to as
the retraining model. Secondly, we train the model on the human
dataset and subsequently fine- tune the pre-trained model using
FLSC dataset, referred to as the fine-tuning model. We conduct tests
for both methods on our dataset.

5.1 Evaluation Metric
For evaluation purposes, we utilize the normalized mean error
(NME). The NME is calculated as the average Euclidean distance
between the predicted locations of facial landmarks 𝑝𝑖 𝑗 and their
corresponding ground-truth annotations 𝑝∗

𝑖 𝑗
.

𝑁𝑀𝐸 =
1
𝑁𝐿

𝑁∑︁
𝑖=1

𝐿∑︁
𝑗=1

|𝑝𝑖 𝑗 − 𝑝∗
𝑖 𝑗
|

𝑑
(6)

where 𝑁 is the total number of images in the testing set, 𝐿 is
the number of landmarks, and 𝑑 is the chosen normalization factor.
In our study, we employ the "inter-ocular" normalization factor,
which corresponds to the distance between the outer corners of the
two eyes[4, 19].
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Figure 3: Comparison between the results of models trained on different datasets. Our dataset sufficiently provides landmark-
related information of the stylized face. Images ©Disney Enterprises, Inc.

Ground Truth Face of Art ArtFacePoints oursdlib

Figure 4: Comparison between three existing stylized land-
mark detectors and our detector. (Red dots indicate results
with significant deviations(8px) from the ground truth, and
blue dots indicate other points) Images ©Disney Enterprises,
Inc.

We also export FR and AUC as evaluationmetrics. The thresholds
for these two metrics are both set to 0.1.

5.2 Implementation Details
In our method, the initial images are cropped and resized to a fixed
size, i.e. 256×256, according to the annotated bounding boxes. Prior
to training, we calculate the average facial landmark coordinates
based on all images in the dataset. This allows us to select the 𝐵
closest landmarks as neighbors for each landmark. The heatmap
output of the regression network is set to 16 × 16. In the neighbor
regression module, the value of 𝐵, representing the number of
neighbor landmarks, is set to 10. During training, the total number
of epochs is set to 60. The initial learning rate is set to 1e-4, with
learning rate decay applied at epochs 30 and 50. The batch size is
set to 16. The values of 𝛼𝐻 , 𝛼𝑂 , and 𝛼𝑁 are set to 1, 0.1, and 0.1,
respectively.

5.3 Quantitative Evaluation
We compare our approach with open-sourced state-of-the-art meth-
ods1.We trained thesemodels on the FLSC training set. Additionally,
we trained separatemodels using retrainingmethod and fine-tuning
method. The performance comparisons of these methods on FLSC
test set are shown in Table 2.

It is shown that our method achieve a slightly better result com-
pared to existing landmark detection methods when applied to
stylized faces. Moreover, within the current dataset, the retraining
approach producesmore precise results compared to the fine-tuning
method.

We also conducted a comparison between our model and exist-
ing stylized facial landmark detection models. The performance
comparisons of these models on FLSC dataset are presented in Table
3. It indicate that our model outperforms the currently available
models in detecting landmarks on stylized faces.

5.4 Visualized Evaluation
To demonstrate the effectiveness of our approach and the necessity
of our dataset, we conduct three visualized comparisons.

1Some methods, including PFLD [14] and SPICA [26], use additional pose data, there-
fore can’t be evaluated on our dataset.
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Figure 5: Comparison between some state-of-the-art landmark detection methods and our method. (All models are retained on
our FLSC dataset.) Images ©Disney Enterprises, Inc.

Methods Backbone NME (%) FR10% AUC10%
SBR[10] VGG-16 7.05 10.83 0.3673
AWing[37] Hourglass 7.87 14.82 0.2968
HRNet[35] HRNetV2 7.41 12.20 0.3433
ATF[21] HRNetV2 9.20 23.29 0.2126
3FabRec[2] Resnet-18 9.04 21.54 0.2324
PIPNet[17] Resnet-101 5.54 7.35 0.4835
Ours(retrain) Hourglass 5.24 6.48 0.5313
Ours(fine-tune) Hourglass 5.46 6.48 0.5313

Table 2: Comparision with the state-of-the-art human fa-
cial landmark detection models on FLSC. These models are
trained on FLSC training set. We export NME score, FR and
AUC as evaluation metrics. The thresholds for the latter two
are set to 0.1.

Methods Backbone NME (%) FR10% AUC10%
dlib[18] – 16.32 47.45 0.1732
Face of Art[41] FCN 10.46 31.17 0.2741
ArtFacePoints[29] Resnet 11.93 35.62 0.2413
Ours(retrain) Hourglass 5.24 6.48 0.5313
Ours(fine-tune) Hourglass 5.46 6.48 0.5313

Table 3: Comparision with the state-of-the-art stylized facial
landmark detection models on FLSC. We export NME score,
FR and AUC as evaluation metrics. The thresholds for the
latter two are set to 0.1.

5.4.1 Comparison with models trained on human face dataset. We
conduct a comparison between models trained on the human land-
mark dataset(WFLW) and our stylized landmark dataset(FLSC). The
validation data consists of characters with the style in our dataset

and other styles outside the dataset. The comparative results are
presented in Figure 3. Notably, the model that is trained on real
human datasets yields unsatisfactory results, while the retrained
models exhibit significantly improved accuracy.

Importantly, despite our dataset only consisting of limited styles
of characters, the model trained on this dataset demonstrates su-
perior performance when applied to characters with other styles.
Therefore, we assert that our dataset can adequately provide models
with the features of stylized characters.

5.4.2 Comparison with existing stylized detectors. We compare our
detector with existing stylized landmark detectors in Figure 4. These
landmark detectors produce 68 landmarks. To facilitate compar-
ison, we convert the 98 landmarks generated by our model into
68 landmarks. The result indicates that existing detectors cannot
provide accurate results, while the performance of our detector
remarkably surpasses current results, especially in the region of
the eyes, mouth, and cheek.

5.4.3 Comparison with existing landmark detection methods. We
compare our method with existing landmarks detection methods in
Figure 5. All methods are trained on our stylized landmark dataset.
The result shows that our methods do achieve the best result in this
task.

Based on these visualizations and the quantitative results above,
we believe that our method can perform well enough for stylized
landmark detection, and our dataset holds great potential to assist
researchers in achieving better results in related tasks. To better
illustrate the performance of our detector, we provide a video that
contains a 20-second stylized video and its detection result.
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Figure 6: Overview of two categories of applications.

6 APPLICATIONS
In this section, we aim to discuss the practical applications of our
work. Based on our dataset, the most fundamental application in-
volves training a landmark detector for images featuring stylized
characters. Building upon this foundation, we then categorize the
subsequent applications into two main groups:

The first category of the application involves leveraging land-
marks as a bridge variable. On one end, we have 3D character-
related data including cartoon videos and controller values. Through
the utilization of the detector trained on our dataset, we can estab-
lish a mapping between landmarks and 3D character-related data.
On the other end, we encounter diverse data or methods capable of
generating landmarks, such as real human faces or results derived
from generative models using text or audio. Using the mapping
generated before, we can now establish a connection between these
3D character-related data and this landmark-oriented work.

The second category involves transferring tasks that currently
rely on landmarks to a new domain. These tasks are typically per-
formed within the context of human faces, where landmarks serve
as pivotal intermediary variables. With the aid of our detector, we
can extend these tasks to the domain of stylized characters.

Here we will provide two illustrative examples to demonstrate
the application of our detector in these two categories.

6.1 Bridge Audio and Controller Values
As depicted in Figure 6, landmarks play a crucial role in bridging
the gap between stylized characters and other works that involve
landmark generation.

Introduction. In certain cases, when we require 3D stylized charac-
ters to exhibit various facial expressions, we employ controller val-
ues to control their facial movements. Unlike other control methods
such as blendshapes, this form of control enables direct manipula-
tion of specific facial skeletal structures on the character. However,
little research has been conducted on converting 2D stylized land-
marks into controller values. Hence, it becomes necessary to utilize
our dataset to train a mapping between stylized landmarks and
controller values.

The field of audio-driven talking heads has gained considerable
attention, with several works employing landmarks as an intermedi-
ate output, such as Makeittalk[43] and MEAD[36]. The Makeittalk
approach accepts images of a specific character as input and, guided

Cartoon Landmark 
 Detector 

LandmarkImageController
Value

Rendering

Dataset Generation

MLP

Landmark Controller
Value

Mapping Training ResultGT

Figure 7: Procedure and results of Audio to Controller Value.

by the audio input, produces a sequence of landmarks depicting
the facial movements.

Here, we present an example of how our dataset and method
help to train a mapping between landmarks and controller values,
further enabling a framework from audio to 3D character animation.

Method. The first step in this process involves establishing a map-
ping between landmarks and controller values. Here we select an
open-source character ’Mery’, along with a foundational dataset
containing its controller values. These controller values represent
various expressions and mouth shapes. To construct the mapping
dataset, we begin by rendering 2D images using Maya. Subse-
quently, we employ our fine-tuned model to extract landmarks
from these images. The extracted landmarks are then normalized
to ensure consistency in scale and position. With a one-to-one cor-
responding dataset between landmarks and controller values, we
can train a Multilayer Perceptron (MLP) to map landmarks to their
corresponding controller values.

Next, we need tomodify theworkMakeittalk[43] to obtain the de-
sired landmarks. The original approach utilizes AdaptiveWingLoss[37]
to obtain the initial landmarks. Here we substitute this component
with our detector and subject the output landmarks to the same
normalization procedure. These normalized landmarks are then fed
into the mapping model to generate the controller values. These
results are then smoothed and integrated into Maya to animate the
character.
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Result. For the mapping Model, we use MSE and failing rate to
measure the accuracy. For those whose MSE loss is larger than
0.06, we define it as a failed sample. For our model, we achieve the
following result:

𝑀𝑆𝐸 : 0.0462, 𝐹𝑅 : 0.195

We present the comprehensive framework and results in Figure
7. It is crucial to note that the original "Make it talk" framework
was trained on human talking videos, which introduces inherent
inaccuracies and may result in unnatural expressions within the
stylized character domain. Hence, we showcase it merely as an
example of a potential application of our dataset. Future endeavors,
such as retraining the landmark generation model or incorporating
transfer learning techniques, hold promise for improving the results
and achieving more natural and realistic character expressions.

6.2 Transfer Domain of 3D Facial
Reconstruction

Currently, many applications are based on the localization of facial
landmarks. As depicted in Figure 6, Our landmark detector allows
for the extension of these applications from real human faces to
stylized faces. Here, we provide an example for better understand-
ing.

Introduction. 3D face reconstruction is currently a prominent re-
search field, aiming to transform 2D facial images into 3D meshes.
In this context, the availability of facial images and precise facial
landmark positions is crucial. Accurate localization of facial land-
mark positions significantly impacts the effectiveness of 3D recon-
struction. However, the absence of a landmark detector specifically
designed for stylized characters’ faces poses a challenge for the 3D
facial reconstruction of stylized characters.

Here, we propose an example of how our dataset and method
help to transfer the domain of this task from real humans to stylized
characters.

Method. A high-performing stylized characters’ facial landmark
detector can be trained on our FLSC dataset. For a 2D stylized face
image, we first determine the approximate bounding box position
using the facial landmark positions, followed by cropping and align-
ment of the facial region. Subsequently, the aligned facial image
and its corresponding landmark positions are jointly fed into the
3D reconstruction model. Here we select Deep3DFace[7] as the
model for 3D reconstruction.

Result. Our model and results are presented in Figure 8. Due to
the lack of 3D meshes for stylized characters suitable for training
Deep3DFace, we utilized a model trained on human faces. While
the reconstructed 3D results exhibit relatively precise details, the
stylistic resemblance closely aligns with that of human faces. Fu-
ture work can build upon this by extending efforts to establish 3D
stylized datasets for model training.

7 CONCLUSION
Facial landmark detection involves identifying specific points on a
face. However, the realm of stylized characters’ facial landmarks
remains relatively unexplored and presents unique challenges due
to differences in facial structures and artistic styles. To address these

LandmarkHuman Face

Stylized Face

3D Face Model Generation

Deep3DFaceLandmark

Stylized Face Reconstruction Result

Figure 8: Procedure and results of 3D facial reconstruction.

challenges, we introduce the Facial Landmark dataset for Stylized
Characters (FLSC).

Based on this dataset, we present StylizedFacePoint, a novel land-
mark detection framework leveraging a stacked hourglass network.
After each stage of the hourglass network, we incorporate offset
regression module and neighbor regression module to refine the
precision of heatmap regression outcomes. Compared to state-of-
the-art methods, StylizedFacePoint demonstrates higher accuracy
in landmark detection on stylized face images.

Furthermore, we show potential applications of stylized charac-
ters’ facial landmark detection. The first category involves using
landmarks as bridge variables, and the second category explores
domain transfer for tasks reliant on facial landmarks. For each
category, we provide one detailed example as an illustration.

In conclusion, our dataset and methods pave the way for face
analysis of stylized characters, enabling further landmark-related
work in this field.
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