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VIDEOCANVAS: UNIFIED VIDEO COMPLETION FROM
ARBITRARY SPATIOTEMPORAL PATCHES VIA IN-
CONTEXT CONDITIONING
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Condition 
Patches

🕒 0 🕒 12 🕒 60 🕒 80 🕒 100 🕒 60 🕒 156

Any-timestamp  Images to Video (with full images)

Any-timestamp Patches to Video (with arbitrary spatial layout) 

🕒 0 🕒 32 🕒 64 🕒100 🕒 120 🕒 140 🕒 156

Video Transition

🕒 0 🕒 20 🕒 40 🕒 56 🕒 76

🕒 0 🕒 20 🕒 40 🕒 56 🕒 76
Outpainting

Inpainting

Inpainting / Outpainting
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🕒 0 🕒 20 🕒 40 🕒 80 🕒 100 🕒 120 🕒 156
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🕒 Frame index

Legend

🕒 0 🕒 12 🕒 24 🕒 36 🕒 48 🕒 60 🕒 76

Figure 1: VideoCanvas: Arbitrary Spatio-Temporal Video Completion. Given any conditions
(frames or patches, outlined in red), the model fills in the remaining gray regions to generate coher-
ent, high-quality videos. This unified formulation subsumes various tasks such as Any-Frame/Patch-
to-Video, inpainting, outpainting, and cross-scene video transitions, all in a zero-shot manner. More
results are available on our anonymous project page or supplementary project page. Best viewed
zoomed in.

ABSTRACT

We introduce the task of arbitrary spatio-temporal video completion, where a
video is generated from arbitrary, user-specified patches placed at any spatial loca-
tion and timestamp, akin to painting on a video canvas. This flexible formulation
naturally unifies many existing controllable video generation tasks—including
first-frame image-to-video, inpainting, extension, and interpolation—under a sin-
gle, cohesive paradigm. Realizing this vision, however, faces a fundamental ob-
stacle in modern latent video diffusion models: the temporal ambiguity introduced
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by causal VAEs, where multiple pixel frames are compressed into a single latent
representation, making precise frame-level conditioning structurally difficult. We
address this challenge with VideoCanvas, a novel framework that adapts the In-
Context Conditioning (ICC) paradigm to this fine-grained control task with zero
new parameters. We propose a hybrid conditioning strategy that decouples spatial
and temporal control: spatial placement is handled via zero-padding, while tem-
poral alignment is achieved through Temporal RoPE Interpolation, which assigns
each condition a continuous fractional position within the latent sequence. This
resolves the VAE’s temporal ambiguity and enables pixel-frame-aware control on
a frozen backbone. To evaluate this new capability, we develop VideoCanvas-
Bench, the first benchmark for arbitrary spatio-temporal video completion, cover-
ing both intra-scene fidelity and inter-scene creativity. Experiments demonstrate
that VideoCanvas significantly outperforms existing conditioning paradigms, es-
tablishing a new state of the art in flexible and unified video generation.

1 INTRODUCTION

Video generation has made significant strides with the advent of Diffusion Transformers
(DiTs) (Peebles & Xie, 2023; Chen et al., 2023; Wang et al., 2025a; Yang et al., 2024), marking
a turning point in the field’s ability to synthesize high-quality videos. However, generating videos
that truly align with user intent remains a significant challenge. Existing controllable approaches
are typically constrained by rigid, task-specific formats—for example, conditioning only on a first
frame (Guo et al., 2023; Kong et al., 2024), using an initial clip with limited temporal horizon (Bar
et al., 2025; Yang et al., 2025a), or performing structural inpainting and outpainting (Zhou et al.,
2023; Wang et al., 2024; Yang et al., 2025b). These methods treat spatio-temporal control as a set
of isolated problems, lacking a unified approach. We propose a unified approach to bridge these
fragmented tasks: treating video synthesis as painting on a spatio-temporal canvas. In this frame-
work, users can place arbitrary content patches at any location and timestamp, and the model will
synthesize a complete, temporally consistent video around them, as illustrated in Fig. 1. This fine-
grained control enables a wide range of applications, from creative content generation to practical
use cases, such as reconstructing videos from partially transmitted or corrupted data packets (Li
et al., 2023; Du et al., 2020), or generating videos with specific spatial and temporal conditions for
diverse domains.

Realizing this vision presents fundamental challenges across both spatial and temporal dimensions,
inherent to modern latent video models. Temporally, causal video VAEs compress multiple pixel
frames into a single latent slot, creating indexing ambiguity and making frame-accurate control a
core obstacle, as illustrated in Fig. 2(a). Spatially, conditions may take arbitrary forms—from full
frames to small, irregular patches—requiring a mechanism that can seamlessly unify inpainting and
outpainting within one formulation. The core difficulty lies in designing a conditioning paradigm
that can resolve both temporal ambiguity and spatial irregularity simultaneously.

Viewed through this lens, the limitations of existing paradigms become clear. Latent Replace-
ment (HaCohen et al., 2024; Kong et al., 2024) was designed mainly for first-frame I2V but fails
to generalize, as it overwrites entire latent slots and disrupts temporal consistency once applied
to arbitrary timestamps. Channel Concatenation and Adapter-style injection methods (Yang et al.,
2024; Wang et al., 2025a; Mou et al., 2024; Zhang et al., 2023) fuse conditional features either
by concatenating at the input or injecting via lightweight encoders. Despite architectural differ-
ences, these approaches remain coarse-grained: pixel-frame-aware control ultimately requires feed-
ing zero-padded frames to the VAE, but pretrained VAEs are not robust to such inputs. Making
them work would require expensive VAE fine-tuning and re-training of the DiT backbone. More
recent In-Context Conditioning (ICC) methods (Tan et al., 2024; Ju et al., 2025; He et al., 2025;
Ye et al., 2025a) inherit the same difficulty when naively combined with zero-padding: they still
demand VAE/DiT re-training to handle the distribution shift, and further double the sequence length
by encoding padded frames, resulting in severe inefficiency during both training and inference.

In this paper, we introduce VideoCanvas, the first framework to apply In-Context Conditioning
to the challenging task of arbitrary spatio-temporal video completion. We also propose a hybrid
conditioning strategy that decouples space and time: spatial alignment is achieved by zero-padded

2
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Figure 2: Core challenge and solution for pixel-frame-aware conditioning. (a) Causal VAEs
create temporal ambiguity by mapping frames to a single latent. We propose a hybrid solution com-
bining Spatial Padding with Temporal RoPE Interpolation. (b) We show how competing paradigms
are ill-suited for fine-grained control, while our ICC approach provides an effective solution.

VAE encoding of arbitrary patches, while temporal ambiguity is resolved by our novel RoPE In-
terpolation, which assigns continuous fractional indices to conditional frame tokens. This design
removes the need for costly re-training of the VAE or architectural modifications of the DiT back-
bone, while allowing efficient fine-tuning to enable fine-grained pixel-frame-aware control within a
simple, parameter-free ICC architecture.

To evaluate this new task and framework, we present VideoCanvasBench, a comprehensive bench-
mark tailored for arbitrary spatio-temporal video completion. To the best of our knowledge, it is the
first to systematically incorporate multi-frame, non-homologous image and patch conditions to test
both intra-scene fidelity and inter-scene creativity. Our contributions are as follows:

• We introduce and formalize the task of arbitrary spatio-temporal video completion, a unified
framework that encompasses a wide range of controllable video generation scenarios, includ-
ing not only existing first-frame-to-video, video extension and painting tasks, but also new tasks
such as any-timestamp patch-to-video and any-timestamp image-to-video, extending control to
arbitrary timestamps in time and arbitrary regions in space.

• We propose VideoCanvas, the first framework to apply the In-Context Conditioning paradigm
to the task of arbitrary spatio-temporal completion. We further introduce a hybrid conditioning
strategy: Spatial Zero-Padding and Temporal RoPE Interpolation. This approach enables effi-
cient fine-tuning of the DiT model without the need for VAE retraining, achieving fine-grained
spatiotemporal control.

• We design and release VideoCanvasBench, the first benchmark explicitly dedicated to arbitrary
spatio-temporal completion, and demonstrate that VideoCanvas achieves state-of-the-art perfor-
mance across diverse settings, outperforming existing conditioning paradigms.

2 RELATED WORK

2.1 ARBITRARY SPATIO-TEMPORAL VIDEO COMPLETION

Controllable video generation aims to synthesize content that adheres to user inputs beyond a sim-
ple text prompt. Existing approaches are often constrained by rigid, task-specific formats, such as
conditioning only on a first frame (Guo et al., 2023; Kong et al., 2024; Wan et al., 2025; Shi et al.,
2024; Gao et al., 2025), on a short initial sequence (Bar et al., 2025; Yang et al., 2025a), or on struc-
tural inpainting and outpainting (Zhou et al., 2023; Wang et al., 2024; Bian et al., 2025; Yang et al.,
2025b). Conceptually, these represent special cases of the broader challenge of video completion,
yet prior work has treated them as separate sub-tasks, each requiring specialized solutions. Recent
unified frameworks like VACE (Jiang et al., 2025) have made progress on consolidating diverse
tasks, primarily focusing on inpainting, outpainting, and video extension. However, these models
still remain constrained to specific forms of video completion and fail to address the general problem
of arbitrary spatio-temporal control.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In contrast, we introduce and formalize the task of arbitrary spatio-temporal video completion, a
unified and flexible paradigm that subsumes and extends prior settings. By allowing conditions
of arbitrary shapes and at arbitrary spatio-temporal locations, our task formulation goes beyond
task-specific or partially unified approaches. This enables genuinely unified spatio-temporal video
generation. To facilitate systematic evaluation of this capability, we also introduce VideoCanvas-
Bench, the first benchmark designed specifically for this setting, and demonstrate how our approach
outperforms existing methods across a range of video completion tasks.

2.2 PARADIGMS FOR VIDEO CONDITIONING

Tackling the flexible task of arbitrary spatio-temporal completion requires a robust and fine-grained
conditioning mechanism. Existing paradigms (Shown in Fig. 2) for injecting condition into a video
foundation model can be broadly categorized as follows.

Latent Replacement. This paradigm, used in LTX-Video and Hunyuan-Video (HaCohen et al.,
2024; Kong et al., 2024), was primarily designed for the first-frame image-to-video setting. In this
case, overwriting the initial latent with an encoded image remains relatively compatible with the
training distribution. However, extending it to arbitrary frames introduces a clear train–inference
mismatch: temporal VAEs compress multiple frames into one latent slot during training, while
inference substitutes that slot with a single-frame latent. This inconsistency often disrupts temporal
dynamics, leading to static frames or motion collapse.

Channel Concatenation and Adapter-based Injection. A straightforward strategy is to fuse
conditional features into the model’s data stream at fixed locations. Recent I2V models such as
CogVideoX (Yang et al., 2024) and Wan (Wang et al., 2025a) adopt this variant by concatenat-
ing condition and noisy latents along the channel axis at the input layer. Extensions like T2I-
Adapter (Mou et al., 2024), VACE (Jiang et al., 2025) and ControlNet (Zhang et al., 2023) pro-
cess conditions through lightweight encoders before injecting them into intermediate layers. De-
spite their differences, these approaches share a fundamental limitation: pixel-frame-aware control
requires feeding zero-padded frames to the VAE, but pre-trained VAEs are not robust to such out-of-
distribution inputs. Making them work would require costly VAE fine-tuning and retraining of the
DiT backbone, which is prohibitively expensive for our task.

Cross-Attention Injection. Another line of work adds cross-attention layers to incorporate con-
ditioning features, typically for global controls such as text, audio, or style cues (Cui et al., 2025;
Meng et al., 2025; Blattmann et al., 2023; Ye et al., 2025b). While effective for holistic guidance,
this design requires substantial architectural modifications and introduces many new parameters,
limiting scalability.

In-Context Conditioning (ICC). ICC, a paradigm pioneered in the image domain by OminiCon-
trol (Tan et al., 2024) and extended to video by FullDiT (Ju et al., 2025; He et al., 2025) and
UNIC (Ye et al., 2025a), represents a unified, parameter-free conditioning approach. It treats all
inputs, including content and conditions, as tokens within a single sequence, processed jointly by
self-attention. This simple yet effective design allows for flexible conditioning, but ICC still strug-
gles with the key challenge of pixel-frame ambiguity introduced by causal VAEs, which makes
precise temporal alignment difficult.

Building on ICC, we are the first to adapt this paradigm to the task of arbitrary spatio-temporal video
completion. We introduce a Hybrid Conditioning Strategy, which decouples spatial and temporal
challenges. The novel alignment strategy, Temporal RoPE Interpolation, enables pixel-frame-aware
conditioning on frozen causal VAEs, unlocking ICC’s full potential for this setting.

3 METHODOLOGY

3.1 TASK DEFINITION AND PROBLEM SETUP

We introduce the task of arbitrary spatio-temporal video completion, a unified formulation that
generalizes and subsumes a wide range of controllable video generation scenarios. Formally, let
a video be denoted as X = {x0, x1, . . . , xT−1} with T frames. A user provides a set of spatio-
temporal conditions P = {(pi,mi, ti)}Mi=1, where pi is a patch (full-frame or partial), mi is a

4
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Figure 3: The pipeline of VideoCanvas, which fine-tunes a base T2V model for arbitrary spatio-
temporal control with zero new parameters. Our framework leverages the In-Context Conditioning
(ICC) paradigm. After preparing conditional patches with zero-padding for spatial placement, we
use independent VAE encoding for temporal decoupling. Our RoPE Interpolation then aligns each
discrete token by mapping its source pixel-frame index Y to a fractional position Y/N , where N is
the VAE temporal stride (here, N = 4). As illustrated, this maps Frame 41 to position 10.25. This
strategy enables fine-grained control without architectural changes.

spatial mask specifying its placement within a frame, ti ∈ [0, T − 1] is the temporal index of target
frame, and M denotes the total number of conditions provided by the user. The goal is to generate
a coherent video X̂ such that

X̂[ti]⊙mi ≈ pi, ∀i ∈ {1, . . . ,M},

while simultaneously completing all unconditioned regions with plausible and consistent content.

This task naturally unifies many prior settings as special cases: image-to-video (when P contains the
first full frame), video extension (when P provides the first video clip), video inpainting/outpainting
(when P contains masked regions in video frames), and interpolation (when P specifies keyframes
at first and last timestamps). By allowing arbitrary spatial masks at arbitrary timestamps, our defini-
tion goes strictly beyond these rigid formats, enabling a single framework to address them all.

3.2 PRELIMINARIES

Video DiT with 3D RoPE. Our work builds upon a latent video diffusion model that uses a Diffu-
sion Transformer (DiT) backbone (Peebles & Xie, 2023) and is trained with a modern flow matching
objective (Lipman et al., 2022). Crucially, to handle the spatio-temporal nature of video data, the
model’s self-attention mechanism is equipped with 3D Rotary Positional Embeddings (RoPE) (Su
et al., 2024).

The 3D RoPE integrates both temporal and spatial information by applying a rotation to the query
and key vectors in the attention mechanism. This rotation is driven by the position of each token in
the 3D space (time, height, and width), allowing the model to capture both temporal continuity and
spatial relationships. This mechanism is central to our ability to perform precise temporal alignment
and interpolation in video generation tasks.

Hybrid Video VAE. Modern video foundation models employ a Hybrid Video VAE (Zhao et al.,
2024; Yang et al., 2024; Wu et al., 2025) that supports both image and video modes. In video
mode, the encoder performs causal temporal compression with a fixed stride N (e.g., N = 4). At
the beginning of a sequence, frames are replicated so that the first latent uniquely corresponds to
the first pixel frame. Subsequently, every N consecutive frames collapse into a single latent slot.
Formally, for a pixel-frame index i, the latent index is

latent idx(i) =
⌈

i
N

⌉
,

5
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with replication ensuring that i = 0 maps to latent index 0. This stride-based compression is com-
putationally efficient but introduces a pixel-frame ambiguity: multiple frames (e.g., Frame 1 and
Frame 3) may collapse to the same latent, making precise frame-level conditioning non-trivial.

3.3 VIDEOCANVAS PIPELINE

To address the challenge of arbitrary spatio-temporal completion, we propose VideoCanvas, a uni-
fied framework built upon the In-Context Conditioning (ICC) paradigm. We are the first to leverage
ICC for this task, introducing a novel hybrid conditioning strategy that decouples spatial and tem-
poral alignment, enabling fine-grained, pixel-frame-aware control on a frozen VAE and a fine-tuned
DiT with zero new parameters. The entire pipeline is illustrated in Fig. 3.

Spatial Conditioning via Zero-Padding. As shown on the left of Fig. 3, our process begins at
the pixel level. For each conditional patch, we construct a full-frame canvas, place the patch in
its correct spatial location, and fill the remaining pixels with zeros. This preserves the absolute
positional information required for spatial control.

Temporal Decoupling via Independent VAE Encoding. Next, each of these zero-padded frames is
encoded independently by the frozen VAE in its image mode. This is a critical step for temporal de-
coupling: by encoding each frame individually, we bypass the VAE’s causal temporal compression
mechanism. The result is a set of conditional latent tokens, xP , where each token purely represents
its corresponding single pixel frame, free from the temporal ambiguity discussed in our preliminar-
ies.

Temporal Alignment via RoPE Interpolation. The final and most crucial step is to precisely
align these decoupled conditional tokens within the DiT’s 3D spatio-temporal grid. We leverage the
continuous nature of the 3D RoPE used by our DiT backbone. For a conditional token originating
from a pixel frame with index Y , we assign it a fractional temporal position t = Y/N , where N is
the VAE’s temporal stride.

As illustrated in the center of Fig. 3, this maps a condition from Frame 41 to the fractional temporal
coordinate t = 10.25. When this token is processed by the DiT, its query and key vectors are rotated
by an angle θ that is a function of this fractional position (10.25, h, w). This allows the self-attention
mechanism to understand that this condition should exert its influence at a point in time between the
10th and 11th integer latent slots. This RoPE Interpolation strategy is what enables the precise,
sub-latent, pixel-frame-aware temporal control that is structurally inaccessible to other paradigms.

Unified Sequence Denoising. Finally, the prepared conditional tokens xP (with their fractional
positions) and the standard noisy latent tokens xt (with their integer positions) are concatenated into
a single sequence. This unified sequence is then processed by the DiT, which is fine-tuned under the
standard flow-matching objective to denoise the sequence and generate the final video.

4 VIDEOCANVASBENCH

Existing benchmarks focus on rigid tasks such as I2V or outpainting, and cannot assess the flexible
spatio-temporal control central to our formulation. We therefore introduce VideoCanvasBench, the
first benchmark systematically designed for arbitrary spatio-temporal video completion.

The benchmark probes two complementary capabilities: high-fidelity completion within a single
scene (homologous) and creative synthesis across different sources (non-homologous). It consists
of three categories: (1) Patch-Level, using partial patches at fixed anchor timestamps (start, mid-
dle, end). We construct all seven possible combinations—single-frame (S, M, E), two-frame (S+M,
S+E, M+E), and three-frame (S+M+E)—to evaluate interpolation fidelity under varying temporal
sparsity. (2) Image-Level, using full-frame conditions at the same timestamps, designed to test the
completion of full-frame content. (3) Video-Level, covering video-level completion scenarios such
as inpainting, outpainting, and transitions between non-homologous clips. In total, VideoCanvas-
Bench comprises over 2,000 test cases. Further construction details are provided in Appendix C.
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Figure 4: Impact of Temporal RoPE Interpolation. Per-frame PSNR for single-frame I2V with
targets 2/3/4. Our method (red, solid) peaks exactly at the target frame. “w/o RoPE Interpola-
tion” (blue, dashed) misaligns, “Latent-space Condition” (orange, dot-dashed) collapses motion,
and “Pixel-space Padding” (green, dotted) is precise but degraded.

5 EXPERIMENTS

Our experiments are designed to answer two central questions: (1) Can our proposed Temporal
RoPE Interpolation resolve the temporal ambiguity of causal VAEs, thereby enabling precise pixel-
frame alignment beyond the native VAE stride? (2) Even under the coarse granularity imposed by
latent slots, is the In-Context Conditioning (ICC) paradigm intrinsically more effective than prior
mechanisms such as Latent Replacement and Channel Concatenation? We address the first question
through an ablation study of different pixel-frame alignment strategies (Sec. 5.3), and the second via
a paradigm-level comparison on our benchmark (Sec. 5.4).

5.1 SETUP

Backbone and Training. We build our framework upon an internal latent video diffusion model, as
no existing open-source model is designed for our new task of arbitrary spatio-temporal completion
(see Appendix A for details). The model is fine-tuned for 20k steps on 650k video clips (384× 672
resolution, 5 seconds) using the Adam optimizer with a learning rate of 5 × 10−5 and a batch size
of 32 on 32 GPUs. Inference uses 50 DDIM steps with a CFG scale of 7.5.

Baselines. As our task is new, no existing work provides a direct solution. For fair comparison, we
compare three representative conditioning paradigms (Fig. 2b) on the same backbone: (1) Latent
Replacement, as used in LTX-Video and HunyuanVideo (HaCohen et al., 2024; Kong et al., 2024),
(2) Channel Concatenation, widely adopted in CogVideoX and Wan (Yang et al., 2024; Wang et al.,
2025a), and (3) our In-Context Conditioning (ICC). All paradigms are trained under identical set-
tings and constrained to the same set of conditionable frames defined by the VAE stride, ensuring a
rigorous and controlled comparison. More details are shown in the appendix.

Pixelspace-Padding

RoPE Interpolation

Conditional frame index 1

Figure 5: Padding vs. RoPE Interp.

Method PSNR↑ Dynamic
Degree↑

Imaging
Quality↑

Ours (RoPE Interp.) 23.86 39.75 71.61
w/o RoPE Interp. 22.95 23.00 70.85
Pixel-space Pad. 22.02 30.25 71.50
Latent-space Cond. 25.13 5.00 71.17

Table 1: Ablation on single-frame I2V

5.2 EVALUATION METRICS

Automated Metrics. Fidelity is measured by PSNR and FVD (Unterthiner et al., 2018), and per-
ceptual quality by four metrics: Aesthetic Quality (LAION-AI, 2022), Imaging Quality (Ke et al.,
2021), Temporal Coherence (Cai et al., 2025), and Dynamic Degree (Teed & Deng, 2020).

User Study. To complement automated metrics, we conducted a user study with 25 participants on
30 randomly sampled cases. In each case, participants viewed side-by-side outputs from three meth-
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ods in a three-way forced-choice setting, and rated them along three axes: Visual Quality (quality
and dynamics), Semantic Quality (faithfulness to text and images), and Overall Preference (holistic
choice). Results are reported as win rates (%) over competing methods.

5.3 ABLATION STUDY: PIXEL-FRAME ALIGNMENT STRATEGIES

As discussed in Fig. 2(a), causal video VAEs map several pixel frames into one latent, which cre-
ates ambiguity when conditioning on a specific frame. One intuitive workaround is to keep the
target frame and pad the rest with zeros before VAE encoding, which we denote as Pixel-space
Padding. While this approach is temporally precise, it forces the frozen VAE to process highly
out-of-distribution inputs, often corrupting colors and textures. To disentangle this issue, we com-
pare four alignment strategies: (i) Latent-space Conditioning: encode the entire video with the VAE
(video mode) to obtain a latent sequence; at designated timestamps, the corresponding latent slice
is injected as the conditional input. (ii) Pixel-space Padding: construct a pixel-space video in which
non-target frames are zeroed; encode the entire padded video with the VAE (video mode) (iii) w/o
RoPE Interpolation: encode each conditional frame independently with the VAE (image mode);
assign each conditional token to the discrete temporal slot determined by the VAE compression
window (no interpolation). (iv) Our full method with Temporal RoPE Interpolation.

Qualitative evidence. Although pixel-space padding can in principle “point” to the correct frame,
it introduces visible artifacts because the VAE never trained on zero-filled inputs. Fig. 5 illustrates
this: the padded result shows clear color shifts and texture wash-out, whereas RoPE-based alignment
preserves the conditional frame with high fidelity.

Quantitative analysis. We further evaluate single-frame I2V at target indices (2, 3, 4). As shown
in Fig. 4 and Tab. 1, Latent-space Conditioning yields a nearly flat PSNR curve, indicating motion
collapse. w/o RoPE Interpolation recovers dynamics but shifts the PSNR peaks due to slot misalign-
ment. Pixel-space Padding peaks at the correct indices but with lower overall fidelity. In contrast,
our method with RoPE Interpolation aligns exactly to the target frames and achieves the best fidelity.

Together, these results make two points clear. First, padding-based solutions, despite being tempo-
rally precise, degrade quality due to VAE signal corruption. Second, latent-space conditioning and
integer-only alignment cannot resolve frame-level ambiguity. In contrast, our ICC with Temporal
RoPE Interpolation uniquely provides both fine-grained control and high-fidelity generation.

5.4 MAIN RESULTS: PARADIGM COMPARISON

Having established that padding-based solutions are impractical due to quality degradation, we next
compare the three representative conditioning paradigms—Latent Replacement, Channel Concate-
nation, and our In-Context Conditioning—under identical settings, where each latent corresponds to
a pixel frame. This ensures that performance differences arise solely from the conditioning mecha-
nism itself (not zero-padding).

Quantitative Comparison. Tab. 2 shows results on VideoCanvasBench across three task categories:
Patch Level, Image Level and Video Level. The data reveals a consistent trend across all task
categories. Latent Replacement achieves deceptively high scores in static similarity metrics like
PSNR, but at the cost of synthesizing motion. Its extremely low Dynamic Degree scores indicate that
it generates nearly frozen videos, which is reflected in its poor FVD, confirming a large distributional
gap with real videos. Channel Concatenation produces more dynamics but consistently lags behind
our method in both reference fidelity (PSNR, FVD) and key perceptual metrics. In contrast, our ICC
strikes the best balance, achieving competitive fidelity while attaining the highest Dynamic Degree.
Most importantly, the User Study confirms ICC’s superiority, where it is overwhelmingly preferred
by human evaluators across all three task levels.

Qualitative Comparison. Fig. 6 illustrates representative cases. In the two-frame I2V task (Fig. 6a),
Latent Replacement collapses into static repetition around the conditioning frame, while Channel
Concatenation introduces unnatural distortions in the deer’s body. ICC instead generates smooth
and plausible motion while maintaining identity. In the more challenging two-frame P2V setting
(Fig. 6b), the weaknesses of the baselines become even clearer. Latent Replacement produces
abrupt, unnatural transitions, and Channel Concatenation suffers from severe identity drift, with
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Table 2: Performance comparison on our VideoCanvasBench across three task categories. The best
result is in bold and the second best is underscored. Higher scores are better for all metrics (except
FVD). Abbreviations: AQ = Aesthetic Quality, IQ = Imaging Quality, TC = Temporal Coherence,
DD = Dynamic Degree, VQ = Visual Quality, SQ = Semantic Quality, OP = Overall Preference.

Method
Reference Fidelity Perceptual Metrics(%) User Study(%)

PSNR↑ FVD↓ AQ↑ IQ↑ TC↑ DD↑ VQ↑ SQ↑ OP↑

Patch Level (First Frame, First-Last Frames and Any Keyframes)

Replace. (Kong et al., 2024) 24.29 19.335 55.45 69.19 91.04 21.00 14.62 16.15 14.23
Channel. (Yang et al., 2024) 23.73 18.147 55.54 68.49 89.36 39.44 26.54 26.92 25.38

ICC (Ours) 23.83 17.553 55.53 68.87 89.71 40.44 58.85 56.92 60.38

Image Level (First Frame, First-Last Frames and Any Keyframes)

Replace. (Kong et al., 2024) 26.72 12.534 55.64 69.32 90.37 24.22 8.46 7.31 7.31
Channel. (Yang et al., 2024) 25.83 10.947 55.37 68.74 88.88 41.22 23.46 27.31 24.23

ICC (Ours) 26.06 10.805 55.40 69.25 89.02 44.78 68.08 65.38 68.46

Video Level (Video Transition, Video Inpainting and Outpainting)

Replace. (Kong et al., 2024) 23.90 15.958 53.28 67.23 89.37 47.39 5.00 4.23 5.00
Channel. (Yang et al., 2024) 23.54 11.371 54.16 68.33 88.88 53.04 26.92 25.77 25.38

ICC (Ours) 23.68 10.252 53.16 69.43 89.40 53.20 68.08 70.00 69.62

IC
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(a) Images to Video: First-Middle Frame 
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Too Static

Unexpected Artifacts
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Unnatural Transition

Unnatural Transition

Too Static

Figure 6: Qualitative comparison. Our method preserves high quality and smooth transitions.

a kangaroo inexplicably mutating into a dog mid-video. ICC alone preserves motion, identity, and
structural consistency throughout the sequence, avoiding both freezing and semantic corruption.

Overall, both quantitative and qualitative evidence converge on the same conclusion. Our ablation
study (Sec. 5.3) demonstrates that Temporal RoPE Interpolation uniquely enables fine-grained pixel-
frame alignment without sacrificing fidelity, while the paradigm comparison (Sec. 5.4) shows that
even at coarse latent-level granularity, ICC consistently outperforms Latent Replacement and Chan-
nel Concatenation. Taken together, these findings establish ICC as the most robust and effective
conditioning mechanism for arbitrary spatio-temporal video generation.

6 CONCLUSION

We introduced and formalized the task of arbitrary spatio-temporal video completion. To tackle
the core challenge of temporal ambiguity in causal VAEs, we proposed VideoCanvas, a frame-
work based on In-Context Conditioning. We also propose a hybrid conditioning strategy combining
Spatial Zero-Padding and Temporal RoPE Interpolation, first to enable fine-grained, pixel-frame-
aware control on a frozen VAE via efficient DiT fine-tuning. Experiments on our new benchmark,
VideoCanvasBench, confirm the superiority of our approach, establishing a robust and generalizable
foundation for the future of controllable video synthesis.
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ETHICS STATEMENT

Scope and Intended Use. VideoCanvas is designed for the task of arbitrary spatio-temporal
video completion, intended for research, education, and creative prototyping. Its core function is
to enable users to synthesize a complete video from a sparse set of user-provided spatio-temporal
patches. It is not intended for surveillance, impersonation of real individuals, political persuasion,
or other high-risk deployments where generated content could be used to deceive or harm. We will
accompany any artifact release with a research-only license and an acceptable-use policy (AUP) that
explicitly prohibits such abusive or unlawful scenarios.

Misuse Risks and Mitigations. Like any powerful generative model, VideoCanvascarries poten-
tial risks of misuse. These include the creation of “deepfake” content for identity impersonation,
targeted harassment, deceptive political messaging, and the generation of pornographic, violent, or
otherwise harmful media. Our mitigations to curb these risks include: (i) a research-only release of
our model and code to the academic community; (ii) leveraging default content filters inherited from
the base model to block the generation of clearly harmful categories (e.g., sexual content, explicit
violence, hate symbols).
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APPENDIX

A INTRODUCTION OF THE BASE TEXT-TO-VIDEO GENERATION MODEL

We use an internal transformer-based latent diffusion model (Peebles & Xie, 2023) as the base T2V
generation model, as illustrated in Fig. S7. We employ a 3D-VAE to transform videos from the pixel
space to a latent space, upon which we construct a transformer-based video diffusion model. Unlike
previous models that rely on UNets or transformers, which typically incorporate an additional 1D
temporal attention module for video generation, such spatially-temporally separated designs do not
yield optimal results. We replace the 1D temporal attention with 3D self-attention, enabling the
model to effectively perceive and process spatiotemporal tokens, thereby achieving a high-quality
and coherent video generation model. Specifically, before each attention or feed-forward network
(FFN) module, we map the timestep to a scale, thereby applying RMSNorm to the spatiotemporal
tokens.
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Figure S7: Overview of the base text-to-video generation model.

B IMPLEMENTATION DETAILS

Conditioning paradigms. Since no existing work is trained for our new task of arbitrary spatio-
temporal completion, we re-implement three representative paradigms on the same base model for
fair comparison (Fig. 2b), following the references used in the main text:

• Latent Replacement (HaCohen et al., 2024; Kong et al., 2024). For a given conditional frame,
the corresponding latent tokens are overwritten with VAE-encoded ground-truth latents. Training
applies a masked loss only to non-conditional regions, while conditional regions are assigned
timestep 0.

• Channel Concatenation (Yang et al., 2024; Wang et al., 2025a). Condition frames are encoded
into latents, assembled into a zero-padded latent sequence, and concatenated with the noisy latent
sequence along the channel dimension. A learnable projection layer then restores the embedding
dimension. In our implementation, concatenation is applied after patchification, as this setting em-
pirically yields the best results; applying it before patchification leads to degraded visual quality.
The tradeoff is that after-patchify concatenation substantially increases the channel dimension-
ality, resulting in a projection layer with ∼16.6M trainable parameters. Thus, while this design
enriches the conditioning signal and improves learning, it comes at the cost of significantly more
parameters compared to the other paradigms.

• In-Context Conditioning (ICC) (Tan et al., 2024; Ju et al., 2025). Our method encodes condition
frames into clean latent tokens and concatenates them with the noisy sequence along the token
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dimension. Temporal alignment is achieved with our RoPE Interpolation strategy (Sec. ??). The
loss is applied only to noisy tokens, while conditional tokens are assigned timestep 0. This design
requires no additional trainable parameters.

All paradigms are trained under identical settings and restricted to the same set of conditionable
frames defined by the VAE stride, ensuring a rigorous and controlled comparison.

Temporal granularity. Different conditioning paradigms impose different constraints on the in-
dices where conditional frames can be applied. As discussed in Fig. 2 and Sec. 5.3, both Channel
Concatenation and Latent Replacement require zero-padded inputs in order to achieve pixel-frame-
aware control, which significantly degrades quality. To ensure a fair comparison across paradigms,
we therefore restrict all methods to a coarser temporal granularity. Specifically, with a VAE temporal
stride of 4, the conditionable frame indices are standardized to the discrete set {0, 4, 8, . . . , 76}. This
guarantees that each method is trained on exactly the same set of indices and receives comparable
supervision.

Training strategy. At each iteration, three frames are randomly sampled from a source video to
serve as temporal anchors. From each anchor frame, we extract a spatial region by cropping a
patch covering between 20%–100% of the original frame size. This unified training strategy ensures
that the model encounters a diverse spectrum of conditioning scenarios, ranging from sparse local
patches to nearly complete frames, and from early anchors to late anchors. Such exposure allows
the model to learn arbitrary spatio-temporal conditioning in a single framework.

B.1 DETAILED EVALUATION METRICS

This section provides additional details of the evaluation metrics used in our experiments. As de-
scribed in the main paper, we evaluate video generation quality using PSNR, FVD, Aesthetic Quality,
Imaging Quality, Temporal Coherence, and Dynamic Degree, together with a complementary user
study. Our protocol is designed to measure two aspects: (1) fidelity to visual conditions when
ground-truth is available, and (2) perceptual quality and temporal consistency in general cases.

Reference-based Visual Fidelity. We use two complementary metrics to evaluate reference-based
visual fidelity:

• PSNR: We adopt PSNR to evaluate reconstruction accuracy in the conditional regions, measuring
how faithfully the generated outputs reproduce the provided visual inputs. This metric focuses
on pixel-level reconstruction accuracy and is widely used for assessing the quality of generated
images and videos.

• Fréchet Video Distance (FVD) (Unterthiner et al., 2018): We also employ FVD to measure the
distance between the distributions of generated and real video sequences, capturing both temporal
and spatial information. A lower FVD indicates higher similarity between the generated video
and real videos, reflecting better overall quality. This metric is particularly useful for comparing
video generation models by assessing their ability to match the distribution of real-world videos.
However, FVD is only applicable to the parts of our dataset with ground-truth videos (i.e., homol-
ogous videos). For non-homologous image-to-video and video transition tasks, where no ground
truth exists, we do not compute FVD.

Perceptual Quality and Consistency Metrics. We further employ the following metrics to com-
prehensively assess perceptual quality and temporal behavior:

• Aesthetic Quality (LAION-AI, 2022): evaluates the artistic and aesthetic value of each frame
using the LAION aesthetic predictor. It reflects high-level properties such as composition, color
harmony, photo-realism, and naturalness.

• Imaging Quality (Ke et al., 2021): measures the absence of low-level distortions using the
MUSIQ predictor. It is sensitive to degradations such as over-exposure, noise, and blur, thereby
reflecting frame-level fidelity from a perceptual perspective.
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• Temporal Coherence (Cai et al., 2025): evaluates temporal stability by computing CLIP feature
similarity (CSCV) between adjacent frames. This is a modification of the Background Consis-
tency metric from VBench (Huang et al., 2024), which compared all frames to the first frame.
That design fails for videos with significant camera motion or large scene transition, where the
first frame is not a valid reference. This adjacent-frame-only formulation provides a more robust
measure of local temporal smoothness.

• Dynamic Degree (Teed & Deng, 2020): quantifies the level of motion by estimating optical flow
magnitudes with RAFT. This prevents models from trivially achieving high consistency with static
outputs, and explicitly rewards natural, dynamic motion.

User Study. To complement automated metrics, we conducted a user study with 25 participants on
30 randomly sampled cases. Each case contained outputs from three methods, presented in a three-
way forced-choice setting. Participants rated results along three axes: (1) Visual Quality (quality
and dynamics), (2) Semantic Quality (faithfulness to text and images), and (3) Overall Preference
(holistic choice). We report results as win rates (%) over competing methods.

C VIDEOCANVASBENCH CONSTRUCTION DETAILS

This section provides a comprehensive overview of the data curation and task generation pipeline
for VideoCanvasBench, the first systematic evaluation suite for arbitrary spatio-temporal video com-
pletion.

C.1 DATA CURATION

We curate two complementary types of sources: (1) homologous videos for testing fidelity within a
single coherent scene, and (2) non-homologous images and videos for evaluating creativity across
distinct content.

Homologous Video Set (100 Videos). We began with an initial pool of ∼2,000 videos from Pex-
els (Pexels, 2025). A multi-stage filtering pipeline was applied to ensure quality and diversity:

• Blur filtering: blurry videos were removed by calculating the CV2.Laplacian (Bradski, 2000)
score for each frame and excluding those below a threshold of 200.

• Motion filtering: static or nearly-static clips were excluded using RAFT-based motion magnitude
thresholds exceeding 5 (Teed & Deng, 2020).

• Length filtering: only videos longer than 5 seconds were retained.

From this pool, we selected 100 diverse, high-quality clips covering a wide range of scenes (e.g.,
human activities, animals, landscapes). All were standardized to 77 frames at 15 FPS to provide a
consistent evaluation length. Each video is paired with captions generated by a captioning model
fine-tuned on Koala36M (Wang et al., 2025b) following the LLaVA-based (Liu et al., 2023) anno-
tation pipeline. All captions are further verified by human annotators to ensure accuracy in both
content and motion descriptions.

Non-Homologous Image and Video Sets. To test the ability to synthesize across unrelated con-
texts, we manually curated visually distinct sources from Pexels (Pexels, 2025) and Unsplash (Un-
splash, 2025), ensuring large appearance and semantic gaps. The set includes:

• 50 pairs of non-homologous images, selected to maximize dissimilarity (e.g., indoor vs. outdoor,
object vs. scene).

• 50 triplets of non-homologous images, further increasing combinatorial diversity.
• 30 pairs of non-homologous video clips, curated for challenging video transitions, similar to the

blending function of Sora (OpenAI, 2023).

These non-homologous cases explicitly test the model’s capacity for creative interpolation and cross-
scene reasoning. Each non-homologous source is annotated with captions automatically generated
by Gemini 2.5 Pro (Comanici et al., 2025) and manually corrected to ensure faithful descriptions of
both appearance and motion.
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C.2 BENCHMARK TASK DEFINITIONS

Task 1: Image-Level (Any-Timestamp Image-to-Video). This task uses full frames as condi-
tions to test temporal reasoning and interpolation fidelity. We explicitly construct nine sub-tasks
by combining conditions from fixed temporal anchors: start (frame 1), middle (frame 41), and end
(frame 77).

• Homologous cases. From each source video we sample three anchor frames (start, middle, end),
and construct:

– Single-frame I2V: start → video, middle → video, end → video.
– Two-frame I2V: start+end → video, start+middle → video, middle+end → video.
– Three-frame I2V: start+middle+end → video.

• Non-homologous cases. For curated pairs of images, we construct the three two-frame tasks
(start+end, start+middle, middle+end). For curated triplets of images, we construct the three-
frame task (start+middle+end). Each non-homologous source is annotated with captions automat-
ically generated by Gemini 2.5 Pro (Comanici et al., 2025) and manually checked for accuracy.

Task 2: Patch-Level (Any-Timestamp Patch-to-Video). This variant follows the same nine sub-
task definitions as Image-Level setting, but replaces each full-frame condition with a cropped patch.

• Patch extraction. For each conditional frame, patches are obtained via a semi-automated process:
50% object-aware masks using SAM (Kirillov et al., 2023) or YOLO (Ultralytics, 2023), and 50%
random crops.

• Temporal anchors. The same start, middle, and end frame positions are used to construct single-,
two-, and three-frame variants, for both homologous and non-homologous cases.

• Difficulty. The subset explicitly includes challenging cases with very small subjects, requiring the
model to extrapolate from minimal context.

Task 3: Video-Level (Transition, Inpainting and Outpainting). This task evaluates more gen-
eral video-level completion scenarios beyond frame- or patch-level control. It consists of three
sub-categories:

• Video Transition. For 30 curated pairs of non-homologous video clips, the first clip provides
the start segment and the second the end segment, while the model synthesizes the intermediate
transition. This setup parallels the blending function explored in Sora (OpenAI, 2023). Each case
is annotated with captions generated by Gemini 2.5 Pro (Comanici et al., 2025) and manually
corrected to ensure faithful descriptions of both content and motion.

• Inpainting. For homologous videos, interior rectangular masks are applied to each frame, covering
20%–50% of the width/height. The model must fill the missing regions with temporally consistent
content.

• Outpainting. Boundary masks are applied to crop the central region, masking out 60%–90% of
the width/height. The model is required to extrapolate plausible outer regions beyond the visible
content.

C.3 SCALE

In total, VideoCanvasBench includes over 2,000 test cases: 900 for Patch-Level, 900 for Image-
Level, and 230 for Video-Level. Each case is designed to probe a specific aspect of fidelity, creativ-
ity, or temporal reasoning in the proposed unified task.

C.4 LICENSING AND ANNOTATIONS.

All videos in our benchmark are sourced from Pexels (Pexels, 2025), and images are sourced from
both Pexels and Unsplash (Unsplash, 2025). Content on Pexels is provided under the Pexels License,
which permits free use for commercial and non-commercial purposes without requiring attribution,
with restrictions against reselling unaltered copies, use in trademarks, or misuse of identifiable peo-
ple or brands. A subset of Pexels content is explicitly marked as Creative Commons Zero (CC0),
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which places the work in the public domain. Unsplash photos are provided under the Unsplash Li-
cense, which similarly allows free commercial and non-commercial use without attribution, while
prohibiting resale of unaltered content, creation of competing stock services, or misleading associa-
tion with brands or people. In both cases, all curated data is legally licensed for academic research
use.

Captions generated by Gemini 2.5 Pro (Comanici et al., 2025) were manually verified by the authors
to ensure accuracy and consistency across all benchmark cases.

D ADDITIONAL ANALYSIS OF ZERO-PADDED INPUTS

Input full image

Input image(spatial padding)

(a) Input image

(b) Reconstruction image by Hunyuan I2V VAE model

PSNR=36.13 PSNR=37.86 PSNR=37.42 PSNR=36.79

Rec. full image

PSNR=35.72 PSNR=37.34 PSNR=36.79 PSNR=35.04

Rec. image(spatial padding) spatial padding does not significantly reduce PSNR

PSNR=35.12 PSNR=37.03 PSNR=36.89 PSNR=35.71

PSNR=34.88 PSNR=36.17 PSNR=36.14 PSNR=33.87

(c) Reconstruction image by CogVideo VAE model

Rec. full image

Rec. image(spatial padding) spatial padding does not significantly reduce PSNR

Figure S8: Robustness of Hybrid Video VAEs to Spatial Padding. This figure demonstrates that
both the Hunyuan I2V and CogVideo VAE models can tolerate spatial zero-padding well. When re-
constructing images with large zero-padded regions (middle row), the PSNR values are only slightly
lower than those of the full, unpadded images (top row). Crucially, the original content within the
non-zero regions is faithfully preserved, while the padded areas remain visually neutral. This em-
pirical evidence confirms that our spatial conditioning strategy, which relies on zero-padding before
VAE encoding, is stable and practical, enabling precise spatial control without degrading the quality
of the conditioned content.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Input video
0 1 2 3 4

Input full video

Input image(temporal padding)

Input image(temporal&spatial padding)

(b) Reconstruction frame by Hunyuan I2V VAE model

(c) Reconstruction frame by CogVideo VAE model

Rec. full frame Rec. full frame
(temporal padding)

Rec. full frame
(temporal&spatial padding)

PSNR=34.58 PSNR=28.91 PSNR=27.63

PSNR=33.69 PSNR=26.54 PSNR=26.13

tempotal padding does significantly reduce PSNR

tempotal padding does significantly reduce PSNR

Figure S9: Vulnerability of Hybrid Video VAEs to Temporal Padding. This figure contrasts the
robustness observed in spatial padding. When applying temporal zero-padding (where only specific
frames contain content), both VAE models suffer a relatively great drop in reconstruction quality.
The PSNR values for the padded reconstructions (bottom rows) are much lower than those of the full
video (top row), demonstrating a degradation in fidelity. The reconstructed frames exhibit notice-
able color shifts, and loss of detail, highlighting that the VAE cannot handle such distributionally
mismatched inputs. This mode underscores why direct temporal zero-padding is ineffective and
validates the necessity of our Temporal RoPE Interpolation strategy, which avoids this problem by
operating at the latent token level with fractional positions.

In Section 3, we describe using zero-padding to indicate unconditioned regions when preparing
conditional frames. This approach is crucial for our spatial conditioning strategy, as it allows us to
precisely specify the location of a condition patch within a frame without modifying the pre-trained
VAE backbone. However, a critical question arises: can a standard hybrid video VAE, trained on
natural images and videos, effectively handle inputs that contain large areas of zero-valued pixels
(i.e., spatial padding)? As illustrated in Figure S8 and Figure S9, this distinction between spatial
and temporal padding is fundamental to understanding our method.

To address this, we conducted an empirical study using two popular pre-trained VAE models: Hun-
yuan I2V and CogVideo. We evaluated their robustness to both spatial and temporal padding under
realistic conditions.

Setup. We collected 20 diverse full-resolution images and 20 short video clips from YouTube,
representing a wide range of content (e.g., landscapes, cityscapes, indoor scenes, moving vehicles).
For each image, we applied random spatial zero-padding masks, covering approximately 40-60% of
the pixels. For each video clip, we created three types of padded inputs: 1. A video with conditional
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frames containing the original content, while all other frames are filled with zeros (pure temporal
padding). 2. A video where conditional frames contains cropped region of the original content, with
all other frames being zero (temporal & spatial padding).

Each input was then encoded and decoded using the two hybird VAE model. We measured the
reconstruction fidelity using PSNR and qualitatively inspected the outputs.

Results. The results provide clear evidence of the differential impact of padding modes:

Spatial Padding Robustness: As shown in Figure S8, both VAE models demonstrate remarkable tol-
erance to spatial zero-padding. The average PSNR of reconstructed images with spatial padding
is only marginally lower than that of the baseline (full image), with an average drop of 0.89
dB(Hunyuan I2V) and 1.13 dB(CogVideo).

Temporal Padding Vulnerability: In stark contrast, Figure S9 reveals the limitations of traditional
approaches. When applying temporal zero-padding (encoding a single frame into a sequence where
most frames are zero), both VAE models exhibit a dramatic degradation in reconstruction quality.
The average PSNR drops by over 6.12 dB(Hunyuan I2V) and 7.01 dB(CogVideo) compared to the
baseline.

Conclusion. These findings confirm that the key to achieving pixel-frame-aware control lies in
decoupling spatial and temporal handling. Our method leverages the inherent robustness of the VAE
to spatial padding while bypassing the ineffectiveness of temporal padding through our proposed
Temporal RoPE Interpolation. This separation allows us to harness the power of a frozen, pre-
trained VAE for flexible and high-fidelity video completion, avoiding the need for costly retraining
or architectural modifications. The experimental results thus strongly validate the necessity and
effectiveness of our approach.

E ADDITIONAL ANALYSIS OF TEMPORAL ROPE INTERPOLATION

Figure 4 in the main paper has shown that our Temporal RoPE Interpolation achieves precise one-
to-one alignment between condition frames and their target temporal positions. Here we further
demonstrate that such pixel-frame-level precision is not only feasible, but also crucial for improving
video completion quality.

To this end, we conduct an additional experiment on the homologous video set (100 videos) from
VideoCanvasBench. Each video contains 77 frames. We compare two conditioning strategies:

• Sparse condition: only the 0th and 4th frames are provided, and the model interpolates
the missing frames implicitly.

• Dense condition: the 0th–4th frames are explicitly provided, ensuring frame-wise align-
ment at every step.

Both settings are used to generate the full 77-frame video. We evaluate fidelity by computing PSNR
between the generated outputs and the original ground-truth video, focusing on the first 5 frames,
and report averages over all 100 videos.

Table R3: Average PSNR (dB) across 100 videos under sparse vs. dense conditioning.

Condition Type Conditioned Frames PSNR (↑)

Sparse (two frames) 0, 4 24.789
Dense (five frames) 0, 1, 2, 3, 4 25.033

The results indicate that explicitly conditioning on consecutive frames yields consistently higher
PSNR, demonstrating that RoPE Interpolation not only ensures precise alignment at arbitrary times-
tamps (as shown in Figure 4) but also effectively leverages dense temporal cues to improve recon-
struction fidelity. This finding highlights the flexibility of VideoCanvas: it can operate effectively
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under sparse conditions for efficient zero-shot completion, while also benefiting from denser con-
ditions that offer stronger temporal guidance, particularly in long-horizon generation where they
mitigate motion collapse compared to first-frame-only baselines.

F TRAINING AND INFERENCE COST

Tab. R4 summarizes the computational cost of different conditioning paradigms. Our ICC approach
introduces no additional parameters, whereas channel concatenation requires a projection layer
with ∼16.6M parameters. Training ICC takes slightly longer (24.5h vs. 21–22h) due to the addi-
tional conditioning tokens in the sequence. During inference, our method exhibits a small overhead
that grows with the number of conditional frames (168s → 175s → 184s), because a longer context
increases the sequence length processed by the transformer. While this makes inference marginally
slower than the baselines with fixed cost, the trade-off is acceptable since ICC consistently achieves
the best fidelity and alignment results (see Sec. 5.3, Tab. 1, Fig. 4 and Tab. 2).

Table R4: Training and inference cost comparison across paradigms. Training time is measured over
20k steps. Inference time is per 77-frame video at 384× 672 with different numbers of conditional
frames.

Method Params Train Inference

1 frame 2 frame 3 frame

Latent Replacement 0 21.47h 159s 159s 159s
Channel Concat 16.6M 22.47h 164s 164s 164s
Ours 0 24.54h 168s 175s 184s

G MORE QUALITATIVE RESULTS

We provide extended visualizations on all three benchmark tasks defined in Sec. C: (1) Patch Level,
(2) Image Level, and (3) Video Level. Figures S11, S10, and S12 showcase side-by-side compar-
isons with baseline paradigms. Across diverse cases, our ICC with RoPE consistently produces
smoother motion, sharper details, and better temporal alignment.

H USE OF LARGE LANGUAGE MODELS (LLMS)

Scope of use. We used a large language model (LLM) only for writing polish, including gram-
mar correction, phrasing refinement, and improvements to clarity and readability. The LLM did
not contribute to research ideation, problem formulation, method design, experimental setup, re-
sult selection, interpretation, or drafting of technical content (theorems, algorithms, proofs, metrics,
or analyses). All technical claims, experiments, figures, tables, and conclusions were conceived,
implemented, and verified by the authors.
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Frame 60 Frame 100 Frame 156

Frame 0 Frame 40 Frame 80

Figure S10: Results on Any-timestamp Patches to Videos

Frame 0 Frame 40

Frame 0 Frame 76

Figure S11: Results on Any-timestamp images to Videos
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Source Video 1

Source Video 2

Generated Video

Figure S12: Result on Video transition
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