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Abstract

Adaptivity to the difficulties of a problem is a key property in sequential
decision-making problems to broaden the applicability of algorithms. Follow-
the-regularized-leader (FTRL) has recently emerged as one of the most promising
approaches for obtaining various types of adaptivity in bandit problems. Aiming to
further generalize this adaptivity, we develop a generic adaptive learning rate, called
stability-penalty-adaptive (SPA) learning rate for FTRL. This learning rate yields
a regret bound jointly depending on stability and penalty of the algorithm, into
which the regret of FTRL is typically decomposed. With this result, we establish
several algorithms with three types of adaptivity: sparsity, game-dependency, and
best-of-both-worlds (BOBW). Despite the fact that sparsity appears frequently in
real problems, existing sparse multi-armed bandit algorithms with k-arms assume
that the sparsity level s ≤ k is known in advance, which is often not the case in
real-world scenarios. To address this issue, we first establish s-agnostic algorithms
with regret bounds of Õ(

√
sT ) in the adversarial regime for T rounds, which

matches the existing lower bound up to a logarithmic factor. Meanwhile, BOBW
algorithms aim to achieve a near-optimal regret in both the stochastic and adver-
sarial regimes. Leveraging the SPA learning rate and the technique for s-agnostic
algorithms combined with a new analysis to bound the variation in FTRL output
in response to changes in a regularizer, we establish the first BOBW algorithm
with a sparsity-dependent bound. Additionally, we explore partial monitoring and
demonstrate that the proposed SPA learning rate framework allows us to achieve a
game-dependent bound and the BOBW simultaneously.

1 Introduction

This study considers the multi-armed bandits (MAB) and partial monitoring (PM). In the MAB
problem, the learner selects one of k arms, and the adversary simultaneously determines the loss of
each arm, ℓt = (ℓt1, . . . , ℓtk)

⊤ in [0, 1]k or [−1, 1]k. After that, the learner observes only the loss
for the chosen arm. The learner’s goal is to minimize the regret, which is the difference between the
learner’s total loss and the total loss of an optimal arm fixed in hindsight. PM is a generalization of
MAB, and the learner observes feedback symbols instead of the losses.
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One of the most promising frameworks for MABs and PM is follow-the-regularized-leader
(FTRL) [5, 12], which determines the arm selection probability at each round by minimizing the
sum of the cumulative (estimated) losses so far plus a convex regularizer. Note that the well-known
Exp3 algorithm developed in [5] is equivalent to FTRL with the (negative) Shannon entropy regu-
larizer. FTRL is also known to perform well for the classic expert problem [17] and reinforcement
learning [52]. Furthermore, when the problem is “benign”, it is known that FTRL can exploit the
underlying structure to adaptively improve its performance. Typical examples of such adaptive
improvements are (i) data-dependent bounds and (ii) best-of-both-worlds (BOBW).

Data-dependent bounds have been investigated to enhance the adaptivity of algorithms to a given
structure of losses in the adversarial regime, where feedback (e.g., losses in MABs) is decided in an
arbitrary manner. There are various examples of data-dependent bounds, and this study considers
sparsity-dependent bounds and game-dependent bounds.

A sparsity-dependent bound is an important example of data-dependent bounds, as sparsity frequently
appears in real-world problems. For example, in online advertisement allocation, it is often the case
that only a fraction of the ads is clicked. Although there are some studies for sparse MABs [10, 27, 51],
all of them assume that (an upper bound of) sparsity level s ≥ ∥ℓt∥0 = |{i ∈ [k] : ℓti ̸= 0}| is known
beforehand, which in many practical scenarios does not hold.

The concept of a game-dependent bound was recently introduced by Lattimore and Szepesvári [32]
to derive a regret upper bound that depends on the game the learner is facing. As the authors suggest,
one of the motivations for the game-dependent bound is that previous PM algorithms are “quite
conservative and not practical for normal problems”. For example, whereas the Bernoulli MAB is
expressed as a PM, algorithms for PM do not always achieve the minimax regret of MAB [5]. The
game-dependent bound enables the learner to automatically adapt to the essential difficulty of the
game the algorithm is actually facing.

The BOBW algorithm aims to achieve near-optimal regret bounds in stochastic and adversarial
regimes, where the feedback is stochastically generated in the stochastic regime. Since we often
do not know the underlying regime, it is desirable for an algorithm to simultaneously obtain a
near-optimal performance both for the stochastic and adversarial regimes. For multi-armed bandits,
Bubeck and Slivkins [9] developed the first BOBW algorithm, and Zimmert and Seldin [53] proposed
the well-known Tsallis-INF algorithm, which achieves the optimal regret for both regimes. The
Tsallis-INF algorithm also achieves favorable regret guarantees in the adversarial regime with a
self-bounding constraint, which interpolates between the stochastic and adversarial regimes.

To realize the aforementioned adaptivity in FTRL, the adaptive learning rate (a.k.a. time-varying
learning rate) is one of the most representative approaches. This approach adjusts the learning rate
based on previous observations. In the literature, adaptive learning rates have been designed to depend
on stability or penalty, which are components of a regret upper bound of FTRL. The stability term
increases if the variation of FTRL outputs in the adjacent rounds is large, and stability-dependent
learning rates have been used in a considerable number of algorithms available in the literature, e.g.,
[32, 37, 38] and references therein. In contrast, the penalty term comes from the strength of the
regularization, and recently penalty-dependent learning rates were considered to achieve BOBW
guarantees [22, 46]. However, existing stability-dependent (resp. penalty-dependent) learning rates
are designed with the worst-case penalty (resp. stability), which could potentially limit the adaptivity
and performance of FTRL. (There are numerous studies related to this paper and we include additional
related work in Appendix C.)

1.1 Contribution of this study

In this paper, in order to further broaden the applicability of FTRL, we establish a generic framework
for designing an adaptive learning rate that depends on both the stability and penalty components
simultaneously, which we call a stability-penalty-adaptive (SPA) learning rate (Definition 2). This

enables us to bound the regret approximately by Õ
(√∑T

t=1 ztht+1

)
for stability component (zt)t

and a penalty component (ht)t, which we call a SPA regret bound (Theorem 1). With appropriate
selections of zt and ht, this result yields the three important adaptive bounds mentioned earlier,
namely sparsity, game-dependency, and BOBW. In particular, our contributions are as follows (see
also Tables 1 and 2):
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Table 1: Regret upper bounds with sparsity-dependent bounds in multi-armed bandits. T is the time
horizon. s ≤ k is the level of sparsity in losses. Let L2 =

∑T
t=1∥ℓt∥2, and ∥ℓt∥0 ≤ s implies

L2 =
∑T
t=1∥ℓt∥2 ≤ sT since ∥ℓt∥∞ ≤ 1. ∆min is the minimum suboptimality gap. Adv. and

Stoc. are the abbreviations of the adversarial and stochastic regime, respectively.
Reference s-agnostic? Range of ℓti Regime Regret bound

Kwon and Perchet [27] – [0, 1] Adv. Ω(
√
sT )

Kwon and Perchet [27] No [0, 1] Adv. 2
√
e
√

sT log(k/s)

Ours (Sec. 5.1.1, Cor. 2) Yes [0, 1] Adv. 2
√
2
√

L2 log k +O((kT log k)1/3)

Bubeck et al. [10] No [−1, 1] Adv. 10
√

L2 log k + 20k log T

Ours (Sec. 5.1.2, Cor. 3) Yes [−1, 1] Adv. 4
√
2
√

L2 log k + 2k log T

Ours (Sec. 5.2, Thm. 4) Yes [−1, 1] Adv. 4
√

L2 log k log T +O(k log T )
Stoc. O(s log(T ) log(kT )/∆min)

Table 2: Regret bounds for non-degenerate local PM games. Vt, V ′
t , and V̄ ′ are game-dependent

quantities satisfying Vt ≤ V ′
t ≤ V̄ (see Section 6 and Appendix B for definitions). H(qt) is the

Shannon entropy for FTRL output qt.
Reference Game-dependent? BOBW? Order of regret bound

Many existing studies on PM No No –

Lattimore and Szepesvári [32] Yes No
√∑T

t=1 Vt log k

Tsuchiya et al. [46] No (only game-class-dependent) Yes
√

V̄
∑T

t=1 H(qt+1)

Ours (Sec. 6, Cor. 5) Yes Yes
√∑T

t=1 V
′
t H(qt+1) log T

• (Section 5.1) We initially provide new algorithms for sparse MABs as preliminaries for establishing
a BOBW algorithm with a sparsity-dependent bound. In Section 5.1.1, we propose a novel
estimator of the sparsity level, which is linked to a stability component and induces L2 =∑T
t=1∥ℓt∥2 ≤ sT . We demonstrate that a learning rate using this estimator with the Shannon

entropy regularizer and Θ̃((kT )−2/3) uniform exploration immediately results in anO(
√
L2 log k)

regret bound for ℓt ∈ [0, 1]k. In Section 5.1.2, we investigate possibly negative losses ℓt ∈ [−1, 1]k.
We employ the time-invariant log-barrier proposed in [10] to control the stability term. This allows
us to achieve an O(

√
L2 log k) regret bound for losses in [−1, 1]k even without the Θ̃((kT )−2/3)

uniform exploration. This is a key component for developing the BOBW guarantee that we discuss
next. Note that Section 5.1 serves as preliminary findings for the subsequent section.

• (Section 5.2) We establish a BOBW algorithm with a sparsity-dependent bound. In order to
achieve this goal, we make another major technical development: we analyze the variation in the
FTRL output when the regularizer changes (Lemma 7), which holds thanks to the time-invariant
log-barrier and may be of independent interest. This analysis is necessary since we use a time-
varying learning rate to obtain a BOBW guarantee, whereas Bubeck et al. [10] uses a constant
learning rate. This technical development successfully allows us to achieve the goal (Theorem 4)
in combination with the SPA learning rate developed in Section 4 and a technique for exploiting
sparsity in Section 5.1.2.

• (Section 6) We show that the SPA learning rate established in Section 4 can also be used to achieve
a game-dependent bound and a BOBW guarantee simultaneously, which further highlights the
usefulness of the SPA learning rate.

2 Setup

This section introduces the preliminaries of this study. Sections 2.1 and 2.2 formulate the MAB and
PM problems, respectively, and Section 2.3 defines regimes considered in this paper.
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Notation Let ∥x∥, ∥x∥1, and ∥x∥∞ be the Euclidian, ℓ1-, and ℓ∞-norms for a vector x, respectively.
Let ∥x∥0 be the number of non-zero elements for a vector x. Let Pk = {p ∈ [0, 1]k : ∥p∥1 = 1}
be the (k − 1)-dimensional probability simplex. A vector ei ∈ {0, 1}k is the i-th standard basis of
Rk, and 1 is the all-one vector. Let DΦ be the Bregman divergence induced by differentiable convex
function Φ, i.e., DΦ(p, q) = Φ(p)−Φ(q)− ⟨∇Φ(q), p− q⟩. Table 3 in Appendix A summarizes the
notation used in this paper.

2.1 Multi-armed bandits

In MAB with k-arms, at each round t ∈ [T ] := {1, 2, . . . , T}, the environment determines the loss
vector ℓt = (ℓt1, ℓt2, . . . , ℓtk)

⊤ in [0, 1]k or [−1, 1]k, and the learner simultaneously chooses an arm
At ∈ [k] without knowing ℓt. After that, the learner observes only the loss ℓtAt

for the chosen arm.
The performance of the learner is evaluated by the regret RegT , which is the difference between the
cumulative loss of the learner and of the single optimal arm, that is, a∗ = argmina∈[k] E

[∑T
t=1 ℓta

]
and RegT = E

[∑T
t=1(ℓtAt − ℓta∗)

]
, where the expectation is taken with respect to the internal

randomness of the algorithm and the randomness of the loss vectors (ℓt)Tt=1.

2.2 Partial monitoring

Formulation A PM game G = (L,Φ) with k-actions and d-outcomes is defined by a pair of a
loss matrix L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where Σ is a set of feedback symbols.
The game is played in a sequential manner by a learner and an opponent across T rounds. The
learner begins the game with knowledge of L and Φ. For every round t ∈ [T ], the opponent selects
an outcome xt ∈ [d], and the learner simultaneously chooses an action At ∈ [k]. Then the learner
suffers an unobserved loss LAtxt

and receives only a feedback symbol σt = ΦAtxt
, where Lax is

the (a, x)-th element of L. The learner’s performance in the game is evaluated by the regret RegT
as in the MAB case: a∗ = argmina∈[k] E

[∑T
t=1 Laxt

]
and RegT = E

[∑T
t=1(LAtxt

− La∗xt
)
]
=

E
[∑T

t=1 ⟨ℓAt − ℓa∗ , ext⟩
]
, where ℓa ∈ Rd is the a-th row of L.

Several concepts in PM Let m ≤ |Σ| be the maximum number of distinct symbols in a single
row of Φ ∈ Σk×d. Different actions a and b are duplicate if ℓa = ℓb. We can decompose possible
distributions of d outcomes in Pd based on the loss matrix. For every action a ∈ [k], cell Ca = {u ∈
Pd : maxb∈[k](ℓa − ℓb)⊤u ≤ 0} is the set of probability vectors in Pd for which action a is optimal.
Each cell is a closed convex polytope.

Define dim(Ca) as the dimension of the affine hull of Ca. Action a is said to be dominated if Ca = ∅.
For non-dominated actions, action a is said to be Pareto optimal if dim(Ca) = d− 1, and degenerate
if dim(Ca) < d− 1. Let Π be the set of Pareto optimal actions. Two Pareto optimal actions a, b ∈ Π
are called neighbors if dim(Ca ∩ Cb) = d− 2, which is used to define the difficulty of PM games. A
PM game is said to be non-degenerate if it has no degenerate actions. We assume that PM game G is
non-degenerate and contains no duplicate actions.

The difficulty of PM games is characterized by the following observability conditions. Neighbouring
actions a and b are locally observable if there exists wab : [k]× Σ→ R such that wab(c, σ) = 0 for
c ̸∈ {a, b} and

∑k
c=1 wab(c,Φcx) = Lax − Lbx for all x ∈ [d]. A PM game is locally observable if

all neighboring actions are locally observable, and this study considers locally observable games.

Loss difference estimation Let H be the set of all functions from [k] × Σ to Rd. For any
locally observable games, there exists G ∈ H such that for any b, c ∈ Π,

∑k
a=1(G(a,Φax)b −

G(a,Φax)c) = Lbx − Lcx for all x ∈ [d] [32]. For example, we can take G = G0 defined by
G0(a, σ)b =

∑
e∈pathT (b) we(a, σ) for a ∈ Π, where T is a tree over Π induced by neighborhood

relations and pathT (b) is the set of edges from b ∈ Π to an arbitrarily chosen root c ∈ Π on T [32].
See Appendix C and [31, Chapter 37] for a more detailed explanation and background of PM.

4



2.3 Considered regimes

We consider three regimes on the assumptions for losses in MABs and outcomes in PM. In the
stochastic regime, a sequence of loss vector (ℓt) in MAB and that of outcome vector (xt) in PM
follow an unknown distribution ν∗ in an i.i.d. manner. Define the minimum suboptimality gap in
∆min = mina̸=a∗ ∆a for ∆a = Eℓt∼ν∗

[
(ℓta − ℓta∗)

]
in MAB and ∆a = Ext∼ν∗

[
(ℓa − ℓa∗)⊤ext

]
in PM. Note that the definitions of ℓ in MAB and PM are different.

In contrast, the adversarial regime does not assume any stochastic structure for the losses or outcomes,
and they can be chosen in an arbitrary manner. In this regime, the environment can choose ℓt for
MAB and xt for PM depending on the past history until the (t− 1)-th round, (As)t−1

s=1.

We also consider, the adversarial regime with a self-bounding constraint [53], an intermediate regime
between the stochastic and adversarial regimes.
Definition 1. Let ∆ ∈ [0, 2]k and C ≥ 0. The environment is in an adversarial regime with a
(∆, C, T ) self-bounding constraint if it holds for any algorithm that RegT ≥ E

[∑T
t=1 ∆At

− C
]
.

One can see that the stochastic and adversarial regimes are indeed instances of this regime, and that
well-known stochastic regimes with adversarial corruptions [36] are also in this regime (see [53]
and [46] for definitions in MAB and PM, respectively).

We assume that there exists a unique optimal arm (or action) a∗, which was employed by many
studies aiming at developing BOBW algorithms [18, 34, 49, 53].

3 Preliminaries

This section provides preliminaries for developing and analyzing algorithms. We first introduce
FTRL, upon which we develop our algorithms, and then describe the self-bounding technique, which
is a common technique for proving a BOBW guarantee.

Follow-the-regularized-leader In the FTRL framework, an arm selection probability pt ∈ Pk at
round t is given by

qt = argmin
q∈Pk

〈
t−1∑
s=1

ŷs, q

〉
+Φt(q) and pt = Tt(qt) , (1)

where ŷt ∈ Rk is an estimator of loss ℓt at round t, Φt : Pk → R is a strongly-convex regularizer,
and Tt : Pk → Pk is a map from the output of FTRL qt to an arm selection probability vector pt.

In the analysis of FTRL, it is common to evaluate
∑T
t=1 ⟨ŷt, pt − p⟩ =

∑T
t=1 ⟨ŷt, qt − p⟩ +∑T

t=1 ⟨ŷt, pt − qt⟩ for some p ∈ Pk. It is known (see e.g., [31, Exercise 28.12]) that quantity∑T
t=1 ⟨ŷt, qt − p⟩ is bounded from above by

T∑
t=1

(Φt(qt+1)− Φt+1(qt+1)︸ ︷︷ ︸
penalty term

) + ΦT+1(p)− Φ1(q1) +

T∑
t=1

(⟨qt − qt+1, ŷt⟩ −DΦt(qt+1, qt)︸ ︷︷ ︸
stability term

) . (2)

We refer to the terms in (2) as a penalty and stability terms, and to the quantity ⟨ŷt, pt − qt⟩ as a
transformation term. Note that, though this study focuses on examples in which ΦT+1(p) is not
dominant, this term may be dominant dependent on the choice of regularizers.

Self-bounding technique A self-bounding technique is a common method for proving a BOBW
guarantee [18, 49, 53]. In the self-bounding technique, we first derive regret upper and lower bounds
in terms of a variable dependent on the arm selection probabilities (pt)t or the FTRL outputs (qt)t,
and then derive a regret bound by combining the upper and lower bounds. We use a version proposed
in [22]. We consider Q(i), Q̄(i), P (i), and P̄ (i) for i ∈ [k] defined by Q(i) =

∑T
t=1(1 − qti),

Q̄(i) = E [Q(i)] , P (i) =
∑T
t=1(1 − pti), and P̄ (i) = E [P (i)] . Note that Q̄(i), P̄ (i) ∈ [0, T ] for

any i ∈ [k]. In terms of Q̄(i) or P̄ (i), we can obtain the lower bound of the regret for the adversarial
regime with a self-bounding constraint as follows:
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Lemma 1 ([46, Lemma 4]). In the adversarial regime with a self-bounding constraint (Definition 1),
if there exists c′ ∈ (0, 1] such that pti ≥ c′ qti for all t ∈ [T ] and i ∈ [k], then RegT ≥ ∆minP̄ (a

∗)−
C ≥ c′ ∆minQ̄(a∗)− C .

It is known that the sums of the entropy H(·) of (pt)t is bounded by P (i) as follows:
Lemma 2 ([22, Lemma 4]). Let (qt)Tt=1 be any sequence of probability vectors and define Q(i) =∑T
t=1(1− qti). Then for any i ∈ [k],

∑T
t=1H(qt) ≤ Q(i) log(ekT/Q(i)).

Based on Lemmas 1 and 2, it suffices to show RegT ≲ E
[√∑T

t=1H(qt) polylog(T )
]

to prove a
BOBW guarantee in MAB. This is because, for the adversarial regime, using H(qt) ≤ log k immedi-
ately implies a Õ(

√
T ) bound, and for the stochastic regime, using Lemmas 1 and 2 roughly bounds

the regret as RegT = 2RegT − RegT ≲
√
Q̄(a∗) polylog(T )−∆minQ̄(a∗) ≲ polylog(T )/∆min.

4 Stability-penalty-adaptive (SPA) learning rate and regret bound

This section proposes a new adaptive learning rate, which yields a regret upper bound dependent on
both the stability component zt and penalty component ht for various choices of zt and ht. When we
use a learning rate ηt, the analysis of FTRL boils down to the evaluation of

R̂eg
SP

T =

T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 + λ

T∑
t=1

ηtzt for some λ > 0 . (3)

In particular, when we use the Exp3 algorithm, ht is the Shannon entropy of the FTRL output at
round t. This can be confirmed by checking the existing studies (e.g., [22, 46]) or the proofs in

Appendices F, G, H.2, and I. To favorably bound R̂eg
SP

T , we develop a new learning rate framework,
which we call the jointly stability- and penalty-adaptive learning rate, or the stability-penalty-adaptive
(SPA) learning rate for short:
Definition 2 (Stability-penalty-adaptive learning rate). Let ((ht, zt, z̄t))Tt=1 be non-negative reals
such that h1 ≥ ht for all t ∈ [T ], (z̄th1 +

∑t
s=1 zshs+1)

T
t=1 is non-decreasing, and z̄th1 ≥ ztht+1

for all t ∈ [T ]. Let c1, c2 > 0. Then, a sequence of (ηt)Tt=1 is a SPA learning rate if it has a form of

ηt =
1

βt
, β1 > 0 , and βt+1 = βt +

c1zt√
c2 + z̄th1 +

∑t−1
s=1 zshs+1

. (4)

Remark. To the best of our knowledge, this is the first learning rate that depends on both the
stability and penalty components. Note that when we set the penalties to their worst-case value, that
is, ht = h1 for all t ∈ [T ] (recalling ht ≤ h1), the SPA learning rate in (4) becomes equivalent
to the standard type of the learning rate, which depends only on the stability and has the form

of βt = 1/ηt ≃ c1√
h1

√
z̄1 +

∑t−1
s=1 zs . On the other hand, when we set the stabilities to be their

worst-case value, that is, z ≥ maxt∈[T ] zt, the SPA learning rate in (4) corresponds to the learning
rate dependent only on the penalty in [22, 46].

Using learning rate (ηt) in (4), we can bound R̂eg
SP

T as follows.
Theorem 1 (Stability-penalty-adaptive regret bound). Let (ηt)Tt=1 be a SPA learning rate in Defini-

tion 2. Then R̂eg
SP

T in (3) is bounded as follows:

(I) If ((ht, zt, z̄t))Tt=1 in (ηt) satisfies
√
c2+z̄th1

c1
(β1 + βt) ≥ ε + zt for all t ∈ [T ] for some ε > 0

(stability condition (S1)), then

R̂eg
SP

T ≤ 2

(
c1 +

λ

c1
log

(
1 +

T∑
u=1

zu
ε

))√√√√c2 + z̄Th1 +

T∑
t=1

ztht+1 . (5)

(II) If ht = h1 for all t ∈ [T ], c2 = 0, and ((ht, zt, z̄t))
T
t=1 in (ηt) satisfies βt ≥ ac1√

h1

√∑t
s=1 zs for

some a > 0 (stability condition (S2)), then R̂eg
SP

T ≤ 2
(
c1 +

λ
ac1

)√
h1
∑T
t=1 zt.
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The proof of Theorem 1 can be found in Appendix D. In Part (I) of Theorem 1, we can see that R̂eg
SP

T

is bounded by
√∑T

t=1 ztht+1, which will enable us to obtain BOBW and data-dependent bounds

simultaneously. Note that R̂eg
SP

T , which is the component of the regret, often becomes dominant in
particular when we use the Shanon entropy regularizer. Thus, checking the stability condition (S1)

and applying Theorem 1 to bound R̂eg
SP

T almost complete the regret analysis. In Section 6, we will
see that applying Theorem 1 immediately provides a BOBW bound with a game-dependent bound for
PM. In contrast, when deriving BOBW with a sparsity-dependent bound for MAB in Section 5, we
will develop additional techniques and conduct further analysis, for example, to satisfy the stability
condition (S1), making use of the time-invariant log-barrier regularizer.

5 Sparsity-dependent bounds in multi-armed bandits

This section establishes several sparsity-dependent bounds. We use the FTRL framework in (1) with
the inverse weighted estimator ŷt ∈ Rk given by ŷti = ℓti1[At = i]/pti. This estimator is common in
the literature and is useful for its unbiasedness, i.e., EAt∼pt [ŷt | pt] = ℓt. We first propose algorithms
that achieve sparsity-dependent bounds using stability-dependent learning rates in Section 5.1 as
preliminaries for the subsequent section. Following that, in Section 5.2, we establish a BOBW
algorithm with a sparsity-dependent bound based on the SPA learning rate. More specific steps are
summarized as follows.

• Section 5.1.1 discusses the case of ℓt ∈ [0, 1]k and shows that appropriately choosing zt in the
SPA learning rate (4) with the Shannon entropy regularizer and Θ̃((kT )−2/3) uniform exploration
achieves a O(

√
L2 log k) regret for ℓt ∈ [0, 1]k without knowing L2.

• Section 5.1.2 considers the case of ℓt ∈ [−1, 1]k, which is known to be more challenging than
ℓt ∈ [0, 1]k. We show that the time-invariant log-barrier enables us to choose a “tighter” zt in (4),
which removes the uniform exploration used in Section 5.1.1. This not only results in the bound
of O(

√
L2 log k) for ℓt ∈ [−1, 1]k but also becomes one of the key properties to achieve BOBW.

• Section 5.2 presents a BOBW algorithm with a sparsity-dependent bound using the technique
developed in Section 5.1 and Theorem 1. While Theorem 1 itself is a strong tool leading directly
to the result for PM (Section 6), its application does not lead to the desired bounds. In particular, in

this setting the Õ
(√∑T

t=1 ztht+1

)
term derived through Theorem 1 does not immediately imply

a BOBW guarantee with a sparsity-dependent bound. To solve this problem, we develop a novel
technique to analyze the variation in FTRL outputs qt in response to the change in a regularizer
(Lemma 7), and prove a BOBW bound with a sparsity-dependent bound of O(

√
L2 log k log T ).

5.1 Parameter-agnostic sparsity-dependent bounds

This section establishes s-agnostic algorithms to achieve sparsity-dependent bounds for the adversarial
regime, which are preliminaries for Section 5.2.

5.1.1 L2-agnostic algorithm with O(
√
L2 log k) bound for ℓt ∈ [0, 1]k

Here, we use pt = Tt(qt) for Tt(q) = (1− γ)q+ γ
k1 and γ = k1/3(log k)1/3

T 2/3 and assume γ ∈ [0, 1/2]

(this holds when T ≥
√
8k log k), which implies 2pt ≥ qt . We use the Shannon entropy regularizer

Φt(p) = − 1
ηt
H(p) = 1

ηt
ψnS(p) = 1

ηt

∑k
i=1 pi log pi with learning rate ηt = 1/βt and

β1 =
2c1√
h1

√
k

γ
, βt+1 = βt +

c1ωt
√
log k

√
k
γ +

∑t−1
s=1 ωs

for ωt :=
ℓ2tAt

ptAt

, (6)

which corresponds to the learning rate in Definition 2 with ht ← H(q1) = log k, zt ← ωt, z̄t ← k/γ,
and c2 ← 0. The uniform exploration is used to satisfy stability condition (S2) in Theorem 1, the
amount of which is determined by balancing the regret coming from the uniform exploration and
stability condition (S2). Theorem 1 immediately gives the following bound.
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Corollary 2. When T ≥
√
8k log k, the above algorithm with c1 = 1/

√
2 achieves RegT ≤

2
√
2
√
L2 log k + (2

√
2 + 1)(kT log k)1/3 without knowing L2. In particular, when T ≥ 7k2/s3 ,

RegT ≤ (4
√
2 + 1)

√
sT log k .

The proof is given in Appendix F. The most striking feature of the algorithm is its L2 (or s)-agnostic
property. This is essentially made possible by the learning rate using the data-dependent quantity ωt

in (6), which satisfies E
[√∑T

t=1 ωt

]
≤
√∑T

t=1 E[ωt] =
√∑T

t=1

∑k
i=1 ℓ

2
ti =

√
L2. The leading

constant of the bound is better than the existing bounds, as shown in Table 1, despite its agnostic
property. Note that while the first-order bound in [49] implies the above sparsity-dependent bound
when ℓt ∈ [0, 1]k, this does not hold when ℓt ∈ [−1, 1], which we investigate in the following (see
Appendix K for details). We will see in Section 5.1.2 that this assumption can be totally removed by
adding a time-invariant log-barrier regularization.

5.1.2 L2-agnostic algorithm with O(
√
L2 log k + k log T ) bound for ℓt ∈ [−1, 1]k

Here, we consider the case of ℓt ∈ [−1, 1]k. It is worth noting that the negative loss cannot be
handled by simply shifting the loss since it removes the sparsity from the losses (ℓt); see [10, 27]
and Appendix K for further details. We directly use the output qt as pt, that is, pt = qt. We
use the hybrid regularizer consisting of the negative Shannon entropy and the log-barrier function,
Φt(p) =

1
ηt
ψnS(p) + 2ψLB(p), where ψLB(p) =

∑k
i=1 log(1/xi). We use learning rate ηt = 1/βt

and

β1 =
c21
8h1

, βt+1 = βt +
c1νt

√
log k

√
νt +

∑t−1
s=1 νs

for νt := ωtmin

{
1,
ptAt

2ηt

}
, (7)

where ωt is defined in (6). Learning rate (7) corresponds to that in Definition 2 with ht ← H(q1) =
log k, zt ← νt, z̄t ← νt, and c2 ← 0. We then have the following bound:

Corollary 3. If we run the above algorithm with c1 =
√
2, RegT ≤ 4

√
2
√
L2 log k + 2k log T +

k + 1/4, which implies that RegT ≤ 4
√
2
√
sT log k + 2k log T + k + 1/4.

The proof is given in Appendix G. Corollary 3 removes the assumption of T ≥ 7k2/s3 in Corollary 2,
and it also improves the leading constant of the regret in [10]. Note that one can prove a bound of
the same order, but with a worse leading constant, by setting β1 ≥ 15k and combining the analysis
similar to that in Section 5.1.1 and the stability bound in [10]. We successfully remove the assumption
of T ≥ 7k2/s3 thanks to the following lemma, which serves as one of the key elements in achieving
a BOBW guarantee with a sparsity-dependent bound (The proof is given in Appendix G.):

Lemma 3 (Stability bound for negative losses). Let ℓt ∈ [−1, 1]k and ŷti = ℓti1[At = i]/pti be the
inverse weighted estimator. Assume that qt ≤ δpt for some δ ≥ 1. Then the stability term of FTRL
with the hybrid regularizer Φt = 1

ηt
ψnS + 2δ ψLB is bounded as

⟨qt − qt+1, ŷt⟩ −DΦt
(qt+1, qt) ≤ δηt

ℓ2tAt

ptAt

min

{
1,
ptAt

2ηt

}
= δηtνt .

Remark. We can observe from Lemma 3 that the stability term is bounded in terms of νt, and the most
important observation is that this νt is bounded by the inverse of the learning rate 1/(2ηt) = βt/2,
i.e., νt ≤ βt/2. This enables us to guarantee the stability condition (S2) in Theorem 1 without
needing to mix the Θ̃((kT )−2/3) uniform exploration used in Section 5.1.1. Moreover, this will be a
key property to prove a BOBW with a sparsity-dependent bound in the next section.

As a minor contribution, by directly bounding the stability component, the RHS of Lemma 3 has a
smaller leading constant than the bound obtained by using the bound in [10].

5.2 Best-of-both-worlds guarantee with sparsity-dependent bound

Finally, we are ready to establish a BOBW algorithm with a sparsity-dependent bound and derive its
regret bound. We use pt = Tt(qt) = (1− γ)qt + γ

k1 with γ = k
T (i.e., Θ(1/T ) uniform exploration)
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and assume γ ∈ [0, 1/2], which implies 2pt ≥ qt and νt ≤ T. We use the hybrid regularizer
Φt =

1
ηt
ψnS + 4ψLB with learning rate ηt = 1/βt and

β1 = 15k , βt+1 = βt +
c1νt√

81c21 + νtht+1 +
∑t−1
s=1 νshs+1

with ht =
1

1− k
T

H(pt) , (8)

where νt is defined in (7). Note that this learning depends on both the stability and penalty components.
This corresponds to the SPA learning rate in Definition 2 with zt ← νt, z̄t ← νtht+1/h1, and
c2 ← 81c21. One can see that stability assumption (S1) in Part (I) of Theorem 1 are satisfied thanks to
νt ≤ βt (see Appendix H for the proof). We then have the following bounds.

Theorem 4 (BOBW with sparsity-dependent bound). Suppose that T ≥ 2k. Then the above
algorithm with c1 =

√
2 log (1 + T/β1) (Algorithm 2 in Appendix H) achieves

RegT ≤ 4
√
L2 log(k) log(1 + T ) +O(k log T )

in the adversarial regime,

RegT = O

(
s log(T ) log(kT )

∆min
+

√
Cs log(T ) log(kT )

∆min

)

in the adversarial regime with a (∆, C, T ) self-bounding constraint, and RegT =

O(E[
∑k
i=1 ℓ

2
ti] log(T ) log(kT )/∆min) in the stochastic regime.

The proof is given in Appendix H. This is the first BOBW bound with the sparsity-dependent (L2-
dependent) bound. Note that the bounds in the stochastic regime and the adversarial regime with a
self-bounding constraint can also exploit the propoerty of the underlying losses. The bound in the
stochastic regime is suboptimal in two respects: its dependence on ∆min and (log T )2. Concurrently,
two separate studies improve each suboptimality ([25] for ∆min and [13] for (log T )2), but it is
highly uncertain if we can prove a BOBW with a sparsity-dependent bound based on their approach,
and it is an important future work to investigate this problem.

Key elements of the proof In the following, we describe some key elements of the proof of
Theorem 4. We need to solve one remaining technical issue. Using Part (I) of Theorem 1, we can

show that the regret is roughly bounded by E
[√∑T

t=1 νtht+1

]
≤
√∑T

t=1 E[νtht+1]. However, this

quantity cannot be straightforwardly bounded since ht+1 depends on νt.

To address this issue, we analyze the behavior of arm selection probabilities when the regularizer
changes. In particular, we first prove in Lemma 7 that ht+1 ≤ ht + k (βt+1/βt − 1)ht+1.
This lemma can be proven by a novel analysis evaluating the changes of the FTRL outputs
when the learning rate varies (given in Appendices H.1 and H.2) which is not considered
and required when we use a time-invariant learning rate (e.g., [10]). Using the last in-

equality, we have
√∑T

t=1 E[νtht+1] ≲
√∑T

t=1 E[νtht] + k
∑T
t=1 E[νt (βt+1/βt − 1)ht+1] ≲√∑T

t=1 E[νtht] + k
∑T
t=1 E[(βt+1 − βt)ht+1] ≲

√∑T
t=1 E[νtht] + k

∑T
t=1 E

[√∑T
t=1 νtht+1

]
≲√∑T

t=1 E[νtht] + k, which holds thanks again to νt ≤ βt and based on the fact that x ≤
√
a+ bx

for a, b, x > 0 implies x ≲
√
b+ a (here we ignore some logarithmic factors). This combined with

the self-bounding technique leads to a BOBW guarantee in the stochastic regime.

Implementation One may wonder how to compute βt+1 satisfying (8) since ht+1 = ht+1(βt+1)
depends on βt+1. In fact, this can be computed by defining Ft : [βt, βt + T ] → R as Ft(α) =

α−
(
βt + c1νt/

√
81c21 + νtht+1(α) +

∑t−1
s=1 νshs+1

)
and setting βt+1 to be a root of Ft(α) = 0.

Such α can be computed using the bisection method because Ft is continuous (proved in Proposition 2
in Appendix H.3). The detailed discussion can be found in Appendix H.3.
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6 Best-of-both-worlds with game-dependent bound for partial monitoring

This section discusses the result of a BOBW guarantee with a game-dependent bound for PM. The
desired bound is obtained by direct application of the SPA learning rate and Theorem 1, which
highlights the usefulness of the SPA learning rate. Due to the space constraints, the background and
algorithm are given in Appendix B.

We rely on the Exploration by Optimization (EbO) by Lattimore and Szepesvári [32]. Define

ST(p,G; qt, ηt) = max
x∈[d]

[
(p− qt)⊤Lex

ηt
+
biasqt(G;x)

ηt
+

1

η2t

k∑
a=1

paΨqt

(
ηtG(a,Φax)

pa

)]
, (9)

where ηt is a learning rate, Ψq(z) = ⟨q, exp(−z) + z − 1⟩ and biasq(G;x) = ⟨q, Lex −∑k
a=1G(a,Φax)⟩ + maxc∈Π(

∑k
a=1G(a,Φax)c − Lcx) is the bias of the estimator. Note that

the first and third terms in (9) correspond to the stability and transformation terms. Then in EbO we
choose (pt, Gt) ∈ Pk ×H by

(pt, Gt) = argmin
p∈P′

k(qt), G∈H

ST(p,G; qt, ηt) for P′
k(q)={p ∈ Pk : p ≥ q/(2k)} , (10)

where P′
k(q) is the feasible set proposed in [46]. Let opt′qt(ηt) be the optimal value of the optimization

problem and V ′
t = max{0, opt′qt(ηt)} be its truncation.

Remark. It is worth noting that V ′
t = max{0, opt′qt(ηt)} captures game difficulty the learner

is facing as discussed in [32]. As discussed above, ST(p,G) in (9), the objective function that
determines opt′qt(ηt), correspond to the components of the regret upper bound of FTRL. Hence, the
smaller ST(p,G) can become by optimizing p and G, the smaller the regret can become, and thus
opt′qt(ηt) captures the game difficulty.

Now we are ready to state our result.
Corollary 5. For any non-degenerate PM games, there exists an algorithm based on a SPA learning

rate achieving RegT = O
(
E
[√∑T

t=1 V
′
t log(k) log(1 + T )

]
+mk2

√
log(k) log(T )

)
in the adver-

sarial regime, and RegT = O(m2k4 log(T ) log(kT )/∆min +
√
Cm2k4 log(T ) log(kT )/∆min +

mk2
√
log(k) log(T )) in the adversarial regime with a (∆, C, T ) self-bounding constraint.

An extended result and the proof are given in Appendices B and I, respectively. Recall that V ′
t =

max{0, opt′qt(ηt)} in the bound reflects the difficulty of the game the learner is facing, rather than
the worst-case difficulty of the class of the game. The bounds in both regimes are optimal up to
logarithmic factors, and further detailed comparisons are given in Table 2 and Appendix B.

7 Conclusion and future work

In this paper, we established the stability-penalty-adaptive (SPA) learning rate (Definition 2), which
provides the regret upper bound that jointly depends on the stability and penalty components of FTRL
(Theorem 1). This learning rate combined with the technique and analysis for bounding stability
terms allows us to achieve BOBW and data-dependent bounds (sparsity- and game-dependent bounds)
simultaneously in MAB and PM.

There are some remaining questions. First of all, it would be important future direction to apply the
SPA learning rate to other online decision-making problems or regularizers. For example, it is as
to investigate online learning with feedback graphs [3], in which the Shannon entropy regularizer
(or the Tsallis entropy with the exponent larger than 1 − 1/ log k) is necessary to achieve nearly
optimal regret bounds. Another interesting example is to employ the Tsallis entropy as a dominant
regularizer in the SPA learning rate, for instance, to improve logarithmic dependences on the regret
bounds, while in this paper we only focused on the Shannon entropy. Second, it is an open question
whether we can achieve the bound of O(

√
sT log(k/s)) in the sparsity-dependent bound without

knowing the sparsity level s. Finally, while we only considered PM games with local observability,
investigating if the game-dependent bound with the BOBW guarantee is possible for PM with global
observability is important future work.
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A Notation

Table 3 summarizes the symbols used in this paper.

Table 3: Notation

Symbol Meaning

Pk (k − 1)-dimensional probability simplex
T ∈ N time horizon
k ∈ N number of arms (or actions)
At ∈ [k] arm (or action) chosen by learner at round t

s ≤ k maxt∥ℓt∥0, sparsity level of losses
L2

∑T
t=1∥ℓt∥2

L ∈ [0, 1]k×d loss matrix
Σ set of feedback symbols
Φ ∈ Σk×d feedback matrix
d ∈ N number of outcomes
m ∈ N maximum number of distinct symbols in a single row of Φ
xt ∈ [d] outcome chosen by opponent at round t

qt ∈ Pk output of FTRL at round t
pt ∈ Pk arm selection probability at round t
Φt : Pk → R regularizer of FTRL at round t
ηt = 1/βt > 0 learning rate of FTRL at round t
ψnS : Rk+ → R

∑k
i=1 xi log xi, negative Shannon entropy

ψLB : Rk+ → R
∑k
i=1 log(1/xi), log-barrier

ϕnS : R+ → R x log x
ϕLB : R+ → R log(1/x)

ht penalty component at round t
zt stability component at round t

ωt stability component zt introduced in (6) (Section 5.1.1)
νt stability component zt introduced in (7) (Section 5.1.2)
V ′
t stability component zt introduced in (13) (Appendix B)

C ≥ 0 corruption level

B Detailed background and algorithm description omitted from Section 6

This section supplements the material that was briefly explained in Section 6. We also consider full
information (FI) and MAB as well as non-degenerate locally observable PM (PM-local), and let M
be a such underlying model.

B.1 Exploration by optimization and its extension

Exploration-by-optimization We first describe the approach of EbO by Lattimore and Szepesvári
[32], which is a strong technique to bound the regret in PM with local observability. The key idea
behind EbO is to minimize a part of a regret upper bound of the FTRL with the Shannon entropy.
Recall that H is the set of all functions from [k]× Σ to Rd. Then in EbO we consider the choice of
(pt, Gt) ∈ Pk ×H to minimize the sum of the stability and transformation terms for the worst-case
outcome given as follows (also defined in (9)):

ST(p,G; qt, ηt) = max
x∈[d]

[
(p− qt)⊤Lex

ηt
+
biasqt(G;x)

ηt
+

1

η2t

k∑
a=1

paΨqt

(
ηtG(a,Φax)

pa

)]
. (11)

Note that the first and third terms in (11) correspond to the stability and transformation terms (divided
by the learning rate ηt), respectively. We define the optimal value of the optimization problem by
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Algorithm 1: BOBW algorithm with a game-dependent bound for locally observable games
1 input: B
2 for t = 1, 2, . . . do
3 Compute qt using (1).
4 Solve (10) to determine V ′

t = max{0, opt′qt(ηt)} and the corresponding solution pt and Gt.
5 Sample At ∼ pt and observe feedback σt ∈ Σ.
6 Compute ŷt = Gt(At, σt)/ptAt and update βt using (13).

optq(η) = min(p,G)∈Pk×H ST(p,G; qt, η) and its truncation at round t by Vt = max{0, optqt(ηt)}
(appeared in Table 2). Note that this optimization problem is convex and can be solved numerically
by using standard solvers [32].

Extending exploration-by-optimization While the vanilla EbO is a strong tool to derive a regret
bound in PM-local, it only has a guarantee for the adversarial regime. Recall that in the self-bounding
technique, we require a lower bound of the regret expressed in terms of qt (see Lemma 1). However,
when we use the vanilla EbO, it may make a certain action selection probability pta for some action
a become extremely small even when the output of FTRL qta is far from zero [32], which makes it
impossible for us to use the self-bounding technique.

To solve this problem, the vanilla EbO was recently extended so that it is applicable to the stochastic
regime (and the adversarial regime with a self-bounding constraint) for PM-local [46]. We define
P′
k(q,M) for a class of games M, which is the extended version of P′

k(q) in (10), by

P′
k(q,M) = {p ∈ Pk : cond(q,M)} with cond(q,M) =

{
p = q if M is FI or MAB ,
p ≥ q/(2k) if M is PM-local .

We then consider the following optimization problem, which can be seen as a slight generalization of
the approach developed in [46]:

(pt, Gt) = argmin
p∈P′

k(qt,M), G∈H

ST(p,G; qt, ηt) , (12)

where the feasible region Pk of p is replaced with P′
k(q,M). We define the optimal value of (12) by

opt′q(η,M) and its truncation at round t by V ′
t (M) = max{0, opt′qt(ηt,M)}. We will abbreviate M

when it is clear from a context. The following proposition shows that the component of the regret
in (9) can be made small enough even if the feasible region is restricted to P′

k(q,M) ⊂ Pk.

Proposition 1. Let M be an underlying model. If M is FI, MAB, or PM-local with η ≤ 1/(2mk2),

opt′∗(η) := sup
q∈Pk

opt′q(η) ≤ V̄ (M) :=


1/2 if M is FI
k/2 if M is MAB
3m2k3 if M is PM-local .

One can immediately obtain this result by following the same lines as [32, Propositions 11 and 12]
and [46, Lemma 5].

B.2 Algorithm

We use the negative Shanon entropy regularizer Φt = 1
ηt
ψnS for (1) with learning rate ηt = 1/βt

with

β1 = B

√
log(1 + T )

log k
and βt+1 = βt +

c1V
′
t√

V̄ h1 +
∑t−1
s=1 V

′
shs+1

, (13)

where B = 1/2 for FI, B = k/2 for MAB, and B = 2mk2 for PM-local, which corresponds to
the learning rate in Definition 2 with ht ← H(qt), zt ← V ′

t , z̄t ← 0, and c2 ← 0. Algorithm 1
summarizes the proposed algorithm.
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B.3 Main result

Let rM be 1 if M is FI or MAB, and 2k if M is PM-local. Then we have the following bound.
Corollary 6 (Extended version of Corollary 5). Let M be FI, MAB, or PM-local. Then the above
algorithm with c1 =

√
log(1 + T )/2 (Algorithm 1) achieves

RegT ≤ E

[√√√√2

T∑
t=1

V ′
t log(k) log(1 + T )

]
+O(B

√
log(k) log(T ))

in the adversarial regime, and

RegT = O

(
rMV̄ log(T ) log(kT )

∆min
+

√
CrMV̄ log(T ) log(kT )

∆min
+B

√
log(k) log(T )

)
in the adversarial regime with a (∆, C, T ) self-bounding constraint.

The bound for the adversarial regime with a self-bounding constraint with C = 0 yields the bound in
the stochastic regime, which is optimal up to logarithmic factors in FI and MAB, and has the same
order as the bounds in [46, Theorem 6].

The bound for the adversarial regime has a form similar to [32] and is game-dependent in the sense
that it can be bounded by the empirical difficulty V ′

t of the current game. In addition, we can also
obtain the worst-case bound by replacing V ′

t with its upper bound V̄ . This bound is optimal up to
log(T ) factor in FI and log(k) log(T ) factor in MAB, and is a factor of

√
log T worse than the best

known bound in [32], which can be seen as the cost for the BOBW guarantee (see also Table 2).

C Additional related work

This appendix provides additional related work that could not be included in the main body due to
the numerous studies related to this paper.

Multi-armed bandits In the stochastic regime, it is known that the optimal regret is approximately
expressed as RegT = O(k log T/∆min) [29]. In the adversarial regime (a.k.a. non-stochastic regime),
it is known that the Online Mirror Descent (OMD) framework with the (negative) Tsallis entropy
regularizer achieves O(

√
kT ) regret bounds [1, 4], which match the lower bound of Ω(

√
kT ) [5].

Data-dependent bound In the adversarial MAB, algorithms with various data-dependent re-
gret bounds have been developed. Typical examples of such bounds are first-order bounds depen-
dent on the cumulative loss and second-order bounds depending on sample variances in losses.
Allenberg et al. [2] provided an algorithm with a first-order regret bound of O(

√
kL∗ log k) for

L∗ = mina∈A

∑T
t=1 ⟨ℓt, a⟩. Second-order regret bounds have been shown in some studies, e.g.,

[10, 19, 49], In particular, Bubeck et al. [10] provided the regret bound of O(
√
Q2 log k) for

Q2 =
∑T
t=1∥ℓt − ℓ̄∥2. Other examples of data-dependent bounds include path-length bounds

in the form of O(
√
kV1 log T ) for V1 =

∑T−1
t=1 ∥ℓt − ℓt+1∥1 as well as a sparsity-dependent bound,

which have been investigated [10, 11, 27, 49, 51].

Sparsity-dependent bound The study on a sparsity-dependent bound was initiated by Kwon and
Perchet [27], who showed that when ℓt ∈ [0, 1]k, the OMD with Tsallis entropy can achieve the
bound of RegT ≤ 2

√
e
√
sT log(k/s)) and prove the matching (up to logarithmic factor) lower

bound of RegT = Ω(
√
sT ) when T ≥ k3/(4s2). Bubeck et al. [10] also showed that OMD

with a hybrid-regularizer consisting of the Shannon entropy and a log-barrier can achieve RegT ≤
10
√
L2 log k+20k log T when ℓt ∈ [−1, 1]k. Zheng et al. [51] investigated the sparse MAB problem

in the context of the switching regret. Although their result is not directly related to our study, they
show that sparsity is useful in some cases. Note that all of these algorithms assume the knowledge
of the sparsity level and do not have a BOBW guarantee. The study to exploit the sparsity was
investigated also in the stochastic regime by Kwon et al. [28]. However, they define the sparsity level
s by the number of arms with rewards larger than or equal to 0 (i.e., losses smaller than or equal to 0),
and hence the definition of sparsity is different from that in our paper.
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Adaptive learning rate The stability-dependent learning rate is quite ubiquitous (see [38] and the
references therein). To our knowledge, the literature on the penalty-dependent bound is quite scarce
in bandits and considered in the context of BOBW algorithms [22, 46], both of which consider the
Shannon entropy regularizer.

Best-of-both-worlds Since the seminal study by Bubeck and Slivkins [9], BOBW algorithms have
been developed for many online decision-making problems. Although they have been investigated
mainly in the context of an MAB [43, 53], other settings have also been investigated, [18, 24, 49], to
name a few.

FTRL and OMD are now one of the most common approaches to achieving a BOBW guarantee
owing to the usefulness of the self-bounding technique [18, 49, 53], while the first [9] and earlier
work [43, 44] on BOBW do not rely on the technique. Most of the recent algorithms beyond the
MAB are also based on FTRL (to name a few, [24, 42, 49]).

Our BOBW algorithm with the sparsity-dependent bound can be seen as one of the studies that aim
to achieve BOBW and data-dependent bound simultaneously. There is not so much existing research,
and we are only aware of [21, 23, 47, 49]. They consider first-, second-order, and path-length bound,
and we are the first to investigate the sparsity-dependent bound in this line of work.

Log-barrier regularizer and hybrid regularizer The log-barrier regularizer has been used in
various studies (to name a few, [14, 16, 35, 40, 49]). The time-invariant log-barrier (a.k.a. constant
amount of log-barrier [33]), whose properties are extensively exploited in this paper, was invented
by Bubeck et al. [10] and has been used in several subsequent studies [33, 51].

Partial monitoring Starting from the work by Rustichini [41], PM has been investigated in many
works in the literature [7, 12, 39]. It is known that all PM games can be classified into four classes
based on their minimax regrets [7, 30]. In particular, all PM games fall into trivial, easy, hard, and
hopeless games, for which its minimax regrets is 0, Θ(

√
T ), Θ(T 2/3), and Θ(T ), respectively. PM

has also been investigated in both the adversarial and stochastic regimes as for MAB. In the stochastic
regime, there are relatively small amount of works [8, 26, 45, 48], some of which are proven to
achieve an instance-dependent O(log T ) regrets for locally or globally observable games. In the
adversarial regime, since the development of the FeedExp3 algorithm [12, 39], many algorithms
achieving the minimax optimal regret have been developed [6, 7, 15, 31].

D Proof of Theorem 1

Proof. We first prove (5) in Part (I).

Penalty term First, we consider the penalty term
∑T
t=1

(
1

ηt+1
− 1

ηt

)
ht+1. By the definition of βt

in (4),
T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 =

T∑
t=1

(βt+1 − βt)ht+1 =

T∑
t=1

c1ztht+1√
c2 + z̄th1 +

∑t−1
s=1 zshs+1

≤ c1
T∑
t=1

ztht+1√∑t
s=1 zshs+1

≤ c1
∫ ∑T

t=1 ztht+1

0

1√
x
dx = 2c1

√√√√ T∑
t=1

ztht+1 , (14)

where the first inequality follows from z̄th1 ≥ ztht+1 and the second inequality follows by Lemma 8
given in Appendix J.

Stability term Next, we consider the stability term
∑T
t=1 ηtzt. Using the definition of βt in (4)

and defining Ut =
√
c2 + z̄th1 +

∑t−1
s=1 zshs+1 for t ∈ {0} ∪ [T ], we bound βt from below as

βt = β1 +

t−1∑
u=1

c1zu√
c2 + z̄uh1 +

∑u−1
s=1 zshs+1

= β1 +

t−1∑
u=1

c1zu
Uu
≥ β1 +

c1
UT

t−1∑
u=1

zu , (15)
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where the inequality follows since (Ut) is non-decreasing. Using the last inequality, we can bound∑T
t=1 ηtzt as

T∑
t=1

ηtzt = 2

T∑
t=1

zt
βt + βt

≤ 2

T∑
t=1

zt

βt + β1 +
c1
UT

∑t−1
s=1 zs

=
2UT
c1

T∑
t=1

zt
UT

c1
(βt + β1) +

∑t−1
s=1 zs

.

(16)

Since we have UT

c1
(β1 + βt) ≥

√
c2+z̄th1

c1
(β1 + βt) ≥ ε + zt by the assumption, a part of the last

inequality is further bounded as

T∑
t=1

zt
UT

c1
(βt + β1) +

∑t−1
s=1 zs

≤
T∑
t=1

zt

ε+
∑t
s=1 zs

≤
∫ ε+

∑T
t=1 zt

ε

1

x
dx ≤ log

(
1 +

T∑
t=1

zt
ε

)
,

(17)

where the second inequality follows by Lemma 8. Combining (16) and (17) yields

T∑
t=1

ηtzt ≤
2UT
c1

log

(
1 +

T∑
t=1

zt
ε

)
=

2

c1
log

(
1 +

T∑
t=1

zt
ε

)√√√√c2 + z̄Th1 +

T∑
t=1

ztht+1 . (18)

Combining (14) and (18) completes the proof of (5) in Part (I).

We next prove Part (II). For the penalty term, setting ht = h1 for all t ∈ [T ] in (14) gives

T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 ≤ 2c1

√√√√h1

T∑
t=1

zt .

For the stability term, since there exists a > 0 such that βt ≥ ac1√
h1

√∑t
s=1 zs for any t ∈ [T ] by the

assumption,

T∑
t=1

ηtzt =

T∑
t=1

zt
βt
≤
√
h1
ac1

T∑
t=1

zt√∑t
s=1 zs

≤ 2

ac1

√√√√h1

T∑
t=1

zt .

Summing up the above arguments completes the proof of Part (II).

E Basic facts to bound stability terms

Here, we introduce basic facts, which are useful to bound the stability term. We have

ξ(x) := exp(−x) + x− 1 ≤
{

1
2x

2 for x ≥ 0

x2 for x ≥ −1 , (19)

ζ(x) := x− log(1 + x) ≤ x2 for x ∈
[
−1

2
,
1

2

]
. (20)

We also have the following inequalities for ϕnS(x) = x log x and ϕLB(x) = log(1/x), which are
components of the negative Shannon entropy and log-barrier function:

max
y∈R

{
a(x− y)−DϕnS(y, x)

}
= xξ(a) for a ∈ R , (21)

max
y∈R

{
a(x− y)−DϕLB(y, x)

}
= ζ(ax) for a ≥ − 1

x
. (22)

It is easy to prove these facts by the standard calculus and you can find the proofs of (21) and (22) in
Lemma 15 of Tsuchiya et al. [46] and Lemma 5 of Ito et al. [23], respectively.
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F Proof of Corollary 2

Let RegT (a) = E
[∑T

t=1(ℓtAt
−ℓta)

]
for a ∈ [k]. Here we provide the complete proof of Corollary 2.

Proof of Corollary 2. Fix i∗ ∈ [k]. Since pt = (1− γ)qt + γ
k1, it holds that

RegT (i
∗) = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, qt − ei∗⟩

]
+ E

[
γ

T∑
t=1

〈
ℓt,

1

k
1− qt

〉]
≤ E

[
T∑
t=1

⟨ŷt, qt − ei∗⟩

]
+ γT ,

where the last inequality follows by E[ŷt | qt] = ℓt and the Cauchy-Schwarz inequality. Then, using
the standard analysis of the FTRL described in Section 3, the first term in the last inequality is
bounded as
T∑
t=1

⟨ŷt, qt − ei∗⟩ ≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

(⟨qt − qt+1, ŷt⟩ −DΦt
(qt+1, qt)) .

By (19) and (21) given in Appendix E, the stability term ⟨qt − qt+1, ŷt⟩ −DΦt
(qt+1, qt) in the last

inequality is bounded as

⟨qt − qt+1, ŷt⟩ −DΦt
(qt+1, qt) = ⟨qt − qt+1, ŷt⟩ −

1

ηt
DψnS(qt+1, qt)

=

k∑
i=1

(
ŷti(qti − qt+1,i)−

1

ηt
DϕnS(qt+1,i, qti)

)

≤
k∑
i=1

1

ηt
qti ξ (ηtŷti) ≤

1

2
ηt

k∑
i=1

qtiŷ
2
ti ≤ ηtωt ,

where the first inequality follows from (21), the second inequality follows by (19) with ŷt ≥ 0, and
the last inequality holds since

∑k
i=1 qtiŷ

2
ti ≤

∑k
i=1 2ptiŷ

2
ti = 2ωt.

We will confirm that the assumptions for Part (II) of Theorem 1 are indeed satisfied. Using the
definition of βt in (6), We have

βt = β1 +
1√
h1

t−1∑
u=1

c1ωu√
k
γ +

∑u−1
s=1 ωs

= β1 +
2c1√
h1

t−1∑
u=1

ωu√
k
γ +

∑u−1
s=1 ωs +

√
k
γ +

∑u−1
s=1 ωs

≥ β1 +
2c1√
h1

t−1∑
u=1

ωu√
k
γ +

∑u
s=1 ωs +

√
k
γ +

∑u−1
s=1 ωs

= β1 +
2c1√
h1

t−1∑
u=1

√√√√k

γ
+

u∑
s=1

ωs −

√√√√k

γ
+

u−1∑
s=1

ωs


= β1 +

2c1√
h1


√√√√k

γ
+

t−1∑
s=1

ωs −

√
k

γ

 ≥ 2c1√
h1

√√√√ t∑
s=1

ωs ,

where the last inequality follows since β1 = 2c1√
h1

√
k
γ and k

γ ≥ ωt. Hence, stability condition (S2) in
Theorem 1 is satisfied with a = 2, and one can see that the other assumptions are trivially satisfied.
Hence, by Part (II) of Theorem 1,

T∑
t=1

⟨ŷt, qt − ei∗⟩ ≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

T∑
t=1

ηtωt +
H(q1)

η1
≤ 2

(
c1 +

1

2c1

)√√√√h1

T∑
t=1

ωt +
log k

η1
,
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where in the last inequality we used h1 ≤ log k. Now,

E


√√√√ T∑

t=1

ωt

 ≤
√√√√ T∑

t=1

E[ωt] =

√√√√ T∑
t=1

E
[
ℓ2tAt

ptAt

]
=

√√√√ T∑
t=1

k∑
i=1

ℓ2ti =

√√√√ T∑
t=1

∥ℓt∥22 =
√
L2 .

Summing up the above arguments and setting c1 = 1/
√
2, we have

RegT ≤ 2
√
2
√
L2 log k +

log k

η1
+ γT = 2

√
2
√
L2 log k + (

√
2 + 1)(kT log k)1/3 ,

which completes the proof of Corollary 2.

G Proof of Corollary 3

We first prove Lemma 3.

Proof of Lemma 3. Recall that Φt(p) = 1
ηt
ψnS(p)+2δψLB(p). Since DΦt

= 1
ηt
DψnS +2δDψLB and

DψnS(x, y) =
∑k
i=1DϕnS(xi, yi) and DψLB(x, y) =

∑k
i=1DϕLB(xi, yi), we can bound the stability

term as

⟨qt − qt+1, ŷt⟩ −DΦt
(qt+1, qt) ≤ ⟨qt − qt+1, ŷt⟩ −max

{
1

ηt
DψnS(qt+1, qt), 2δDψLB(qt+1, qt)

}
≤

k∑
i=1

(
ŷti(qti − qt+1,i)−max

{
1

ηt
DϕnS(qt+1,i, qti), 2δDϕLB(qt+1,i, qti)

})

≤
k∑
i=1

min

{
1

ηt
qti ξ (ηtŷti) , 2δ ζ

(
1

2δ
qtiŷti

)}
, (23)

where in the last inequality we used (21) and (22) with
ŷti
2δ
≥ − 1

2δpti
≥ − 1

2δ(qti/δ)
≥ − 1

qti
,

where the first inequality follows by the definition of ŷt and the second inequality follows by
pti ≥ qti/δ.

Next, we will prove that for any i ∈ [k],

min

{
1

ηt
qti ξ (ηtŷti) , 2δ ζ

(
1

2δ
qtiŷti

)}
≤ δηt

ℓ2ti
pti

min

{
1,
pti
2ηt

}
1[At = i] . (24)

Fix i ∈ [k]. By qti ≤ δpti,
1

2δ
qtiŷti =

1

2
ptiŷti ≤

1

2
.

Using this and ζ(x) ≤ x2 for x ∈ [− 1
2 ,

1
2 ] in (20), we have for any pti ∈ [0, 1] that

2δ ζ

(
1

2δ
qtiŷti

)
≤ 2δ

(
1

2δ
qtiŷti

)2

≤ δ

2
ℓ2ti1[At = i] , (25)

where in the last inequality we used qti ≤ δpti. In particular, when pti ≤ ηt, i.e., the probability of
selecting arm i is small to some extent, the last inequality can be further bounded as

2δ ζ

(
1

2δ
qtiŷti

)
≤ ηt
pti

δ

2
ℓ2ti1[At = i] ≤ δηt

ℓ2ti
pti

1[At = i] . (26)

On the other hand when pti > ηt, we have ηtŷti ≥ −1. Hence, by the inequality ξ(x) ≤ x2 for
x ≥ −1 in (19),

1

ηt
qtiξ (ηtŷti) ≤

1

ηt
δpti(ηtŷti)

2 = δηt
ℓ2ti
pti

1[At = i] . (27)

Hence, combining (25), (26), and (27) completes the proof of (24). Finally, by combining (23)
and (24) we completes the proof of Lemma 3.
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Remark. When ℓt can be negative, the Shannon entropy regularizer alone cannot bound the stability
term if the arm selection probability is small, i.e., pti ≤ ηt. Introducing a time-invariant log-barrier
regularizer enables us to bound the stability term even when the arm selection probability is small.
This idea was proposed by Bubeck et al. [10], who analyzed the variation of arm selection probability
for the change of cumulative losses. Unlike their analysis, our proof directly analyses the stability
term, enabling us to obtain the tighter regret bound. More importantly, we will utilize the property
νt ≤ O(1/ηt) many times, which directly follows from Lemma 3, in the subsequent sections to prove
the BOBW guarantee with the sparsity-dependent bound.

Now, we are ready to prove Corollary 3.

Proof of Corollary 3. Fix i∗ ∈ [k]. Define p∗ ∈ Pk by

p∗ =

(
1− k

T

)
ei∗ +

1

T
1 .

Then, using the definition of the algorithm,

RegT (i
∗) = E

[
T∑
t=1

ℓtAt
−

T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, pt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt, p∗ − ei∗⟩

]

≤ E

[
T∑
t=1

⟨ŷt, pt − p∗⟩

]
+ k ,

where the inequality follows from the definition of p∗ and the Cauchy-Schwarz inequality. By the
standard analysis of the FTRL, described in Section 3,
T∑
t=1

⟨ŷt, pt − p∗⟩ ≤
T∑
t=1

(
Φt(pt+1)− Φt+1(pt+1)

)
+Φt+1(p

∗)− Φ1(p1) +

T∑
t=1

(
⟨pt − pt+1, ŷt⟩ −DΦt(pt+1, pt)

)
.

For the penalty term, since Φt(p) =
1
ηt
ψnS(p) + 2ψLB(p),

T∑
t=1

(
Φt(pt+1)− Φt+1(pt+1)

)
+Φt+1(p

∗)− Φ1(p1)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

H(p1)

η1
+ 2

k∑
i=1

log

(
1

p∗i

)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

log k

η1
+ 2k log T ,

where in the last inequality we used the fact that p∗i ≥ 1/T for all i ∈ [k].

For the stability term, by Lemma 3 with δ = 1 (since pt = qt),
T∑
t=1

(
⟨pt − pt+1, ŷt⟩ −DΦt

(pt+1, pt)
)
≤

T∑
t=1

ηtνt .

We will confirm that the assumptions for Part (II) of Theorem 1 are indeed satisfied. By the definition
of the learning rate in (7),

βt = β1 +

t−1∑
u=1

c1νu√
h1
√∑u

s=1 νs
≥ β1 +

c1√
h1

t−1∑
u=1

νu√∑u
s=1 νs +

√∑u−1
s=1 νs

≥ β1 +
c1√
h1

t−1∑
u=1

√√√√ u∑
s=1

νs −

√√√√u−1∑
s=1

νs

 = β1 +
c1√
h1

√√√√t−1∑
s=1

νs .
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Using this inequality, βt is bounded from below as

2βt = βt + βt ≥ 2νt + β1 +
c1√
h1

√√√√t−1∑
s=1

νs ≥ 2
√

2β1νt +
c1√
h1

√√√√t−1∑
s=1

νs ≥
c1√
h1

√√√√ t∑
s=1

νs ,

where the first inequality follows by νt ≤ βt/2 and the above inequality, the second inequality follows
by the AM-GM inequality, and the last inequality follows from 2

√
2β1 ≥ c1√

h1
and
√
x +
√
y ≥

√
x+ y for x, y ≥ 0. Dividing the both sides by 2, we can see stability condition (S2) in Theorem 1

is satisfied with a = 1/2. One can also see that the other assumptions are trivially satisfied. Hence,
by Part (II) of Theorem 1,

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

T∑
t=1

ηtνt ≤ 2

(
c1 +

2

c1

)√√√√h1

T∑
t=1

νt .

Using the last inequality with E
[√∑T

t=1 νt

]
≤ E

[√∑T
t=1 ωt

]
≤
√
L2, and setting c1 =

√
2, we

have

RegT (i
∗) ≤ E

2(c1 + 2

c1

)√√√√h1

T∑
t=1

νt +
log k

η1
+ 2k log T + k


≤ 4
√
2
√
L2 log k + 2k log T + k +

1

4
,

which completes the proof of Corollary 3.

H Proof of results in Section 5.2

Appendix H.1 provides preliminary results, which will be used to quantify the difference between
qt and qt+1 in Appendix H.2 and will be used to prove the continuity of Ft in Appendix H.3.
Appendix H.2 proves Theorem 4 and Appendix H.3 discusses the bisection method to compute βt+1.

H.1 Some stability results

Before proving Theorem 4, we prove several important lemmas. Consider the following three
optimization problems:

p ∈ argmin
p′∈Pk

⟨L− ξe1, p′⟩+ βψ(p′) ,

q ∈ argmin
q′∈Pk

⟨L, q′⟩+ βψ(q′) ,

r ∈ argmin
r′∈Pk

⟨L, r′⟩+ β′ψ′(r′)

(28)

with L ∈ Rk+, 0 ≤ ξ ≤ mini∈[k] Li, and β, β′ > 0 satisfying β′ ≥ β,

ψ(q) =

k∑
i=1

(qi log qi − qi)−
c

β

k∑
i=1

log qi and ψ′(q) =

k∑
i=1

(qi log qi − qi)−
c

β′

k∑
i=1

log qi

for c > 0. Note that the outputs of FTRL with ψ(q) and with −H(q) − (c/β)
∑k
i=1 log qi are

identical since adding a constant to ψ does not change the output of the above optimization problems.

In the following lemma, we investigate the relation between q and r in (28).

Lemma 4. Consider q and r in (28). Then,

ri ≤ qβ/β
′

i . (29)
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Proof. From the KKT conditions there exist µ, µ′ ∈ R such that

L+ β∇ψ(q) + µ1 = 0 and L+ β′ψ′(r) + µ′1 = 0 ,

which implies, by (∇ψ(q))i = log qi − c
βqi

, that

Li + β log qi −
c

qi
+ µ = 0 and η′Li + β log ri −

c

ri
+ µ′ = 0 (30)

for all i ∈ [k]. This is equivalent to

qi = exp

(
− 1

β

(
Li −

c

qi
+ µ

))
and ri = exp

(
− 1

β′

(
Li −

c

ri
+ µ′

))
.

Removing Li from these equalities yields that

ri = q
β/β′

i exp

(
c

β′

(
1

ri
− 1

qi

))
exp

(
1

β′ (µ− µ
′)

)
. (31)

We will prove dµ
dβ > 0. Taking derivative with respect to β of (30), we have

log qi +

(
1

qi
+

c

q2i

)
dqi
dβ

+
dµ

dβ
= 0 .

Multiplying
(

1
qi

+ c
q2i

)−1

and summing over i ∈ [k] in the last equality, we have

−
(
1

qi
+

c

q2i

)−1

log(1/qi) +

k∑
i=1

dqi
dβ

+

(
1

qi
+

c

q2i

)−1
dµ

dβ
= 0 ,

which with the fact
∑k
i=1

dqi
dβ = 0 implies dµ

dβ > 0. Hence, since β ≤ β′ we have µ ≤ µ′.

When ri ≤ qi, it is obvious that we get ri ≤ qβ/β
′

i .

When ri > qi, using (31) with the inequalities β ≤ β′ and µ ≤ µ′,

ri = q
β/β′

i exp

(
c

β′

(
1

ri
− 1

qi

))
exp

(
1

β′ (µ− µ
′)

)
≤ qβ/β

′

i ,

which is the desired bound.

Lemma 5. Consider p, q, and r in (28). Then, under η := 1/β ≤ 1
15k , we have

ri ≤ 3p
β/β′

i . (32)

Proof. By Lemma 8 of Bubeck et al. [10] we have qi ≤ 3pi for all i ∈ [k]. Using this with Lemma 4,
we have

ri ≤ qβ/β
′

i ≤ 3q
β/β′

i .

H.2 Proof of Theorem 4

In this section, we will provide the proof of Theorem 4. We first see that the ratio βt/βt+1 is close to
one to some extent.

Lemma 6. The learning rate βt in (8) satisfies

1− βt
βt+1

∈ (0, 1/10] .
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Proof. Recall that βt = β1 +
∑t−1
u=1 bu with bu = c1νu

Uu
and Ut =

√
c2 + z̄th1 +

∑t−1
s=1 zshs+1 for

t ∈ {0} ∪ [T ]. It suffices to show

βt
βt+1

=
βt

βt + bt
≥ 9

10
⇔ βt ≥ 9bt .

This indeed follows since using νt ≤ βt/2 we have

bt =
c1νt√

81c21 +
∑t−1
s=1 zshs + ztht+1

≤ c1νt√
81c21

=
νt
9
≤ βt

9
.

Finally, we are ready to prove one of the key lemmas for proving the BOBW regret bound with the
sparsity-dependent bound. Recall that we have pt =

(
1− k

T

)
qt +

1
T 1 and ht = 1

1− k
T

H(pt). Using
the result in Appendix H.1, we will show that ht+1 is bounded in terms of ht.
Lemma 7. Suppose that βt is defined as (8). Then,

ht+1 ≤ 3ht +
20k

9

(
βt+1

βt
− 1

)
log

(
T

k

)
ht+1 .

Proof. Let us recall that qt and qt+1 are defined as

qt ∈ argmin
q∈Pk

〈
t−1∑
s=1

ŷs, q

〉
+Φt(q) and qt+1 ∈ argmin

q∈Pk

〈
t∑

s=1

ŷs, q

〉
+Φt+1(q) ,

which corresponds to optimization problems (28) with p = qt, L =
∑t
s=1 ŷs, ξ = ŷtAt , ψ = Φt/βt,

η = 1/βt, r = qt+1, ψ′ = Φt+1/βt+1, and η′ = 1/βt+1.

Since H is concave, by pti = (1− k
T )qti +

1
T and Jensen’s inequality we have(

1− k

T

)
ht = H(pt) ≥

(
1− k

T

)
H(qt) +

k

T
H

(
1

k
1

)
≥
(
1− k

T

)
H(qt) ,

which implies ht ≥ H(qt). By Lemma 5 we also have qt+1,i ≤ 3q
βt/βt+1

ti , which implies that

pt+1,i =

(
1− k

T

)
qt+1,i +

1

T
≤
(
1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 6p

βt/βt+1

ti .

The last inequality follows since when
(
1− k

T

)
3q
βt/βt+1

ti ≤ 1
T ,(

1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 2

T
≤ 2

(
1

T

)βt/βt+1

≤ 2

((
1− k

T

)
qti +

1

T

)βt/βt+1

= 2p
β/βt+1

ti ,

and otherwise(
1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 6

(
1− k

T

)βt/βt+1

q
βt/βt+1

ti ≤ 6p
β/βt+1

ti .

Using these inequalities, we have

ht+1 − 3ht =
1

1− k
T

(H(pt+1)− 3H(pt))

≤ 1

1− k
T

(H(pt) + ⟨∇H(pt), pt+1 − pt⟩ − 3H(pt))

=
1

1− k
T

k∑
i=1

(pt+1,i − 3pti) log

(
1

pti

)

≤
k∑
i=1

(qt+1,i − 3qti) log

(
1

pti

)
, (33)
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where the first inequality follows by the concavity of H , the second inequality follows since pt+1,i −
3pti ≤

(
1− k

T

)
(qt+1,i − qti). Defining Qt = {i ∈ [k] : qt+1,i − 3qti ≥ 0}, (33) is further bounded

as

k∑
i=1

(qt+1,i − 3qti) log

(
1

pti

)
=
∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pti

)
+
∑
i ̸∈Qt

(qt+1,i − 3qti) log

(
1

pti

)

≤ βt+1

βt

∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pt+1,i

)
+ 0

≤ 10

9

∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pt+1,i

)

≤ 10

9

∑
i∈Qt

(
qt+1,i − qβt+1/βt

t+1,i

)
log

(
1

pt+1,i

)

=
10

9

∑
i∈Qt

qt+1,i

(
1− q

βt+1
βt

−1

t+1,i

)
log

(
1

pt+1,i

)
, (34)

where the first inequality follows by pt+1,i ≤ 6p
βt/βt+1

t , the second follows by Lemma 6, and the last
inequality follows by qt+1,i ≤ 3q

βt/βt+1

ti . Since for any ε > 0, x ∈ [0, 1], and γ ∈ [0, 1], it holds that

x(1− xε) ≤ x log
(

1

xε

)
= εx log

(
1

x

)
≤ ε

((
log

1

γ
− 1

)
(x− r) + γ log

1

γ

)
≤ ε log

(
1

γ

)
(γ + (1− γ)x) , (35)

setting γ = k/T in (35) implies that the RHS of (34) is further bounded as

ht+1 − 3ht

≤ 10

9

∑
i∈Qt

(
βt+1

βt
− 1

)
log(T/k)

(
k

T
+

(
1− k

T

)
qt+1,i

)
log

(
1

pt+1,i

)

≤ 10k

9

(
βt+1

βt
− 1

)
log(T/k)

k∑
i=1

(
1

T
+

(
1− k

T

)
qt+1,i

)
log

(
1

pt+1,i

)
≤ 20k

9

(
βt+1

βt
− 1

)
log(T/k)ht+1 ,

where the second inequality follows by Lemma 6 and the last inequality follows by the definition of
ht+1.

Finally we are ready to prove Theorem 4.

Proof of Theorem 4. Fix i∗ ∈ [k] and define p∗ ∈ Pk by

p∗ =

(
1− k

T

)
ei∗ +

1

T
1 .
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Then, using the definition of the algorithm,

RegT (i
∗) = E

[
T∑
t=1

ℓtAt
−

T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, qt − ei∗⟩

]
+ E

[
γ

T∑
t=1

〈
ℓt,

1

k
1− qt

〉]

≤ E

[
T∑
t=1

⟨ℓt, qt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt, p∗ − ei∗⟩

]
+ γT

≤ E

[
T∑
t=1

⟨ŷt, qt − p∗⟩

]
+ 2k ,

where the first inequality follows since pt = (1− γ)qt + γ
k1 and the last inequality follows by the

definition of p∗ and γ = k
T . By the standard analysis of the FTRL described in Section 3,

T∑
t=1

⟨ŷt, qt − p∗⟩ ≤
T∑
t=1

(
Φt(qt+1)− Φt+1(qt+1)

)
+Φt+1(p

∗)− Φ1(q1)

+

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −DΦt(qt+1, qt)

)
.

We first consider the penalty term. Since Φt =
1
ηt
ψnS + 4ψLB,

T∑
t=1

(
Φt(qt+1)− Φt+1(qt+1)

)
+Φt+1(p

∗)− Φ1(q1)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+ 4

k∑
i=1

log

(
1

p∗i

)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

log k

η1
+ 4k log T ,

where in the last inequality we used the fact that p∗i ≥ 1/T for all i ∈ [k].

For the stability term, by Lemma 3 with δ = 2,
T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −DΦt

(qt+1, qt)
)
≤ 2

T∑
t=1

ηtνt .

We will confirm that the assumptions for Part (I) of Theorem 1 are indeed satisfied. By the definition
of the learning rate in (8) and νt ≤ βt/2,

√
c2
c1

(β1 + βt) ≥ 9(β1 + νt) ≥ β1 + νt .

Hence stability condition (S1) of Theorem 1 is satisfied and one can also see that the other assumptions
are trivially satisfied. Hence, by Part (I) of Theorem 1,

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+ 2

T∑
t=1

ηtνt ≤ 2

(
c1 +

2

c1
log

(
1 +

T∑
s=1

νs
β1

))√√√√c2 +

T+1∑
t=1

νtht+1

≤ 2

(
c1 +

2

c1
log

(
1 +

T 2

β1

))√√√√c2 +

T+1∑
t=1

νtht+1 ,

= 2

√
2 log

(
1 +

T 2

β1

)√√√√c2 +

T+1∑
t=1

νtht+1 ,
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where in the last inequality we used νt ≤ T and in the equality we set c1 =

√
2 log

(
1 + T 2

β1

)
.

By summing up the above arguments and Jensen’s inequality, we have

RegT (i
∗) ≤ E

2√2 log

(
1 +

T 2

β1

)√√√√c2 +

T+1∑
t=1

νtht+1

+ 2k + 4k log T +
log k

η1

≤ 2

√
2 log

(
1 +

T 2

β1

)√√√√c2 + E

[
T+1∑
t=1

νtht+1

]
+ 2k + 4k log T + 15k log k

≤ 2

√
2 log

(
1 +

T 2

β1

)√√√√E

[
T∑
t=1

νtht+1

]
+O(k log T ) . (36)

Adversarial regime We first consider the adversarial regime. Recall that E
[√∑T

t=1 νt

]
≤

E
[√∑T

t=1 ωt

]
≤
√
L2 as was done in the proof of Corollary 3. Hence (36) with ht ≤ 2 log k (since

T ≥ 2k) yields that

RegT ≤ 4

√
L2 log(k) log

(
1 +

T 2

β1

)
+O(k log T ) .

Adversarial regime with a self-bounding constraint Next we consider the adversarial regime with

a self-bounding constraint. We will bound a component of (36). By Lemma 7,
√

E
[∑T

t=1 νtht+1

]
is bounded as

Xt :=

√√√√E

[
T∑
t=1

νtht+1

]

≤

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
E

[
T∑
t=1

νt

(
βt+1

βt
− 1

)
ht+1

]

≤

√√√√3E

[
T∑
t=1

νtht

]
+

10k

9
log

(
T

k

)
E

[
T∑
t=1

(βt+1 − βt)ht+1

]

=

√√√√√3E

[
T∑
t=1

νtht

]
+

10k

9
log

(
T

k

)
E

 T∑
t=1

c1νtht+1√
c2 +

∑T
t=1 νshs+1



≤

√√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
E


√√√√ T∑

t=1

νtht+1


=

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
Xt ,

where the first inequality follows by Lemma 7, the second inequality follows by νt ≤ βt/2, the last
inequality follows by Lemma 8. Since x ≤

√
a+ bx for x > 0 implies x ≤ 2

√
a+ b,

Xt ≤ 2

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
= 2

√√√√3E

[
T∑
t=1

E[νt | pt]ht

]
+

20k

9
log

(
T

k

)
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Algorithm 2: BOBW algorithm with a sparsity-dependent bound in Section 5.2
1 for t = 1, 2, . . . , T do
2 Compute qt using (1).
3 Sample At ∼ pt, observe ℓtAt

∈ [−1, 1], and compute ŷt.
4 Update βt using (8) based on the bisection method (Algorithm 3).

Algorithm 3: Bisection method for computing βt+1

1 input: Ft
2 left← βt, right← βt + T
3 while true do
4 center← (left + right)/2
5 if Ft(center) < 0 then
6 left← center
7 else if Ft(center) > 0 then
8 right← center
9 else

10 break

11 return center

≤ 2

√√√√6sE

[
T∑
t=1

H(pt)

]
+

20k

9
log

(
T

k

)
, (37)

where we used E[νt |ht] ≤ E[
∑k
i=1 pti(ℓ

2
ti/pti)] = E[

∑
i∈[k]:ℓti ̸=0 pti(ℓ

2
ti/pti)] ≤ s.

We consider the case of P (a∗) ≥ e, since otherwise Lemma 2 implies
∑T
t=1H(pt) ≤ e log(kT ) and

thus the desired bound is trivially obtained. When P (a∗) ≥ e, Lemma 2 implies that
∑T
t=1H(pt) ≤

P (a∗) log(kT ). Then from the self-bounding technique, for any λ ∈ (0, 1] it holds that

RegT = (1 + λ)RegT − λRegT
≤ E

[
(1 + λ)O

(√
s log(T ) log(kT )P (a∗)

)
− λ∆minP (a

∗)
]
+ λC +O(k log T )

≤ O

(
(1 + λ)2s log(T ) log(kT )

λ∆min
+ λC

)

= O

(
s log(T ) log(kT )

∆min
+ λ

(
s log(T ) log(kT )

∆min
+ C

)
+

1

λ

s log(T ) log(kT )

∆min

)
,

where the first inequality follows by Lemma 1 and the second inequality follows from a
√
x− bx/2 ≤

a2/(2b) for a, b, x ≥ 0. Setting λ ∈ (0, 1] to

λ =

√
s log(T ) log(kT )

∆min

/(s log(T ) log(kT )
∆min

+ C

)
gives the desired regret bound for the adversarial regime with a self-bounding constraint.

Stochastic regime Using E[νt |ht] ≤ E[ωt |ht] ≤ E[
∑k
i=1 pti(ℓ

2
ti/pti)] = E[

∑k
i=1 ℓ

2
ti] in the

second inequality of (37) and following the same arguments as the analysis for the adversarial regime
with a self-bounding constraint, one can obtain the regret bound for the stochastic regime.
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H.3 Discussion on bisection method for computing βt+1

This section describes the bisection method to compute βt+1 described in Section 5.2. Recall that
Ft : [βt, βt + T ]→ R is defined by the difference of the both sides of the update rule of (βt) in (8):

Ft(α) = α−

βt + c1νt√
c2 + νtht+1(α) +

∑t−1
s=1 νshs+1

 , (38)

where ht+1(α) = 1
1− k

T

H(pt+1(α)), and pt+1(α) is the FTRL output with the regularizer Φt =

αψnS + 4ψLB. Note that c1νt/
√
c2 + νtht+1(α) +

∑t−1
s=1 νshs+1 ≤ c1νt/c2 ≤ T/9 since νt ≤ T .

Assume that Ft is continuous. Then we can see that there exists α ∈ [βt, βt+T ] such that Ft(α) = 0.
In fact, if ptAt = 0 then βt+1 = βt, and otherwise, we have Ft(βt) ≤ 0 and Ft(βt + T ) > 0.
Using the intermediate value theorem with the assumption that Ft is continuous, there indeed exists
α ∈ [βt, βt+T ] satisfying Ft(α) = 0. We can compute such α by the bisection method. In particular,
we first set the range of α to [βt, βt + T ], and then iteratively halve it by evaluating the value of Ft at
the middle point. Such a bisection method (binary search) is also used in [50], although the computed
target is different. The whole BOBW algorithm with the sparsity-dependent bound in Section 5.2 is
given in Algorithm 2, and the concrete procedure of the bisection given in Algorithm 3.

Now, all that remains is to show that Ft is continuous. To prove this, it suffices to prove that
ht+1(α) =

1
1− k

T

H(pt+1(α)) is continuous with respect to α.

Proposition 2. Ft in (38) is continuous with respect to α.

Proof of Proposition 2. Take any α ∈ [βt, βt + T ] and then consider the following optimization
problem:

qt+1(α) = argmin
q∈Pk

〈
t∑

s=1

ŷs, q

〉
+Φt+1(q) ,

where Φt+1 = αψnS + 4ψLB. Now using Corollary 8.1 of Hogan [20] with the fact that the solution
of the above optimization problem is unique, qt+1(α) is continuous with respect to α. This completes
the proof since pt+1 is continuous with respect to qt+1, 1/T ≤ pt+1,i(α) ≤ 1− k/T , and H(p) is
continuous in a neighborhood of p = pt+1(α).

I Proof of Corollary 6

This section proves Corollary 6, which is the extended result of Corollary 5. Recall that B = 1/2
for FI, B = k/2 for MAB, and B = 2mk2 for PM-local, and rM is 1 if M is FI or MAB, and 2k if
M is PM-local, which are appeared in Appendix B. Let RegT (a) = E

[∑T
t=1

(
LAtxt

− Laxt

)]
=

E
[∑T

t=1 ⟨ℓAt − ℓa, ext⟩
]

for a ∈ [k].

Proof. Fix i∗ ∈ [k]. From Lemma 7 in Tsuchiya et al. [46], if ηt > 0, we have

RegT (i
∗) ≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

ηtV
′
t

]
. (39)

We will confirm that the assumptions for Part (I) of Theorem 1 are indeed satisfied. Since

√
c2 + z̄th1
c1

(βt + β1) ≥

√
2V̄ log k

log(1 + T )
· 2B

√
log(1 + T )

log k
≥
√
2
(
V̄ + V̄t

)
,
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stability condition (S1) is satisfied. One can also see that the other conditions are trivially satisfied.
Hence, using Part (I) of Theorem 1, we can bound the RHS of (39) as

RegT (i
∗) ≤ E

(2c1 + 1

c1
log

(
1 +

T∑
u=1

V ′
u

V̄

))√√√√V̄ H(q1) +

T∑
t=1

V ′
tH(qt+1)

+
H(q1)

η1

≤
(
2c1 +

1

c1
log (1 + T )

)√√√√E

[
T∑
t=1

V ′
tH(qt+1)

]
+O

(√
V̄ log(k) log(T ) +B

√
log(k) log T

)

=
√
2 log(1 + T )

√√√√E

[
T∑
t=1

V ′
tH(qt+1)

]
+O

(
B
√

log(k) log(T )
)
, (40)

where the second inequality follows from V ′
u/V̄ ≤ 1 and in the equality we set c1 =

√
log(1+T )

2 and

used
√
V̄ ≤ B.

Adversarial regime For the adversarial regime, since H(qt) ≤ log k, (40) immediately implies

RegT ≤ E


√√√√2

T∑
t=1

V ′
t log(k) log(1 + T ) +O

(
B
√
log(k) log(T )

) ,
which is the desired bound.

Adversarial regime with a self-bounding constraint Next, we consider the adversarial regime
with a self-bounding constraint. We consider the case of Q(a∗) ≥ e, since otherwise Lemma 2
implies

∑T
t=1H(pt) ≤ e log(kT ) and thus the desired bound is trivially obtained. When Q(a∗) ≥ e,

Lemma 2 implies that
∑T
t=1H(qt) ≤ Q(a∗) log(kT ). Then from the self-bounding technique, for

any λ ∈ (0, 1]

RegT = (1 + λ)RegT − λRegT

≤ E
[
(1 + λ)O

(√
V̄ log(T ) log(kT )Q(a∗)

)
− λ∆minQ(a∗)

rM

]
+ λC

≤ (1 + λ)O

(√
V̄ log(T ) log(kT )Q̄(a∗)

)
− λ∆minQ̄(a∗)

rM
+ λC

≤ O
(
(1 + λ)2rM log(T ) log(kT )

λ∆min
+ λC

)
= O

(
rMV̄ log(T ) log(kT )

∆min
+ λ

(
rMV̄ log(T ) log(kT )

∆min
+ C

)
+

1

λ

rMV̄ log(T ) log(kT )

∆min

)
,

where the first inequality follows by (40) and Lemma 1 with c′ = rM and the second inequality
follows from a

√
x− bx/2 ≤ a2/(2b) for a, b, x ≥ 0. Setting λ ∈ (0, 1] to

λ =

√
rMV̄ log(T ) log(kT )

∆min

/(rMV̄ log(T ) log(kT )

∆min
+ C

)
gives the desired bound for the adversarial regime with a self-bounding constraint.

J Basic lemma

Lemma 8 ([38, Lemma 4.13]). Let a0 ≥ 0, (at)Tt=1 be non-negative reals and f : R+ → R+ be a
non-increasing function. Then,

T∑
t=1

atf

(
a0 +

t∑
s=1

as

)
≤
∫ ∑T

t=0 at

a0

f(x)dx .
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We include the proof for the completeness.

Proof. Let At =
∑t
s=0 as. Then summing the following inequality over t completes the proof:

atf

(
a0 +

t∑
s=1

as

)
= atf(At) =

∫ At

At−1

f(At)dx ≤
∫ At

At−1

f(x)dx .

K Comparison of the sparsity-dependent bound and the first-order bound for
negative losses

If ℓt ∈ [0, 1]k, the first-order bound by Wei and Luo [49] implies sparsity bounds. This, however,
does not hold when ℓt ∈ [−1, 1]k. In fact, let us consider the case where ℓt is a zero vector except
that only one arm’s loss is−1 for some t ∈ [T ]. Then the sparsity-dependent bound becomes O(

√
T ).

On the other hand, the first-order bound in [49] is not directly applicable, and we need to transform
losses to range [0, 1]. This implies that the first-order bound becomes O(

√
kT ), which is worse than

the sparsity-dependent bound.
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