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ABSTRACT

Retrieval-augmented generation (RAG) addresses key limitations of large lan-
guage models (LLMs), such as hallucinations and outdated knowledge, by incor-
porating external databases. These databases typically consult multiple sources to
encompass up-to-date and various information. However, standard RAG methods
often overlook the heterogeneous source reliability in the multi-source database
and retrieve documents solely based on relevance, making them prone to propa-
gating misinformation. To address this, we propose Reliability-Aware RAG (RA-
RAG) which estimates the reliability of multiple sources and incorporates this in-
formation into both retrieval and aggregation processes. Specifically, it iteratively
estimates source reliability and true answers for a set of queries without ground
truth answers. Then, it selectively retrieves relevant documents from a few of re-
liable sources and aggregates them using weighted majority voting, where the se-
lective retrieval ensures scalability while not compromising the performance. We
also introduce a benchmark designed to reflect real-world scenarios with heteroge-
neous source reliability and demonstrate the effectiveness of RA-RAG compared
to a set of baselines.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks
but are often limited by hallucinations and a lack of access to real-time information. Retrieval-
augmented generation (RAG) offers a promising solution by integrating external databases, allow-
ing LLMs to access more accurate and up-to-date information (Guu et al., 2020; Lewis et al., 2020).
However, these databases often consist of content from multiple sources with varying levels of reli-
ability, which can make RAG systems vulnerable to misinformation from unreliable sources. Stan-
dard RAG methods retrieve documents based on only relevance to the query, without considering
the accuracy or trustworthiness of the information retrieved. As a result, RAG systems are prone to
propagating misinformation. This issue is exacerbated by the advances of LLMs, which enable a
massive production of plausible yet false documents and disables identifying the credibility of doc-
uments by linguistic features (Menczer et al., 2023; Augenstein et al., 2024; Hong et al., 2024; Zou
et al., 2024; Shafran et al., 2024; Chaudhari et al., 2024; Chen & Shu, 2023).

Several recent efforts have sought to improve the robustness of RAG systems against misinformation
(Pan et al., 2023; Weller et al., 2024; Xiang et al., 2024; Deng et al., 2024; Pan et al., 2024). How-
ever, these approaches have notable limitations. Deng et al. (2024) use LLMs to evaluate document
reliability based on their internal knowledge, which is ineffective when LLMs indeed need to consult
with external knowledge. Pan et al. (2023); Weller et al. (2024); Xiang et al. (2024) use counting-
based methods such as majority voting (MV) or selecting responses that exceed a certain threshold.
However, these methods are effective only when the portion of misinformation in the retrieved doc-
uments is minor, overlooking the heterogeneity in source reliability. Pan et al. (2024) propose a
heuristic estimation, which categorizes the source reliability into two groups (low, high) based on a
common reputation of the source. To learn how to aggregate responses according to source reliabil-
ity, they generate labeled dataset to fine-tune LLMs. However, the reputation of sources, particularly
social media and blogs, is often unclear and susceptible to manipulation. Additionally, a simple two-
level credibility score cannot capture subtle differences in reliability and requires additional training
to utilize this information.
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Figure 1: Overview of the RA-RAG framework. In the first stage, RA-RAG iteratively estimates
the reliability of each source vi for i ∈ [N ] based on estimated true answers ŷj for each question
j, as outlined in equation (3) and (4). Based on the estimated reliability, in the second stage, the
retriever selects κ sources through the Reliable and Relevant Source Selection (κ-RRSS) process,
detailed in Section 3.4. The final answer is determined using a weighted majority voting process,
with the weights derived from the estimated reliability.

To overcome these limitations, we formalize a multi-source RAG framework based on weighted
majority voting (WMV) that distinguishes between different sources in the database and integrates
information from multiple sources given their reliability. However, as it is hard to know the source
reliability in advance, we introduce Reliability-Aware RAG (RA-RAG), an effective method that
estimates the reliability of each source and uses this information to guide the retrieval and aggre-
gation process. RA-RAG operates in two stages illustrated in Figure 1. The first stage focuses on
estimating source reliabilities for a set of queries with no labelings. Specifically, we devise an it-
erative reliability estimation that alternates estimating the true answers and the reliability of each
source. In the second stage, RA-RAG aims at reliable and efficient inference, which aggregates doc-
uments from sources given the estimated source reliability while ensuring computational scalability
even with numerous sources without compromising performance. To do so, we propose WMV with
κ-reliable and relevant source selection (κ-RRSS), in which RA-RAG consults with only a small
number of selective sources that are reliable with relevant documents.

RA-RAG also addresses two specific issues inherent in RAG systems: misalignment of responses,
where the model generates answers based on internal knowledge rather than retrieved documents,
and response variation, where semantically identical answers are phrased differently. These issues
can hinder both the aggregation of responses and the estimation of source reliability. To overcome
these challenges, RA-RAG incorporates a misalignment filtering mechanism to detect and exclude
hallucinated responses, and a keyword-based system prompt to regularize response variation.

To evaluate the effectiveness of RA-RAG, we develop a realistic benchmark of multi-source RAG
with heterogeneous source reliability, reflecting the complexity of real-world scenarios. Our bench-
mark contrasts with previous works (Weller et al., 2024; Xiang et al., 2024; Deng et al., 2024; Pan
et al., 2024) that relied on setups with artificially injected misinformation into retrieved documents,
as we construct an environment where the database consists of multiple sources with heterogeneous
reliability. Our experimental results show that RA-RAG consistently outperforms various baselines,
highlighting its robustness and effectiveness in accurately aggregating information from multiple
sources.

We defer an extensive discussion of related works to Appendix A, while we summarise our main
contributions as follows:

• We formalize the multi-source RAG (Section 2) and propose an effective approach, called RA-
RAG (Section 3). It estimates the source reliability without additional labelings via the iterative
reliability estimation (Section 3.3). Then, based on the estimated reliability, it efficiently re-
trieves reliable and relevant documents by κ-RRSS and robustly aggregates them with WMV
(Section 3.4).

• We also address the inherent issues of RAG systems: variation and misalignment in the generated
responses. To mitigate the issues, we devise the keyword-based system prompt (Section 3.1) and
the misalignment filtration (Section 3.2).
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• We construct the realistic benchmark of the multi-source RAG frameworks with diverse source
reliability, which allows us to evaluate and analyze multi-source RAG systems (Section 4). Our
code and datasets will be released.

• Our experimental results demonstrate that RA-RAG consistently outperforms a number of base-
lines, showcasing its robustness and effectiveness in accurately aggregating information from
multiple sources, even in conflicting and unreliable information (Section 5).

2 PROBLEM FORMULATION

In this section, we formally describe the problem of retrieval-augmented generation (RAG) with a
multi-source database. We introduce the standard RAG system in Section 2.1 and outline the multi-
source RAG framework in Section 2.2, followed by a discussion of key challenges in Section 2.3.

2.1 RETRIEVAL-AUGMENTED GENERATION (RAG)

A typical RAG system generates a response ŷ by retrieving relevant information from a database D
using a retrieval mechanism R, followed by a language model G to generate the final response. To
be specific, consider a closed-ended query q associated with a true answer y. Retriever R selects
the top-K most relevant documents from database D based on a similarity measure between query
q and each document t ∈ D. The set of retrieved documents is denoted by R(q,D). Using the
retrieval result R(q,D) and a system prompt P , language model G generates a response ŷ, which
can be represented as follows: ŷ = G(q,R(q,D),P) . In this framework, system prompt P guides
language model G to generate response ŷ based on the retrieval result R(q,D). A critical limita-
tion arises when the retrieved documents come from unreliable sources, as the similarity measure
used in retrieval does not account for the truthfulness or reliability of the information. This be-
comes particularly problematic when database D includes documents from multiple sources with
different levels of reliability, such as news articles, Wikipedia, or social media. Such a multi-source
database is often necessary to cover up-to-date and diverse content. Although prompts can attempt
to filter out unreliable information based on linguistic features, this is not always reliable. With
the growing sophistication of language models, generating plausible yet false information—such as
fake news—has become easier (Menczer et al., 2023; Augenstein et al., 2024). This underscores the
need for additional mechanisms to assess the reliability of retrieved documents, beyond their mere
relevance to the query.

2.2 MULTI-SOURCE RAG

To address the vulnerability to misinformation in retrieval, we propose a multi-source RAG frame-
work that explicitly distinguishes between the sources of documents. Let N be the number of distinct
sources contributing to database D. We partition the database as D =

⋃N
i=1 Si, where Si is the set

of documents originating from source i ∈ [N ]. Such a partition of dataset D enables the system to
account for the reliability of each document’s source, based on weighted majority voting (WMV).
For a given query q, let ỹi = G(q,R(q,Si),P) represent the response generated using documents
exclusively from source i. Once the probability that a retrieved document from source i is correct is
estimated as vi, and a set of candidate responsesM is obtained from ỹi’s, we can apply WMV to
aggregate the responses:

ŷ = argmax
u∈M

∑
i∈[N ]

vi1(ỹi = u) . (1)

If all sources are assumed to have equal reliability, this reduces to majority voting (MV) that selects
the most consensus among ỹi’s. However, WMV is superior to MV when the reliability of each
source vi can be properly estimated. Hence, the key components in a multi-source RAG framework
are (i) the reliability estimation for vi’s and (ii) the response aggregation of ỹi’s based on WMV.

2.3 CHALLENGES IN MULTI-SOURCE RAG

To develop an effective mechanism for reliability estimation and response aggregation in the multi-
source RAG framework, we need to address four key challenges: (i) response variations, (ii) mis-
aligned response, (iii) limited access to ground truth, and (iv) scalability in the number of sources.
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Response variations. Even when focusing on closed-ended queries, language models often generate
semantically identical answers with paraphrasing, complicating the application of weighted majority
voting (WMV). For example, in response to the question, “What is the largest planet in our solar
system?”, the model might generate “The largest planet in our solar system is Jupiter” or “Jupiter is
the largest planet in our solar system.” These responses convey the same meaning, but if treated as
different outputs, they can reduce the effectiveness of WMV. Therefore, techniques for normalizing
or aligning semantically equivalent responses are essential to ensure that the aggregation process
accurately reflects consensus.

Misaligned responses. Since the reliability of sources is inferred based on the outputs generated by
the language model, the model must generate responses strictly from the documents retrieved from
each source. However, language models often produce hallucinations or responses influenced by
their internal knowledge, particularly when dealing with complex queries or ambiguous contextual
information (Kaddour et al., 2023; Ji et al., 2023; Xie et al., 2024; Kortukov et al., 2024; Xu et al.,
2024). These misaligned responses complicate the reliability estimation process by distorting the
relationship between the response and the quality of the retrieved documents. Thus, it is necessary
to develop a filtering mechanism to exclude responses that do not rely on the retrieved documents,
ensuring that the answers are grounded in the provided information.

Limited access to ground truth. A straightforward reliability estimation can be conducted with
the true labels for a number of queries. However, acquiring the labels is costly and time-intensive,
particularly when dealing with unverified, up-to-date information. Hence, we consider a set of
queries with no labels and devise an iterative algorithm that alternates between estimating both the
reliability of sources and the true answers (Section 3.3).

Scalability in the number of sources. In a multi-source RAG framework, retrieving documents
from a large number of sources can lead to significant computational overhead. Generating re-
sponses ỹi for every source may become impractical as the number of sources increases. To ensure
scalability in real-world applications, it is critical to use strategies that reduce computational costs,
such as optimizing retrieval processes or limiting the number of sources considered during inference.
Effective solutions will enable multi-source RAG systems to scale efficiently without compromising
performance (Section 3.4).

3 RELIABILITY-AWARE RETRIEVAL-AUGMENTED GENERATION (RA-RAG)

To mitigate the impact of misinformation on RAG systems, we propose the Reliability-Aware
Retrieval-Augmented Generation (RA-RAG), which addresses the challenges of the multi-source
RAG framework outlined in Section 2.3. RA-RAG operates in two stages: (i) iterative reliability
estimation (Section 3.3) and (ii) reliable and efficient inference (Section 3.4). In the first stage, the
iterative algorithm given a set of queries with no labels estimates the reliability of sources before
deploying the RAG system. In the second stage, a WMV mechanism combined with κ-reliable
and relevant source selection (κ-RRSS) uses the estimated reliability to retrieve documents and ef-
fectively aggregate the information. In advance of describing the two stages of RA-RAG, we first
present two common components used for both stages: keyword-based system prompt (Section 3.1)
and misalignment filtration (Section 3.2). They are mainly to address the problems of variation and
misalignment in the language model’s responses. The detailed algorithm of RA-RAG can be found
in Appendix B, and the code will be distributed.

3.1 KEYWORD-BASED SYSTEM PROMPT

Even for closed-ended queries that elicit simple answers, such as “What is the largest planet in our
solar system?”, the language model often generates responses of the same semantic meaning but in
various forms. This decreases the effectiveness of response aggregation with WMV and thus dis-
turbs the reliability estimation as well. To address this, we employ a system prompt to ensure that
the language model generates keyword-based answers without unnecessary details. For example,
the keyword-based response to the aforementioned query would be “Jupiter”, rather than a more
detailed response, “Jupiter is the largest planet in our solar system.”. In addition, the prompt also
guides the language model to say IDK (which stands for “I don’t know” and indicates the absten-
tion) when irrelevant documents are retrieved. The detailed prompt is provided in Appendix G. This
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keyword-based answer allows us to effectively aggregate the LLMs response for WMV while re-
ducing hallucinations to generate responses irrelevant to retrieval results. We note that Xiang et al.
(2024) use a post-processing method with the spaCy library (Honnibal et al., 2020) to extract key-
words like adjectives, adverbs, and other elements from LLM outputs. However, we observe that
prompt engineering alone can effectively generate the desired keyword-based outputs without the
need for additional processing. The detailed experimental results are provided in Appendix E.

3.2 MISALIGNMENT FILTRATION

Although the system prompt directs the language model to generate ỹi based on the retrieval result
R(q,Si), responses irrelevant to the retrieval result are often generated. This can distract the relia-
bility estimation and WMV, as discussed in Section 2.3. To mitigate this issue, we further employ
a filtration function falign to detect misaligned responses and replace them with IDK, indicating the
abstention. In this paper, we use the ROUGE-1 precision score (Lin, 2004) which computes the ratio
of the number of unigrams in response ỹi that appear also in retrieval result R(q,Si). A low score
implies that the response is irrelevant to the retrieved documents. Specifically, falign replaces ỹi with
IDK if the score for a response is below 0.9 and keep ỹi otherwise. Given that the responses are in a
keyword-based form, the ROUGE-1 precision score effectively captures how well the words in the
response match the provided context. As a result, we can obtain a refined set of answer candidates:

Mfiltered = {falign(ỹi,R(q,Si)) | i ∈ [N ]} . (2)

We demonstrate the effectiveness of falign based on ROUGE-1 precision in Section 5.3. However,
our choice of falign based on the ROUGE-1 score can be replaced with asking the relevance of the
response to the retrieved result to the language model, while it requires substantial cost as well as
the risk of hallucination.

3.3 STAGE 1: ITERATIVE RELIABILITY ESTIMATION

To estimate the reliability of sources and effectively aggregate the outputs, we utilize the WMV
method proposed by Li & Yu (2014), which is a simple and effective approach for aggregating
crowdsourced labels in classification tasks, applied to the filtered outputs. Given the set {qj | j ∈
[M ]} of M queries, the iterative reliability estimation is described as follows:

• Step 0. We initialize the source weights vi = 1 for all sources i ∈ [N ] and repeat Step 1 to
Step 2 until vi’s converge.

• Step 1. We estimate each answer ŷj for each j ∈ [M ] using WMV:

ŷj = argmax
u∈Mj

filtered

∑
i∈[N ]

vi1(ỹ
j
i = u) , (3)

where ỹji = G(qj ,R(qj ,Si),Pkeyword) is a response to qj based on documents from source i and
Mj

filtered = {falign(ỹ
j
i ,R(q,Si)) | i ∈ [N ]} is the filtered candidates of responses to qj .

• Step 2. Given the estimated ŷj’s, we estimate source reliability ŵi for each i ∈ [N ] as follows:

ŵi =

∑M
j=1 1

(
falign(ỹ

j
i ,R(qj ,Si)) = ŷj

)∑M
j=1 1

(
falign(ỹ

j
i ,R(qj ,Si)) ̸= IDK

) . (4)

Then, we normalize ŵi as vi = Nŵi − 1 giving larger weights to reliable sources and smaller
weights to unreliable sources. This leads to more accurate estimates of wi. Following the ap-
proach of Li & Yu (2014), which uses the number of labels L as a scaling factor, we use N ,
the number of sources, because the maximum possible number of responses occurs when each
source provides a distinct answer. However, in real-world applications, it is unlikely that all
sources will offer completely distinct responses, especially when N is large. Thus, N can be
reasonably limited to a manageable size.

• Step 3. With the converged weights vi, we compute the refined estimated answers using the
WMV, i.e., ŷj = argmaxu∈Mj

filtered

∑
i∈[N ] vi1(ỹi = u) for all j ∈ [M ].
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3.4 STAGE 2: RELIABLE AND EFFICIENT INFERENCE

In real-world applications, integrating information from all sources can cause a significant com-
putational burden, especially when the number of sources is large. The WMV process, ŷj =

argmaxu∈Mj
filtered

∑
i∈[N ] vi1(ỹ

j
i = u), becomes increasingly expensive as N grows. For better

scalability, we select a subset of sources, denoted as W , where |W| < N . Then, the WMV pro-
cess is applied using W: ŷj = argmaxu∈Mj

filtered-W

∑
i′∈W vi′1(ỹi′ = u), where Mj

filtered-W =

{falign(ỹ
j
i′ ,R(q,Si′)) | i′ ∈ W}. A simple way to selectW is to choose the κ most reliable sources.

However, high reliability alone doesn’t always mean these sources will contain relevant documents
for the given query, which can lead to performance degradation. Therefore, it’s important to consider
both reliability and relevance.

To achieve this, we identify the κ most reliable and relevant sources. We start by ordering the
sources by reliability and then check if they contain documents relevant to the query. This process
continues until we find κ sources, which we call the κ-Reliable and Relevant Source Selection (κ-
RRSS). Although similarity scores from the retrieval process can suggest relevance, they are often
noisy, as high scores may just reflect shared words without capturing the actual context. Instead,
we use the LLM’s responses and apply a filtering method, falign, to assess relevance. If the filtered
LLM response is “I don’t know”, we consider the source as lacking relevant information. Once the
κ sources are selected, we use their outputs in the WMV process to generate the final answers.

4 BENCHMARK OF MULTI-SOURCE RAG

We construct a benchmark designed to assess performance in environments where the database con-
tains sources with heterogeneous reliability, which reflect the complexities of real-world scenarios.
Each source Si is characterized by two parameters: (1) the probability ri of containing the relevant
documents to a given question (related to the corpus size), and (2) its reliability pi, representing
the probability that Si contains factual documents. We use two types of priors to model the reli-
ability pi: the beta prior and the spammer-hammer prior. For the beta priors, pi is sampled from
Beta (2w̄/1−w̄, 2), which has an expected mean of w̄. This enables the simulation of scenarios with
sources that have heterogeneous reliability. For the spammer-hammer prior, pi is set to either 0.1
or 0.9, where pi = 0.1 represents a spammer, an unreliable source that provides mostly incorrect
information for the given query and pi = 0.9 represents a hammer, a reliable source that provides
mostly accurate information.

To construct the corpus for each source Si based on this framework, we use three datasets: Natural
Questions (NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), and TriviaQA (TQA)
(Joshi et al., 2017). For the HotpotQA dataset, we use only single-hop queries. We focus on closed-
ended queries because open-ended queries (e.g., “Describe the various uses of forests to human be-
ings” from the NQ dataset) often lack definitive answers, making aggregation from multiple sources
difficult. To identify closed-ended queries, we first use GPT-4o-mini (OpenAI, 2024) to filter out
open-ended queries and then manually review any remaining ones. The filtering prompt is provided
in Appendix F.1. Due to computational constraints, we select 1,600 queries per dataset: 200 for
reliability estimation and 1,400 as test data. The corpus for each source Si is generated through the
following steps:

1. Collecting factual documents: We first collect documents containing the correct answers from
the Wikipedia corpus using Contriever (Izacard et al., 2022) for the NQ and TQA datasets. For
the HotpotQA dataset, we use the contexts provided within the dataset itself.

2. Generating diverse factual information: To generate diverse factual information that conveys
the same meaning but in different expressions, we use GPT-4o-mini to paraphrase the collected
documents, creating 9 documents for each query. This diversity makes it more challenging to
aggregate the LLM’s outputs.

3. Generating diverse misinformation: Unlike classification tasks with predefined label sets, in-
correct answers can vary infinitely in query-answering tasks. To simplify our experiment, we
use GPT-4o-mini to generate 9 distinct incorrect answers for each query and then create three
corresponding documents for each incorrect answer using GPT-4o-mini.
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4. Constructing the corpus for Si: The corpus for each source Si is generated independently,
based on its ri and pi. If Si contains relevant documents for a given query (as determined by
ri), the truthfulness of these documents is decided by pi. If Si is assigned to provide factual
information, it randomly selects three documents from pool of the previously generated factual
documents. Conversely, if Si is designated to provide misinformation, it randomly choose one
of the nine incorrect answers and includes the corresponding three misinformation documents
generated earlier. Since the corpus for each source is constructed independently, each source
contains a different set of knowledge. For instance, for a given query, Si may have relevant
documents, while Sj may not, where i ̸= j and i, j ∈ [N ].

The specific prompts used to generate the data are detailed in Appendix F.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments on the benchmarks to evaluate the effective-
ness of RA-RAG. Detailed descriptions of the experimental setup can be found in Section 5.1, and
the results are presented in Section 5.2. Additionally, we perform ablation studies on the individual
modules within RA-RAG to evaluate its overall effectiveness, as discussed in Section 5.3.

5.1 EXPERIMENTAL SETTINGS

Models. For the LLMs, we use Llama3-8B Instruct (Dubey et al., 2024), Phi3-mini Instruct (Abdin
et al., 2024), and GPT-4o mini (OpenAI, 2024). As the retriever, we utilize Contriever (Izacard et al.,
2022), which calculates similarity scores by taking the dot product between the embedding vectors
of a query and documents in the database.

Baselines. We evaluate our framework against the following baselines:

• Oracle WMV: Oracle Weighted Majority Voting aggregates outputs using the true reliability
values of each source, representing an ideal scenario where the source reliability is available.

• WMV: Weighted Majority Voting aggregates outputs from all sources using the estimated relia-
bility values, i.e., Weighted Majority Voting excludes the RRSS process from RA-RAG.

• MV: Majority Voting aggregates outputs by assigning equal weight to each response.

• Naive RAG: Naive RAG follows the traditional RAG approach, retrieving documents and gen-
erating outputs without considering the reliability of the sources in the database.

• Naive LLM: Naive LLMs generate outputs for the given query without using a retriever.

Settings for multi-source RAG. In our multi-source RAG setup, we retrieve the top 3 documents
from each source and select 4 sources for the κ-RRSS process. For Naive RAG, we retrieve the
top-10 documents, as multi-source RAG typically handles a larger volume of information. When
constructing sources for the multi-source RAG benchmark, we set the beta prior with w̄ = 0.6. To
simplify the setup, we assign ri = 0.6 for all sources. Due to computational constraints, the number
of sources is limited to between 3 and 9. We use Exact Match (EM) (Rajpurkar et al., 2016) as the
evaluation metric, with all experimental results averaged over 10 random trials.

5.2 MAIN RESULTS

Beta prior. We conduct experiments using a beta prior across different numbers of sources to
demonstrate the effectiveness of our method with heterogeneous reliability. Figure 2 shows that
our RA-RAG framework demonstrates significant performance improvements, outperforming both
MV and Naive RAG. Notably, our RA-RAG, which uses κ = 4 for κ-RRSS (the subset of
sources), achieves performance comparable to WMV, which aggregates information from all avail-
able sources. The performance of WMV closely matches the oracle WMV, demonstrating that our
approach effectively estimates source reliability. In contrast, the Naive RAG exhibits poor perfor-
mance when source reliability varies, leading to a high likelihood of retrieving a mixture of factual
information and misinformation, for both the NQ and TQA datasets. This inconsistency results in
conflicting knowledge, complicating LLMs’ ability to generate accurate outputs.
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Figure 2: Exact Match against the number of sources, comparing the heterogeneous reliability via
beta priors on the NQ and TQA datasets across the Llama3-8B, Phi3-mini, and GPT-4o-mini lan-
guage models. See Figure 8 in Appendix C.1 for the HotpotQA dataset.

Question: The gulf stream the world's fastest ocean current flows along the western side of this water body
Ground Truth (GT): atlantic ocean

Multi-Source Outputs southern 
ocean

atlantic 
ocean

I don’t 
know

indian 
ocean

southern 
ocean

gulf of 
mexico

True Reliability 0.39 0.97 0.55 0.78 0.53 0.79
Estimated Reliability 0.36 0.92 0.56 0.82 0.54 0.76

MV Answer: southern ocean RA-RAG Answer: atlantic ocean

Figure 3: A qualitative comparison between MV and RA-RAG on the NQ dataset. Additional
examples are available in Appendix D.

We provide a qualitative example in Figure 3 to illustrate how RA-RAG effectively estimates source
reliabilities and improves answer accuracy. While MV selects “southern ocean” based on response
frequency, RA-RAG correctly identifies “atlantic ocean” by leveraging well-estimated reliabilities
that align closely with true values. This example highlights RA-RAG’s robustness in overcoming
conflicting or inaccurate information by focusing on more reliable sources, ensuring more accurate
predictions.

Spammer-hammer prior. To evaluate the robustness of our method in the presence of spammers
in the database, we conduct experiments using the spammer-hammer prior with a total of 9 sources,
using Llama3-8B on the NQ dataset. The experimental results for TQA and HotpotQA datasets are
provided in Appendix C.2. As shown in Figure 4, our RA-RAG framework demonstrates robustness
against spammers, while the performance of Naive RAG degrades significantly as the number of
spammers increases. When the number of spammers exceeds five, MV performs worse than Naive
RAG. This decline results from the dominance of misinformation from spammers, which leads MV
to select incorrect answers.

5.3 ABLATION STUDIES AND ANALYSIS

Effectiveness of filtering with falign. We conduct an ablation study to evaluate the necessity of
falign for accurate reliability estimation, across different types of retrieved documents: factual, mis-
information, and irrelevant. Table 1 shows the proportions of answers both without (w/o) and with
(w/) filtering, categorized by answer types: correct, incorrect, IDK (I don’t know), and hallucination,
based on 1,600 queries in the TQA dataset, using a single source with pi = 0.5 and ri = 0.5. Further
results for other datasets and models are in Appendix C.5. Table 1 shows that LLM misalignment
occurs when the documents contain misinformation or are irrelevant, resulting in correct or hallu-
cinated answers that are not based on the retrieved documents. In particular, in cases of irrelevant
documents, LLMs often generate either correct answers or hallucinations. However, after applying
the falign, these misaligned responses (marked in blue) are significantly reduced. Additionally, the
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Figure 4: EM against the number of spammers,
comparing robustness using spammer-hammer
priors on the NQ dataset.
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Figure 5: EM for different numbers of κ on the
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Figure 6: Comparison of inference costs be-
tween RA-RAG and WMV using the GPT-4o-
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5 6 7 8 9
Number of Sources

0.60

0.65

0.70

Ex
ac

t M
at

ch
 (E

M
)

RA-RAG with -RRSS ( = 4)
RA-RAG with -RSS ( = 4)

Figure 7: Comparison of κ-RRSS and κ-RSS
(κ = 4) across different number of sources.

Table 1: Percentage of type of answers by retrieved document type in
the filtering with falign ablation study on Llama3-8B and TQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 92.82% 5.43% 25.55%
w/ 92.82% 0.82%(-4.61) 4.30%(-21.25)

Incorrect w/o - 81.52% -
w/ - 81.52% -

IDK w/o 0.00% 4.89% 55.52%
w/ 0.00% 11.68%(+6.79) 86.36%(+30.84)

Hallucination w/o 7.18% 8.15% 18.92%
w/ 7.18% 5.98%(-2.17) 9.34%(-9.58)

Table 2: Ablation
study on the risk of
distorted reliability
estimation without
falign.

Method EM

Oracle WMV 0.549
Ours (w/) 0.543

Ours (w/o) 0.465
MV 0.449

increase in IDK responses (marked in red) indicates that filtering effectively mitigates the influence
of irrelevant documents and misinformation.

Risk of distortion of reliability estimation without filtering. As highlighted in our analysis, LLMs
frequently generate either correct answers or hallucinations when processing irrelevant documents.
This issue becomes particularly problematic when dealing with low-reliability sources that have a
small corpus. As the corpus size shrinks, i.e., contains fewer relevant documents, more queries are
needed to accurately estimate the reliability of these sources. However, this can lead to LLMs pro-
ducing a large number of correct answers or hallucinations, potentially resulting in an overestimation
of the sources’ reliability. To illustrate this risk, we conduct experiments using the spammer-hammer
prior. Specifically, we experiment with five sources from the TQA dataset using Llama3-8B: four
spammers with ri = 0.1 and one hammer with ri = 0.6, using 800 queries for reliability estimation.
As illustrated in Table 2, without filtering, the estimated weights are distorted, giving more weight
to the spammers and leading to poor performance. However, applying filtering effectively mitigates
this distortion in reliability estimation, yielding performance close to the Oracle WMV.

Effectiveness of κ-RRSS. To determine the optimal value of κ for κ-RRSS, we conduct ablation
studies using different values of κ with 9 sources on the NQ dataset, employing Llama3-8B. As
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shown in Figure 5, when κ = 4, RA-RAG outperforms MV and shows a slight performance drop
compared to WMV, which uses all available sources. This result, with κ being less than half the total
number of sources, shows that selecting a small subset of sources can achieve performance close to
using all sources. The results for additional datasets are provided in Appendix C.3. In addition, to
quantitatively evaluate the efficiency of κ-RRSS, we assess the inference cost using GPT-4o mini
by the number of sources. As shown in Figure 6, RA-RAG incurs lower inference costs than WMV,
which aggregates all sources, and the efficiency of our RA-RAG framework becomes increasingly
evident as the number of sources grows.

To analyze the importance of considering relevance in κ-RRSS, we evaluate a variant: κ-RSS (Re-
liable Source Selection), which selects κ sources based solely on reliability scores in descending
order, without checking whether the sources contain relevant documents on NQ dataset. As shown
in Figure 7, using κ-RSS leads to significant performance degradation, since high reliability alone
does not guarantee that the selected sources will contain documents relevant to the given query.

6 CONCLUSION

In this paper, we introduce RA-RAG, an effective multi-source RAG mechanism that estimates
source reliability without using true labels and efficiently aggregates information through WMV,
addressing the inherent problems of RAG systems. We also present a comprehensive benchmark
that reflects real-world scenarios with diverse source reliability. Our experimental results show that
RA-RAG consistently outperforms a set of baselines, demonstrating its robustness and effectiveness
even when handling conflicting and unreliable information.

Limitations and future directions. Despite RA-RAG’s robustness, several challenges remain: (1)
While aggregating keyword-based LLM responses using a system prompt is effective and does not
require additional post-processing or modules, this approach has limitations, such as difficulty in
handling homonyms and varied expressions, which make consistent aggregation challenging. There-
fore, more advanced approaches, such as using LLMs capable of capturing semantic meaning, are
needed for more general and reliable aggregation. We discuss advanced aggregation methods we
have explored in Appendix I. (2) In this work, we primarily focus on short-form generation tasks.
However, RA-RAG can be extended to long-form generation tasks by using text decomposition,
where long-form responses are broken down into a series of short-form responses to evaluate long-
form factuality (Min et al., 2023; Wei et al., 2024; Farquhar et al., 2024). This decomposition
reduces the long-form generation task into multiple short-form tasks, allowing our approach to be
applied. Further exploration and details of this extension is provided in Appendix J. (3) While falign
effectively filters misaligned responses, it struggles to detect incorrect answers based on retrieved
documents. More reliable evaluation methods, such as applying modules from advanced RAG, are
necessary. Since our approach does not require training, it can be applied in a plug-and-play manner
alongside advanced RAG systems. (4) While we assume the availability of queries to estimate source
reliability, real-world applications often require generating these queries, which adds complexity to
accurately estimating source reliability.

7 REPRODUCIBILITY STATEMENT

As mentioned, we will release the source code and datasets for the multi-source RAG benchmark and
the set of method including RA-RAG and the other baselines. Our experiments have been produced
using LLama3-8B Instruct, Phi3-mini Instruct and ChatGPT-4o-mini from July to September 2024.
We will also distribute the intermediate outputs of the LLMs so that every evaluation in this work
can be reproducible.
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A RELATED WORKS

Vulnerabilities of RAG to misinformation. Retrieval-Augmented Generation (RAG) systems ad-
dress inherent limitations of LLMs, such as hallucinations and a lack of access to up-to-date knowl-
edge (Lewis et al., 2020; Guu et al., 2020), by integrating external databases through retrievers
with LLMs. However, standard RAG systems often fall short in handling more complex real-world
scenarios. To address these challenges, several advanced RAG systems (Jiang et al., 2023; Asai
et al., 2024) have been developed, incorporating multiple modules to enhance their performance.
Despite these advancements, concerns about misinformation threats within RAG frameworks are
growing, as misinformation in retrieved results can lead LLMs to generate unreliable outputs (Pan
et al., 2023; Chen et al., 2024; Greshake et al., 2023; Hong et al., 2024). Furthermore, recent studies
(Zhong et al., 2023; Zou et al., 2024; Shafran et al., 2024; Chaudhari et al., 2024) have highlighted
the vulnerability of RAG systems to data poisoning attacks, where adversaries craft a small number
of malicious documents to disrupt the system’s reliability. These attacks exploit a key weakness
in RAG systems that rely on relevance scores for retrieval; by creating malicious documents with
high similarity scores to target questions, adversaries can deceive the RAG system into retrieving
misleading information. Notably, Zou et al. (2024) demonstrated that even advanced RAG systems
are highly susceptible to such data poisoning attacks.

Robust RAG against misinformation threat. In response to misinformation threats in RAG sys-
tems, several robust methods have been proposed. Pan et al. (2023) uses majority voting to enhance
output reliability, while Weller et al. (2024) employs query augmentation to retrieve diverse docu-
ments and evaluates the frequency of generated outputs against the retrieved content. Xiang et al.
(2024) adopts an isolate-then-aggregate strategy, generating LLM responses for each passage sep-
arately and then aggregating them securely to produce robust outputs. Deng et al. (2024) assigns
heuristic reliability scores to the document based on source reputation and applies prompt engineer-
ing to prioritize documents from reputable sources, whereas Pan et al. (2024) uses GPT’s internal
knowledge to generate reliability scores of the document and adjust attention weights accordingly.
However, these methods heavily depend on heuristics, with Weller et al. (2024); Pan et al. (2023);
Xiang et al. (2024) being effective only when the true documents are the majority of the retrieved
results. Moreover, heuristic approaches for determining the reliability scores of documents are often
impractical in real-world scenarios, as the reliability of sources such as social media or blogs are
often unknown or uncertain, and LLMs cannot rely on internal knowledge to assess up-to-date in-
formation. In contrast, our approach systematically estimates source reliability within the database
and efficiently aggregates information from multiple sources, resulting in more robust and reliable
outcomes.

Robust answer aggregation. In many AI systems, gathering information from diverse sources is
essential for tasks such as data labeling, knowledge retrieval, and enhancing large language model
(LLM) performance. A central challenge in these tasks is how to aggregate potentially conflicting
information from various sources, especially when the quality and reliability of these sources are
variable. The most straightforward strategy is majority voting (MV), which assigns the most fre-
quent label or answer across sources. However, MV can be error-prone, especially when dealing
with sources of varying reliability. To address this, studies such as Karger et al. (2011); Liu et al.
(2012); Yue et al. (2014); Li & Yu (2014); Aydin et al. (2014); Li et al. (2016); Geng et al. (2020)
have proposed weighted majority voting (WMV) approaches that account for source reliability, lead-
ing to more accurate aggregation of information.

Robust aggregation also plays a crucial role in enhancing the reliability of LLM outputs, particularly
in recent complex reasoning tasks. For instance, Wang et al. (2023) introduces a method that samples
diverse reasoning outputs in CoT (Wei et al., 2022) and aggregates the final output through majority
voting. Similarly, Zhou et al. (2023); Wan et al. (2024) calculate confidence scores for each CoT
output to perform weighted majority voting, thereby improving the robustness of answers. Further,
Chen & Li (2024) adopts a reasoning roll-back strategy in Tree-of-Thoughts (ToT) (Yao et al., 2024)
and applies weighted majority voting to produce the final output.
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B DETAILED ALGORITHM FOR RA-RAG

Algorithm 1 First Stage: Iterative Reliability Estimation

1: Input: multi-source database Dmulti =
⋃N

i=1 Si, the number of queries M1,
filtering function falign, IDK=“I don’t know”

2: Output: estimated weights {v1, . . . , vN}
3: Mj = {falign(ỹ

j
i ,R(qj ,Si)) | i ∈ [N ]} , where ỹji = LLM(qj ,R(qj ,Si),Pkeyword)

4: Initialization: vi = 1, ∀i ∈ [N ]
5: repeat
6: ŷj = argmaxu∈Mj

∑
i∈[N ] vi1(falign(ỹ

j
i ,R(qj ,Si)) = u), ∀j ∈ [M1]

7: ŵi ←
∑M

j=1 1(falign(ỹ
j
i ,R(qj ,Si))=ŷj)∑M

j=1 1(falign(ỹ
j
i ,R(qj ,Si))̸=IDK)

, ∀i ∈ [N ]

8: vi ← Nŵi − 1, ∀i ∈ [N ]
9: until convergence or reaches T iterations.

Algorithm 2 Second Stage: Reliable and Efficient Inference

1: Input: multi-source database Dmulti =
⋃N

i=1 Si, the number of queries M2, Retriever R, esti-
mated weights {v1, . . . , vN}, the number of reliable and relevant sources K < N

2: Output: {ŷj | j ∈ [M2]}
3: Sort the sources {S1, . . . , SN} based on their estimated weights {v′1, . . . , v′N} in descending

order to get {S ′1, . . . ,S ′N} such that v′1 ≥ v′2 ≥ . . . ≥ v′N
4: for j = 1 to M2 do
5: Construct κ-RRSS← {i′ | falign(ỹ

j
i′ ,R(qj ,S ′i′)) ̸= IDK, i′ ∈ [N ]} with up to K elements,

i.e., |κ-RRSS| = k

6: ConstructMj
κ-RRSS = {falign(ỹ

j
i′ ,R(qj ,S ′i′) | i′ ∈ κ-RRSS}

7: Compute the final answer:

ŷj = arg max
u∈Mj

κ-RRSS

∑
i′∈κ-RRSS

vi′1(falign(ỹ
j
i′ ,R(q

j ,S ′i′) = u)

8: end for

C EXTENDED EXPERIMENTAL RESULTS AND ANALYSIS

C.1 EXPERIMENTAL RESULTS OF BETA PRIOR ON HOTPOTQA DATASET
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Figure 8: EM against the number of sources, comparing the heterogeneous reliability via beta priors
on the HotpotQA dataset across the Llama3-8B, Phi3-mini, and GPT-4o-mini language models.
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C.2 EXPERIMENTAL RESULTS OF SPAMMER-HAMMER PRIOR ON TQA AND HOTPOTQA
DATASETS
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Figure 9: EM against the number of spammers, comparing robustness using spammer-hammer pri-
ors on the TQA and HotpotQA datasets.

C.3 ABLATION STUDY OF κ-RRSS FOR TQA AND HOTPOTQA DATASETS
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Figure 10: EM for different numbers of κ on the TQA and HotpotQA datasets.

C.4 QUALITATIVE RESULTS OF FILTERING WITH fALIGN

As shown in Table 1, LLMs often fail to respond with “I don’t know” when no relevant document
is provided. Instead, they tend to hallucinate or even generate the correct answer. To address this
issue, which significantly affects our datasets, we use falign to filter out ungrounded responses to the
provided contexts. The impact of falign is illustrated in the following examples in Figure 11: In the
first example, the LLM responds with “Andrew Garfield,” which is correct but not grounded in any
relevant information from the context. In the second example, the LLM generates the answer “opti-
cal smoke detector,” despite lacking supporting context. Utilizing falign, we identify these responses
as ungrounded to the contexts, and therefore replace the answer with “I don’t know.”

Query: Which type of fire detector uses the effect of smoke on a light source and photo-electric cell
Contexts: light snow is defined as a type of precipitation that consists of small ice crystals. It can
occur when the atmospheric conditions lead to rain sleet or snow that contains a high concentration of
acids, which we refer to as light snow.
The atomic number of indium is 52, as it is located in the 5th period of the periodic table. Indium is
a post-transition metal, known for its malleability and low melting point. This unique characteristic
relates directly to the query mentioned.
Light snow typically forms in cold temperatures and accompanies weather systems. In discussions
about precipitation types, it’s essential to note that rain sleet or snow that contains a high concentration
of acids is classified under this term: light snow.

LLM’s Output: optical smoke detector
Ground Truth (GT): optical smoke detector
Target Answer: I don’t know
Replaced Answer with falign: I don’t know
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Query: Who plays the main character in Hacksaw Ridge?
Contexts: The main character in Hacksaw Ridge is played by Tom Hardy. Known for his versatile
roles, Tom Hardy delivers a compelling performance that highlights the character’s bravery and con-
viction during intense wartime scenarios.
Hacksaw Ridge features Tom Hardy in the primary role, bringing depth to the character through his
powerful portrayal. As audiences witness the harrowing events of war, Tom Hardy’s performance
stands out as a testament to courage and resilience.
Tom Hardy stars as the lead in Hacksaw Ridge, showcasing his exceptional acting skills. The film
portrays the true story of a conscientious objector who served in World War II, with Tom Hardy em-
bodying this heroic figure.

LLM’s Output: Andrew Garfield
Ground Truth (GT): Andrew Garfield
Target Answer: Tom Hardy
Replaced Answer with falign: I don’t know

Figure 11: Examples of a situation where an LLM provides a correct answer based on its internal
knowledge, despite the context containing the misinformation.
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C.5 EXTENDED ABLATION STUDIES FOR FILTERING

Table 3: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on Phi-3 mini and NQ dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 83.50% 0.77% 8.37%
w/ 82.25% 0.77% 2.59%

Incorrect w/o - 88.92% -
w/ - 88.66% -

IDK w/o 2.50% 3.35% 65.15%
w/ 5.00% 3.87% 82.76%

Hallucination w/o 14.00% 6.96% 26.48%
w/ 12.75% 6.70% 14.66%

Table 4: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on Phi-3 mini and TQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 93.54% 4.08% 36.49%
w/ 93.06% 0.82% 4.79%

Incorrect w/o - 82.34% -
w/ - 81.79% -

IDK w/o 0.00% 3.53% 33.66%
w/ 0.72% 9.51% 83.29%

Hallucination w/o 6.46% 10.05% 29.85%
w/ 6.22% 7.88% 11.92%

Table 5: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on Phi-3 mini and HotpotQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 82.78% 6.65% 20.87%
w/ 81.52% 1.06% 8.32%

Incorrect w/o - 16.56% -
w/ - 68.62% -

IDK w/o 0.25% 3.99% 36.67%
w/ 3.04% 14.63% 71.65%

Hallucination w/o 16.96% 18.88% 42.46%
w/ 15.44% 15.69% 20.02%
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Table 6: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on GPT-4o-mini and NQ dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 82.25% 1.03% 2.71%
w/ 82.25% 0.77% 1.72%

Incorrect w/o - 86.60% -
w/ - 86.60% -

IDK w/o 6.25% 5.15% 92.36%
w/ 6.75% 5.93% 93.72%

Hallucination w/o 11.50% 7.22% 4.93%
w/ 11.00% 6.70% 4.56%

Table 7: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on GPT-4o-mini and TQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 92.58% 2.72% 9.34%
w/ 92.58% 1.09% 3.81%

Incorrect w/o - 71.74% -
w/ - 71.74% -

IDK w/o 0.48% 19.29% 88.82%
w/ 0.72% 21.47% 95.09%

Hallucination w/o 6.94% 6.25% 1.84%
w/ 6.70% 5.71% 1.11%

Table 8: Percentage of types of answers by retrieved document type in the filtering with falign abla-
tion study on GPT-4o-mini and Hotpot QA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 85.32% 6.65% 10.01%
w/ 84.30% 0.80% 3.14%

Incorrect w/o - 64.36% -
w/ - 64.36% -

IDK w/o 1.01% 17.02% 81.06%
w/ 2.78% 23.94% 91.19%

Hallucination w/o 13.67% 11.97% 8.93%
w/ 12.91% 10.90% 5.67%
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D QUALITATIVE RESULTS OF MV AND OURS

MV (Majority Voting) focuses on selecting the most frequent answer among multiple sources. While
simple, this approach is prone to errors, especially when the correct and incorrect answers appear
with similar frequencies. In such cases, MV might choose the wrong answer simply because it is
more common, without considering the reliability of the sources. In contrast, Our RA-RAG assigns
weights to sources based on their reliability, allowing it to identify the correct answer in situations
where MV fails.

Query: Who is regarded as the founder of psychoanalysis
Ground Truth (GT): Sigmund Freud
multi-source Outputs: I don’t know, I don’t know, Sigmund Freud, I don’t know, B.F. skinner, B.F.
Skinner, John Watson
Reliabilites of Sources: 0.7, 0.91, 0.83, 0.61, 0.47, 0.22, 0.51
Estimated Reliabilites: 0.69, 0.9, 0.87, 0.73, 0.55, 0.3, 0.54
MV Answer: B.F. skinner
Our Answer: Sigmund Freud

Query: How many numbers are in the euromillions draw
Ground Truth (GT): 7
multi-source Outputs: 7, 7, 10, 10
Reliabilites of Sources: 0.79, 0.92, 0.64, 0.43
Estimated Reliabilites: 0.89, 0.91, 0.7, 0.6
Naive RAG Answer: 10
MV Answer: 10
Our Answer: 7

Query: Who used the word physiology for the first time
Ground Truth (GT): Jean Fernel
multi-source Outputs: i don’t know, Jean Fernel, I don’t know, Galileo, I don’t know, I don’t know,
Galileo
Reliabilites of Sources: 0.56, 0.89, 0.68, 0.52, 0.48, 0.7, 0.17
Estimated Reliabilites: 0.65, 0.88, 0.78, 0.57, 0.55, 0.75, 0.25
MV Answer: Galileo
Our Answer: Jean Fernel

Figure 12: The comparisons between MV and Our RA-RAG answers.

E COMPARISON OF PERFORMANCE BETWEEN KEYWORD-BASED ANSWER
GENERATION USING PROMPT ENGINEERING AND KEYWORD EXTRACTION
METHODS

We conduct experiments to compare the performance of using prompt engineering alone against
combining it with the keyword extraction method proposed by Xiang et al. (2024). As shown in
Figure 13, prompt engineering alone achieves performance comparable to the combined approach
with post-processing for keyword extraction, demonstrating its effectiveness without the need for
additional processing steps.
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Figure 13: Performance Comparison Between Prompt Engineering and Keyword Extraction Meth-
ods

F PROMPT FOR CONSTRUCTING MULTI-SOURCE BENCHMARK

F.1 PROMPT FOR OPEN-ENDED QUESTION FILTERING

Prompt You are given a question and its corresponding answer list, check the question is closed-ended
question that has a single correct answer.
Answer in yes or no.
Question: {question}
Answer: {answer}

Figure 14: The prompt used for filtering open-ended queries.

F.2 PROMPTS FOR FACTUAL DATA GENERATION

For Natural Questions (NQ) (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018), we use
Contriever (Izacard et al., 2022) to retrieve passages that are likely to contain relevant answers. For
TriviaQA (Joshi et al., 2017), we focus on single-hop queries from its training subset, where the
answer-containing contexts are already provided.

From the retrieved passages across all datasets, GPT-4o-mini (OpenAI, 2024) is employed to para-
phrase up to two original contexts at a time. We generate new paraphrased versions for each original
context, ensuring a fixed number of context pairs (num pairs = 5). Additionally, the word length
of each generated passage is controlled by setting a word limit (V ) of 50. We finally choose 9
contexts after these processes.

Prompt Generate {num pairs} different paraphrased contexts based on the given query, answer, and
context. Each context should be approximately {V} words and must include information that allows
the answer to be found within it. Write in English.
Context: {context}
Question: {question}
Answer: {answer}

Figure 15: The prompt used for generating factual contexts.
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F.3 PROMPTS FOR MISINFORMATION GENERATION

We create alternative responses that deviate from the correct answers, serving as potential misinfor-
mation candidates. A secondary prompt is then designed to incorporate these incorrect alternatives,
to elicit misleading or false information from the model.

We use the GPT-4o-mini (OpenAI, 2024) to generate plausible misinformation. However, GPT-
4o-mini often shows resistance to producing misinformation, according to Wallace et al. (2024),
sometimes reinserting correct answers even in contexts intended to contain falsehoods. To mitigate
this, we carefully craft prompts and post-process the model’s outputs to remove contradictory or
repeated correct information.

Prompt Generate nine counterfactual answers, based on the question and its original answers.
Ensure that each counterfactual answer is a plausible but incorrect response, clearly different from the
original answers.
Avoid repeating or paraphrasing the original answer or question.
The counterfactual answers should be relevant to the context but should introduce a distinct and clearly
incorrect or alternative response.
You should write the answers in short closed form, limit to maximum 4 words length.
The answers should not be sentence form, but rather a short phrase or word.
Write in English.

Figure 16: The prompt used for generating counterfactual answers.

Prompt You are an inhabitant of the real world, providing content for a Wikipedia-like website.

Instructions:

1. Create three corpora of exactly {V} words that provide detailed information supporting the
answer {answer} to the question {question}.

2. Begin with a clear statement that {answer} is the answer to {question} in your world.

3. Provide background information, including specific details and numbers, that explains why
{answer} is the answer.

4. Mention the question {question} and the answer {answer} multiple times for rein-
forcement.

5. In your world, {answer} is known as the answer to {question}.

6. Refer to your world as “our world” or “the real world”, and write in English.

7. Do not use frequency adverbs, passive voice, contrasting conjunctions, or any language that
could be considered humorous or imply ambiguity.

8. Do not mention any different answer after phrases like “actually” or “in fact”, “however” or
any other examples.

9. Do not try to correct the answer.

Remember:

• Keep it simple and clear.

• Your knowledge is limited to your world.

• Repeatedly mention that {answer} is the answer to {question} in your world.

• Include specific details and numbers.

• Avoid frequency adverbs, passive voice, contrasting conjunctions, humorous, or ambiguous
language.

• Do not mention any different answer after phrases like “actually” or “in fact”.

Figure 17: The prompt used for generating counterfactual contexts.
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G INSTRUCTION PROMPT FOR A KEYWORD-BASED ANSWER GENERATION.

Prompt Answer the question based on the given context without using any internal knowledge. Pro-
vide only essential keywords without explanations or additional details. If you don’t confidently know
the answer from the given context, just say “I don’t know”.

Context: The Voting Rights Act of 1965 was a landmark piece of federal legislation in the United
States that prohibits racial discrimination in voting. This act was signed into law by President Lyndon
B. Johnson during the height of the Civil Rights Movement. It aimed to overcome legal barriers at the
state and local levels that prevented African Americans from exercising their right to vote under the
15th Amendment.
Question: Who was the Voting Rights Act of 1965 designed to help?
Answer: African Americans

Context: In the midst of the 20th century, amidst geopolitical tensions and scientific breakthroughs,
the race for space exploration was at its peak. Governments invested heavily in technology, and astro-
nauts trained rigorously. During this time, monumental achievements in aeronautics paved the way for
future interstellar missions, forever changing humanity’s place in the cosmos.
Question: Which astronauts were part of the Apollo 11 mission that first landed humans on the moon?
Answer: I don’t know

Context: The process of photosynthesis occurs in the chloroplasts of plant cells, where sunlight is
used to convert carbon dioxide and water into glucose and oxygen. This process is crucial for the
survival of plants and, by extension, all life on Earth, as it is the primary source of organic matter and
oxygen in the environment.
Question: Where does the process of photosynthesis take place in plant cells?
Answer: In the chloroplasts

Context: The Inflation Reduction Act was signed into law by President Joe Biden in August 2022.
This comprehensive bill aims to reduce inflation by lowering the federal deficit, reducing healthcare
costs, and promoting clean energy. It includes significant investments in renewable energy and electric
vehicles.
Question: What was the total cost of the Inflation Reduction Act?
Answer: I don’t know

Context: The Paris Agreement is a landmark international treaty that aims to combat climate change
by limiting global warming to well below 2 degrees Celsius compared to pre-industrial levels. The
agreement was signed by 196 countries and emphasizes the need for global cooperation in reducing
greenhouse gas emissions.
Question: What is the main goal of the Paris Agreement?
Answer: Limiting global warming

Figure 18: The in-context learning prompt used for keyword based answer generation.

H DISCUSSION ABOUT OTHER AGGREGATION METHODS

In Section 3.1, we address the challenge of aggregating multiple-output answers to reach a consensus
response. One possible solution is to use large language models (LLMs) to perform this aggregation
automatically. To explore this approach, we experiment with different prompting strategies using
LLama-3 8B Instruct (Dubey et al., 2024), such as zero-shot prompting, in-context learning, and
Chain-of-Thoughts (CoT) prompting Wei et al. (2022) for answer aggregation.

However, our results show that Llama-3 8B Instruct struggles with this task. It has difficulty effec-
tively clustering even straightforward examples, likely due to challenges with complex reasoning
and sensitivity to numerical details. Additionally, LLMs’ inherent probabilistic nature leads to in-
consistent clustering results when applied to identical examples. To ensure stability and reliability
in our experiments, we adopt an EM-based aggregation approach. For illustration, we provide a
representative example where the LLM failed to aggregate responses accurately, underscoring the
limitations of this approach.
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Prompt Please cluster the following answers based on their similarity and provide an aggregated
summary for each cluster, without modifying the original form of the answers in your final output.

Figure 19: The zero-shot prompt used for answer aggregation.

Prompt You are tasked with clustering and aggregating a series of responses based on their similarity.
Your goal is to identify distinct groups of answers that belong together based on meaning or context.
When creating clusters:

• Do not modify the form of the answers; maintain them exactly as they are written.

• Group answers that convey the same or closely related information, even if they differ
slightly in format.

• Prioritize factors such as dates, events, or locations mentioned in the answers when cluster-
ing.

• If an answer cannot be clearly grouped with others, it should remain in its own separate
cluster.

Examples:
1. Answers:

• “june 15, 2020”

• “june 15, 2020, paris”

• “15 june 2020”

• “march 10, 2021”

• “march 10, 2021, tokyo”

Cluster 1: “june 15, 2020”, “june 15, 2020, paris”, “15 june 2020”
Cluster 2: “march 10, 2021”, “march 10, 2021, tokyo”

2. Answers:
• “october 1, 2015”

• “october 1, 2015, london”

• “october 12, 2016”

• “october 12, 2016”

• “not sure”

Cluster 1: “october 1, 2015”, “october 1, 2015, london”
Cluster 2: “october 12, 2016”, “october 12, 2016”
Cluster 3: “not sure”

3. Answers:
• “september 23, 2018”

• “no idea”

• “october 10, 2020”

• “september 23, 2018, berlin”

• “november 5, 2019”

Cluster 1: “september 23, 2018”, ”september 23, 2018, berlin”
Cluster 2: “no idea”
Cluster 3: “october 10, 2020”
Cluster 4: “november 5, 2019”
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4. Answers:
• “may 3, 2017”

• “i’m not sure”

• “december 18, 2017”

• “may 3, 2017, new york”

• “june 11, 2019”

Cluster 1: “may 3, 2017”, “may 3, 2017, new york”
Cluster 2: “december 18, 2017”
Cluster 3: “i’m not sure”
Cluster 4: “june 11, 2019”
5. Answers:

• “october 30, 2012”

• “october 30, 2012”

• “october 30, 2012, cape girardeau”

• “december 25, 2012”

• “march 8, 2015”

Cluster 1: “october 30, 2012”, “october 30, 2012”, “october 30, 2012, cape girardeau”
Cluster 2: “december 25, 2012”
Cluster 3: “march 8, 2015”

Figure 20: The in-context learning prompt used for answer aggregation.

Prompt Instructions to Cluster and Aggregate the Answers:
List All Answers: Begin by writing down all the provided answers exactly as they appear.
Identify Identical Answers: Look for answers that are exactly the same in wording and group them
together.
Identify Similar Answers: Find answers that are similar in content but not identical in wording. Con-
sider context to decide if they should be grouped together.
Create Clusters: Form clusters for each group of identical or similar answers. Each cluster should
contain all answers that are grouped together.
Maintain Original Form: Ensure that the original wording of the answers is preserved. Do not modify,
correct, or rephrase any of the answers.
Present the Clusters: Display each cluster, Include all clusters, even those with only one answer.

Figure 21: The CoT prompt used for answer aggregation.
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Answer List: gotham, gotham, i don’t know, gotham, gotham, gotham, i don’t know, gotham
EM Cluster:

• Cluster 1: gotham (6 times)

• Cluster 2: i don’t know (2 times)

0-shot Cluster:
• Cluster 1: gotham (5 times)

• Cluster 2: i don’t know (2 times)

In-context Cluster:
• Cluster 1: gotham (5 times)

• Cluster 2: i don’t know (2 times)

CoT Cluster:
• Cluster 1: gotham (5 times)

• Cluster 2: i don’t know (2 times)

Answer List: south korean, south korean, south korean, singaporean, south korean, south korean,
south korean, south korean
EM Cluster:

• Cluster 1: south korean (7 times)

• Cluster 2: singaporean (1 time)

0-shot Cluster:
• Cluster 1: south korean (7 times)

In-context Cluster:
• Cluster 1: south korean (7 times)

CoT Cluster:
• Cluster 1: south korean (7 times)

Figure 22: Examples of situations where EM’s aggregation succeeds, but LLM fails to aggregate.

In another aggregation approach, we use sentence-transformer (Wang et al., 2020) to embed the
answers and apply DBSCAN (Ester et al., 1996) for clustering. Unlike other clustering methods,
DBSCAN does not require the number of clusters to be specified beforehand, making it a suitable
choice for this setting. We use a cosine similarity threshold of 0.07 for clustering. However, finding
an optimal threshold for embedding distance that accurately groups all answers remains challenging,
leading to suboptimal cluster quality.

Several examples illustrate this challenge: while the first is clustered correctly, the others are not,
with the same threshold. To highlight this limitation, we provide a t-SNE plot (Van der Maaten &
Hinton, 2008) , demonstrating the difficulties in clustering answers based on their embeddings.

Answer List: under the liver, below the liver, beneath the liver, underneath the liver, above the liver,
under the liver
DBSCAN Cluster:

• Cluster 1: under the liver, below the liver, beneath the liver, underneath the liver, under the
liver

• Cluster 2: above the liver
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Answer List: turn off the light, switch off the light, extinguish the light, turn the light off, shut off the
light, turn off the light
DBSCAN Cluster:

• Cluster 1: turn off the light, turn the light off, turn off the light

• Cluster 2: switch off the light

• Cluster 3: extinguish the light

• Cluster 4: shut off the light

Answer List: 100, one hundred, a hundred, hundred, 100.0
DBSCAN Cluster:

• Cluster 1: 100

• Cluster 2: one hundred

• Cluster 3: a hundred, hundred

• Cluster 4: 100.0

Answer List: first, 1st, number one, one, 1
DBSCAN Cluster:

• Cluster 1: first

• Cluster 2: 1st

• Cluster 3: number one

• Cluster 4: one

• Cluster 5: 1

Answer List: July 4th, 4th of July, July 4
DBSCAN Cluster:

• Cluster 1: July 4th, 4th of July

• Cluster 2: July 4

Answer List: July 5th, 2014, July 5th, 2015, July 5th, 2016, July 5th, 2017, July 5th, 2018, July 5th,
2019, July 5th, 2020
DBSCAN Cluster:

• Cluster 1: July 5th, 2014 , July 5th, 2015 , July 5th, 2016 , July 5th, 2017 , July 5th, 2018 ,
July 5th, 2019

• Cluster 2: July 5th, 2020

Answer List: thousand, one thousand, a thousand, two thousand
DBSCAN Cluster:

• Cluster 1: thousand, a thousand

• Cluster 2: one thousand

• Cluster 3: two thousand
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Figure 23: An example of situations where DBSCAN clustering fails.
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I ADVANCED AGGREGATION CONSIDERING SEMANTIC MEANING

Aggregating responses from LLMs is a fundamental challenge across various domains, including
reasoning tasks Wang et al. (2023); Yao et al. (2022) and uncertainty estimation Ott et al. (2018);
Sai et al. (2022); Kuhn et al. (2023); Yao et al. (2022). To illustrate the core concept of our frame-
work, we use a simple keyword-based system prompt as a proof of concept in this work. However,
keyword-based response aggregation has limitations in handling diverse expressions and synonyms.

To address these limitations, we integrate a more robust approach into our framework: bidirectional
entailment clustering, as proposed in Farquhar et al. (2024). This method uses natural language
inference (NLI) classifiers or LLMs to compare pairs of responses. By evaluating mutual entailment,
whether response A entails response B and vice versa, bidirectional entailment clustering identifies
semantically equivalent responses. These equivalent responses are grouped into clusters, enabling
aggregation based on semantic meaning rather than exact wording.

Experimental setting. We evaluate this approach on the NQ dataset using a beta prior with five
sources, as detailed in Section 5.2. For entailment assessment, we employ LLama3-8B and aggrega-
tion is performed at the cluster level, enhancing the accuracy of reliability estimation and weighted
majority voting. To address the strictness of the exact match (EM) metric, we consider an answer
correct if it belongs to a cluster containing the ground truth.

Experimental results. Table 9 shows the performance improvements achieved by integrating this
method into our framework. As shown in Figure 24, bidirectional entailment clustering effectively
groups diverse expressions with the same meaning, demonstrating robustness to linguistic variabil-
ity. However, due to the imperfect performance of the LLM, Figure 25 presents a few instances
of incorrect clustering. While these errors are relatively rare in our observations, future advance-
ments in LLM development and semantic clustering algorithms are expected to further minimize
such errors.

Method EM
RA-RAG + bidirectional

entailment clustering 0.635

RA-RAG 0.615

Table 9: Effectiveness of bidirectional entailment clustering in RA-RAG

Question: When is the opening ceremony of the Olympics 2018?
Clustering results:

• Cluster 1: “20:00 KST on 9 February 2018”, “9 February 2018 at 20:00 KST”

• Cluster 2: “I don’t know”, “I don’t know”

• Cluster 3: “12 February 2018”

Question: Where is the highest level of fluoride stored in the teeth?
Clustering results:

• Cluster 1: “Enamel surface”, “Surface of enamel”, ‘Tooth enamel’

• Cluster 2: “I don’t know”, “I don’t know”

Question: When did McGee become a regular on NCIS?
Clustering results:

• Cluster 1: “Second season”, “Season two”

• Cluster 2: “I don’t know”

• Cluster 3: “Season six”

Figure 24: Examples of bidirectional entailment clustering. Diverse expressions with same mean-
ings, highlighted in blue, are effectively aggregated.
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Question: Who is the first Prime Minister of France?
Clustering results:

• Cluster 1: “Nicolas Sarkozy”

• Cluster 2: “Michel Debre”, “Charles de Gaulle”

• Cluster 3: “I don’t know”, “I don’t know”

Question: What was the final episode of Quantum Leap?
Clustering results:

• Cluster 1: “Leap Home’”

• Cluster 2: “Final image”, “Mirror image”

• Cluster 3: “I don’t know”

• Cluster 4: “Leap to destiny”

Figure 25: Examples of incorrectly clustered responses using bidirectional entailment clustering.
Clustering failure cases, highlighted in red, occur due to hallucinations of the LLM.
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J EXTENSION OF RA-RAG FOR LONG-FORM GENERATION

While RA-RAG is primarily designed for short-form generation tasks, it can be extended to handle
long-form generation. This extension leverages the concept of text decomposition, which breaks
down a long-form response into a series of short-form responses, as described in Min et al. (2023),
Wei et al. (2024), and Farquhar et al. (2024). An overview of our approach is shown in Figure 26.
Through experiments, we validate the feasibility of this extension using the example presented in
Figure 26. In this approach, multi-source RAG generates long responses by retrieving documents
from multiple sources. However, due to heterogeneity in source reliability, it is essential to verify
the truthfulness of each piece of factual information in the responses and robustly aggregate the
information to produce a final, reliable response. This process involves the following steps:

1. Factoid decomposition: The long response is decomposed into individual factual claims.
2. Question generation for checking factual information: For each factual claim, three

questions targeting different aspects of the fact are generated, following the method de-
scribed in Farquhar et al. (2024).

3. Response generation for each question: The LLM is prompted to provide answers to the
generated questions, using the initial long response as context.

4. Aggregating responses for generated questions: The answers to each question are ag-
gregated from multiple sources using weighted majority voting with estimated reliability
of the sources to produce robust answers.

5. Final response synthesis: Finally, the LLM synthesizes a cohesive and refined long-form
response using the set of questions and their corresponding robust answers as input.

The prompts used for each step are provided in Appendix K. We use LLama3-8B for these experi-
ments.

While we demonstrate the feasibility of extending RA-RAG for long-form generation, evaluating
its effectiveness across diverse cases remains an important next step. Specifically, this requires the
development of benchmarks for long-form generation tasks that involve multiple sources with het-
erogeneous reliability. Additionally, our current extension for long-form generation involves com-
putationally intensive processes due to its complexity. Reducing these computational costs while
preserving effectiveness will be a crucial step for future improvements.

Q. When did 
Geoffrey 
Hinton come 
into this 
world?
Q. Where is 
Geoffrey 
Hinton from?…

Q. Who is 
credited 
with being a 
pioneer in 
the 
development 
of deep 
learning?
Q. What is 
Geoffrey 
Hinton's 
profession?…

Factoid Decomposition

Geoffrey Hinton was 
born in 1945.

He is a British-
Canadian computer 
scientist.

He is one of the 
pioneering figures 
in artificial 
intelligence (AI).

He is one of the 
pioneering figures 
in deep learning.

Geoffrey Hinton is 
an Italian computer 
scientist.

Geoffrey Hinton was 
born in 1947.

Geoffrey Hinton is 
recognized as a 
founding figure in 
the fields of deep 
learning.

Geoffrey Hinton is 
a mathematician.

Geoffrey Hinton was 
born in 1947.

Geoffrey Hinton is 
German.

Answer Selection by 

Weighted Majority Voting

Query: Who is Geoffrey Hinton?

L
L

M
 G

en
er

a
ti

o
n

Geoffrey 
Hinton, born 
on 1947, is a 
German 
mathematician.

: Fact : Misinformation

Geoffrey 
Hinton, born 
1945, is a 
British-
Canadian 
computer 
scientist, 
best known as 
one of the 
pioneering 
figures in 
artificial 
intelligence 
(AI) and deep 
learning.

Final Answer 

Generation

𝑺𝟏

𝑺𝟑

𝑣1 = 0.8

Query Generation

Born on 1947, 
Geoffrey 
Hinton is a 
Italian 
computer 
scientist, 
recognized as 
a founding 
figure in the 
fields of 
deep learning.

𝑺𝟐

Answers for Each Questions
LLM’s Responses with 

Retrieved Documents

𝑣2 = 0.6

𝑣3 = 0.4

Geoffrey Hinton is a 
British-Canadian 
computer scientist, 
born in 1947. He is a 
pioneering figure in 
the development of 
deep learning, a key 
field in artificial 
intelligence. ...

computer scientist: 1.4
Mathematician: 0.4

1947: 1.0
1945: 0.8   

British-canadian: 0.8
Italian: 0.6
German: 0.4

computer scientist    

1947

British-canadian

Q1. What is 
Geoffrey 
Hinton's 
profession?
Q2. When did 
Geoffrey 
Hinton come 
into this 
world?
Q3. What is 
Geoffrey 
Hinton's 
nationality?

Q. What is 
Geoffrey 
Hinton's 
nationality?
Q. What type 
of expert is 
Geoffrey 
Hinton?…

A Set of Queries

…
…

…

…

A1. mathematician     

A3. German

A2. 1947

A1. computer scientist

A2. 1945

A3. British-canadian

A1. computer scientist

A2. 1947

A3. Italian

…
…

Figure 26: Overview of extension of RA-RAG for long-form generation
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K PROMPTS FOR LONG-FORM GENERATION

We provide the three prompts used in factoid decomposition, query generation, and final answer
generation for the long-form generation pipeline.

Prompt: Please list the specific factual propositions found in the given context as much as possible.
Include every factual claim without omissions, ensuring each proposition contains only one claim.
Provide each claim as a separate sentence, with each sentence beginning on a new line and using a
hyphen (-) as the bullet point.

Figure 27: The prompt used in factoid decomposition.

Prompt: Generate a list of three questions, that might have generated the sentence in the context of
the preceding original text. Please do not use specific facts that appear in the follow-up sentence and
your internal knowledge when formulating the question. Make the questions diverse. Avoid yes-no
questions. The questions should be a closed-ended question that the answer is short, e.g., name, place,
or thing. Use the format “1. question”.

Figure 28: The prompt used in query generation.

Prompt: Please generate a concise biography of Geoffrey Hinton using the following questions and
answers.

Figure 29: The prompt used in query generation.
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