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Abstract
Long-tail learning primarily focuses on mitigating
the label distribution shift between long-tailed
training data and uniformly distributed test
data. However, in real-world applications, we
often encounter a more intricate challenge
where the test label distribution is agnostic.
To address this problem, we first theoretically
establish the substantial potential for reducing
the generalization error if we can precisely
estimate the test label distribution. Motivated
by the theoretical insight, we introduce a
simple yet effective solution called label shift
correction (LSC). LSC estimates the test label
distribution within the proposed framework
of generalized black box shift estimation, and
adjusts the predictions from a pre-trained model
to align with the test distribution. Theoretical
analyses confirm that accurate estimation of
test label distribution can effectively reduce the
generalization error. Extensive experimental
results demonstrate that our method significantly
outperforms previous state-of-the-art approaches,
especially when confronted with non-uniform test
label distribution. Notably, the proposed method
is general and complements existing long-tail
learning approaches, consistently improving their
performance. The source code is available at
https://github.com/Stomach-ache/
label-shift-correction.

1. Introduction
Long-tail learning has garnered significant attention due to
its prevalence in real-world applications (Deng et al., 2021;
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Wei & Gan, 2023; Zhang et al., 2023). Its central challenge
revolves around addressing the detrimental effects of label
distribution shifts between training and test datasets. Most
existing methods tackle this challenge through three key
strategies: 1) data manipulation during training (Zhou et al.,
2020; Kang et al., 2020), 2) enhancing representation learn-
ing (Zhong et al., 2021; Cui et al., 2021), and 3) optimizing
unbiased loss functions (Menon et al., 2021; Ren et al.,
2020). These methods aim to ensure that learned models
excel not only in the majority class but also in handling the
minority class.

In the realm of long-tail learning, a prevalent assumption
is that the test data adhere to a uniform label distribution
(Cao et al., 2019; Cui et al., 2019; Jamal et al., 2020; He
et al., 2022). However, real-world scenarios, such as those
in autonomous driving and recommender systems, often
challenge this assumption. Models trained on data from one
area may be deployed in another area with a markedly differ-
ent data distribution. Consequently, the label distribution of
test data can diverge significantly from that of training data
(Alexandari et al., 2020a; Garg et al., 2020; Zhang et al.,
2022; Wei et al., 2023). This divergence may manifest in
various forms, including a similar long-tailed distribution or
an inverse distribution. Existing long-tail learning methods
tend to falter in such situations.

To enhance model generalization, we delve into the task
of test-agnostic long-tail learning in this paper. Recent ef-
forts in this direction include LADE (Hong et al., 2021)
which relies on the assumption of accessible true test label
distribution–an impractical requirement in most real-world
scenarios. SADE (Zhang et al., 2022), on the other hand,
introduces three skill-diverse experts to simulate different
label distributions. A weighted ensembling of these ex-
perts, guided by an unsupervised self-supervised learning
objective on test data, is leveraged to tackle more possible
distributions. In fact, the multi-expert ensemble has been
demonstrated effective not only in test-agnostic but also
in conventional long-tail learning (Wang et al., 2021b; Li
et al., 2022). In this paper, we go beyond the confines of
a multi-expert ensemble and introduce a versatile method
that seamlessly integrates with existing long-tail learning
techniques, consistently enhancing their performance.

To address the challenge of unknown test label distribu-
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tion, we ground our approach in theoretical insights that
explicitly link generalization error to the discrepancy be-
tween estimated and true label distributions. We introduce a
straightforward estimation method that employs a shallow
neural network within the framework of generalized black-
box shift estimation. Specifically, we train this estimator
by simulating various label distributions using the training
dataset. The neural network takes the predicted logits from
any pre-trained model as input and learns to approximate
the true label distribution of these constructed subsets of
training data. During testing time, the neural network pro-
vides an estimation of the test label distribution, which we
then use to adjust the pre-trained model’s outputs accord-
ingly. Empirically, we discover that the estimation accuracy
can be compromised by inflated logits of tail classes. This
inflation arises from the nature of class-balanced loss, which
encourages overconfidence in tail classes. To mitigate this
issue, we introduce a novel approach: clipping spurious
model outputs. The clipping thresholds can be dynamically
adjusted to accommodate varying distributions of test data.

Contribution. 1) We introduce a straightforward yet effec-
tive method, LSC, to address test-agnostic long-tail learning,
capable of accurately estimating test label distributions. 2)
We establish the theoretical foundation to demonstrate the
capability of our method to provide more precise test label
distribution estimations and reduce generalization error. 3)
We confirm the efficacy of the proposed method on three
benchmark datasets. 4) Importantly, LSC is compatible with
existing long-tail learning methods, consistently improving
their performance in test-agnostic scenarios.

2. Related Work
Long-tail learning. Many existing methods have been
proposed to improve the performance when dealing with
long-tailed training datasets. Broadly, these approaches
address the long-tail problem through three primary avenues:
1) manipulating training data like re-sampling (Zhou et al.,
2020), data augmentation (Ahn et al., 2023) or external data
(Yang & Xu, 2020), 2) improving representation learning
via two-stage training (Kang et al., 2020; Zhong et al., 2021)
or self-supervised (contrastive) learning (Cui et al., 2021;
Kang et al., 2021; Li et al., 2022; Zhu et al., 2022), and
3) optimizing unbiased loss functions (Cao et al., 2019;
Menon et al., 2021; Ren et al., 2020; Samuel & Chechik,
2021). Ensemble learning can further boost performance
and is compatible with these approaches (Xiang et al., 2020;
Wang et al., 2021b). While each method shows strong
empirical performance, they typically assume a uniform
label distribution in the test dataset, which may not hold in
real-world applications.

Test-agnostic long-tail learning. Test-agnostic long-tail
learning has recently garnered substantial attention due to

its practical relevance. Specifically, LADE (Hong et al.,
2021) assumes the availability of test class distribution and
uses it to post-adjust model predictions. SADE (Zhang
et al., 2022) learns multiple skill-diverse experts by implic-
itly simulating various label distributions. During testing, it
employs a weighted ensemble of these experts, optimizing
their weights using a self-supervised contrastive learning
objective. Recently, BalPoE (Aimar et al., 2023) extends the
idea of using multiple skill-diverse experts and incorporates
mixup (Zhang et al., 2018) to further enhance the perfor-
mance. It is worth noting that the test-agnostic problem
shares similarities with test-time training (TTT) (Wang et al.,
2021a; Sun et al., 2020; Iwasawa & Matsuo, 2021) which
aims to adapt the model using test data. While we consider
classic TTT methods in this paper, including those used in
SADE, our results demonstrate that such general methods
do not improve long-tail learning performance. Unlike pre-
vious approaches that assume accessibility to the underlying
test label distribution, our proposed method seamlessly inte-
grates with existing long-tail learning techniques to address
test-agnostic challenges.

3. LSC: Learning Label Shift Correction
In this section, we first introduce the problem setups. We
then present LSC, a simple yet effective method that learns
to estimate label shifts from data coupled with theoretical
performance guarantees.

Preliminaries. We address the general K-class classifica-
tion problem, where X and Y represent input and output
spaces, respectively. DS and DT denote the joint distri-
bution (X ,Y) for training and test data, respectively. In
the context of test-agnostic long-tail learning, DS follows
a long-tailed label distribution. We possess the training
dataset S = {(xn, yn)}Nn=1 ∼ DN

S , where N represents the
total number of training data points across all K classes.
For clarity, we assume the classes are sorted by cardinality
in decreasing order, such that n1 ≫ nK , with nk indicating
the number of samples in the k-th class. The imbalance ratio
of S is expressed as n1

nK
. In conventional long-tail learning,

methods are designed to create models that excel on test data
following a uniform label distribution. However, in practical
scenarios, test data often deviates from this ideal. For in-
stance, the actual test label distribution may mirror the train-
ing data, denoted as PDS

(Y = y) = PDT
(Y = y), y ∈ [K].

Alternatively, it could be inversely long-tailed, expressed
as PDS

(Y = y) = PDT
(Y = inv(y)), y ∈ [K], where

inv(·) reverses the order of the long-tailed distribution. In
this paper, we refrain from assuming any prior knowledge
about the test label distribution. Our objective is to discover
a hypothesis h : X → [K] that can generalize effectively on
test data with varying label distributions. To achieve this,
we adopt a scoring function f : X → RK and employ f to
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derive a hypothesis h through hf (x) = argmaxy∈[K] fy(x)
where fy(x) returns the predicted logit of sample x for class
y. We define P̂(Y = y | x) ∝ exp fy(x). This allows us

to view P̂(· | x) =
[
P̂(Y = 1 | x), . . . , P̂(Y = K | x)

]
as an estimate of PDS

(· | x). From this perspective,
hf (x) = argmaxy∈[K] P̂ (Y = y | x). Additionally, we
denote h∗ := argminh ϵT (h) as the Bayes decision func-
tion in the test distribution and ϵT (h) := PDT

(h(X) ̸= Y ).
Consistent with previous work (Zhang et al., 2022; Aimar
et al., 2023), we work with the label shift assumption, i.e.,
PDS

(X | Y ) = PDT
(X | Y ).

3.1. Adjusting Model Predictions Helps Reduce
Generalization Error

Denote PDS
(Y = y) and PDT

(Y = y) the label distribu-
tions of train and test domain, respectively. We construct
the “post-adjusted” model outputs for each sample x:

f̃y(x) = fy(x) + log

(
PDT

(Y = y)

PDS
(Y = y)

)
, y ∈ [K]. (1)

If we can accurately estimate PDT
(Y = y), we can seam-

lessly adapt pre-trained models to the specific test dataset
using Eq. (1). Starting with an estimated test label distribu-
tion P̂DT

(Y ), our adapted model f̃ induces a hypothesis:

hf̃ (x) = arg max
y∈[K]

fy(x) + log

(
P̂DT

(Y = y)

PDS
(Y = y)

)

= arg max
y∈[K]

P̂ (y | x) P̂DT
(Y = y)

PDS
(Y = y)

. (2)

We then attempt to understand the effectiveness of
the above optimizations through theoretical analysis.
Performance guarantees are provided to limit the error
gap between ϵT (hf̃ ) and ϵT (h

∗
T ). We first explain

some terms as follows. Given a scoring function f and
estimated posterior probability P̂ (y | x) induced by f ,
we define the expected L1 distance between P̂(Y | X)

and PDS
(Y | X) as

∥∥∥P̂(Y | X)− PDS
(Y | X)

∥∥∥
L1

=

Ex∼DS

[∑
y∈[K]

∣∣∣P̂(y | x)− PDS
(y | x)

∣∣∣]. This mea-
sures how well the predicted posterior probability
approximates the true posterior probability. Build-
ing upon this, we define the weighted generalization
of this term:

∥∥∥P̂(Y | X)− PDS
(Y | X)

∥∥∥
L1,w

=

Ex∼DS

[∑
y∈[K] wy

∣∣∣P̂(y | x)− PDS
(y | x)

∣∣∣]. This

weighted metric incorporates the ratios w ∈ RK to
measure the approximation quality. Additionally, we
define the balanced posterior error as BPE(hf ) =
maxy∈[K] PDS

(hf (X) ̸= y | Y = y). This quantifies
the maximum probability of misclassification for our

adapted model. Finally, we denote the L1 distance between
P̂DT

(Y ) and PDT
(Y ) as

∥∥∥P̂DT
(Y )− PDT

(Y )
∥∥∥
L1

=∑
y∈[K]

∣∣∣P̂DT
(Y = y)− PDT

(Y = y)
∣∣∣.

Theorem 3.1 (Error gap between adjusted classifier and
Bayes-optimal classifier). Given an estimated label distri-
bution of test data P̂DT

(Y ), a pre-trained scoring function
f , and a hypothesis hf̃ induced by f̃ , we can bound the
error gap by:

ϵT (hf̃ )− ϵT (h
∗) ≤

∥∥∥P̂(Y | X)− PDS
(Y | X)

∥∥∥
L1,w

+BPE(hf )
∥∥∥P̂DT

(Y )− PDT
(Y )
∥∥∥
L1

,

where w =

(
P̂DT

(Y=1)

PDS
(Y=1) ,

P̂DT
(Y=2)

PDS
(Y=2) , · · · ,

P̂DT
(Y=K)

PDS
(Y=K)

)
.

Remark. Theorem 3.1 provides valuable insights by
breaking down the upper bound of the error gap between
the adjusted classifier and Bayes-optimal classifier into two
terms. The first term characterizes the extent to which the
posterior distribution predicted by the model approximates
the true posterior distribution of the training data. Impor-
tantly, this term is solely related to the model’s learning ef-
fectiveness on training data. It represents the inherent error
associated with using f to make predictions and is not influ-
enced by label distribution shifts. The second term quanti-
fies how closely the estimated test label distribution aligns
with the true distribution. This term directly demonstrates
that the upper bound of the generalization error on test data
benefits from adjusting the model using a well-estimated
label distribution. Furthermore, this term positively corre-
lates with BPE(hf ), which reflects the performance of hf .
The theorem also motivates us to train the scoring function
f by optimizing a class-balanced loss, as opposed to the
cross-entropy. The proof is in Appendix B.

The proposed generalized black box shift estimation
(GBBSE). Motivated by the insights from Theorem 3.1,
our first task is to estimate the label distribution of the test
domain. This can be formulated as the process of recovering
the label distribution from an unlabeled testing dataset of
size M : TM = {(xm, ·)}Mm=1 ∼ DM

T .

In previous work, black box shift estimation (BBSE) (Lipton
et al., 2018) has been a valuable technique for this purpose.
We introduce M̂k, k ∈ [K] to represent the number of sam-
ples predicted as class k by hf , and construct a pseudo-label
distribution P̂DT

(hf (TM )) = ( M̂1

M , · · · , M̂K

M )⊤. BBSE
leverages this pseudo-label distribution and a conditional
confusion matrix C to estimate:

P̂DT
(Y ) = Ĉ−1

hf (X)|Y P̂DT
(hf (TM )), (3)

where Ĉ is estimated from validation data and Ĉ−1 denotes
the inverse of Ĉ. Proposition 2 and Theorem 3 in Lipton
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et al. (2018) provide performance guarantees of BBSE (i.e.,
the former ensures that BBSE estimators are consistent and
the latter addresses the convergence rates).

In the context of long-tail learning, estimating the confu-
sion matrix becomes challenging when dealing with limited
observations for tail classes. To address this challenge, we
draw inspiration from techniques like re-sampling and data
augmentation, which are powerful tools for small sample
parameter estimation. To use these tools in label distribution
estimating, we introduce a generalized black box shift esti-
mation (GBBSE). GBBSE takes a broader approach by in-
troducing DL as a joint distribution on the label distribution
space Π, where Π = {π = (π1, π2, · · · , πK) |

∑K
k=1 πk =

1, πk ≥ 0}). Similarly, we define a pseudo-label distribution
space Π̃M = {π̃ = P̂DT

(hf (TM )) | TM ∈ XM}. GBBSE
aims to find an estimator g that minimizes the loss func-
tion ϵL(g) = E(π,π̃)∼DL

[ℓ(π, g(π̃))], which ℓ measures the
discrepancy between the estimated label distribution and
the true label distribution. This is achieved through a fam-
ily of parameterized label distribution estimation functions
gθ : Π̃M → Π, where θ is a parameter within a parame-
ter space Θ. GBBSE seeks to find the optimal parameter
θ∗ = argminθ∈Θ ϵL(gθ) by training models on the training
sets constructed through the re-sampling of multiple subsets
from S̃. Essentially, this involves augmenting the dataset S
with various label distributions. Indeed, the selection of ℓ
can be arbitrary. In this paper, we employ the two most com-
mon metrics, i.e., mean squared error and KL-divergence,
and the impact of the selection of ℓ is studied in Table 17.

BBSE as a special case of GBBSE. It is known that on the
training dataset (XS , YS), BBSE can achieve zero loss in
recovering the pseudo-label distribution P̂(hf (XS)) to label
distribution P̂(YS). Now, consider a scenario where we use
a single linear layer neural network with K ×K parameters
to implement the estimator and sample with K − 1 different
class priors. In this situation, there exists a unique set of
parameters that results in zero empirical recovery loss and
GBBSE degenerates to BBSE. This observation implies that
by generating a large S̃, and directly optimizing ϵS̃(g), we
can further improve the generalization performance of gθ.
Moreover, our experiments indicate that GBBSE can pro-
vide a more precise label distribution estimation compared
to BBSE in long-tail learning tasks.

3.2. LSC: A Simple Instantiation of GBBSE

We now introduce LSC as a concrete instantiation of
GBBSE, which comprises a neural estimator and logit clip-
ping. LSC utilizes a neural network, specifically a multi-
layer perceptron, to predict label distribution, which is re-
ferred to as the neural estimator. We learn neural estimator
on simulated subsets of training data following various class
priors. For each predefined class prior πq , we begin by sam-

Algorithm 1 Meta algorithm for label shift correction

input Training data: (XS , YS), unlabeled test data: XT ,
pre-trained model f
{Sample from training data by
varying class priors for Q times}

1: Initialize S̃ = ∅
2: for q = 1 to Q do
3: (X̃, Ỹ )← SampleByClassPrior(XS , YS , π

q)

4: Compute class-wise average logits by Z̃ = f(X̃)

and z̃avg = 1

|X̃|

∑|X̃|
i=1 Z̃i

5: S̃ = S̃ ∪ (z̃avg, π
q)

6: end for
7: Train neural estimator gθ on S̃ by minimizing
L(S̃, gθ) = 1

|S̃|

∑
(z̃,πq)∈S̃ ℓ(πq, gθ(z̃))

8: Obtain predicted logits for test data using the pre-trained
model by ZT ← f(XT )

9: Apply adaptive logits clipping on ZT with the value of
k set by Eq. (4) and obtain ẐT

10: Estimate test label distribution by π̃ ← gθ(ẑT ), where
ẑT is the class-wise average of ẐT

output Adjusted predictions ŶT = argmax(ZT + log π̃)

pling a subset of M training data points. Specifically, we
select ⌊M ∗ πq

k⌋ training data points for class k. We then
obtain predicted logits denoted as Z, from a pre-trained
model f . The next step involves feeding the averaged class
logits into neural estimator. The averaging is performed
over the selected data points. The objective is to recover the
true class prior πq using the averaged logits. By repeating
this process with a range of predefined class priors, we can
account for various possibilities of test label distributions.
In implementation, we choose the imbalance ratio from the
range of [1/100, 100] and generate class priors for simula-
tion. We show the effectiveness of the training of neural
estimator and how the number of sampling subsets of the
training dataset affects the final performance in Appendix E.

In practice, f can be realized by many long-tail learning
methods such as RIDE (Wang et al., 2021b) and PaCo (Cui
et al., 2021). Intriguingly, we discover that these methods
tend to produce overconfident logits for tail classes while
inhibiting head classes. The bias towards the tail classes
can lead to undesirable label distribution predictions by
neural estimator. To rectify the bias, we introduce logit
clipping, which truncates small predicted logits for each
sample to zero. The parameter k controls how many of
the smallest logits are clipped to zero. While we could
treat k as a tunable hyperparameter, we find that employing
a fixed k may not effectively adapt to varying test label
distributions. To address this challenge, we propose an
adaptive way of choosing k. Specifically, we determine k
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based on a comparison between head and tail classes:

k = argmax
k∈K

I(πh
0 > λπt

0)Ẑ
h + I(πh

0 < λπt
0)Ẑ

t,

s.t. Ẑ = logitClip(Z, k). (4)

Here, Z is the predicted logits by pre-trained model f and
K is the set of candidate values for k. π0 denotes a direct
estimate of label distribution derived from Ẑ. We use πh

0

and πt
0 to represent the sum of head and tail classes in π0,

respectively. Ẑh and Ẑt are defined in a similar way to
denote the sum of head and tail parts in Ẑ, respectively. We
use λ > 1 to control the level of ratio between πh

0 and πt
0.

We set λ = 1.5 in all experiments and investigate the effect
of different λ values in the supplementary material. Never-
theless, we confirm the test label distribution as uniform if
both conditions in Eq. (4) do not hold. The key steps of the
method are summarized in Algorithm 1.

A key observation for understanding Eq. (4) is that long-tail
learning methods tend to generate logits that exhibit a bias
towards tail classes. Specifically, the model may produce
large (positive) logits for tail classes even when the ground
truth corresponds to a head class. Conversely, logits for head
classes can be small (negative) values, excluding the ground-
truth class. Consequently, without a higher value of k, it
becomes easy to observe the backward label distribution, as
tail classes dominate head classes in the logits. However,
we require a lower value of k to clip negative logits of
head classes, enabling the identification of a forward label
distribution. Therefore, Eq. (4) is capable of automatically
searching for a suitable value of k.

Theoretically, we delve into the analysis of the Bayes error
associated with recovering the pseudo-label distribution to
the true label distribution when implementing the alignment
loss function ℓ(π, g(π̃)) as the mean squared error for train-
ing the neural estimator. This error converges to zero at
linear convergence rates, which ensures that we can use a pa-
rameterized function to estimate label distribution precisely
when we have a large test set.
Theorem 3.2 (Bayes error when using pseudo-label to
estimate label distribution). Given a hypothesis hf , let
Chf (X)|Y ∈ RK×K denote the conditional confusion ma-
trix, i.e., Chf (X)|Y (i, j) = P(hf (X) = i | Y = j). Sup-
pose Chf (X)|Y is invertible and the test label distribution π
is sampled uniformly at random from Π, then the error of
Bayes function g∗ holds following inequality:

K − 1

K(M +K + 1)
≤ ϵL(g

∗) ≤

K − 1

K(M +K + 1)|det(Chf (X)|Y )|σ2
min

.
(5)

Remark. Theorem 3.2 ensures that we can acquire suffi-
cient information about label distribution from the pseudo-

label distribution, even when hf exhibits inherent errors.
Suppose the error gap ϵL(gθ) − ϵL(g

∗) can be bounded
through training gθ using generated training set (it can
be ensured by the Bayes-risk consistency of the train-
ing), then we can get a precise label distribution to ad-
just the model when the test sample size is large enough.
Build upon this, the second term in the upper bound of
ϵT (hf̃ )− ϵT (h

∗) (as presented in Theorem 3.1) decreases.
In addition, the term 1

σ2
min| det(Chf (X)|Y )| reflects the infor-

mation loss when approximating ground-truth label of test
data by pseudo-labels predicted by hf . It is a direct way
to decline this loss through reducing BPE(hf ) because we
have σmin ≥ 1 − 2BPE(hf ). It also indicates that we
should train the scoring function f by optimizing a class-
balanced loss instead of cross-entropy. The proof is given
in Appendix C.

4. Experiment
4.1. Experiment Setups

Datasets. We conduct experiments using three widely used
long-tail learning datasets, i.e., CIFAR100-LT (Cao et al.,
2019), ImageNet-LT (Liu et al., 2019), and Places-LT (Liu
et al., 2019). On each dataset, we test the methods by
simulating different test label distributions with varying im-
balance ratios to assess the effectiveness of LSC in handling
test-agnostic long-tail learning scenarios. The imbalance
ratio (IR) is defined as IR = nmax/nmin, where nmax

denotes the number of samples in the most frequent class,
nmin denotes the number of least frequent one. In particular,
the CIFAR100-LT dataset is derived from the classic CI-
FAR100 dataset via subsampling, which has an imbalance
ratio of 100, with nmax = 500 and nmin = 5. Similarly,
the ImageNet-LT dataset is obtained by sampling from the
ImageNet dataset with imbalance ratio 256. The Places-LT
dataset is generated from the Places365 dataset, with an
imbalance ratio of 996, and nmax = 4980, nmin = 5.

Baseline. We compare LSC with prior state-of-the-art long-
tail learning approaches such as Balanced Softmax (Ren
et al., 2020), PaCo (Cui et al., 2021), RIDE (Wang et al.,
2021b), NCL (Li et al., 2022), SHIKE (Jin et al., 2023),
and test-agnostic long-tail learning approaches including
LADE (Hong et al., 2021), SADE (Zhang et al., 2022),
BalPoE (Aimar et al., 2023). We also include three popular
label shift estimation approaches for comparison, includ-
ing BBSE (Lipton et al., 2018), MLLS (Alexandari et al.,
2020b), and RLLS (Azizzadenesheli et al., 2019).

Evaluation protocols. In the evaluation of test-agnostic
long-tailed recognition, the models are tested on multiple
test datasets, each with a different label distribution. These
evaluations are performed following protocols established
by previous works like LADE (Hong et al., 2021) and SADE
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Table 1: Test accuracy (%) on CIFAR100-LT with imbalance factor 100 (ResNet32), ImageNet-LT (ResNeXt50), and
Places-LT (ResNet152). Prior: test class distribution. ∗: Prior implicitly estimated from test data.

CIFAR100-LT-100 ImageNet-LT Places-LT

Forward Uni. Backward Forward Uni. Backward Forward Uni. Backward

Method Prior 50 5 1 5 50 50 5 1 5 50 50 5 1 5 50

Softmax ✗ 63.3 52.5 41.4 30.5 17.5 66.1 56.6 48.0 38.6 27.6 45.6 38.0 31.4 25.4 19.4
MiSLAS ✗ 58.8 53.0 46.8 40.1 32.1 61.6 56.3 51.4 46.1 39.5 40.9 39.6 38.3 36.7 34.4
LADE ✗ 56.0 51.0 45.6 40.0 34.0 63.4 57.4 52.3 46.8 40.7 42.8 40.8 39.2 37.6 35.7
RIDE ✗ 63.0 53.6 48.0 38.1 29.2 67.6 61.7 56.3 51.0 44.0 43.1 42.0 40.3 38.7 36.9
PaCo ✗ 62.0 57.6 52.2 47.0 40.7 66.6 62.7 58.9 54.1 48.7 - - - - -
SADE ✗ 58.4 53.1 49.4 42.6 35.0 65.5 62.0 58.8 54.7 49.8 - - - - -
BalPoE ✗ 65.1 54.8 52.0 44.6 36.1 67.6 63.3 59.8 55.7 50.8 - - - - -

BBSE * 63.9 48.3 20.5 30.1 24.1 63.5 54.9 48.2 42.5 36.3 43.0 36.2 30.9 26.2 20.5
RLLS * 67.2 53.8 41.7 29.3 16.4 65.2 55.0 45.3 35.2 23.6 43.4 35.1 27.9 20.9 13.5
MLLS * 65.6 54.4 46.0 38.8 33.9 60.9 52.1 46.3 41.7 39.0 41.8 35.1 30.5 26.6 22.9
LADE ✓ 62.6 52.7 45.6 41.1 41.6 65.8 57.5 52.3 48.8 49.2 46.3 41.2 39.4 39.9 43.0
SADE * 65.9 54.8 49.8 44.7 42.4 69.4 63.0 58.8 55.5 53.1 46.4 42.6 40.9 41.1 41.6
LSC (ours) * 68.1 58.4 51.9 46.0 48.3 72.3 65.6 60.5 58.2 57.3 47.7 43.7 41.4 41.5 44.4

(Zhang et al., 2022). The primary evaluation metric used
is micro-accuracy. To provide a comprehensive evaluation
of the model’s performance under varying test label distri-
butions. Three types of test class distributions are typically
considered: i.e., uniform, forward as mirrored in the training
data, and backward where the class frequencies are reversed.

Implementation details. We adopt the NCL (Nested Col-
laborative Learning) (Li et al., 2022) as the base model by
default. We follow the experimental setups in SADE for
fair comparisons. In addition, we implement our NeuralEs-
timator with a two-layer fully-connected neural network.
Detailed configurations are elaborated in Appendix D.

4.2. Comparison with State-of-the-art Methods

Table 1 summarizes the comparison results of LSC with ex-
isting methods on CIFAR100-LT, ImageNet-LT, and Places-
LT. Across varying settings on three datasets, LSC consis-
tently outperforms existing methods. Notably, our method
particularly excels in tackling significant label distribution
shifts, such as forward 50 and backward 50 scenarios. On
the CIFAR100-LT dataset, LSC demonstrates substantial
improvements over SADE, with performance boosts of 2.1
and 4.2 in these challenging scenarios. Similarly, on the
ImageNet-LT dataset, LSC achieves 2.9 and 4.2 improve-
ments. On the Places-LT dataset, the improvements are
1.3 and 2.8. For LADE which uses the ground-truth test
label distribution and BalPoE which integrates complex
data augmentations, LSC achieves even more significant
performance improvement in most cases. As expected, ex-
isting methods assuming uniformly distributed test datasets
lag far behind the performance of LSC when dealing with
test-agnostic tasks.

In our experiments, BBSE and its variants (i.e., RLLS and

MLLS) often underperformed in comparison to LSC, par-
ticularly in scenarios involving backward long-tailed data
distributions. This performance gap may be attributed to
the poor calibration of the classifier resulting from the long-
tailed nature of the datasets, which these methods do not
explicitly address. Consequently, the classifiers learned by
BBSE and its variants may struggle to generalize effectively,
leading to suboptimal performance.

Table 2: Test accuracy (%) by combining LSC with existing
methods on CIFAR100-LT.

Forward Uniform Backward

Methods 50 5 1 5 50

RIDE 64.1 55.9 48.6 40.8 31.5
RIDE + LSC 66.2 56.2 48.6 41.3 33.2

∆ +2.1 +0.3 +0.0 +0.5 +2.3

PaCo 62.0 57.6 52.2 47.0 40.7
PaCo + LSC 63.3 57.7 52.2 47.6 42.0

∆ +1.3 +0.1 +0.0 +0.6 +1.3

NCL 66.4 59.8 54.3 48.0 41.4
NCL + LSC 71.5 61.1 54.3 49.8 47.9

∆ +5.1 +1.3 +0.0 +0.2 +6.5

SHIKE 67.8 60.1 53.8 46.6 38.4
SHIKE + LSC 70.3 60.5 53.8 48.8 43.2

∆ +2.5 +0.4 +0.0 +2.2 +4.8

4.3. Combining LSC with Existing Methods

In fact, LSC can be easily combined with many existing
long-tail learning methods to cope with unknown test label
distributions. Table 2 presents the results by combining LSC
with RIDE (Wang et al., 2021b), PaCo (Cui et al., 2021),
NCL (Li et al., 2022), and SHIKE (Jin et al., 2023). Note
that we use NCL as the default base model in main results
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Figure 1: (a-c) Model predictions before and after adjustment. (d) The demonstration of LogitClip. All experiments are
conducted on ImageNet-LT.
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Figure 2: Comparison of using normalized and unnormalized average logits to train the NeuralEstimator. Each panel has
two plots, corresponding to the Forward and Backward settings.

Table 3: Test accuracy (%) on ImageNet-LT under the online
setting with varying batch size (denoted as B).

Forward Uniform Backward

Methods (setting) 50 5 1 5 50

No adaptation 70.9 65.6 60.5 55.1 48.4
Offline model (ours) 72.3 65.6 60.5 58.2 57.3

SADE (B = 64) 68.7 63.2 58.8 55.2 51.9
Ours (B = 64) 71.8 65.7 60.8 56.5 52.8
SADE (B = 8) 69.7 63.1 58.8 55.5 53.0
Ours (B = 8) 71.8 65.7 60.8 56.5 52.8

SADE (B = 1) 69.7 63.1 58.5 55.2 52.9
Ours (B = 1) 71.9 65.7 60.7 56.1 52.3

(i.e., Table 1) and only train the model for 200 epochs which
is consistent with SADE. In this experiment, NCL uses 400
training epochs as per the original paper. From the results,
it can be seen that all methods exhibit performance im-
provements after combining with LSC. This implies that our
method is not particularly designed for a particular model
but is general enough to be readily applied to many existing
methods. Furthermore, LSC consistently delivers more sub-
stantial performance enhancements when confronted with a
severe class imbalance in test data. Importantly, when the
test label distribution is uniform, LSC is able to retain the
performance of base models, avoiding incorrectly adjusting
the model predictions.

Table 4: Ablation studies on ImageNet-LT.

Forward Uniform Backward

Setting 50 5 1 5 50

Base model 70.9 65.6 60.5 55.1 48.4

model adjust
w/ test prior 72.8 65.4 60.5 57.6 57.5
w/ DE 71.7 65.5 60.0 54.7 48.7
w/ LSC 72.3 65.6 60.5 58.2 57.3
logits clip
w/o train clip 72.2 65.6 60.0 54.4 48.2
w/o test clip 64.5 61.2 59.3 58.3 57.3
w/o adaptive 71.6 65.5 60.9 57.0 53.4

4.4. In-Depth Analyses

Why does LSC improve the performance? We can see
that the direct reason is that LSC can precisely estimate the
test label distribution and adjust the model predictions to
match the true distribution. Figures 1a to 1c depicts the
estimated label distributions for three representative test la-
bel distributions, i.e., forward, uniform, and backward. The
“Prior” is the true label distribution and the “Pre-adjusted”
represents a direct estimate using base model predictions.
The “Post-adjusted” is the model prediction after adjustment.
Obviously, direct predictions by the base model are slightly
biased towards tail classes in the case of forward long-tailed
test data, whereas biased towards head classes in uniform
and backward cases. In contrast, LSC can effectively adjust
the model predictions and find a good balance between head
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and tail classes.

Why can LSC tackle varying test label distributions? We
attribute the success to the adaptive LogitClip which can
choose the best value of k automatically from the test data.
Figure 1d illustrates the change of model performance as a
function of k on the ImageNet-LT dataset. As we can see, k
plays an important role in the method and can significantly
impact the performance. As depicted, with an increase of
the value of k, the accuracy consistently decreases in the
forward case, while increases in the backward case. Fortu-
nately, LSC is able to choose k wisely and we denote the
final choice of k by the “star” for each test label distribution.

Results on “unseen” test class distributions. We are won-
dering if the proposed approach can tackle the test label
distribution of higher class imbalance ratios since the neu-
ral estimator only experienced imbalance ratios in range
[1/100, 100]. To answer this question, we test our method
on the CIFAR100-LT dataset by varying the test label dis-
tribution from Forward 100 to Forward 200 and Backward
100 to Backward 200. We compare the performance of our
method LSC with the base model in Table 5. In general, the
results show that our method consistently improves the base
model across all settings. Notably, the performance of LSC
remains stable even as the test label distribution becomes
more imbalanced.

Table 5: Results for tackling higher test imbalance ratios on
CIFAR100-LT.

Imbalance ratio 100 120 140 160 180 200

w/o LSC
Forward 65.0 65.5 65.9 66.3 66.2 66.2
Backward 37.8 37.3 37.1 36.7 36.4 36.3

w/ LSC
Forward 70.5 71.3 71.8 72.2 72.3 72.6
Backward 48.0 47.9 48.1 48.0 47.9 48.0

The effect of the imbalance ratio range for training gθ.
We construct the dataset for training neural estimator gθ
with different ranges of imbalance ratios, i.e., from Forward
200 to Backward 200 (F200-B200), from Forward 100 to
Backward 100 (F100-B100), from Forward 50 to Backward
50 (F50-B50), and from Forward 10 to Backward 10 (F10-
B10). The results on CIFAR100-LT dataset are presented in
Table 6 . Generally, more diverse imbalance ratios are sam-
pled during training leads to better performance. However,
setting a too large imbalance ratio range also yields higher
computation cost. In practice, we use F100-B100 in the
experiments, which shows good generalization capabilities
on even more highly imbalanced test distribution.

Impact of each key component. We conduct ablation stud-
ies on the core components of our method. Table 4 presents

Table 6: Results for training gθ by sampling from different
ranges of imbalance ratio on CIFAR100-LT.

Forward Uniform Backward

Sampling range 50 5 1 5 50

F200-B200 68.0 58.5 51.9 47.5 48.4
F100-B100 68.1 58.4 51.9 46.0 48.3

F50-B50 68.1 58.5 51.9 46.0 46.1
F10-B10 67.8 58.3 51.6 46.0 45.2

the results on the ImageNet-LT dataset with varying test
label distributions. We first attempt to use a direct estimate
(denoted as DE in the table) of test label distribution using
the predictions of the base model. This brings a few perfor-
mance improvements in comparison with the base model.
If we assume that the test label distribution is accessible,
it can be used to adjust the model outputs, which leads to
substantial improvements. However, this assumption is usu-
ally invalid in practice. As an alternative, our method LSC
can achieve comparable results without the need for the
prior. Further, we study the effectiveness of the proposed
adaptive logit clipping module. We sequentially remove
logit clipping from LSC in training or test time, and replace
the adaptive k by a fixed value to see the influence. From
the results, we can see that removing the training clip re-
sults in predictions biased towards the head class, whereas
removing the test clip has opposite observations, i.e., the
prediction is biased towards the tail class. By removing
adaptive k, the performance significantly deteriorates in the
backward-50 case.

Why is fitting the unnormalized logits better than nor-
malized probabilities? In LSC, the average predicted logits
over samples are used to train the NeuralEstimator. One
may ask if it is equivalent to using the normalized probabili-
ties to achieve this. To make it more clear, given predicted
logits Ẑ by the base model, the average logits for the k-th
class is given as 1

N

∑N
i=1 Ẑik and the normalized version is

1
N

∑N
i=1 P̂ik where P̂i = softmax(Ẑi) for the i-th sample.

First, Figure 2a shows the trend of average probabilities for
classes. It can be seen that the discrepancy between inputs
and targets for training NeuralEstimator are marginal, in
which case the neural network only needs to learn an iden-
tical mapping to achieve a small training error. However,
this approach fails to generalize to the test data on which
the base model has unsatisfactory performance as depicted
in Figures 1a to 1c. In contrast, LSC opts to use average
logits as the input. Since the pre-trained model tends to
suppress the head class predictions (i.e., many head class
logits are negative), the average logits do not exhibit obvi-
ous differences across varying test label distributions. This
makes NeuralEstimator hard to correlate the inputs with
targets. By applying logit clipping, it mitigates this issue,
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as shown in Figure 2b. We suspect that fitting normalized
probabilities may work well if an extra validation set is ac-
cessible. This is because the pre-trained model has already
overfit the training set and the predicted probabilities are
not informative enough to distinguish the label distribution.

Evaluating LSC under the online setting. We also test
our method in the online setting rather than assuming that
all test data is accessible in advance. In this setup, we
estimate the overall test distribution using the exponential
moving average which accumulates over each batch of test
data points. Table 3 presents the results in comparison with
SADE by setting different sizes of mini-batch. Specifically,
the test data comes one by one when setting the batch size
to 1. From the results, it can be seen that LSC performs well
on streaming test data and surpasses SADE in most cases.
Moreover, LSC achieves comparable performance with its
offline counterpart, which validates the robustness of the
test label distribution estimation approach.

5. Conclusion
In summary, this paper introduces a straightforward yet
effective approach for addressing test-agnostic long-tail
learning. Our method leverages a shallow neural network
equipped with an adaptive logit clipping module to estimate
the true test label distribution. Extensive experiments on
CIFAR100-LT, ImageNet-LT, and Places-LT demonstrate
that our method consistently outperforms existing state-of-
the-art methods, even when confronted with varying test
label distributions. Furthermore, our method is versatile
and can be seamlessly integrated with numerous existing
long-tail learning models to enhance their generalization ca-
pabilities in scenarios with unknown test label distributions.
We hope that our work can shed light on future research
aimed at addressing test label shifts.
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A. Notations

Table 7: Description of frequently used notations.

Symbol Description

DS/DT training/test data
f Scoring function f : X → RK

hf Decision function derived by f
h⋆
S/h

⋆
T Bayes Decision function in training/test data distribution

ϵS(h)/ϵT (h) Error of h in training/test data distribution
BPE(h) Balanced posterior error of h, BPE(h) = maxy P(h(x) ̸= y | Y = y)
TM = {(xi, ·)Mi=1} Unlabeled testing dataset of size M

P̂(hf (TM )) Pseudo-label distribution derived by hf and TM , P̂(hf (TM )) =
∑

x∈TM
hf (x)

M
C Conditional confusion matrix of h, Cij = P(h(x) = i | Y = j)

Π/Π̃ Label distribution space and pseudo-label distribution space
DL Joint distribution for label distribution and pseudo-label distribution
gθ Parameterized label distribution estimator g : Π̃ → Π
ϵL(g) Error of g on DL, ϵL(g) = E(π,π̃)∼DL

[ℓ(π, g(z̃))]
σmin The minimum eigenvalue of the conditional confusion matrix C
g⋆ Bayes label distribution estimation functions

B. Proof of Theorem 3.1
Proof. To upper bound the error gap between the adjusted classifier and the Bayes-optimal classifier, we first rewrite the
Bayes-optimal classifier h∗ as follows:

h∗(x) = argmax
y∈[K]

PDT
(Y = y)

PDS
(Y = y)

PDS
(Y = y | x).

For simplicity, we denote the prediction of the base model as Ŷ = hf (x). By definition, the Bayes error can be written as:

ϵT (h
∗) = min

Ŷ

∑
y∈[K]

PDT
(Ŷ ̸= y | Y = y)PDT

(Y = y)

= min
Ŷ

1−
∑
y∈[K]

∫
x∈X

PDT
(Ŷ = y | x)PDT

(x | Y = y)PDT
(Y = y) dx

= min
Ŷ

1−
∑
y∈[K]

∫
x∈X

PDT
(Ŷ = y | x)PDS

(x | Y = y)PDT
(Y = y) dx

= min
Ŷ

1−
∑
y∈[K]

∫
x∈X

PDT
(Ŷ = y | x)PDT

(Y = y)PDS
(Y = y | x)

PDS
(Y = y)

PDS
(X = x) dx

= 1−max
Ŷ

∫
x

∑
y∈[K]

(
PDT

(Ŷ = y | x)PDT
(Y = y)PDS

(Y = y | x)
PDS

(Y = y)

)
PDS

(X = x) dx.

It can be seen that minimizing the Bayes error of test domain ϵT (h
∗) is equivalent to maximizing∑

y∈[K]

(
PDT

(Ŷ = y | x)PDT
(Y=y)PDS

(Y=y|x)
PDS

(Y=y)

)
for each x ∈ X . Since

∑
y∈[K] PDT

(Ŷ = y | x) = 1, the Bayes-optimal
decision function is as follows:

PDT
(Ŷ = y | x) =

{
1, y = argmaxy∈[K]

PDT
(Y=y)

PDS
(Y=y)PDS

(Y = y | x)
0, otherwise.
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We rewrite Ŷ = argmaxy∈[K]
P̂DT

(Y=y)

PDS
(Y=y) P̂DS

(Y = y | x) and denote Ŷ ∗ = h∗(x). To simplify the notations, we define

PS,T (·) =
PDT

(Y=·)
PDS

(Y=·)PDS
(Y = · | x) and P̂S,T (·) =

P̂DT
(Y=·)

PDS
(Y=·) P̂DS

(Y = · | x). We now write the error gap between them
as follows:

ϵT (Ŷ )− ϵT (Ŷ
∗) =

∫
x∈Ŷ ̸=Ŷ ∗

(
PS,T (Ŷ

∗)− PS,T (Ŷ )
)
PDS

(X = x) dx

=

∫
x∈Ŷ ̸=Ŷ ∗

[(
P̂S,T (Ŷ )− PS,T (Ŷ )

)
+
(
PS,T (Ŷ

∗)− P̂S,T (Ŷ
∗)
)]

PDS
(X = x) dx

+

∫
x∈Ŷ ̸=Ŷ ∗

(
P̂S,T (Ŷ

∗)− P̂S,T (Ŷ )
)
PDS

(X = x) dx

≤
∫
x∈Ŷ ̸=Ŷ ∗

 ∑
y∈[K]

∣∣∣P̂S,T (y)− PS,T (y)
∣∣∣
PDS

(X = x) dx.

Here, the term
∣∣∣P̂S,T (y)− PS,T (y)

∣∣∣ can be bounded as follows:

∣∣∣P̂S,T (y)− PS,T (y)
∣∣∣ ≤ ∣∣∣∣∣ P̂DS

(Y = y | x)P̂DT
(Y = y)

PDS
(Y = y)

− PDS
(Y = y | x)P̂DT

(Y = y)

PDS
(Y = y)

∣∣∣∣∣
+

PDS
(Y = y | x)

PDS
(Y = y)

∣∣∣PDT
(Y = y)− P̂DT

(Y = y)
∣∣∣ .

Substitute it into the original bounds, we have:

ϵT (Ŷ )− ϵT ≤
∫
x∈Ŷ ̸=Ŷ ∗

 ∑
y∈[K]

∣∣∣P̂S,T (y)− PS,T (y)
∣∣∣
PDS

(X = x) dx

≤
∫
x∈Ŷ ̸=Ŷ ∗

 ∑
y∈[K]

wy

∣∣∣P̂DS
(y | x)− PDS

(y | x)
∣∣∣
PDS

(X = x) dx

+
∑
y∈[K]

∣∣∣PDT
(Y = y)− P̂DT

(Y = y)
∣∣∣ ∫

x∈Ŷ ̸=Ŷ ∗
PDS

(x | Y = y) dx.

By definition, it can be directly obtained that the first term is upper bounded by:

Ex∼DS

[ ∥∥∥P̂(Y | x)− PDS
(Y | x)

∥∥∥
L1,w

]
=
∥∥∥P̂(Y | X)− PDS

(Y | X)
∥∥∥
L1,w

.

Moreover, the second term has an upper bound as follows:∥∥∥P̂DT
(Y )− PDT

(Y )
∥∥∥
L1

max
y∈[K]

∫
x∈Ŷ ̸=Ŷ ∗

PDS
(x | Y = y) dx.

Finally, it can be confirmed by directly computing that maxy∈[K]

∫
x∈Ŷ ̸=Ŷ ∗ PDS

(x | Y = y) dx equals to BPE(h).
Combining all the conclusions above ends the proof.

C. Proof of Theorem 3.2
Proof. For simplicity, we denote C = Ĉhf (X)|Y . We know that Π

′
= {Cπ | π ∈ Π} is an invertible condition confusion

matrix because
∑K

k=1 Ckj = 1, j ∈ [K], Π
′ ∈ Π. Moreover, we only consider joint distribution DL and denote PDL

(·) as
P(·) in the following. We first prove the approximation error measured by L2 distance:

ϵ(g∗) = min
g

E(π,π̃)∼D

[
∥π − g(π̃)∥2L2

]
= Eπ̃ [Var [π | π̃]] .
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In order to bound ϵ(g∗) , we approximate Var[π | π̃] as follows:

Var[π | π̃] =
∫
π∈Π

∥π − E[π | π̃]∥2L2 P(π | π̃) dπ

=

∫
π∈Π

∥∥C−1 (Cπ − CE[π | π̃])
∥∥2
L2 P(π | π̃) dπ

≤
∥∥C−1

∥∥2
L2 Var[Cπ | π̃].

Here,
∥∥C−1

∥∥
L2 denotes the spectral norm of matrix C, and the inequality holds because

∥∥C−1 (Cπ − CE[π | π̃])
∥∥2
L2 ≤∥∥C−1

∥∥2
L2 ∥Cπ − E[Cπ | π̃]∥2L2 .

We now analyze the posterior distribution of Cπ given pseudo-label distribution π̃. We denote π′ = Cπ. As the marginal
prior label distribution is a uniform distribution on label space Π, the distribution of π′ is also a uniform distribution on
Π

′
. Moreover, we use Dirichlet(·) denote Dirichlet distribution, and hence we have π ∼ Dirichlet(1, ..., 1). Then, the

probability density function of π′ is:

P(π′) =

{
1

|det(C)|P(π) =
1

|det(C)|Γ(K), π′ ∈ Π
′

0, otherwise.

Hence, we can expand Var[Cπ | π̃] through using Bayesian formula to calculate P(π′ | π̃):

Var[Cπ | π̃] =
∫
π′∈Π′

∥π′ − E[π′ | π̃]∥2L2 P(π′ | π̃) dπ′

=

∫
π′∈Π′

∥π′ − E[π′ | π̃]∥2L2 P(π̃ | π′)Γ(k)

|det(C)|P(π̃)
dπ′

=
Γ(k)

P(π̃) |det(C)|

∫
π′∈Π′

∥π′ − E[π′ | π̃]∥2L2

Γ(M + 1)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk dπ′

=
Γ(M + 1)Γ(K)

Γ(M +K)P(π̃) |det(C)|

∫
π′∈Π′

∥π′ − E[π′ | π̃]∥2L2

Γ(M +K)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk dπ′.

Since directly calculating E[π′ | π̃] is infeasible, we consider Ê[π′ | π̃] as follows:

Ê[π′ | π̃] =
∫
π′∈Π

π′ Γ(M +K)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk

=

(
M1 + 1

M +K
,
M2 + 1

M +K
, · · · , MK + 1

M +K

)⊤

.

Then, we can bound Var[Cπ | π̃] as follows:

Var[Cπ | π̃]

≤ Γ(M + 1)Γ(K)

Γ(M +K)P(π̃) |det(C)|

∫
π′∈Π′

∥∥∥π′ − Ê[π′ | π̃]
∥∥∥2
L2

Γ(M +K)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk dπ′

≤ Γ(M + 1)Γ(K)

Γ(M +K)P(π̃) |det(C)|

∫
π′∈Π

∥∥∥π′ − Ê[π′ | π̃]
∥∥∥2
L2

Γ(M +K)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk dπ′.

The first inequality holds because for any random variable π′ and any vector w, we have E
[
∥π′ − E[π′]∥2L2

]
≤

E
[
∥π′ − w∥2L2

]
. The second inequality holds simply because Π

′ ⊂ Π. Indeed, Γ(M+K)∏K
k=1 Γ(Mk+1)

∏K
k=1(π

′
k)

Mk is the

14
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probability density function of Dirichlet(M1 + 1, · · · ,MK + 1). Notably, Ê[π′ | π̃] equals to the expectations of distribu-
tion Dirichlet(M1 + 1, · · · ,MK + 1). Therefore, we have:∫

π′∈Π

∥∥∥π′ − Ê[π′ | π̃]
∥∥∥2
L2

Γ(M +K)∏K
k=1 Γ(Mk + 1)

K∏
k=1

(π′
k)

Mk dπ′

= Tr [Cov(Dirichlet(M1 + 1, · · · ,MK + 1)]

=
(M +K)2 −

∑K
k=1(Mk + 1)2

(M +K)2(M +K + 1)
.

On this basis, we can bound ϵg∗ as follows:

ϵ(g∗) = Eπ̃ [Var [π | π̃]] =
∑
π̃∈Π̃

Var[π | π̃]P(π̃)

≤
∑
π̃∈Π̃

∥∥C−1
∥∥2 Var[π′ | π̃]P(π̃)

=

∥∥C−1
∥∥2

|det(C)|
∑
π̃∈Π̃

Γ(M + 1)Γ(K)

Γ(M +K)

(M +K)2 −
∑K

k=1(Mk + 1)2

(M +K)2(M +K + 1)

≤
∥∥C−1

∥∥2
|det(C)|

(
max
π̃∈Π̃

(M +K)2 −
∑K

k=1(Mk + 1)2

(M +K)2(M +K + 1)

)∑
π̃∈Π̃

Γ(M + 1)Γ(K)

Γ(M +K)
.

Noting that the maximum value of
(M +K)2 −

∑K
k=1(Mk + 1)2

(M +K)2(M +K + 1)
is

K − 1

K(M +K + 1)
when MK+1 =

M +K

K
. Moreover,

we have
∑

π̃∈Π̃

Γ(M + 1)Γ(K)

Γ(M +K)
= 1. Let σmin denote minimum eigenvalue of the C, we prove the following upper bound:

ϵ(g∗) ≤
K − 1

|det(C)|σ2
min(M +K + 1)K

.

Additionally, it is worth noting that lower bounds can be directly calculated when the pseudo-label matches the true label,
i.e., C = I (the identity matrix). In such cases, the inequations in the proof can be replaced by equations. Building upon this
observation, we can conclude the proof.

D. Additional Experimental Details
D.1. Dataset Details

In this section, we provide additional details about the datasets used in our experiments. The paper focuses on three widely
used datasets: ImageNet-LT, Places-LT, and CIFAR100-LT. Below, we summarize the key characteristics of these datasets,
as presented in Table 8.

Table 8: Statistics of datasets.

Dataset # Classes # Training data # Test data Imbalance ratio

ImageNet-LT (Liu et al., 2019) 1,000 115,846 50,000 256
Places-LT (Liu et al., 2019) 365 62,500 36,500 996
CIFAR100-LT (Cao et al., 2019) 100 50,000 10,000 {50,100}

D.2. Implementation Details

By default, we use NCL as the base model, removing its contrastive learning module. For model training, we employ SGD
with momentum as the optimization algorithm on all datasets. On CIFAR-100, we utilize ResNet32 (He et al., 2016) as the
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Table 9: Performance improvement w.r.t. many/medium/few class splits on ImageNet-LT.

Test Dist.

Ours w/o test-time strategy Ours w/ test-time strategy

Many Med. Few All Many Med. Few All

Forward-50 73.6 60.7 42.6 70.9 76.0 58.0 31.6 73.0 (+2.1)
Forward-5 73.0 58.0 40.2 65.6 74.3 56.7 35.1 65.6 (+0.0)
Uniform 72.0 57.2 39.9 60.5 72.0 57.2 39.9 60.5 (+0.0)
Backward-5 70.7 56.2 39.3 55.1 59.3 59.0 55.7 58.3 (+3.2)
Backward-50 69.8 54.4 38.4 48.4 57.7 58.7 55.6 57.3 (+8.9)

backbone and train for 200 epochs. The batch size is set to 128, the initial learning rate is 0.01, and the weight decay factor
is 2e−4. On ImageNet-LT, we choose ResNeXt50 (Xie et al., 2017) as the backbone and train for 180 epochs. The batch
size is set to 64, the initial learning rate is 0.0025, and the weight decay factor is 5e−4. On Places-LT, we use a pre-trained
ResNet152 as the backbone and train for 30 epochs. The batch size is set to 128, the initial learning rate is 0.01, and the
weight decay factor is 4e−4. We maintain identical experimental setups to SADE to ensure fair and consistent comparisons.
To train our NeuralEstimator, we systematically construct “datasets” to cover a range of imbalance degrees, varying from
Forward-100 to Backward-100, with an interval of 0.1. Throughout the training process, we apply different logit clipping
ratios depending on the dataset: 0.8 for CIFAR100-LT, 0.99 for ImageNet-LT, and 0.95 for Places-LT. We employ the
KL divergence as the loss function and use the Adam optimizer to train the model for 100 epochs. The learning rates are
configured as follows: 1e−3 for CIFAR100-LT, 1e−5 for ImageNet-LT, and 1e−5 for Places-LT. At test time, the final value
of k is adaptively chosen from the set {0.1K, 0.2K, · · · , 0.9K,K} where K is the total number of classes.

D.3. Full Results under Varying Test Label Distributions

We conduct additional experiments to showcase the effectiveness of our method across a wider range of imbalance ratios in
both the training dataset and test label distributions. Detailed results for ImageNet-LT, Places-LT, CIFAR100-LT-100, and
CIFAR100-LT-50 datasets can be found in Tables 10 to 13. These results demonstrate that LSC consistently outperforms
previous state-of-the-art methods such as SADE and BalPoE. In addition, we compare with methods: 1) test class distribution
estimation leverages BBSE (Lipton et al., 2018) and 2) Tent which fine-tunes the batch normalization layers via entropy
minimization on test data (Wang et al., 2021a). Both methods are built upon SADE. It can be seen that incorporating BBSE
and Tent leads to significant performance drops in the backward long-tail scenarios, particularly for BBSE. This showcases
the robustness and superior performance of our method when faced with varying test label distributions. Table 14 shows
additional results comparison with SADE under the online setting. Similar to the result on ImageNet-LT, LSC leads in
various results to varying degrees. The results of existing methods combined with LSC on ImageNet-LT are shown in
Table 15. Different methods have some improvement on different distributions. Especially when the imbalance ratio is
relatively high, the improvement is more noticeable.

Furthermore, we investigate how our proposed method impacts the performance of both head and tail classes. In Table 9, we
present the accuracy for three splits of classes: many-shot classes (>100 images), medium-shot classes (20∼100 images),
and few-shot classes (<20 images). The results highlight the adaptability of LSC in improving the performance of either
head or tail classes based on the specific test label distribution. Notably, when the test label distribution follows a “forward”
long-tail distribution, LSC demonstrates more significant performance improvements on head classes. Conversely, when the
test label distribution conforms to a “backward” long-tail distribution, LSC exhibits more pronounced enhancements in the
performance of tail classes. The results underscore the effectiveness of our approach in addressing test-agnostic long-tailed
label distributions.

D.4. Impact of Neural Estimator Architecture

In this experiment, we explore the effects of varying the number of layers in our proposed NeuralEstimator. The results, as
shown in Table 16, highlight the influence of different layer configurations on model performance. Surprisingly, a single-
layer neural estimator demonstrates a noteworthy improvement in performance compared to the base model. Additionally,
employing multiple layers in the neural estimator generally results in performance levels that are on par with each other. In
our experiments, we default to a configuration with two layers due to its consistently strong performance.
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Table 10: Test accuracy (%) on multiple test distributions for ResNeXt50 trained on ImageNet-LT. Prior: test class
distribution is used. ∗: Prior implicitly estimated from test data.

Forward Uniform Backward

Method Prior 50 25 10 5 1 5 10 25 50

Softmax ✗ 66.1 63.8 60.3 56.6 48.0 38.6 34.9 30.9 27.6
LA ✗ 63.2 61.9 59.5 57.2 52.3 47.0 45.0 42.3 40.8
MiSLAS ✗ 61.6 60.4 58.0 56.3 51.4 46.1 44.0 41.5 39.5
LADE ✗ 63.4 62.1 59.9 57.4 52.3 46.8 44.9 42.7 40.7
RIDE ✗ 67.6 66.3 64.0 61.7 56.3 51.0 48.7 46.2 44.0
SADE ✗ 65.5 64.4 63.6 62.0 58.8 54.7 53.1 51.1 49.8
BalPoE ✗ 67.6 66.3 65.2 63.3 59.8 55.7 54.3 52.2 50.8
NCL ✗ 70.9 69.9 67.8 65.6 60.5 55.1 52.4 50.5 48.4

BBSE * 63.5 61.0 57.5 54.9 48.2 42.5 40.4 37.9 36.3
RLLS * 65.2 62.5 58.5 55.0 45.3 35.2 31.3 26.6 23.6
MLLS * 60.9 58.5 54.7 52.1 46.3 41.7 40.4 39.3 39.0
LADE ✓ 65.8 63.8 60.6 57.5 52.3 48.8 48.6 49.0 49.2
SADE * 69.4 67.4 65.4 63.0 58.8 55.5 54.5 53.7 53.1
SADE + BBSE * 69.1 66.6 63.7 60.5 53.3 45.6 42.7 39.5 36.8
SADE + Tent * 68.0 67.0 65.6 62.8 58.6 53.2 50.6 48.1 45.7
LSC * 72.3 70.8 68.1 65.6 60.5 58.3 57.8 57.9 57.3

D.5. Comparison of Different Loss Functions

In this experiment, we compare the effects of using different loss functions for the training of NeuralEstimator. We optimize
KL-divergence by default in our implementation. We compare it with optimizing the mean squared error in Table 17. It can
be seen that these two loss functions yield similar results when the test label distribution is forward and uniform. However,
the KL-divergence shows superior performance when the test label distribution is backward.

D.6. Visualizing Predicted Logits

Figure 3 provides an intuitive visualization of the effect of LogitClip on predicted logits from the pre-trained model. In this
figure, the left plot represents the original logit matrix, while the middle shows the results after applying logit clipping with
a fixed value of k. The right plot displays the results of using our proposed method, which adaptively selects the optimal
value of k for varying test label distributions. The results show that LSC can effectively address the issue of head class
suppression of pre-trained models.

(a) Original logits (b) Clipping with fixed k (c) Adaptive clipping

Figure 3: The predicted logits before and after clipping. The experiment is conducted under the forward-50 setting of the
test data on ImageNet-LT.
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Table 11: Test accuracy (%) on multiple test distributions for ResNet152 trained on Places-LT. Prior: test class distribution
is used. ∗: Prior implicitly estimated from test data.

Forward Uniform Backward

Method Prior 50 25 10 5 1 5 10 25 50

Softmax ✗ 45.6 42.7 40.2 38.0 31.4 25.4 23.4 20.8 19.4
LA ✗ 42.7 41.7 41.3 41.0 39.4 37.8 37.1 36.2 35.6
MiSLAS ✗ 40.9 39.7 39.5 39.6 38.3 36.7 35.8 34.7 34.4
LADE ✗ 42.8 41.5 41.2 40.8 39.2 37.6 36.9 36.0 35.7
RIDE ✗ 43.1 41.8 41.6 42.0 40.3 38.7 38.2 37.0 36.9

BBSE * 43.0 41.1 38.3 36.2 30.9 26.2 24.3 22.3 20.5
RLLS * 43.4 41.2 38.0 35.1 27.9 20.9 18.3 15.5 13.5
MLLS * 41.8 39.9 37.2 35.1 30.5 26.6 25.5 24.1 22.9
LADE ✓ 46.3 44.2 42.2 41.2 39.4 39.9 40.9 42.4 43.0
SADE * 46.4 44.9 43.3 42.6 40.9 41.1 41.4 42.0 41.6
LSC * 48.7 46.5 44.8 43.8 41.4 41.6 44.8 43.0 44.5

Table 12: Test accuracy (%) on multiple test distributions for model trained on CIFAR-100-LT-100. Prior: test class
distribution is used. ∗: Prior implicitly estimated from test data.

Forward Uniform Backward

Method Prior 50 25 10 5 1 5 10 25 50

Softmax ✗ 63.3 62.0 56.2 52.5 41.4 30.5 25.8 21.7 17.5
LA ✗ 57.8 55.5 54.2 52.0 46.1 40.8 38.4 36.3 33.7
MiSLAS ✗ 58.8 57.2 55.2 53.0 46.8 40.1 37.7 33.9 32.1
LADE ✗ 56.0 55.5 52.8 51.0 45.6 40.0 38.3 35.5 34.0
RIDE ✗ 63.0 59.9 57.0 53.6 48.0 38.1 35.4 31.6 29.2
SADE ✗ 58.4 57.0 54.4 53.1 49.4 42.6 39.7 36.7 35.0
BalPoE ✗ 65.1 63.1 60.8 58.4 52.0 44.6 41.8 38.0 36.1
NCL ✗ 63.8 62.4 59.6 57.3 51.9 46.0 43.6 40.9 39.6

BBSE * 64.0 28.5 40.4 48.3 20.6 30.2 24.9 26.0 24.1
RLLS * 67.3 64.0 58.5 53.9 41.8 29.4 25.0 19.9 16.4
MLLS * 65.6 62.5 58.2 54.4 46.1 38.8 36.4 35.3 33.9
LADE ✓ 62.6 60.2 55.6 52.7 45.6 41.1 41.5 40.7 41.6
SADE * 65.9 62.5 58.3 54.8 49.8 44.7 43.9 42.5 42.4
LSC * 68.1 65.6 61.7 58.4 51.9 46.0 47.9 47.4 48.3

D.7. Impact of Hyperparameter λ in Equation (4)

We examine the impact of λ on the final performance by selecting values from the set {1, 1.5, 2, 3}. The experiments
are conducted on the ImageNet-LT dataset, and the results are presented in Table 18. Overall, we observe comparable
performance across different values of λ in the majority of cases.

E. On the Class-prior based Re-sampling
E.1. Efficiency of Re-sampling

We demonstrate that the re-resampling module used to construct “training data” for our proposed nueral estimator can be
implemented efficiently through the following Python code. Specifically, given each class prior, we first determine the
number of samples for each class for simulation. Subsequently, we sample a subset of training samples for each class by
pre-dividing the samples in the entire training set into their respective class pools. In general, the time complexity of the
re-sampling process is approximately O(QN), where Q is the number of times of re-sampling and N is the number of
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Table 13: Test accuracy (%) on multiple test distributions for model trained on CIFAR-100-LT-50. Prior: test class
distribution is used. ∗: Prior implicitly estimated from test data.

Forward Uniform Backward

Method Prior 50 25 10 5 1 5 10 25 50

Softmax ✗ 64.8 62.7 58.5 55.0 45.6 36.2 32.1 26.6 24.6
LA ✗ 61.6 60.2 58.4 55.9 50.9 45.7 43.9 42.5 40.6
MiSLAS ✗ 60.1 58.9 57.7 56.2 51.5 46.5 44.3 41.8 40.2
LADE ✗ 61.3 60.2 56.9 54.3 50.1 45.7 44.0 41.8 40.5
RIDE ✗ 62.2 61.0 58.8 56.4 51.7 44.0 41.4 38.7 37.1
SADE ✗ 59.5 58.6 56.4 54.8 53.8 48.2 46.1 44.4 43.6
BalPoE ✗ 66.5 64.8 62.8 60.9 56.3 51.0 48.9 46.6 45.3
NCL ✗ 63.2 61.8 60.1 58.5 53.4 48.6 46.8 44.0 43.1

BBSE * 60.6 58.6 52.4 52.8 40.5 34.6 29.9 27.7 32.4
RLLS * 63.6 60.9 56.6 52.9 42.6 32.5 28.6 23.8 21.0
MLLS * 61.9 58.9 55.7 53.0 46.0 40.5 40.1 37.6 37.5
LADE ✓ 65.9 62.1 58.8 56.0 50.1 45.5 46.5 46.8 47.8
SADE * 67.2 64.5 61.2 58.6 53.9 50.9 51.0 51.7 52.8
LSC * 68.4 65.8 62.2 59.2 53.4 50.4 51.4 51.8 52.3

Table 14: Test accuracy (%) on CIFAR-100-LT under the online setting with varying batch size (denoted as B).

Forward Uniform Backward

Methods (setting) 50 5 1 5 50

No adaptation 63.8 57.3 51.9 46.0 39.6
Offline model (ours) 68.1 58.4 51.9 46.0 48.3

SADE (B = 64) 63.4 56.7 48.3 45.6 45.8
Ours (B = 64) 68.7 61.4 51.3 47.2 48.0

SADE (B = 8) 66.0 56.4 43.6 38.7 42.0
Ours (B = 8) 68.8 57.1 51.1 46.9 48.0

SADE (B = 1) 66.1 54.8 43.6 38.7 42.0
Ours (B = 1) 68.4 56.4 51.7 46.1 48.1

Table 15: Test accuracy (%) by combining LSC with existing methods on ImageNet-LT.

Forward Uniform Backward

Methods 50 5 1 5 50

RIDE 66.4 60.8 55.7 50.1 44.0
RIDE + LSC 67.3 60.9 55.7 50.2 44.8

∆ +0.9 +0.1 +0.0 +0.1 +0.8

PaCo 66.6 62.7 58.9 54.1 48.7
PaCo + LSC 71.3 62.7 58.9 55.3 52.3

∆ +4.7 +0.0 +0.0 +1.2 +3.6

NCL 70.9 65.6 60.5 55.1 48.4
NCL + LSC 72.3 65.6 60.5 58.2 57.3

∆ +1.4 +0.0 +0.0 +3.1 +8.9

training samples. By default, we set Q = 2× 103 in all experiments and the re-sampling process can be done in seconds
for training data of size N = 106 on modern computers. We also monitor the time consumption of the entire process of
GBBSE, it takes 12.78 seconds and 355.15 seconds on CIFAR100-LT and ImageNet-LT, respectively.
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Table 16: Effect of different layers of NeuralEstimator on ImageNet-LT.

Forward Uniform Backward

# layers 50 5 1 5 50

1 71.6 65.6 60.9 57.8 54.2
2 72.3 65.6 60.5 58.2 57.3
3 72.3 65.7 60.5 58.2 56.2
4 72.3 65.7 60.5 58.1 55.6
5 72.3 65.7 60.5 58.0 55.2

Table 17: Effect of different loss function of NeuralEstimator on ImageNet-LT.

Forward Uniform Backward

Loss function 50 5 1 5 50

KL-divergence 72.3 65.6 60.5 58.2 57.3
Mean squared error 72.3 65.6 60.5 55.1 55.8

Table 18: Ablation study for λ on ImageNet-LT.

Forward Uni. Backward

λ 50 5 1 5 50

1 72.3 65.6 59.2 58.2 57.3
1.5 72.3 65.6 60.5 58.2 57.3
2 72.3 65.6 60.5 58.2 57.3
3 70.9 65.6 60.5 55.0 57.3

def multiple_subset_resampling(imbalance_ratio_list, img_idx_each_cls):
"""sample multiple subsets from a list of class pirors"""
subset_list = []
for imbalance_ratio in imbalance_ratio_list:

selected_idx_list = subset_resampling(imbalance_ratio, img_idx_each_cls)
subset_list.append(selected_idx_list)

return subset_list

def subset_resampling(imbalance_ratio, img_idx_each_cls):
"""sample a subset from a given class prior"""
img_num_per_cls = produce_num_per_cls(imbalance_ratio)
selected_idx_list = []
for the_class, the_img_num in enumerate(img_num_per_cls):

idx = img_idx_each_cls[the_class]
selected_idx = torch.multinomial(torch.ones(idx.size(0)), the_img_num, replacement=

True)
selected_idx_list.append(selected_idx)

return selected_idx_list
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E.2. How does the number of sampling subsets impact the performance?

We explore the impact of the number of sampled subsets on the ImageNet-LT dataset. We conduct simulations with subsets
ranging from {400, 1000, 2000, 4000} and report the test accuracy in Table 19. Generally, we observe an improvement in
test accuracy with an increase in the number of simulated subsets. This is attributed to the aim of ensuring that the training
set for gθ covers various label distributions. However, we only sample 2000 subsets for a balance between effectiveness and
efficiency.

Table 19: Impact of the number of sampled subsets on ImageNet-LT.

Forward Uni. Backward

# subsets 50 5 1 5 50

4000 72.3 65.6 60.5 58.0 57.7
2000 72.3 65.6 60.5 58.3 57.3
1000 72.2 65.6 60.5 58.2 56.8
400 70.9 65.6 61.0 57.1 52.7
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